| //===------ omptarget.cpp - Target independent OpenMP target RTL -- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Implementation of the interface to be used by Clang during the codegen of a |
| // target region. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "omptarget.h" |
| #include "device.h" |
| #include "private.h" |
| #include "rtl.h" |
| |
| #include <cassert> |
| #include <vector> |
| |
| int AsyncInfoTy::synchronize() { |
| int Result = OFFLOAD_SUCCESS; |
| if (AsyncInfo.Queue) { |
| // If we have a queue we need to synchronize it now. |
| Result = Device.synchronize(*this); |
| assert(AsyncInfo.Queue == nullptr && |
| "The device plugin should have nulled the queue to indicate there " |
| "are no outstanding actions!"); |
| } |
| return Result; |
| } |
| |
| void *&AsyncInfoTy::getVoidPtrLocation() { |
| BufferLocations.push_back(nullptr); |
| return BufferLocations.back(); |
| } |
| |
| /* All begin addresses for partially mapped structs must be 8-aligned in order |
| * to ensure proper alignment of members. E.g. |
| * |
| * struct S { |
| * int a; // 4-aligned |
| * int b; // 4-aligned |
| * int *p; // 8-aligned |
| * } s1; |
| * ... |
| * #pragma omp target map(tofrom: s1.b, s1.p[0:N]) |
| * { |
| * s1.b = 5; |
| * for (int i...) s1.p[i] = ...; |
| * } |
| * |
| * Here we are mapping s1 starting from member b, so BaseAddress=&s1=&s1.a and |
| * BeginAddress=&s1.b. Let's assume that the struct begins at address 0x100, |
| * then &s1.a=0x100, &s1.b=0x104, &s1.p=0x108. Each member obeys the alignment |
| * requirements for its type. Now, when we allocate memory on the device, in |
| * CUDA's case cuMemAlloc() returns an address which is at least 256-aligned. |
| * This means that the chunk of the struct on the device will start at a |
| * 256-aligned address, let's say 0x200. Then the address of b will be 0x200 and |
| * address of p will be a misaligned 0x204 (on the host there was no need to add |
| * padding between b and p, so p comes exactly 4 bytes after b). If the device |
| * kernel tries to access s1.p, a misaligned address error occurs (as reported |
| * by the CUDA plugin). By padding the begin address down to a multiple of 8 and |
| * extending the size of the allocated chuck accordingly, the chuck on the |
| * device will start at 0x200 with the padding (4 bytes), then &s1.b=0x204 and |
| * &s1.p=0x208, as they should be to satisfy the alignment requirements. |
| */ |
| static const int64_t Alignment = 8; |
| |
| /// Map global data and execute pending ctors |
| static int InitLibrary(DeviceTy &Device) { |
| /* |
| * Map global data |
| */ |
| int32_t device_id = Device.DeviceID; |
| int rc = OFFLOAD_SUCCESS; |
| bool supportsEmptyImages = Device.RTL->supports_empty_images && |
| Device.RTL->supports_empty_images() > 0; |
| |
| Device.PendingGlobalsMtx.lock(); |
| PM->TrlTblMtx.lock(); |
| for (auto *HostEntriesBegin : PM->HostEntriesBeginRegistrationOrder) { |
| TranslationTable *TransTable = |
| &PM->HostEntriesBeginToTransTable[HostEntriesBegin]; |
| if (TransTable->HostTable.EntriesBegin == |
| TransTable->HostTable.EntriesEnd && |
| !supportsEmptyImages) { |
| // No host entry so no need to proceed |
| continue; |
| } |
| |
| if (TransTable->TargetsTable[device_id] != 0) { |
| // Library entries have already been processed |
| continue; |
| } |
| |
| // 1) get image. |
| assert(TransTable->TargetsImages.size() > (size_t)device_id && |
| "Not expecting a device ID outside the table's bounds!"); |
| __tgt_device_image *img = TransTable->TargetsImages[device_id]; |
| if (!img) { |
| REPORT("No image loaded for device id %d.\n", device_id); |
| rc = OFFLOAD_FAIL; |
| break; |
| } |
| // 2) load image into the target table. |
| __tgt_target_table *TargetTable = TransTable->TargetsTable[device_id] = |
| Device.load_binary(img); |
| // Unable to get table for this image: invalidate image and fail. |
| if (!TargetTable) { |
| REPORT("Unable to generate entries table for device id %d.\n", device_id); |
| TransTable->TargetsImages[device_id] = 0; |
| rc = OFFLOAD_FAIL; |
| break; |
| } |
| |
| // Verify whether the two table sizes match. |
| size_t hsize = |
| TransTable->HostTable.EntriesEnd - TransTable->HostTable.EntriesBegin; |
| size_t tsize = TargetTable->EntriesEnd - TargetTable->EntriesBegin; |
| |
| // Invalid image for these host entries! |
| if (hsize != tsize) { |
| REPORT("Host and Target tables mismatch for device id %d [%zx != %zx].\n", |
| device_id, hsize, tsize); |
| TransTable->TargetsImages[device_id] = 0; |
| TransTable->TargetsTable[device_id] = 0; |
| rc = OFFLOAD_FAIL; |
| break; |
| } |
| |
| // process global data that needs to be mapped. |
| Device.DataMapMtx.lock(); |
| __tgt_target_table *HostTable = &TransTable->HostTable; |
| for (__tgt_offload_entry *CurrDeviceEntry = TargetTable->EntriesBegin, |
| *CurrHostEntry = HostTable->EntriesBegin, |
| *EntryDeviceEnd = TargetTable->EntriesEnd; |
| CurrDeviceEntry != EntryDeviceEnd; |
| CurrDeviceEntry++, CurrHostEntry++) { |
| if (CurrDeviceEntry->size != 0) { |
| // has data. |
| assert(CurrDeviceEntry->size == CurrHostEntry->size && |
| "data size mismatch"); |
| |
| // Fortran may use multiple weak declarations for the same symbol, |
| // therefore we must allow for multiple weak symbols to be loaded from |
| // the fat binary. Treat these mappings as any other "regular" mapping. |
| // Add entry to map. |
| if (Device.getTgtPtrBegin(CurrHostEntry->addr, CurrHostEntry->size)) |
| continue; |
| DP("Add mapping from host " DPxMOD " to device " DPxMOD " with size %zu" |
| "\n", |
| DPxPTR(CurrHostEntry->addr), DPxPTR(CurrDeviceEntry->addr), |
| CurrDeviceEntry->size); |
| Device.HostDataToTargetMap.emplace( |
| (uintptr_t)CurrHostEntry->addr /*HstPtrBase*/, |
| (uintptr_t)CurrHostEntry->addr /*HstPtrBegin*/, |
| (uintptr_t)CurrHostEntry->addr + CurrHostEntry->size /*HstPtrEnd*/, |
| (uintptr_t)CurrDeviceEntry->addr /*TgtPtrBegin*/, |
| false /*UseHoldRefCount*/, nullptr /*Name*/, |
| true /*IsRefCountINF*/); |
| } |
| } |
| Device.DataMapMtx.unlock(); |
| } |
| PM->TrlTblMtx.unlock(); |
| |
| if (rc != OFFLOAD_SUCCESS) { |
| Device.PendingGlobalsMtx.unlock(); |
| return rc; |
| } |
| |
| /* |
| * Run ctors for static objects |
| */ |
| if (!Device.PendingCtorsDtors.empty()) { |
| AsyncInfoTy AsyncInfo(Device); |
| // Call all ctors for all libraries registered so far |
| for (auto &lib : Device.PendingCtorsDtors) { |
| if (!lib.second.PendingCtors.empty()) { |
| DP("Has pending ctors... call now\n"); |
| for (auto &entry : lib.second.PendingCtors) { |
| void *ctor = entry; |
| int rc = |
| target(nullptr, Device, ctor, 0, nullptr, nullptr, nullptr, |
| nullptr, nullptr, nullptr, 1, 1, true /*team*/, AsyncInfo); |
| if (rc != OFFLOAD_SUCCESS) { |
| REPORT("Running ctor " DPxMOD " failed.\n", DPxPTR(ctor)); |
| Device.PendingGlobalsMtx.unlock(); |
| return OFFLOAD_FAIL; |
| } |
| } |
| // Clear the list to indicate that this device has been used |
| lib.second.PendingCtors.clear(); |
| DP("Done with pending ctors for lib " DPxMOD "\n", DPxPTR(lib.first)); |
| } |
| } |
| // All constructors have been issued, wait for them now. |
| if (AsyncInfo.synchronize() != OFFLOAD_SUCCESS) |
