blob: d20eaaaa65e8cddc53d65666608706aacc82837d [file] [log] [blame]
//===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "AMDGPUBaseInfo.h"
#include "AMDGPU.h"
#include "AMDGPUAsmUtils.h"
#include "AMDKernelCodeT.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/IntrinsicsR600.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/AMDHSAKernelDescriptor.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/TargetParser.h"
#define GET_INSTRINFO_NAMED_OPS
#define GET_INSTRMAP_INFO
#include "AMDGPUGenInstrInfo.inc"
static llvm::cl::opt<unsigned> AmdhsaCodeObjectVersion(
"amdhsa-code-object-version", llvm::cl::Hidden,
llvm::cl::desc("AMDHSA Code Object Version"), llvm::cl::init(4),
llvm::cl::ZeroOrMore);
namespace {
/// \returns Bit mask for given bit \p Shift and bit \p Width.
unsigned getBitMask(unsigned Shift, unsigned Width) {
return ((1 << Width) - 1) << Shift;
}
/// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
///
/// \returns Packed \p Dst.
unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
Dst |= (Src << Shift) & getBitMask(Shift, Width);
return Dst;
}
/// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
///
/// \returns Unpacked bits.
unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
return (Src & getBitMask(Shift, Width)) >> Shift;
}
/// \returns Vmcnt bit shift (lower bits).
unsigned getVmcntBitShiftLo() { return 0; }
/// \returns Vmcnt bit width (lower bits).
unsigned getVmcntBitWidthLo() { return 4; }
/// \returns Expcnt bit shift.
unsigned getExpcntBitShift() { return 4; }
/// \returns Expcnt bit width.
unsigned getExpcntBitWidth() { return 3; }
/// \returns Lgkmcnt bit shift.
unsigned getLgkmcntBitShift() { return 8; }
/// \returns Lgkmcnt bit width.
unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
return (VersionMajor >= 10) ? 6 : 4;
}
/// \returns Vmcnt bit shift (higher bits).
unsigned getVmcntBitShiftHi() { return 14; }
/// \returns Vmcnt bit width (higher bits).
unsigned getVmcntBitWidthHi() { return 2; }
} // end namespace anonymous
namespace llvm {
namespace AMDGPU {
Optional<uint8_t> getHsaAbiVersion(const MCSubtargetInfo *STI) {
if (STI && STI->getTargetTriple().getOS() != Triple::AMDHSA)
return None;
switch (AmdhsaCodeObjectVersion) {
case 2:
return ELF::ELFABIVERSION_AMDGPU_HSA_V2;
case 3:
return ELF::ELFABIVERSION_AMDGPU_HSA_V3;
case 4:
return ELF::ELFABIVERSION_AMDGPU_HSA_V4;
default:
report_fatal_error(Twine("Unsupported AMDHSA Code Object Version ") +
Twine(AmdhsaCodeObjectVersion));
}
}
bool isHsaAbiVersion2(const MCSubtargetInfo *STI) {
if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V2;
return false;
}
bool isHsaAbiVersion3(const MCSubtargetInfo *STI) {
if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V3;
return false;
}
bool isHsaAbiVersion4(const MCSubtargetInfo *STI) {
if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V4;
return false;
}
bool isHsaAbiVersion3Or4(const MCSubtargetInfo *STI) {
return isHsaAbiVersion3(STI) || isHsaAbiVersion4(STI);
}
#define GET_MIMGBaseOpcodesTable_IMPL
#define GET_MIMGDimInfoTable_IMPL
#define GET_MIMGInfoTable_IMPL
#define GET_MIMGLZMappingTable_IMPL
#define GET_MIMGMIPMappingTable_IMPL
#define GET_MIMGG16MappingTable_IMPL
#include "AMDGPUGenSearchableTables.inc"
int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
unsigned VDataDwords, unsigned VAddrDwords) {
const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
VDataDwords, VAddrDwords);
return Info ? Info->Opcode : -1;
}
const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
const MIMGInfo *Info = getMIMGInfo(Opc);
return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
}
int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
const MIMGInfo *NewInfo =
getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
NewChannels, OrigInfo->VAddrDwords);
return NewInfo ? NewInfo->Opcode : -1;
}
unsigned getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo *BaseOpcode,
const MIMGDimInfo *Dim, bool IsA16,
bool IsG16Supported) {
unsigned AddrWords = BaseOpcode->NumExtraArgs;
unsigned AddrComponents = (BaseOpcode->Coordinates ? Dim->NumCoords : 0) +
(BaseOpcode->LodOrClampOrMip ? 1 : 0);
if (IsA16)
AddrWords += divideCeil(AddrComponents, 2);
else
AddrWords += AddrComponents;
// Note: For subtargets that support A16 but not G16, enabling A16 also
// enables 16 bit gradients.
