blob: 0ee6d8de78c9434513a1b3333184ba2d6e427012 [file] [log] [blame]
//===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "RISCVMatInt.h"
#include "MCTargetDesc/RISCVMCTargetDesc.h"
#include "llvm/ADT/APInt.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;
static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) {
if (!HasRVC)
return Res.size();
int Cost = 0;
for (auto Instr : Res) {
bool Compressed;
switch (Instr.Opc) {
default:
llvm_unreachable("Unexpected opcode");
case RISCV::SLLI:
case RISCV::SRLI:
Compressed = true;
break;
case RISCV::ADDI:
case RISCV::ADDIW:
case RISCV::LUI:
Compressed = isInt<6>(Instr.Imm);
break;
case RISCV::ADDUW:
Compressed = false;
break;
}
// Two RVC instructions take the same space as one RVI instruction, but
// can take longer to execute than the single RVI instruction. Thus, we
// consider that two RVC instruction are slightly more costly than one
// RVI instruction. For longer sequences of RVC instructions the space
// savings can be worth it, though. The costs below try to model that.
if (!Compressed)
Cost += 100; // Baseline cost of one RVI instruction: 100%.
else
Cost += 70; // 70% cost of baseline.
}
return Cost;
}
// Recursively generate a sequence for materializing an integer.
static void generateInstSeqImpl(int64_t Val,
const FeatureBitset &ActiveFeatures,
RISCVMatInt::InstSeq &Res) {
bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit];
if (isInt<32>(Val)) {
// Depending on the active bits in the immediate Value v, the following
// instruction sequences are emitted:
//
// v == 0 : ADDI
// v[0,12) != 0 && v[12,32) == 0 : ADDI
// v[0,12) == 0 && v[12,32) != 0 : LUI
// v[0,32) != 0 : LUI+ADDI(W)
int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF;
int64_t Lo12 = SignExtend64<12>(Val);
if (Hi20)
Res.push_back(RISCVMatInt::Inst(RISCV::LUI, Hi20));
if (Lo12 || Hi20 == 0) {
unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI;
Res.push_back(RISCVMatInt::Inst(AddiOpc, Lo12));
}
return;
}
assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target");
// In the worst case, for a full 64-bit constant, a sequence of 8 instructions
// (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emitted. Note
// that the first two instructions (LUI+ADDIW) can contribute up to 32 bits
// while the following ADDI instructions contribute up to 12 bits each.
//
// On the first glance, implementing this seems to be possible by simply
// emitting the most significant 32 bits (LUI+ADDIW) followed by as many left
// shift (SLLI) and immediate additions (ADDI) as needed. However, due to the
// fact that ADDI performs a sign extended addition, doing it like that would
// only be possible when at most 11 bits of the ADDI instructions are used.
// Using all 12 bits of the ADDI instructions, like done by GAS, actually
// requires that the constant is processed starting with the least significant
// bit.
//
// In the following, constants are processed from LSB to MSB but instruction
// emission is performed from MSB to LSB by recursively calling
// generateInstSeq. In each recursion, first the lowest 12 bits are removed
// from the constant and the optimal shift amount, which can be greater than
// 12 bits if the constant is sparse, is determined. Then, the shifted
// remaining constant is processed recursively and gets emitted as soon as it
// fits into 32 bits. The emission of the shifts and additions is subsequently
// performed when the recursion returns.
int64_t Lo12 = SignExtend64<12>(Val);
int64_t Hi52 = ((uint64_t)Val + 0x800ull) >> 12;
int ShiftAmount = 12 + findFirstSet((uint64_t)Hi52);
Hi52 = SignExtend64(Hi52 >> (ShiftAmount - 12), 64 - ShiftAmount);
// If the remaining bits don't fit in 12 bits, we might be able to reduce the
// shift amount in order to use LUI which will zero the lower 12 bits.
bool Unsigned = false;
if (ShiftAmount > 12 && !isInt<12>(Hi52)) {
if (isInt<32>((uint64_t)Hi52 << 12)) {
// Reduce the shift amount and add zeros to the LSBs so it will match LUI.
ShiftAmount -= 12;
Hi52 = (uint64_t)Hi52 << 12;
} else if (isUInt<32>((uint64_t)Hi52 << 12) &&
ActiveFeatures[RISCV::FeatureStdExtZba]) {
// Reduce the shift amount and add zeros to the LSBs so it will match
// LUI, then shift left with SLLI.UW to clear the upper 32 set bits.