| return OFFLOAD_FAIL; |
| } |
| Device.HasPendingGlobals = false; |
| Device.PendingGlobalsMtx.unlock(); |
| |
| return OFFLOAD_SUCCESS; |
| } |
| |
| void handleTargetOutcome(bool Success, ident_t *Loc) { |
| switch (PM->TargetOffloadPolicy) { |
| case tgt_disabled: |
| if (Success) { |
| FATAL_MESSAGE0(1, "expected no offloading while offloading is disabled"); |
| } |
| break; |
| case tgt_default: |
| FATAL_MESSAGE0(1, "default offloading policy must be switched to " |
| "mandatory or disabled"); |
| break; |
| case tgt_mandatory: |
| if (!Success) { |
| if (getInfoLevel() & OMP_INFOTYPE_DUMP_TABLE) |
| for (auto &Device : PM->Devices) |
| dumpTargetPointerMappings(Loc, *Device); |
| else |
| FAILURE_MESSAGE("Run with LIBOMPTARGET_INFO=%d to dump host-target " |
| "pointer mappings.\n", |
| OMP_INFOTYPE_DUMP_TABLE); |
| |
| SourceInfo info(Loc); |
| if (info.isAvailible()) |
| fprintf(stderr, "%s:%d:%d: ", info.getFilename(), info.getLine(), |
| info.getColumn()); |
| else |
| FAILURE_MESSAGE("Source location information not present. Compile with " |
| "-g or -gline-tables-only.\n"); |
| FATAL_MESSAGE0( |
| 1, "failure of target construct while offloading is mandatory"); |
| } else { |
| if (getInfoLevel() & OMP_INFOTYPE_DUMP_TABLE) |
| for (auto &Device : PM->Devices) |
| dumpTargetPointerMappings(Loc, *Device); |
| } |
| break; |
| } |
| } |
| |
| static void handleDefaultTargetOffload() { |
| PM->TargetOffloadMtx.lock(); |
| if (PM->TargetOffloadPolicy == tgt_default) { |
| if (omp_get_num_devices() > 0) { |
| DP("Default TARGET OFFLOAD policy is now mandatory " |
| "(devices were found)\n"); |
| PM->TargetOffloadPolicy = tgt_mandatory; |
| } else { |
| DP("Default TARGET OFFLOAD policy is now disabled " |
| "(no devices were found)\n"); |
| PM->TargetOffloadPolicy = tgt_disabled; |
| } |
| } |
| PM->TargetOffloadMtx.unlock(); |
| } |
| |
| static bool isOffloadDisabled() { |
| if (PM->TargetOffloadPolicy == tgt_default) |
| handleDefaultTargetOffload(); |
| return PM->TargetOffloadPolicy == tgt_disabled; |
| } |
| |
| // If offload is enabled, ensure that device DeviceID has been initialized, |
| // global ctors have been executed, and global data has been mapped. |
| // |
| // The return bool indicates if the offload is to the host device |
| // There are three possible results: |
| // - Return false if the taregt device is ready for offload |
| // - Return true without reporting a runtime error if offload is |
| // disabled, perhaps because the initial device was specified. |
| // - Report a runtime error and return true. |
| // |
| // If DeviceID == OFFLOAD_DEVICE_DEFAULT, set DeviceID to the default device. |
| // This step might be skipped if offload is disabled. |
| bool checkDeviceAndCtors(int64_t &DeviceID, ident_t *Loc) { |
| if (isOffloadDisabled()) { |
| DP("Offload is disabled\n"); |
| return true; |
| } |
| |
| if (DeviceID == OFFLOAD_DEVICE_DEFAULT) { |
| DeviceID = omp_get_default_device(); |
| DP("Use default device id %" PRId64 "\n", DeviceID); |
| } |
| |
| // Proposed behavior for OpenMP 5.2 in OpenMP spec github issue 2669. |
| if (omp_get_num_devices() == 0) { |
| DP("omp_get_num_devices() == 0 but offload is manadatory\n"); |
| handleTargetOutcome(false, Loc); |
| return true; |
| } |
| |
| if (DeviceID == omp_get_initial_device()) { |
| DP("Device is host (%" PRId64 "), returning as if offload is disabled\n", |
| DeviceID); |
| return true; |
| } |
| |
| // Is device ready? |
| if (!device_is_ready(DeviceID)) { |
| REPORT("Device %" PRId64 " is not ready.\n", DeviceID); |
| handleTargetOutcome(false, Loc); |
| return true; |
| } |
| |
| // Get device info. |
| DeviceTy &Device = *PM->Devices[DeviceID]; |
| |
| // Check whether global data has been mapped for this device |
| Device.PendingGlobalsMtx.lock(); |
| bool hasPendingGlobals = Device.HasPendingGlobals; |
| Device.PendingGlobalsMtx.unlock(); |
| if (hasPendingGlobals && InitLibrary(Device) != OFFLOAD_SUCCESS) { |
| REPORT("Failed to init globals on device %" PRId64 "\n", DeviceID); |
| handleTargetOutcome(false, Loc); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static int32_t getParentIndex(int64_t type) { |
| return ((type & OMP_TGT_MAPTYPE_MEMBER_OF) >> 48) - 1; |
| } |
| |
| void *targetAllocExplicit(size_t size, int device_num, int kind, |
| const char *name) { |
| TIMESCOPE(); |
| DP("Call to %s for device %d requesting %zu bytes\n", name, device_num, size); |
| |
| if (size <= 0) { |
| DP("Call to %s with non-positive length\n", name); |
| return NULL; |
| } |
| |
| void *rc = NULL; |
| |
| if (device_num == omp_get_initial_device()) { |
| rc = malloc(size); |
| DP("%s returns host ptr " DPxMOD "\n", name, DPxPTR(rc)); |
| return rc; |
| } |
| |
| if (!device_is_ready(device_num)) { |
| DP("%s returns NULL ptr\n", name); |
| return NULL; |
| } |
| |
| DeviceTy &Device = *PM->Devices[device_num]; |
| rc = Device.allocData(size, nullptr, kind); |
| DP("%s returns device ptr " DPxMOD "\n", name, DPxPTR(rc)); |
| return rc; |
| } |
| |
| /// Call the user-defined mapper function followed by the appropriate |
| // targetData* function (targetData{Begin,End,Update}). |
| int targetDataMapper(ident_t *loc, DeviceTy &Device, void *arg_base, void *arg, |
| int64_t arg_size, int64_t arg_type, |
| map_var_info_t arg_names, void *arg_mapper, |
| AsyncInfoTy &AsyncInfo, |
| TargetDataFuncPtrTy target_data_function) { |
| TIMESCOPE_WITH_IDENT(loc); |
| DP("Calling the mapper function " DPxMOD "\n", DPxPTR(arg_mapper)); |
| |
| // The mapper function fills up Components. |
| MapperComponentsTy MapperComponents; |
| MapperFuncPtrTy MapperFuncPtr = (MapperFuncPtrTy)(arg_mapper); |
| (*MapperFuncPtr)((void *)&MapperComponents, arg_base, arg, arg_size, arg_type, |
| arg_names); |
| |
| // Construct new arrays for args_base, args, arg_sizes and arg_types |
| // using the information in MapperComponents and call the corresponding |
| // targetData* function using these new arrays. |
| std::vector<void *> MapperArgsBase(MapperComponents.Components.size()); |
| std::vector<void *> MapperArgs(MapperComponents.Components.size()); |
| std::vector<int64_t> MapperArgSizes(MapperComponents.Components.size()); |
| std::vector<int64_t> MapperArgTypes(MapperComponents.Components.size()); |
| std::vector<void *> MapperArgNames(MapperComponents.Components.size()); |
| |
| for (unsigned I = 0, E = MapperComponents.Components.size(); I < E; ++I) { |
| auto &C = MapperComponents.Components[I]; |
| MapperArgsBase[I] = C.Base; |
| MapperArgs[I] = C.Begin; |
| MapperArgSizes[I] = C.Size; |
| MapperArgTypes[I] = C.Type; |
| MapperArgNames[I] = C.Name; |
| } |
| |
| int rc = target_data_function(loc, Device, MapperComponents.Components.size(), |
| MapperArgsBase.data(), MapperArgs.data(), |
| MapperArgSizes.data(), MapperArgTypes.data(), |
| MapperArgNames.data(), /*arg_mappers*/ nullptr, |
| AsyncInfo, /*FromMapper=*/true); |
| |
| return rc; |
| } |
| |
| /// Internal function to do the mapping and transfer the data to the device |
| int targetDataBegin(ident_t *loc, DeviceTy &Device, int32_t arg_num, |
| void **args_base, void **args, int64_t *arg_sizes, |
| int64_t *arg_types, map_var_info_t *arg_names, |