// For subtargets that support A16 (operand) and G16 (done with a different
// instruction encoding), they are independent.
if (BaseOpcode->Gradients) {
if ((IsA16 && !IsG16Supported) || BaseOpcode->G16)
// There are two gradients per coordinate, we pack them separately.
// For the 3d case,
// we get (dy/du, dx/du) (-, dz/du) (dy/dv, dx/dv) (-, dz/dv)
AddrWords += alignTo<2>(Dim->NumGradients / 2);
else
AddrWords += Dim->NumGradients;
}
return AddrWords;
}
struct MUBUFInfo {
uint16_t Opcode;
uint16_t BaseOpcode;
uint8_t elements;
bool has_vaddr;
bool has_srsrc;
bool has_soffset;
bool IsBufferInv;
};
struct MTBUFInfo {
uint16_t Opcode;
uint16_t BaseOpcode;
uint8_t elements;
bool has_vaddr;
bool has_srsrc;
bool has_soffset;
};
struct SMInfo {
uint16_t Opcode;
bool IsBuffer;
};
struct VOPInfo {
uint16_t Opcode;
bool IsSingle;
};
#define GET_MTBUFInfoTable_DECL
#define GET_MTBUFInfoTable_IMPL
#define GET_MUBUFInfoTable_DECL
#define GET_MUBUFInfoTable_IMPL
#define GET_SMInfoTable_DECL
#define GET_SMInfoTable_IMPL
#define GET_VOP1InfoTable_DECL
#define GET_VOP1InfoTable_IMPL
#define GET_VOP2InfoTable_DECL
#define GET_VOP2InfoTable_IMPL
#define GET_VOP3InfoTable_DECL
#define GET_VOP3InfoTable_IMPL
#include "AMDGPUGenSearchableTables.inc"
int getMTBUFBaseOpcode(unsigned Opc) {
const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
return Info ? Info->BaseOpcode : -1;
}
int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
return Info ? Info->Opcode : -1;
}
int getMTBUFElements(unsigned Opc) {
const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
return Info ? Info->elements : 0;
}
bool getMTBUFHasVAddr(unsigned Opc) {
const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
return Info ? Info->has_vaddr : false;
}
bool getMTBUFHasSrsrc(unsigned Opc) {
const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
return Info ? Info->has_srsrc : false;
}
bool getMTBUFHasSoffset(unsigned Opc) {
const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
return Info ? Info->has_soffset : false;
}
int getMUBUFBaseOpcode(unsigned Opc) {
const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
return Info ? Info->BaseOpcode : -1;
}
int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
return Info ? Info->Opcode : -1;
}
int getMUBUFElements(unsigned Opc) {
const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
return Info ? Info->elements : 0;
}
bool getMUBUFHasVAddr(unsigned Opc) {
const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
return Info ? Info->has_vaddr : false;
}
bool getMUBUFHasSrsrc(unsigned Opc) {
const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
return Info ? Info->has_srsrc : false;
}
bool getMUBUFHasSoffset(unsigned Opc) {
const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
return Info ? Info->has_soffset : false;
}
bool getMUBUFIsBufferInv(unsigned Opc) {
const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
return Info ? Info->IsBufferInv : false;
}
bool getSMEMIsBuffer(unsigned Opc) {
const SMInfo *Info = getSMEMOpcodeHelper(Opc);
return Info ? Info->IsBuffer : false;
}
bool getVOP1IsSingle(unsigned Opc) {
const VOPInfo *Info = getVOP1OpcodeHelper(Opc);
return Info ? Info->IsSingle : false;
}
bool getVOP2IsSingle(unsigned Opc) {
const VOPInfo *Info = getVOP2OpcodeHelper(Opc);
return Info ? Info->IsSingle : false;
}
bool getVOP3IsSingle(unsigned Opc) {
const VOPInfo *Info = getVOP3OpcodeHelper(Opc);
return Info ? Info->IsSingle : false;
}
// Wrapper for Tablegen'd function. enum Subtarget is not defined in any
// header files, so we need to wrap it in a function that takes unsigned
// instead.