ShiftAmount -= 12;
Hi52 = ((uint64_t)Hi52 << 12) | (0xffffffffull << 32);
Unsigned = true;
}
}
// Try to use SLLIUW for Hi52 when it is uint32 but not int32.
if (isUInt<32>((uint64_t)Hi52) && !isInt<32>((uint64_t)Hi52) &&
ActiveFeatures[RISCV::FeatureStdExtZba]) {
// Use LUI+ADDI or LUI to compose, then clear the upper 32 bits with SLLIUW.
Hi52 = ((uint64_t)Hi52) | (0xffffffffull << 32);
Unsigned = true;
}
generateInstSeqImpl(Hi52, ActiveFeatures, Res);
if (Unsigned)
Res.push_back(RISCVMatInt::Inst(RISCV::SLLIUW, ShiftAmount));
else
Res.push_back(RISCVMatInt::Inst(RISCV::SLLI, ShiftAmount));
if (Lo12)
Res.push_back(RISCVMatInt::Inst(RISCV::ADDI, Lo12));
}
namespace llvm {
namespace RISCVMatInt {
InstSeq generateInstSeq(int64_t Val, const FeatureBitset &ActiveFeatures) {
RISCVMatInt::InstSeq Res;
generateInstSeqImpl(Val, ActiveFeatures, Res);
// If the constant is positive we might be able to generate a shifted constant
// with no leading zeros and use a final SRLI to restore them.
if (Val > 0 && Res.size() > 2) {
assert(ActiveFeatures[RISCV::Feature64Bit] &&
"Expected RV32 to only need 2 instructions");
unsigned LeadingZeros = countLeadingZeros((uint64_t)Val);
uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros;
// Fill in the bits that will be shifted out with 1s. An example where this
// helps is trailing one masks with 32 or more ones. This will generate
// ADDI -1 and an SRLI.
ShiftedVal |= maskTrailingOnes<uint64_t>(LeadingZeros);
RISCVMatInt::InstSeq TmpSeq;
generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq);
TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SRLI, LeadingZeros));
// Keep the new sequence if it is an improvement.
if (TmpSeq.size() < Res.size()) {
Res = TmpSeq;
// A 2 instruction sequence is the best we can do.
if (Res.size() <= 2)
return Res;
}
// Some cases can benefit from filling the lower bits with zeros instead.
ShiftedVal &= maskTrailingZeros<uint64_t>(LeadingZeros);
TmpSeq.clear();
generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq);
TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SRLI, LeadingZeros));
// Keep the new sequence if it is an improvement.
if (TmpSeq.size() < Res.size()) {
Res = TmpSeq;
// A 2 instruction sequence is the best we can do.
if (Res.size() <= 2)
return Res;
}
// If we have exactly 32 leading zeros and Zba, we can try using zext.w at
// the end of the sequence.
if (LeadingZeros == 32 && ActiveFeatures[RISCV::FeatureStdExtZba]) {
// Try replacing upper bits with 1.
uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(LeadingZeros);
TmpSeq.clear();
generateInstSeqImpl(LeadingOnesVal, ActiveFeatures, TmpSeq);
TmpSeq.push_back(RISCVMatInt::Inst(RISCV::ADDUW, 0));
// Keep the new sequence if it is an improvement.
if (TmpSeq.size() < Res.size()) {
Res = TmpSeq;
// A 2 instruction sequence is the best we can do.
if (Res.size() <= 2)
return Res;
}
}
}
// Perform optimization with BCLRI/BSETI in the Zbs extension.
if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZbs]) {
assert(ActiveFeatures[RISCV::Feature64Bit] &&
"Expected RV32 to only need 2 instructions");
// 1. For values in range 0xffffffff 7fffffff ~ 0xffffffff 00000000,
// call generateInstSeqImpl with Val|0x80000000 (which is expected be
// an int32), then emit (BCLRI r, 31).