| void **arg_mappers, AsyncInfoTy &AsyncInfo, |
| bool FromMapper) { |
| // process each input. |
| for (int32_t i = 0; i < arg_num; ++i) { |
| // Ignore private variables and arrays - there is no mapping for them. |
| if ((arg_types[i] & OMP_TGT_MAPTYPE_LITERAL) || |
| (arg_types[i] & OMP_TGT_MAPTYPE_PRIVATE)) |
| continue; |
| |
| if (arg_mappers && arg_mappers[i]) { |
| // Instead of executing the regular path of targetDataBegin, call the |
| // targetDataMapper variant which will call targetDataBegin again |
| // with new arguments. |
| DP("Calling targetDataMapper for the %dth argument\n", i); |
| |
| map_var_info_t arg_name = (!arg_names) ? nullptr : arg_names[i]; |
| int rc = targetDataMapper(loc, Device, args_base[i], args[i], |
| arg_sizes[i], arg_types[i], arg_name, |
| arg_mappers[i], AsyncInfo, targetDataBegin); |
| |
| if (rc != OFFLOAD_SUCCESS) { |
| REPORT("Call to targetDataBegin via targetDataMapper for custom mapper" |
| " failed.\n"); |
| return OFFLOAD_FAIL; |
| } |
| |
| // Skip the rest of this function, continue to the next argument. |
| continue; |
| } |
| |
| void *HstPtrBegin = args[i]; |
| void *HstPtrBase = args_base[i]; |
| int64_t data_size = arg_sizes[i]; |
| map_var_info_t HstPtrName = (!arg_names) ? nullptr : arg_names[i]; |
| |
| // Adjust for proper alignment if this is a combined entry (for structs). |
| // Look at the next argument - if that is MEMBER_OF this one, then this one |
| // is a combined entry. |
| int64_t padding = 0; |
| const int next_i = i + 1; |
| if (getParentIndex(arg_types[i]) < 0 && next_i < arg_num && |
| getParentIndex(arg_types[next_i]) == i) { |
| padding = (int64_t)HstPtrBegin % Alignment; |
| if (padding) { |
| DP("Using a padding of %" PRId64 " bytes for begin address " DPxMOD |
| "\n", |
| padding, DPxPTR(HstPtrBegin)); |
| HstPtrBegin = (char *)HstPtrBegin - padding; |
| data_size += padding; |
| } |
| } |
| |
| // Address of pointer on the host and device, respectively. |
| void *Pointer_HstPtrBegin, *PointerTgtPtrBegin; |
| TargetPointerResultTy Pointer_TPR; |
| bool IsHostPtr = false; |
| bool IsImplicit = arg_types[i] & OMP_TGT_MAPTYPE_IMPLICIT; |
| // Force the creation of a device side copy of the data when: |
| // a close map modifier was associated with a map that contained a to. |
| bool HasCloseModifier = arg_types[i] & OMP_TGT_MAPTYPE_CLOSE; |
| bool HasPresentModifier = arg_types[i] & OMP_TGT_MAPTYPE_PRESENT; |
| bool HasHoldModifier = arg_types[i] & OMP_TGT_MAPTYPE_OMPX_HOLD; |
| // UpdateRef is based on MEMBER_OF instead of TARGET_PARAM because if we |
| // have reached this point via __tgt_target_data_begin and not __tgt_target |
| // then no argument is marked as TARGET_PARAM ("omp target data map" is not |
| // associated with a target region, so there are no target parameters). This |
| // may be considered a hack, we could revise the scheme in the future. |
| bool UpdateRef = |
| !(arg_types[i] & OMP_TGT_MAPTYPE_MEMBER_OF) && !(FromMapper && i == 0); |
| if (arg_types[i] & OMP_TGT_MAPTYPE_PTR_AND_OBJ) { |
| DP("Has a pointer entry: \n"); |
| // Base is address of pointer. |
| // |
| // Usually, the pointer is already allocated by this time. For example: |
| // |
| // #pragma omp target map(s.p[0:N]) |
| // |
| // The map entry for s comes first, and the PTR_AND_OBJ entry comes |
| // afterward, so the pointer is already allocated by the time the |
| // PTR_AND_OBJ entry is handled below, and PointerTgtPtrBegin is thus |
| // non-null. However, "declare target link" can produce a PTR_AND_OBJ |
| // entry for a global that might not already be allocated by the time the |
| // PTR_AND_OBJ entry is handled below, and so the allocation might fail |
| // when HasPresentModifier. |
| Pointer_TPR = Device.getTargetPointer( |
| HstPtrBase, HstPtrBase, sizeof(void *), /*HstPtrName=*/nullptr, |
| /*HasFlagTo=*/false, /*HasFlagAlways=*/false, IsImplicit, UpdateRef, |
| HasCloseModifier, HasPresentModifier, HasHoldModifier, AsyncInfo); |
| PointerTgtPtrBegin = Pointer_TPR.TargetPointer; |
| IsHostPtr = Pointer_TPR.Flags.IsHostPointer; |
| if (!PointerTgtPtrBegin) { |
| REPORT("Call to getTargetPointer returned null pointer (%s).\n", |
| HasPresentModifier ? "'present' map type modifier" |
| : "device failure or illegal mapping"); |
| return OFFLOAD_FAIL; |
| } |
| DP("There are %zu bytes allocated at target address " DPxMOD " - is%s new" |
| "\n", |
| sizeof(void *), DPxPTR(PointerTgtPtrBegin), |
| (Pointer_TPR.Flags.IsNewEntry ? "" : " not")); |
| Pointer_HstPtrBegin = HstPtrBase; |
| // modify current entry. |
| HstPtrBase = *(void **)HstPtrBase; |
| // No need to update pointee ref count for the first element of the |
| // subelement that comes from mapper. |
| UpdateRef = |
| (!FromMapper || i != 0); // subsequently update ref count of pointee |
| } |
| |
| const bool HasFlagTo = arg_types[i] & OMP_TGT_MAPTYPE_TO; |
| const bool HasFlagAlways = arg_types[i] & OMP_TGT_MAPTYPE_ALWAYS; |
| auto TPR = Device.getTargetPointer(HstPtrBegin, HstPtrBase, data_size, |
| HstPtrName, HasFlagTo, HasFlagAlways, |
| IsImplicit, UpdateRef, HasCloseModifier, |
| HasPresentModifier, HasHoldModifier, |
| AsyncInfo); |
| void *TgtPtrBegin = TPR.TargetPointer; |
| IsHostPtr = TPR.Flags.IsHostPointer; |
| // If data_size==0, then the argument could be a zero-length pointer to |
| // NULL, so getOrAlloc() returning NULL is not an error. |
| if (!TgtPtrBegin && (data_size || HasPresentModifier)) { |
| REPORT("Call to getTargetPointer returned null pointer (%s).\n", |
| HasPresentModifier ? "'present' map type modifier" |
| : "device failure or illegal mapping"); |
| return OFFLOAD_FAIL; |
| } |
| DP("There are %" PRId64 " bytes allocated at target address " DPxMOD |
| " - is%s new\n", |
| data_size, DPxPTR(TgtPtrBegin), (TPR.Flags.IsNewEntry ? "" : " not")); |
| |
| if (arg_types[i] & OMP_TGT_MAPTYPE_RETURN_PARAM) { |
| uintptr_t Delta = (uintptr_t)HstPtrBegin - (uintptr_t)HstPtrBase; |
| void *TgtPtrBase = (void *)((uintptr_t)TgtPtrBegin - Delta); |
| DP("Returning device pointer " DPxMOD "\n", DPxPTR(TgtPtrBase)); |
| args_base[i] = TgtPtrBase; |
| } |
| |
| if (arg_types[i] & OMP_TGT_MAPTYPE_PTR_AND_OBJ && !IsHostPtr) { |
| // Check whether we need to update the pointer on the device |
| bool UpdateDevPtr = false; |
| |
| uint64_t Delta = (uint64_t)HstPtrBegin - (uint64_t)HstPtrBase; |
| void *ExpectedTgtPtrBase = (void *)((uint64_t)TgtPtrBegin - Delta); |
| |
| Device.ShadowMtx.lock(); |
| auto Entry = Device.ShadowPtrMap.find(Pointer_HstPtrBegin); |
| // If this pointer is not in the map we need to insert it. If the map |
| // contains a stale entry, we need to update it (e.g. if the pointee was |
| // deallocated and later on is reallocated at another device address). The |
| // latter scenario is the subject of LIT test env/base_ptr_ref_count.c. An |
| // entry is removed from ShadowPtrMap only when the PTR of a PTR_AND_OBJ |
| // pair is deallocated, not when the OBJ is deallocated. In |
| // env/base_ptr_ref_count.c the PTR is a global "declare target" pointer, |
| // so it stays in the map for the lifetime of the application. When the |
| // OBJ is deallocated and later on allocated again (at a different device |