int getMCOpcode(uint16_t Opcode, unsigned Gen) {
return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
}
namespace IsaInfo {
AMDGPUTargetID::AMDGPUTargetID(const MCSubtargetInfo &STI)
: STI(STI), XnackSetting(TargetIDSetting::Any),
SramEccSetting(TargetIDSetting::Any) {
if (!STI.getFeatureBits().test(FeatureSupportsXNACK))
XnackSetting = TargetIDSetting::Unsupported;
if (!STI.getFeatureBits().test(FeatureSupportsSRAMECC))
SramEccSetting = TargetIDSetting::Unsupported;
}
void AMDGPUTargetID::setTargetIDFromFeaturesString(StringRef FS) {
// Check if xnack or sramecc is explicitly enabled or disabled. In the
// absence of the target features we assume we must generate code that can run
// in any environment.
SubtargetFeatures Features(FS);
Optional<bool> XnackRequested;
Optional<bool> SramEccRequested;
for (const std::string &Feature : Features.getFeatures()) {
if (Feature == "+xnack")
XnackRequested = true;
else if (Feature == "-xnack")
XnackRequested = false;
else if (Feature == "+sramecc")
SramEccRequested = true;
else if (Feature == "-sramecc")
SramEccRequested = false;
}
bool XnackSupported = isXnackSupported();
bool SramEccSupported = isSramEccSupported();
if (XnackRequested) {
if (XnackSupported) {
XnackSetting =
*XnackRequested ? TargetIDSetting::On : TargetIDSetting::Off;
} else {
// If a specific xnack setting was requested and this GPU does not support
// xnack emit a warning. Setting will remain set to "Unsupported".
if (*XnackRequested) {
errs() << "warning: xnack 'On' was requested for a processor that does "
"not support it!\n";
} else {
errs() << "warning: xnack 'Off' was requested for a processor that "
"does not support it!\n";
}
}
}
if (SramEccRequested) {
if (SramEccSupported) {
SramEccSetting =
*SramEccRequested ? TargetIDSetting::On : TargetIDSetting::Off;
} else {
// If a specific sramecc setting was requested and this GPU does not
// support sramecc emit a warning. Setting will remain set to
// "Unsupported".
if (*SramEccRequested) {
errs() << "warning: sramecc 'On' was requested for a processor that "
"does not support it!\n";
} else {
errs() << "warning: sramecc 'Off' was requested for a processor that "
"does not support it!\n";
}
}
}
}
static TargetIDSetting
getTargetIDSettingFromFeatureString(StringRef FeatureString) {
if (FeatureString.endswith("-"))
return TargetIDSetting::Off;
if (FeatureString.endswith("+"))
return TargetIDSetting::On;
llvm_unreachable("Malformed feature string");
}
void AMDGPUTargetID::setTargetIDFromTargetIDStream(StringRef TargetID) {
SmallVector<StringRef, 3> TargetIDSplit;
TargetID.split(TargetIDSplit, ':');
for (const auto &FeatureString : TargetIDSplit) {
if (FeatureString.startswith("xnack"))
XnackSetting = getTargetIDSettingFromFeatureString(FeatureString);
if (FeatureString.startswith("sramecc"))
SramEccSetting = getTargetIDSettingFromFeatureString(FeatureString);
}
}
std::string AMDGPUTargetID::toString() const {
std::string StringRep = "";
raw_string_ostream StreamRep(StringRep);
auto TargetTriple = STI.getTargetTriple();
auto Version = getIsaVersion(STI.getCPU());
StreamRep << TargetTriple.getArchName() << '-'
<< TargetTriple.getVendorName() << '-'
<< TargetTriple.getOSName() << '-'
<< TargetTriple.getEnvironmentName() << '-';
std::string Processor = "";
// TODO: Following else statement is present here because we used various
// alias names for GPUs up until GFX9 (e.g. 'fiji' is same as 'gfx803').