// 2. For values in range 0x80000000 ~ 0xffffffff, call generateInstSeqImpl
// with Val&~0x80000000 (which is expected to be an int32), then
// emit (BSETI r, 31).
int64_t NewVal;
unsigned Opc;
if (Val < 0) {
Opc = RISCV::BCLRI;
NewVal = Val | 0x80000000ll;
} else {
Opc = RISCV::BSETI;
NewVal = Val & ~0x80000000ll;
}
if (isInt<32>(NewVal)) {
RISCVMatInt::InstSeq TmpSeq;
generateInstSeqImpl(NewVal, ActiveFeatures, TmpSeq);
TmpSeq.push_back(RISCVMatInt::Inst(Opc, 31));
if (TmpSeq.size() < Res.size())
Res = TmpSeq;
}
// Try to use BCLRI for upper 32 bits if the original lower 32 bits are
// negative int32, or use BSETI for upper 32 bits if the original lower
// 32 bits are positive int32.
int32_t Lo = Val;
uint32_t Hi = Val >> 32;
Opc = 0;
RISCVMatInt::InstSeq TmpSeq;
generateInstSeqImpl(Lo, ActiveFeatures, TmpSeq);
// Check if it is profitable to use BCLRI/BSETI.
if (Lo > 0 && TmpSeq.size() + countPopulation(Hi) < Res.size()) {
Opc = RISCV::BSETI;
} else if (Lo < 0 && TmpSeq.size() + countPopulation(~Hi) < Res.size()) {
Opc = RISCV::BCLRI;
Hi = ~Hi;
}
// Search for each bit and build corresponding BCLRI/BSETI.
if (Opc > 0) {
while (Hi != 0) {
unsigned Bit = countTrailingZeros(Hi);
TmpSeq.push_back(RISCVMatInt::Inst(Opc, Bit + 32));
Hi &= ~(1 << Bit);
}
if (TmpSeq.size() < Res.size())
Res = TmpSeq;
}
}
// Perform optimization with SH*ADD in the Zba extension.
if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZba]) {
assert(ActiveFeatures[RISCV::Feature64Bit] &&
"Expected RV32 to only need 2 instructions");
int64_t Div = 0;
unsigned Opc = 0;
RISCVMatInt::InstSeq TmpSeq;
// Select the opcode and divisor.
if ((Val % 3) == 0 && isInt<32>(Val / 3)) {
Div = 3;
Opc = RISCV::SH1ADD;
} else if ((Val % 5) == 0 && isInt<32>(Val / 5)) {
Div = 5;
Opc = RISCV::SH2ADD;
} else if ((Val % 9) == 0 && isInt<32>(Val / 9)) {
Div = 9;
Opc = RISCV::SH3ADD;
}
// Build the new instruction sequence.
if (Div > 0) {
generateInstSeqImpl(Val / Div, ActiveFeatures, TmpSeq);
TmpSeq.push_back(RISCVMatInt::Inst(Opc, 0));
if (TmpSeq.size() < Res.size())
Res = TmpSeq;
}
// Try to use LUI+SH*ADD+ADDI.
int64_t Hi52 = ((uint64_t)Val + 0x800ull) & ~0xfffull;
int64_t Lo12 = SignExtend64<12>(Val);
Div = 0;
if (isInt<32>(Hi52 / 3) && (Hi52 % 3) == 0) {
Div = 3;
Opc = RISCV::SH1ADD;
} else if (isInt<32>(Hi52 / 5) && (Hi52 % 5) == 0) {
Div = 5;
Opc = RISCV::SH2ADD;
} else if (isInt<32>(Hi52 / 9) && (Hi52 % 9) == 0) {
Div = 9;
Opc = RISCV::SH3ADD;
}
// Build the new instruction sequence.
if (Div > 0) {
// For Val that has zero Lo12 (implies Val equals to Hi52) should has
// already been processed to LUI+SH*ADD by previous optimization.
assert(Lo12 != 0 &&
"unexpected instruction sequence for immediate materialisation");
generateInstSeqImpl(Hi52 / Div, ActiveFeatures, TmpSeq);
TmpSeq.push_back(RISCVMatInt::Inst(Opc, 0));
TmpSeq.push_back(RISCVMatInt::Inst(RISCV::ADDI, Lo12));
if (TmpSeq.size() < Res.size())
Res = TmpSeq;
}
}
return Res;
}
int getIntMatCost(const APInt &Val, unsigned Size,
const FeatureBitset &ActiveFeatures, bool CompressionCost) {
bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit];
bool HasRVC = CompressionCost && ActiveFeatures[RISCV::FeatureStdExtC];
int PlatRegSize = IsRV64 ? 64 : 32;
// Split the constant into platform register sized chunks, and calculate cost
// of each chunk.
int Cost = 0;
for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) {
APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize);
InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), ActiveFeatures);
Cost += getInstSeqCost(MatSeq, HasRVC);
}
return std::max(1, Cost);
}
} // namespace RISCVMatInt
} // namespace llvm