| // address), ShadowPtrMap still contains an entry for Pointer_HstPtrBegin |
| // which is stale, pointing to the old ExpectedTgtPtrBase of the OBJ. |
| if (Entry == Device.ShadowPtrMap.end() || |
| Entry->second.TgtPtrVal != ExpectedTgtPtrBase) { |
| // create or update shadow pointers for this entry |
| Device.ShadowPtrMap[Pointer_HstPtrBegin] = { |
| HstPtrBase, PointerTgtPtrBegin, ExpectedTgtPtrBase}; |
| UpdateDevPtr = true; |
| } |
| |
| if (UpdateDevPtr) { |
| Pointer_TPR.MapTableEntry->lock(); |
| Device.ShadowMtx.unlock(); |
| |
| DP("Update pointer (" DPxMOD ") -> [" DPxMOD "]\n", |
| DPxPTR(PointerTgtPtrBegin), DPxPTR(TgtPtrBegin)); |
| |
| void *&TgtPtrBase = AsyncInfo.getVoidPtrLocation(); |
| TgtPtrBase = ExpectedTgtPtrBase; |
| |
| int rt = Device.submitData(PointerTgtPtrBegin, &TgtPtrBase, |
| sizeof(void *), AsyncInfo); |
| Pointer_TPR.MapTableEntry->unlock(); |
| |
| if (rt != OFFLOAD_SUCCESS) { |
| REPORT("Copying data to device failed.\n"); |
| return OFFLOAD_FAIL; |
| } |
| } else |
| Device.ShadowMtx.unlock(); |
| } |
| } |
| |
| return OFFLOAD_SUCCESS; |
| } |
| |
| namespace { |
| /// This structure contains information to deallocate a target pointer, aka. |
| /// used to call the function \p DeviceTy::deallocTgtPtr. |
| struct DeallocTgtPtrInfo { |
| /// Host pointer used to look up into the map table |
| void *HstPtrBegin; |
| /// Size of the data |
| int64_t DataSize; |
| /// Whether it has \p ompx_hold modifier |
| bool HasHoldModifier; |
| |
| DeallocTgtPtrInfo(void *HstPtr, int64_t Size, bool HasHoldModifier) |
| : HstPtrBegin(HstPtr), DataSize(Size), HasHoldModifier(HasHoldModifier) {} |
| }; |
| } // namespace |
| |
| /// Internal function to undo the mapping and retrieve the data from the device. |
| int targetDataEnd(ident_t *loc, DeviceTy &Device, int32_t ArgNum, |
| void **ArgBases, void **Args, int64_t *ArgSizes, |
| int64_t *ArgTypes, map_var_info_t *ArgNames, |
| void **ArgMappers, AsyncInfoTy &AsyncInfo, bool FromMapper) { |
| int Ret; |
| std::vector<DeallocTgtPtrInfo> DeallocTgtPtrs; |
| void *FromMapperBase = nullptr; |
| // process each input. |
| for (int32_t I = ArgNum - 1; I >= 0; --I) { |
| // Ignore private variables and arrays - there is no mapping for them. |
| // Also, ignore the use_device_ptr directive, it has no effect here. |
| if ((ArgTypes[I] & OMP_TGT_MAPTYPE_LITERAL) || |
| (ArgTypes[I] & OMP_TGT_MAPTYPE_PRIVATE)) |
| continue; |
| |
| if (ArgMappers && ArgMappers[I]) { |
| // Instead of executing the regular path of targetDataEnd, call the |
| // targetDataMapper variant which will call targetDataEnd again |
| // with new arguments. |
| DP("Calling targetDataMapper for the %dth argument\n", I); |
| |
| map_var_info_t ArgName = (!ArgNames) ? nullptr : ArgNames[I]; |
| Ret = targetDataMapper(loc, Device, ArgBases[I], Args[I], ArgSizes[I], |
| ArgTypes[I], ArgName, ArgMappers[I], AsyncInfo, |
| targetDataEnd); |
| |
| if (Ret != OFFLOAD_SUCCESS) { |
| REPORT("Call to targetDataEnd via targetDataMapper for custom mapper" |
| " failed.\n"); |
| return OFFLOAD_FAIL; |
| } |
| |
| // Skip the rest of this function, continue to the next argument. |
| continue; |
| } |
| |
| void *HstPtrBegin = Args[I]; |
| int64_t DataSize = ArgSizes[I]; |
| // Adjust for proper alignment if this is a combined entry (for structs). |
| // Look at the next argument - if that is MEMBER_OF this one, then this one |
| // is a combined entry. |
| const int NextI = I + 1; |
| if (getParentIndex(ArgTypes[I]) < 0 && NextI < ArgNum && |
| getParentIndex(ArgTypes[NextI]) == I) { |
| int64_t Padding = (int64_t)HstPtrBegin % Alignment; |
| if (Padding) { |
| DP("Using a Padding of %" PRId64 " bytes for begin address " DPxMOD |
| "\n", |
| Padding, DPxPTR(HstPtrBegin)); |
| HstPtrBegin = (char *)HstPtrBegin - Padding; |
| DataSize += Padding; |
| } |
| } |
| |
| bool IsLast, IsHostPtr; |
| bool IsImplicit = ArgTypes[I] & OMP_TGT_MAPTYPE_IMPLICIT; |
| bool UpdateRef = (!(ArgTypes[I] & OMP_TGT_MAPTYPE_MEMBER_OF) || |
| (ArgTypes[I] & OMP_TGT_MAPTYPE_PTR_AND_OBJ)) && |
| !(FromMapper && I == 0); |
| bool ForceDelete = ArgTypes[I] & OMP_TGT_MAPTYPE_DELETE; |
| bool HasPresentModifier = ArgTypes[I] & OMP_TGT_MAPTYPE_PRESENT; |
| bool HasHoldModifier = ArgTypes[I] & OMP_TGT_MAPTYPE_OMPX_HOLD; |
| |
| // If PTR_AND_OBJ, HstPtrBegin is address of pointee |
| void *TgtPtrBegin = Device.getTgtPtrBegin( |
| HstPtrBegin, DataSize, IsLast, UpdateRef, HasHoldModifier, IsHostPtr, |
| !IsImplicit, ForceDelete); |
| if (!TgtPtrBegin && (DataSize || HasPresentModifier)) { |
| DP("Mapping does not exist (%s)\n", |
| (HasPresentModifier ? "'present' map type modifier" : "ignored")); |
| if (HasPresentModifier) { |
| // OpenMP 5.1, sec. 2.21.7.1 "map Clause", p. 350 L10-13: |
| // "If a map clause appears on a target, target data, target enter data |
| // or target exit data construct with a present map-type-modifier then |
| // on entry to the region if the corresponding list item does not appear |
| // in the device data environment then an error occurs and the program |
| // terminates." |
| // |
| // This should be an error upon entering an "omp target exit data". It |
| // should not be an error upon exiting an "omp target data" or "omp |
| // target". For "omp target data", Clang thus doesn't include present |
| // modifiers for end calls. For "omp target", we have not found a valid |
| // OpenMP program for which the error matters: it appears that, if a |
| // program can guarantee that data is present at the beginning of an |
| // "omp target" region so that there's no error there, that data is also |
| // guaranteed to be present at the end. |
| MESSAGE("device mapping required by 'present' map type modifier does " |
| "not exist for host address " DPxMOD " (%" PRId64 " bytes)", |
| DPxPTR(HstPtrBegin), DataSize); |
| return OFFLOAD_FAIL; |
| } |
| } else { |
| DP("There are %" PRId64 " bytes allocated at target address " DPxMOD |
| " - is%s last\n", |
| DataSize, DPxPTR(TgtPtrBegin), (IsLast ? "" : " not")); |
| } |
| |
| // OpenMP 5.1, sec. 2.21.7.1 "map Clause", p. 351 L14-16: |
| // "If the map clause appears on a target, target data, or target exit data |
| // construct and a corresponding list item of the original list item is not |
| // present in the device data environment on exit from the region then the |
| // list item is ignored." |
| if (!TgtPtrBegin) |
| continue; |
| |
| bool DelEntry = IsLast; |
| |
| // If the last element from the mapper (for end transfer args comes in |
| // reverse order), do not remove the partial entry, the parent struct still |
| // exists. |
| if ((ArgTypes[I] & OMP_TGT_MAPTYPE_MEMBER_OF) && |
| !(ArgTypes[I] & OMP_TGT_MAPTYPE_PTR_AND_OBJ)) { |
| DelEntry = false; // protect parent struct from being deallocated |
| } |
| |
| if ((ArgTypes[I] & OMP_TGT_MAPTYPE_FROM) || DelEntry) { |
| // Move data back to the host |
| if (ArgTypes[I] & OMP_TGT_MAPTYPE_FROM) { |
| bool Always = ArgTypes[I] & OMP_TGT_MAPTYPE_ALWAYS; |
| if ((Always || IsLast) && !IsHostPtr) { |
| DP("Moving %" PRId64 " bytes (tgt:" DPxMOD ") -> (hst:" DPxMOD ")\n", |
| DataSize, DPxPTR(TgtPtrBegin), DPxPTR(HstPtrBegin)); |
| Ret = Device.retrieveData(HstPtrBegin, TgtPtrBegin, DataSize, |