// Remove once all aliases are removed from GCNProcessors.td.
if (Version.Major >= 9)
Processor = STI.getCPU().str();
else
Processor = (Twine("gfx") + Twine(Version.Major) + Twine(Version.Minor) +
Twine(Version.Stepping))
.str();
std::string Features = "";
if (Optional<uint8_t> HsaAbiVersion = getHsaAbiVersion(&STI)) {
switch (*HsaAbiVersion) {
case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
// Code object V2 only supported specific processors and had fixed
// settings for the XNACK.
if (Processor == "gfx600") {
} else if (Processor == "gfx601") {
} else if (Processor == "gfx602") {
} else if (Processor == "gfx700") {
} else if (Processor == "gfx701") {
} else if (Processor == "gfx702") {
} else if (Processor == "gfx703") {
} else if (Processor == "gfx704") {
} else if (Processor == "gfx705") {
} else if (Processor == "gfx801") {
if (!isXnackOnOrAny())
report_fatal_error(
"AMD GPU code object V2 does not support processor " +
Twine(Processor) + " without XNACK");
} else if (Processor == "gfx802") {
} else if (Processor == "gfx803") {
} else if (Processor == "gfx805") {
} else if (Processor == "gfx810") {
if (!isXnackOnOrAny())
report_fatal_error(
"AMD GPU code object V2 does not support processor " +
Twine(Processor) + " without XNACK");
} else if (Processor == "gfx900") {
if (isXnackOnOrAny())
Processor = "gfx901";
} else if (Processor == "gfx902") {
if (isXnackOnOrAny())
Processor = "gfx903";
} else if (Processor == "gfx904") {
if (isXnackOnOrAny())
Processor = "gfx905";
} else if (Processor == "gfx906") {
if (isXnackOnOrAny())
Processor = "gfx907";
} else if (Processor == "gfx90c") {
if (isXnackOnOrAny())
report_fatal_error(
"AMD GPU code object V2 does not support processor " +
Twine(Processor) + " with XNACK being ON or ANY");
} else {
report_fatal_error(
"AMD GPU code object V2 does not support processor " +
Twine(Processor));
}
break;
case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
// xnack.
if (isXnackOnOrAny())
Features += "+xnack";
// In code object v2 and v3, "sramecc" feature was spelled with a
// hyphen ("sram-ecc").
if (isSramEccOnOrAny())
Features += "+sram-ecc";
break;
case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
// sramecc.
if (getSramEccSetting() == TargetIDSetting::Off)
Features += ":sramecc-";
else if (getSramEccSetting() == TargetIDSetting::On)
Features += ":sramecc+";
// xnack.
if (getXnackSetting() == TargetIDSetting::Off)
Features += ":xnack-";
else if (getXnackSetting() == TargetIDSetting::On)
Features += ":xnack+";
break;
default:
break;
}
}
StreamRep << Processor << Features;
StreamRep.flush();
return StringRep;
}
unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
if (STI->getFeatureBits().test(FeatureWavefrontSize16))
return 16;
if (STI->getFeatureBits().test(FeatureWavefrontSize32))
return 32;
return 64;
}
unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
return 32768;
if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
return 65536;
return 0;
}
unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
// "Per CU" really means "per whatever functional block the waves of a
// workgroup must share". For gfx10 in CU mode this is the CU, which contains
// two SIMDs.
if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode))
return 2;
// Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains
// two CUs, so a total of four SIMDs.
return 4;
}
unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
unsigned FlatWorkGroupSize) {
assert(FlatWorkGroupSize != 0);
if (STI->getTargetTriple().getArch() != Triple::amdgcn)
return 8;
unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
if (N == 1)
return 40;
N = 40 / N;
return std::min(N, 16u);
}
unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
return 1;
}
unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
// FIXME: Need to take scratch memory into account.
if (isGFX90A(*STI))
return 8;
if (!isGFX10Plus(*STI))
return 10;
return hasGFX10_3Insts(*STI) ? 16 : 20;
}
unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI,
unsigned FlatWorkGroupSize) {
return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize),
getEUsPerCU(STI));
}
unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
return 1;
}
unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
// Some subtargets allow encoding 2048, but this isn't tested or supported.