| AsyncInfo); |
| if (Ret != OFFLOAD_SUCCESS) { |
| REPORT("Copying data from device failed.\n"); |
| return OFFLOAD_FAIL; |
| } |
| } |
| } |
| if (DelEntry && FromMapper && I == 0) { |
| DelEntry = false; |
| FromMapperBase = HstPtrBegin; |
| } |
| |
| // If we copied back to the host a struct/array containing pointers, we |
| // need to restore the original host pointer values from their shadow |
| // copies. If the struct is going to be deallocated, remove any remaining |
| // shadow pointer entries for this struct. |
| uintptr_t LB = (uintptr_t)HstPtrBegin; |
| uintptr_t UB = (uintptr_t)HstPtrBegin + DataSize; |
| Device.ShadowMtx.lock(); |
| for (ShadowPtrListTy::iterator Itr = Device.ShadowPtrMap.begin(); |
| Itr != Device.ShadowPtrMap.end();) { |
| void **ShadowHstPtrAddr = (void **)Itr->first; |
| |
| // An STL map is sorted on its keys; use this property |
| // to quickly determine when to break out of the loop. |
| if ((uintptr_t)ShadowHstPtrAddr < LB) { |
| ++Itr; |
| continue; |
| } |
| if ((uintptr_t)ShadowHstPtrAddr >= UB) |
| break; |
| |
| // If we copied the struct to the host, we need to restore the pointer. |
| if (ArgTypes[I] & OMP_TGT_MAPTYPE_FROM) { |
| DP("Restoring original host pointer value " DPxMOD " for host " |
| "pointer " DPxMOD "\n", |
| DPxPTR(Itr->second.HstPtrVal), DPxPTR(ShadowHstPtrAddr)); |
| *ShadowHstPtrAddr = Itr->second.HstPtrVal; |
| } |
| // If the struct is to be deallocated, remove the shadow entry. |
| if (DelEntry) { |
| DP("Removing shadow pointer " DPxMOD "\n", DPxPTR(ShadowHstPtrAddr)); |
| Itr = Device.ShadowPtrMap.erase(Itr); |
| } else { |
| ++Itr; |
| } |
| } |
| Device.ShadowMtx.unlock(); |
| |
| // Add pointer to the buffer for later deallocation |
| if (DelEntry && !IsHostPtr) |
| DeallocTgtPtrs.emplace_back(HstPtrBegin, DataSize, HasHoldModifier); |
| } |
| } |
| |
| // TODO: We should not synchronize here but pass the AsyncInfo object to the |
| // allocate/deallocate device APIs. |
| // |
| // We need to synchronize before deallocating data. |
| Ret = AsyncInfo.synchronize(); |
| if (Ret != OFFLOAD_SUCCESS) |
| return OFFLOAD_FAIL; |
| |
| // Deallocate target pointer |
| for (DeallocTgtPtrInfo &Info : DeallocTgtPtrs) { |
| if (FromMapperBase && FromMapperBase == Info.HstPtrBegin) |
| continue; |
| Ret = Device.deallocTgtPtr(Info.HstPtrBegin, Info.DataSize, |
| Info.HasHoldModifier); |
| if (Ret != OFFLOAD_SUCCESS) { |
| REPORT("Deallocating data from device failed.\n"); |
| return OFFLOAD_FAIL; |
| } |
| } |
| |
| return OFFLOAD_SUCCESS; |
| } |
| |
| static int targetDataContiguous(ident_t *loc, DeviceTy &Device, void *ArgsBase, |
| void *HstPtrBegin, int64_t ArgSize, |
| int64_t ArgType, AsyncInfoTy &AsyncInfo) { |
| TIMESCOPE_WITH_IDENT(loc); |
| bool IsLast, IsHostPtr; |
| void *TgtPtrBegin = Device.getTgtPtrBegin( |
| HstPtrBegin, ArgSize, IsLast, /*UpdateRefCount=*/false, |
| /*UseHoldRefCount=*/false, IsHostPtr, /*MustContain=*/true); |
| if (!TgtPtrBegin) { |
| DP("hst data:" DPxMOD " not found, becomes a noop\n", DPxPTR(HstPtrBegin)); |
| if (ArgType & OMP_TGT_MAPTYPE_PRESENT) { |
| MESSAGE("device mapping required by 'present' motion modifier does not " |
| "exist for host address " DPxMOD " (%" PRId64 " bytes)", |
| DPxPTR(HstPtrBegin), ArgSize); |
| return OFFLOAD_FAIL; |
| } |
| return OFFLOAD_SUCCESS; |
| } |
| |
| if (IsHostPtr) { |
| DP("hst data:" DPxMOD " unified and shared, becomes a noop\n", |
| DPxPTR(HstPtrBegin)); |
| return OFFLOAD_SUCCESS; |
| } |
| |
| if (ArgType & OMP_TGT_MAPTYPE_FROM) { |
| DP("Moving %" PRId64 " bytes (tgt:" DPxMOD ") -> (hst:" DPxMOD ")\n", |
| ArgSize, DPxPTR(TgtPtrBegin), DPxPTR(HstPtrBegin)); |
| int Ret = Device.retrieveData(HstPtrBegin, TgtPtrBegin, ArgSize, AsyncInfo); |
| if (Ret != OFFLOAD_SUCCESS) { |
| REPORT("Copying data from device failed.\n"); |
| return OFFLOAD_FAIL; |
| } |
| |
| uintptr_t LB = (uintptr_t)HstPtrBegin; |
| uintptr_t UB = (uintptr_t)HstPtrBegin + ArgSize; |
| Device.ShadowMtx.lock(); |
| for (ShadowPtrListTy::iterator IT = Device.ShadowPtrMap.begin(); |
| IT != Device.ShadowPtrMap.end(); ++IT) { |
| void **ShadowHstPtrAddr = (void **)IT->first; |
| if ((uintptr_t)ShadowHstPtrAddr < LB) |
| continue; |
| if ((uintptr_t)ShadowHstPtrAddr >= UB) |
| break; |
| DP("Restoring original host pointer value " DPxMOD |
| " for host pointer " DPxMOD "\n", |
| DPxPTR(IT->second.HstPtrVal), DPxPTR(ShadowHstPtrAddr)); |
| *ShadowHstPtrAddr = IT->second.HstPtrVal; |
| } |
| Device.ShadowMtx.unlock(); |
| } |
| |
| if (ArgType & OMP_TGT_MAPTYPE_TO) { |
| DP("Moving %" PRId64 " bytes (hst:" DPxMOD ") -> (tgt:" DPxMOD ")\n", |
| ArgSize, DPxPTR(HstPtrBegin), DPxPTR(TgtPtrBegin)); |
| int Ret = Device.submitData(TgtPtrBegin, HstPtrBegin, ArgSize, AsyncInfo); |
| if (Ret != OFFLOAD_SUCCESS) { |
| REPORT("Copying data to device failed.\n"); |
| return OFFLOAD_FAIL; |
| } |
| |
| uintptr_t LB = (uintptr_t)HstPtrBegin; |
| uintptr_t UB = (uintptr_t)HstPtrBegin + ArgSize; |
| Device.ShadowMtx.lock(); |
| for (ShadowPtrListTy::iterator IT = Device.ShadowPtrMap.begin(); |
| IT != Device.ShadowPtrMap.end(); ++IT) { |
| void **ShadowHstPtrAddr = (void **)IT->first; |
| if ((uintptr_t)ShadowHstPtrAddr < LB) |
| continue; |
| if ((uintptr_t)ShadowHstPtrAddr >= UB) |
| break; |
| DP("Restoring original target pointer value " DPxMOD " for target " |
| "pointer " DPxMOD "\n", |
| DPxPTR(IT->second.TgtPtrVal), DPxPTR(IT->second.TgtPtrAddr)); |
| Ret = Device.submitData(IT->second.TgtPtrAddr, &IT->second.TgtPtrVal, |
| sizeof(void *), AsyncInfo); |
| if (Ret != OFFLOAD_SUCCESS) { |
| REPORT("Copying data to device failed.\n"); |
| Device.ShadowMtx.unlock(); |
| return OFFLOAD_FAIL; |
| } |
| } |
| Device.ShadowMtx.unlock(); |
| } |
| return OFFLOAD_SUCCESS; |
| } |
| |
| static int targetDataNonContiguous(ident_t *loc, DeviceTy &Device, |
| void *ArgsBase, |
| __tgt_target_non_contig *NonContig, |
| uint64_t Size, int64_t ArgType, |
| int CurrentDim, int DimSize, uint64_t Offset, |
| AsyncInfoTy &AsyncInfo) { |
| TIMESCOPE_WITH_IDENT(loc); |
| int Ret = OFFLOAD_SUCCESS; |
| if (CurrentDim < DimSize) { |
| for (unsigned int I = 0; I < NonContig[CurrentDim].Count; ++I) { |
| uint64_t CurOffset = |
| (NonContig[CurrentDim].Offset + I) * NonContig[CurrentDim].Stride; |
| // we only need to transfer the first element for the last dimension |
| // since we've already got a contiguous piece. |
| if (CurrentDim != DimSize - 1 || I == 0) { |
| Ret = targetDataNonContiguous(loc, Device, ArgsBase, NonContig, Size, |
| ArgType, CurrentDim + 1, DimSize, |
| Offset + CurOffset, AsyncInfo); |
| // Stop the whole process if any contiguous piece returns anything |
| // other than OFFLOAD_SUCCESS. |
| if (Ret != OFFLOAD_SUCCESS) |
| return Ret; |
| } |
| } |
| } else { |
| char *Ptr = (char *)ArgsBase + Offset; |
| DP("Transfer of non-contiguous : host ptr " DPxMOD " offset %" PRIu64 |
| " len %" PRIu64 "\n", |
| DPxPTR(Ptr), Offset, Size); |
| Ret = targetDataContiguous(loc, Device, ArgsBase, Ptr, Size, ArgType, |
| AsyncInfo); |
| } |
| return Ret; |
| } |
| |
| static int getNonContigMergedDimension(__tgt_target_non_contig *NonContig, |
| int32_t DimSize) { |
| int RemovedDim = 0; |
| for (int I = DimSize - 1; I > 0; --I) { |
| if (NonContig[I].Count * NonContig[I].Stride == NonContig[I - 1].Stride) |
| RemovedDim++; |
| } |
| return RemovedDim; |
| } |
| |
| /// Internal function to pass data to/from the target. |
| int targetDataUpdate(ident_t *loc, DeviceTy &Device, int32_t ArgNum, |
| void **ArgsBase, void **Args, int64_t *ArgSizes, |
| int64_t *ArgTypes, map_var_info_t *ArgNames, |
| void **ArgMappers, AsyncInfoTy &AsyncInfo, bool) { |
| // process each input. |
| for (int32_t I = 0; I < ArgNum; ++I) { |
| if ((ArgTypes[I] & OMP_TGT_MAPTYPE_LITERAL) || |
| (ArgTypes[I] & OMP_TGT_MAPTYPE_PRIVATE)) |
| continue; |
| |
| if (ArgMappers && ArgMappers[I]) { |
| // Instead of executing the regular path of targetDataUpdate, call the |
| // targetDataMapper variant which will call targetDataUpdate again |
| // with new arguments. |
| DP("Calling targetDataMapper for the %dth argument\n", I); |
| |
| map_var_info_t ArgName = (!ArgNames) ? nullptr : ArgNames[I]; |
| int Ret = targetDataMapper(loc, Device, ArgsBase[I], Args[I], ArgSizes[I], |
| ArgTypes[I], ArgName, ArgMappers[I], AsyncInfo, |
| targetDataUpdate); |
| |
| if (Ret != OFFLOAD_SUCCESS) { |
| REPORT("Call to targetDataUpdate via targetDataMapper for custom mapper" |
| " failed.\n"); |
| return OFFLOAD_FAIL; |
| } |
| |
| // Skip the rest of this function, continue to the next argument. |
| continue; |
| } |
| |
| int Ret = OFFLOAD_SUCCESS; |
| |
| if (ArgTypes[I] & OMP_TGT_MAPTYPE_NON_CONTIG) { |
| __tgt_target_non_contig *NonContig = (__tgt_target_non_contig *)Args[I]; |
| int32_t DimSize = ArgSizes[I]; |
| uint64_t Size = |
| NonContig[DimSize - 1].Count * NonContig[DimSize - 1].Stride; |
| int32_t MergedDim = getNonContigMergedDimension(NonContig, DimSize); |
| Ret = targetDataNonContiguous( |
| loc, Device, ArgsBase[I], NonContig, Size, ArgTypes[I], |
| /*current_dim=*/0, DimSize - MergedDim, /*offset=*/0, AsyncInfo); |
| } else { |
| Ret = targetDataContiguous(loc, Device, ArgsBase[I], Args[I], ArgSizes[I], |
| ArgTypes[I], AsyncInfo); |
| } |
| if (Ret == OFFLOAD_FAIL) |
| return OFFLOAD_FAIL; |
| } |
| return OFFLOAD_SUCCESS; |
| } |
| |
| static const unsigned LambdaMapping = OMP_TGT_MAPTYPE_PTR_AND_OBJ | |
| OMP_TGT_MAPTYPE_LITERAL | |
| OMP_TGT_MAPTYPE_IMPLICIT; |
| static bool isLambdaMapping(int64_t Mapping) { |
| return (Mapping & LambdaMapping) == LambdaMapping; |
| } |
| |
| namespace { |
| /// Find the table information in the map or look it up in the translation |
| /// tables. |
| TableMap *getTableMap(void *HostPtr) { |
| std::lock_guard<std::mutex> TblMapLock(PM->TblMapMtx); |
| HostPtrToTableMapTy::iterator TableMapIt = |
| PM->HostPtrToTableMap.find(HostPtr); |
| |
| if (TableMapIt != PM->HostPtrToTableMap.end()) |
| return &TableMapIt->second; |
| |
| // We don't have a map. So search all the registered libraries. |
| TableMap *TM = nullptr; |
| std::lock_guard<std::mutex> TrlTblLock(PM->TrlTblMtx); |
| for (HostEntriesBeginToTransTableTy::iterator Itr = |
| PM->HostEntriesBeginToTransTable.begin(); |
| Itr != PM->HostEntriesBeginToTransTable.end(); ++Itr) { |
| // get the translation table (which contains all the good info). |
| TranslationTable *TransTable = &Itr->second; |
| // iterate over all the host table entries to see if we can locate the |
| // host_ptr. |
| __tgt_offload_entry *Cur = TransTable->HostTable.EntriesBegin; |
| for (uint32_t I = 0; Cur < TransTable->HostTable.EntriesEnd; ++Cur, ++I) { |
| if (Cur->addr != HostPtr) |
| continue; |
| // we got a match, now fill the HostPtrToTableMap so that we |
| // may avoid this search next time. |
| TM = &(PM->HostPtrToTableMap)[HostPtr]; |
| TM->Table = TransTable; |
| TM->Index = I; |
| return TM; |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| /// Get loop trip count |
| /// FIXME: This function will not work right if calling |
| /// __kmpc_push_target_tripcount_mapper in one thread but doing offloading in |
| /// another thread, which might occur when we call task yield. |
| uint64_t getLoopTripCount(int64_t DeviceId) { |
| DeviceTy &Device = *PM->Devices[DeviceId]; |
| uint64_t LoopTripCount = 0; |
| |
| { |
| std::lock_guard<std::mutex> TblMapLock(PM->TblMapMtx); |
| auto I = Device.LoopTripCnt.find(__kmpc_global_thread_num(NULL)); |
| if (I != Device.LoopTripCnt.end()) { |
| LoopTripCount = I->second; |
| Device.LoopTripCnt.erase(I); |
| DP("loop trip count is %" PRIu64 ".\n", LoopTripCount); |
| } |
| } |
| |
| return LoopTripCount; |
| } |
| |
| /// A class manages private arguments in a target region. |
| class PrivateArgumentManagerTy { |
| /// A data structure for the information of first-private arguments. We can |
| /// use this information to optimize data transfer by packing all |
| /// first-private arguments and transfer them all at once. |
| struct FirstPrivateArgInfoTy { |
| /// The index of the element in \p TgtArgs corresponding to the argument |
| const int Index; |
| /// Host pointer begin |
| const char *HstPtrBegin; |
| /// Host pointer end |
| const char *HstPtrEnd; |
| /// Aligned size |
| const int64_t AlignedSize; |
| /// Host pointer name |
| const map_var_info_t HstPtrName = nullptr; |
| |
| FirstPrivateArgInfoTy(int Index, const void *HstPtr, int64_t Size, |
| const map_var_info_t HstPtrName = nullptr) |
| : Index(Index), HstPtrBegin(reinterpret_cast<const char *>(HstPtr)), |
| HstPtrEnd(HstPtrBegin + Size), AlignedSize(Size + Size % Alignment), |
| HstPtrName(HstPtrName) {} |
| }; |
| |
| /// A vector of target pointers for all private arguments |
| std::vector<void *> TgtPtrs; |
| |
| /// A vector of information of all first-private arguments to be packed |
| std::vector<FirstPrivateArgInfoTy> FirstPrivateArgInfo; |
| /// Host buffer for all arguments to be packed |
| std::vector<char> FirstPrivateArgBuffer; |
| /// The total size of all arguments to be packed |
| int64_t FirstPrivateArgSize = 0; |
| |
| /// A reference to the \p DeviceTy object |
| DeviceTy &Device; |
| /// A pointer to a \p AsyncInfoTy object |
| AsyncInfoTy &AsyncInfo; |
| |
| // TODO: What would be the best value here? Should we make it configurable? |
| // If the size is larger than this threshold, we will allocate and transfer it |
| // immediately instead of packing it. |
| static constexpr const int64_t FirstPrivateArgSizeThreshold = 1024; |
| |
| public: |
| /// Constructor |
| PrivateArgumentManagerTy(DeviceTy &Dev, AsyncInfoTy &AsyncInfo) |
| : Device(Dev), AsyncInfo(AsyncInfo) {} |
| |
| /// Add a private argument |
| int addArg(void *HstPtr, int64_t ArgSize, int64_t ArgOffset, |
| bool IsFirstPrivate, void *&TgtPtr, int TgtArgsIndex, |
| const map_var_info_t HstPtrName = nullptr, |
| const bool AllocImmediately = false) { |
| // If the argument is not first-private, or its size is greater than a |
| // predefined threshold, we will allocate memory and issue the transfer |
| // immediately. |
| if (ArgSize > FirstPrivateArgSizeThreshold || !IsFirstPrivate || |
| AllocImmediately) { |
| TgtPtr = Device.allocData(ArgSize, HstPtr); |
| if (!TgtPtr) { |
| DP("Data allocation for %sprivate array " DPxMOD " failed.\n", |
| (IsFirstPrivate ? "first-" : ""), DPxPTR(HstPtr)); |
| return OFFLOAD_FAIL; |
| } |
| #ifdef OMPTARGET_DEBUG |
| void *TgtPtrBase = (void *)((intptr_t)TgtPtr + ArgOffset); |
| DP("Allocated %" PRId64 " bytes of target memory at " DPxMOD |
| " for %sprivate array " DPxMOD " - pushing target argument " DPxMOD |
| "\n", |
| ArgSize, DPxPTR(TgtPtr), (IsFirstPrivate ? "first-" : ""), |
| DPxPTR(HstPtr), DPxPTR(TgtPtrBase)); |
| #endif |
| // If first-private, copy data from host |
| if (IsFirstPrivate) { |
| DP("Submitting firstprivate data to the device.\n"); |
| int Ret = Device.submitData(TgtPtr, HstPtr, ArgSize, AsyncInfo); |
| if (Ret != OFFLOAD_SUCCESS) { |
| DP("Copying data to device failed, failed.\n"); |
| return OFFLOAD_FAIL; |
| } |
| } |
| TgtPtrs.push_back(TgtPtr); |
| } else { |
| DP("Firstprivate array " DPxMOD " of size %" PRId64 " will be packed\n", |
| DPxPTR(HstPtr), ArgSize); |
| // When reach this point, the argument must meet all following |
| // requirements: |
| // 1. Its size does not exceed the threshold (see the comment for |
| // FirstPrivateArgSizeThreshold); |
| // 2. It must be first-private (needs to be mapped to target device). |
| // We will pack all this kind of arguments to transfer them all at once |
| // to reduce the number of data transfer. We will not take |
| // non-first-private arguments, aka. private arguments that doesn't need |
| // to be mapped to target device, into account because data allocation |
| // can be very efficient with memory manager. |
| |
| // Placeholder value |
| TgtPtr = nullptr; |
| FirstPrivateArgInfo.emplace_back(TgtArgsIndex, HstPtr, ArgSize, |
| HstPtrName); |
| FirstPrivateArgSize += FirstPrivateArgInfo.back().AlignedSize; |
| } |
| |
| return OFFLOAD_SUCCESS; |
| } |
| |
| /// Pack first-private arguments, replace place holder pointers in \p TgtArgs, |
| /// and start the transfer. |
| int packAndTransfer(std::vector<void *> &TgtArgs) { |
| if (!FirstPrivateArgInfo.empty()) { |
| assert(FirstPrivateArgSize != 0 && |
| "FirstPrivateArgSize is 0 but FirstPrivateArgInfo is empty"); |
| FirstPrivateArgBuffer.resize(FirstPrivateArgSize, 0); |
| auto Itr = FirstPrivateArgBuffer.begin(); |
| // Copy all host data to this buffer |
| for (FirstPrivateArgInfoTy &Info : FirstPrivateArgInfo) { |
| std::copy(Info.HstPtrBegin, Info.HstPtrEnd, Itr); |
| Itr = std::next(Itr, Info.AlignedSize); |
| } |
| // Allocate target memory |
| void *TgtPtr = |
| Device.allocData(FirstPrivateArgSize, FirstPrivateArgBuffer.data()); |
| if (TgtPtr == nullptr) { |
| DP("Failed to allocate target memory for private arguments.\n"); |
| return OFFLOAD_FAIL; |
| } |
| TgtPtrs.push_back(TgtPtr); |
| DP("Allocated %" PRId64 " bytes of target memory at " DPxMOD "\n", |
| FirstPrivateArgSize, DPxPTR(TgtPtr)); |
| // Transfer data to target device |
| int Ret = Device.submitData(TgtPtr, FirstPrivateArgBuffer.data(), |
| FirstPrivateArgSize, AsyncInfo); |
| if (Ret != OFFLOAD_SUCCESS) { |
| DP("Failed to submit data of private arguments.\n"); |
| return OFFLOAD_FAIL; |
| } |
| // Fill in all placeholder pointers |
| auto TP = reinterpret_cast<uintptr_t>(TgtPtr); |
| for (FirstPrivateArgInfoTy &Info : FirstPrivateArgInfo) { |
| void *&Ptr = TgtArgs[Info.Index]; |
| assert(Ptr == nullptr && "Target pointer is already set by mistaken"); |
| Ptr = reinterpret_cast<void *>(TP); |
| TP += Info.AlignedSize; |
| DP("Firstprivate array " DPxMOD " of size %" PRId64 " mapped to " DPxMOD |
| "\n", |
| DPxPTR(Info.HstPtrBegin), Info.HstPtrEnd - Info.HstPtrBegin, |
| DPxPTR(Ptr)); |
| } |
| } |
| |
| return OFFLOAD_SUCCESS; |
| } |
| |
| /// Free all target memory allocated for private arguments |
| int free() { |
| for (void *P : TgtPtrs) { |
| int Ret = Device.deleteData(P); |
| if (Ret != OFFLOAD_SUCCESS) { |
| DP("Deallocation of (first-)private arrays failed.\n"); |
| return OFFLOAD_FAIL; |
| } |
| } |
| |
| TgtPtrs.clear(); |
| |
| return OFFLOAD_SUCCESS; |
| } |
| }; |
| |
| /// Process data before launching the kernel, including calling targetDataBegin |
| /// to map and transfer data to target device, transferring (first-)private |
| /// variables. |
| static int processDataBefore(ident_t *loc, int64_t DeviceId, void *HostPtr, |
| int32_t ArgNum, void **ArgBases, void **Args, |
| int64_t *ArgSizes, int64_t *ArgTypes, |
| map_var_info_t *ArgNames, void **ArgMappers, |
| std::vector<void *> &TgtArgs, |
| std::vector<ptrdiff_t> &TgtOffsets, |
| PrivateArgumentManagerTy &PrivateArgumentManager, |
| AsyncInfoTy &AsyncInfo) { |
| TIMESCOPE_WITH_NAME_AND_IDENT("mappingBeforeTargetRegion", loc); |
| DeviceTy &Device = *PM->Devices[DeviceId]; |
| int Ret = targetDataBegin(loc, Device, ArgNum, ArgBases, Args, ArgSizes, |
| ArgTypes, ArgNames, ArgMappers, AsyncInfo); |
| if (Ret != OFFLOAD_SUCCESS) { |
| REPORT("Call to targetDataBegin failed, abort target.\n"); |
| return OFFLOAD_FAIL; |
| } |
| |
| // List of (first-)private arrays allocated for this target region |
| std::vector<int> TgtArgsPositions(ArgNum, -1); |
| |
| for (int32_t I = 0; I < ArgNum; ++I) { |
| if (!(ArgTypes[I] & OMP_TGT_MAPTYPE_TARGET_PARAM)) { |
| // This is not a target parameter, do not push it into TgtArgs. |
| // Check for lambda mapping. |
| if (isLambdaMapping(ArgTypes[I])) { |
| assert((ArgTypes[I] & OMP_TGT_MAPTYPE_MEMBER_OF) && |
| "PTR_AND_OBJ must be also MEMBER_OF."); |
| unsigned Idx = getParentIndex(ArgTypes[I]); |
| int TgtIdx = TgtArgsPositions[Idx]; |
| assert(TgtIdx != -1 && "Base address must be translated already."); |
| // The parent lambda must be processed already and it must be the last |
| // in TgtArgs and TgtOffsets arrays. |
| void *HstPtrVal = Args[I]; |
| void *HstPtrBegin = ArgBases[I]; |
| void *HstPtrBase = Args[Idx]; |
| bool IsLast, IsHostPtr; // IsLast is unused. |
| void *TgtPtrBase = |
| (void *)((intptr_t)TgtArgs[TgtIdx] + TgtOffsets[TgtIdx]); |
| DP("Parent lambda base " DPxMOD "\n", DPxPTR(TgtPtrBase)); |
| uint64_t Delta = (uint64_t)HstPtrBegin - (uint64_t)HstPtrBase; |
| void *TgtPtrBegin = (void *)((uintptr_t)TgtPtrBase + Delta); |
| void *&PointerTgtPtrBegin = AsyncInfo.getVoidPtrLocation(); |
| PointerTgtPtrBegin = Device.getTgtPtrBegin( |
| HstPtrVal, ArgSizes[I], IsLast, /*UpdateRefCount=*/false, |
| /*UseHoldRefCount=*/false, IsHostPtr); |
| if (!PointerTgtPtrBegin) { |
| DP("No lambda captured variable mapped (" DPxMOD ") - ignored\n", |
| DPxPTR(HstPtrVal)); |
| continue; |
| } |
| if (IsHostPtr) { |
| DP("Unified memory is active, no need to map lambda captured" |
| "variable (" DPxMOD ")\n", |
| DPxPTR(HstPtrVal)); |
| continue; |
| } |
| DP("Update lambda reference (" DPxMOD ") -> [" DPxMOD "]\n", |
| DPxPTR(PointerTgtPtrBegin), DPxPTR(TgtPtrBegin)); |
| Ret = Device.submitData(TgtPtrBegin, &PointerTgtPtrBegin, |
| sizeof(void *), AsyncInfo); |
| if (Ret != OFFLOAD_SUCCESS) { |
| REPORT("Copying data to device failed.\n"); |
| return OFFLOAD_FAIL; |
| } |
| } |
| continue; |
| } |
| void *HstPtrBegin = Args[I]; |
| void *HstPtrBase = ArgBases[I]; |
| void *TgtPtrBegin; |
| map_var_info_t HstPtrName = (!ArgNames) ? nullptr : ArgNames[I]; |
| ptrdiff_t TgtBaseOffset; |
| bool IsLast, IsHostPtr; // unused. |
| if (ArgTypes[I] & OMP_TGT_MAPTYPE_LITERAL) { |
| DP("Forwarding first-private value " DPxMOD " to the target construct\n", |
| DPxPTR(HstPtrBase)); |
| TgtPtrBegin = HstPtrBase; |
| TgtBaseOffset = 0; |
| } else if (ArgTypes[I] & OMP_TGT_MAPTYPE_PRIVATE) { |
| TgtBaseOffset = (intptr_t)HstPtrBase - (intptr_t)HstPtrBegin; |
| const bool IsFirstPrivate = (ArgTypes[I] & OMP_TGT_MAPTYPE_TO); |
| // If there is a next argument and it depends on the current one, we need |
| // to allocate the private memory immediately. If this is not the case, |
| // then the argument can be marked for optimization and packed with the |
| // other privates. |
| const bool AllocImmediately = |
| (I < ArgNum - 1 && (ArgTypes[I + 1] & OMP_TGT_MAPTYPE_MEMBER_OF)); |
| Ret = PrivateArgumentManager.addArg( |
| HstPtrBegin, ArgSizes[I], TgtBaseOffset, IsFirstPrivate, TgtPtrBegin, |
| TgtArgs.size(), HstPtrName, AllocImmediately); |
| if (Ret != OFFLOAD_SUCCESS) { |
| REPORT("Failed to process %sprivate argument " DPxMOD "\n", |
| (IsFirstPrivate ? "first-" : ""), DPxPTR(HstPtrBegin)); |
| return OFFLOAD_FAIL; |
| } |
| } else { |
| if (ArgTypes[I] & OMP_TGT_MAPTYPE_PTR_AND_OBJ) |
| HstPtrBase = *reinterpret_cast<void **>(HstPtrBase); |
| TgtPtrBegin = Device.getTgtPtrBegin(HstPtrBegin, ArgSizes[I], IsLast, |
| /*UpdateRefCount=*/false, |
| /*UseHoldRefCount=*/false, IsHostPtr); |
| TgtBaseOffset = (intptr_t)HstPtrBase - (intptr_t)HstPtrBegin; |
| #ifdef OMPTARGET_DEBUG |
| void *TgtPtrBase = (void *)((intptr_t)TgtPtrBegin + TgtBaseOffset); |
| DP("Obtained target argument " DPxMOD " from host pointer " DPxMOD "\n", |
| DPxPTR(TgtPtrBase), DPxPTR(HstPtrBegin)); |
| #endif |
| } |
| TgtArgsPositions[I] = TgtArgs.size(); |
| TgtArgs.push_back(TgtPtrBegin); |
| TgtOffsets.push_back(TgtBaseOffset); |
| } |
| |
| assert(TgtArgs.size() == TgtOffsets.size() && |
| "Size mismatch in arguments and offsets"); |
| |
| // Pack and transfer first-private arguments |
| Ret = PrivateArgumentManager.packAndTransfer(TgtArgs); |
| if (Ret != OFFLOAD_SUCCESS) { |
| DP("Failed to pack and transfer first private arguments\n"); |
| return OFFLOAD_FAIL; |
| } |
| |
| return OFFLOAD_SUCCESS; |
| } |
| |
| /// Process data after launching the kernel, including transferring data back to |
| /// host if needed and deallocating target memory of (first-)private variables. |
| static int processDataAfter(ident_t *loc, int64_t DeviceId, void *HostPtr, |
| int32_t ArgNum, void **ArgBases, void **Args, |
| int64_t *ArgSizes, int64_t *ArgTypes, |
| map_var_info_t *ArgNames, void **ArgMappers, |
| PrivateArgumentManagerTy &PrivateArgumentManager, |
| AsyncInfoTy &AsyncInfo) { |
| TIMESCOPE_WITH_NAME_AND_IDENT("mappingAfterTargetRegion", loc); |
| DeviceTy &Device = *PM->Devices[DeviceId]; |
| |
| // Move data from device. |
| int Ret = targetDataEnd(loc, Device, ArgNum, ArgBases, Args, ArgSizes, |
| ArgTypes, ArgNames, ArgMappers, AsyncInfo); |
| if (Ret != OFFLOAD_SUCCESS) { |
| REPORT("Call to targetDataEnd failed, abort target.\n"); |
| return OFFLOAD_FAIL; |
| } |
| |
| // Free target memory for private arguments |
| Ret = PrivateArgumentManager.free(); |
| if (Ret != OFFLOAD_SUCCESS) { |
| REPORT("Failed to deallocate target memory for private args\n"); |
| return OFFLOAD_FAIL; |
| } |
| |
| return OFFLOAD_SUCCESS; |
| } |
| } // namespace |
| |
| /// performs the same actions as data_begin in case arg_num is |
| /// non-zero and initiates run of the offloaded region on the target platform; |
| /// if arg_num is non-zero after the region execution is done it also |
| /// performs the same action as data_update and data_end above. This function |
| /// returns 0 if it was able to transfer the execution to a target and an |
| /// integer different from zero otherwise. |
| int target(ident_t *loc, DeviceTy &Device, void *HostPtr, int32_t ArgNum, |
| void **ArgBases, void **Args, int64_t *ArgSizes, int64_t *ArgTypes, |
| map_var_info_t *ArgNames, void **ArgMappers, int32_t TeamNum, |
| int32_t ThreadLimit, int IsTeamConstruct, AsyncInfoTy &AsyncInfo) { |
| int32_t DeviceId = Device.DeviceID; |
| |
| TableMap *TM = getTableMap(HostPtr); |
| // No map for this host pointer found! |
| if (!TM) { |
| REPORT("Host ptr " DPxMOD " does not have a matching target pointer.\n", |
| DPxPTR(HostPtr)); |
| return OFFLOAD_FAIL; |
| } |
| |
| // get target table. |
| __tgt_target_table *TargetTable = nullptr; |
| { |
| std::lock_guard<std::mutex> TrlTblLock(PM->TrlTblMtx); |
| assert(TM->Table->TargetsTable.size() > (size_t)DeviceId && |
| "Not expecting a device ID outside the table's bounds!"); |
| TargetTable = TM->Table->TargetsTable[DeviceId]; |
| } |
| assert(TargetTable && "Global data has not been mapped\n"); |
| |
| // We need to keep bases and offsets separate. Sometimes (e.g. in OpenCL) we |
| // need to manifest base pointers prior to launching a kernel. Even if we have |
| // mapped an object only partially, e.g. A[N:M], although the kernel is |
| // expected to access elements starting at address &A[N] and beyond, we still |
| // need to manifest the base of the array &A[0]. In other cases, e.g. the COI |
| // API, we need the begin address itself, i.e. &A[N], as the API operates on |
| // begin addresses, not bases. That's why we pass args and offsets as two |
| // separate entities so that each plugin can do what it needs. This behavior |
| // was introdued via https://reviews.llvm.org/D33028 and commit 1546d319244c. |
| std::vector<void *> TgtArgs; |
| std::vector<ptrdiff_t> TgtOffsets; |
| |
| PrivateArgumentManagerTy PrivateArgumentManager(Device, AsyncInfo); |
| |
| int Ret; |
| if (ArgNum) { |
| // Process data, such as data mapping, before launching the kernel |
| Ret = processDataBefore(loc, DeviceId, HostPtr, ArgNum, ArgBases, Args, |
| ArgSizes, ArgTypes, ArgNames, ArgMappers, TgtArgs, |
| TgtOffsets, PrivateArgumentManager, AsyncInfo); |
| if (Ret != OFFLOAD_SUCCESS) { |
| REPORT("Failed to process data before launching the kernel.\n"); |
| return OFFLOAD_FAIL; |
| } |
| } |
| |
| // Launch device execution. |
| void *TgtEntryPtr = TargetTable->EntriesBegin[TM->Index].addr; |
| DP("Launching target execution %s with pointer " DPxMOD " (index=%d).\n", |
| TargetTable->EntriesBegin[TM->Index].name, DPxPTR(TgtEntryPtr), TM->Index); |
| |
| { |
| TIMESCOPE_WITH_NAME_AND_IDENT( |
| IsTeamConstruct ? "runTargetTeamRegion" : "runTargetRegion", loc); |
| if (IsTeamConstruct) |
| Ret = Device.runTeamRegion(TgtEntryPtr, &TgtArgs[0], &TgtOffsets[0], |
| TgtArgs.size(), TeamNum, ThreadLimit, |
| getLoopTripCount(DeviceId), AsyncInfo); |
| else |
| Ret = Device.runRegion(TgtEntryPtr, &TgtArgs[0], &TgtOffsets[0], |
| TgtArgs.size(), AsyncInfo); |
| } |
| |
| if (Ret != OFFLOAD_SUCCESS) { |
| REPORT("Executing target region abort target.\n"); |
| return OFFLOAD_FAIL; |
| } |
| |
| if (ArgNum) { |
| // Transfer data back and deallocate target memory for (first-)private |
| // variables |
| Ret = processDataAfter(loc, DeviceId, HostPtr, ArgNum, ArgBases, Args, |
| ArgSizes, ArgTypes, ArgNames, ArgMappers, |
| PrivateArgumentManager, AsyncInfo); |
| if (Ret != OFFLOAD_SUCCESS) { |
| REPORT("Failed to process data after launching the kernel.\n"); |
| return OFFLOAD_FAIL; |
| } |
| } |
| |
| return OFFLOAD_SUCCESS; |
| } |