return 1024;
}
unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
unsigned FlatWorkGroupSize) {
return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI));
}
unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
IsaVersion Version = getIsaVersion(STI->getCPU());
if (Version.Major >= 10)
return getAddressableNumSGPRs(STI);
if (Version.Major >= 8)
return 16;
return 8;
}
unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
return 8;
}
unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
IsaVersion Version = getIsaVersion(STI->getCPU());
if (Version.Major >= 8)
return 800;
return 512;
}
unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
if (STI->getFeatureBits().test(FeatureSGPRInitBug))
return FIXED_NUM_SGPRS_FOR_INIT_BUG;
IsaVersion Version = getIsaVersion(STI->getCPU());
if (Version.Major >= 10)
return 106;
if (Version.Major >= 8)
return 102;
return 104;
}
unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
assert(WavesPerEU != 0);
IsaVersion Version = getIsaVersion(STI->getCPU());
if (Version.Major >= 10)
return 0;
if (WavesPerEU >= getMaxWavesPerEU(STI))
return 0;
unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
if (STI->getFeatureBits().test(FeatureTrapHandler))
MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
}
unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
bool Addressable) {
assert(WavesPerEU != 0);
unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
IsaVersion Version = getIsaVersion(STI->getCPU());
if (Version.Major >= 10)
return Addressable ? AddressableNumSGPRs : 108;
if (Version.Major >= 8 && !Addressable)
AddressableNumSGPRs = 112;
unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
if (STI->getFeatureBits().test(FeatureTrapHandler))
MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
return std::min(MaxNumSGPRs, AddressableNumSGPRs);
}
unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
bool FlatScrUsed, bool XNACKUsed) {
unsigned ExtraSGPRs = 0;
if (VCCUsed)
ExtraSGPRs = 2;
IsaVersion Version = getIsaVersion(STI->getCPU());
if (Version.Major >= 10)
return ExtraSGPRs;
if (Version.Major < 8) {
if (FlatScrUsed)
ExtraSGPRs = 4;
} else {
if (XNACKUsed)
ExtraSGPRs = 4;
if (FlatScrUsed ||
STI->getFeatureBits().test(AMDGPU::FeatureArchitectedFlatScratch))
ExtraSGPRs = 6;
}
return ExtraSGPRs;
}
unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
bool FlatScrUsed) {
return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
}
unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
// SGPRBlocks is actual number of SGPR blocks minus 1.
return NumSGPRs / getSGPREncodingGranule(STI) - 1;
}
unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
Optional<bool> EnableWavefrontSize32) {
if (STI->getFeatureBits().test(FeatureGFX90AInsts))
return 8;
bool IsWave32 = EnableWavefrontSize32 ?
*EnableWavefrontSize32 :
STI->getFeatureBits().test(FeatureWavefrontSize32);
if (hasGFX10_3Insts(*STI))
return IsWave32 ? 16 : 8;
return IsWave32 ? 8 : 4;
}
unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
Optional<bool> EnableWavefrontSize32) {
if (STI->getFeatureBits().test(FeatureGFX90AInsts))
return 8;
bool IsWave32 = EnableWavefrontSize32 ?
*EnableWavefrontSize32 :
STI->getFeatureBits().test(FeatureWavefrontSize32);
return IsWave32 ? 8 : 4;
}
unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
if (STI->getFeatureBits().test(FeatureGFX90AInsts))
return 512;
if (!isGFX10Plus(*STI))
return 256;
return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512;
}
unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
if (STI->getFeatureBits().test(FeatureGFX90AInsts))
return 512;
return 256;
}
unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
assert(WavesPerEU != 0);
if (WavesPerEU >= getMaxWavesPerEU(STI))
return 0;
unsigned MinNumVGPRs =
alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
getVGPRAllocGranule(STI)) + 1;
return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
}
unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
assert(WavesPerEU != 0);
unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
getVGPRAllocGranule(STI));
unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
return std::min(MaxNumVGPRs, AddressableNumVGPRs);
}
unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
Optional<bool> EnableWavefrontSize32) {
NumVGPRs = alignTo(std::max(1u, NumVGPRs),
getVGPREncodingGranule(STI, EnableWavefrontSize32));
// VGPRBlocks is actual number of VGPR blocks minus 1.
return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1;
}
} // end namespace IsaInfo
void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
const MCSubtargetInfo *STI) {
IsaVersion Version = getIsaVersion(STI->getCPU());
memset(&Header, 0, sizeof(Header));
Header.amd_kernel_code_version_major = 1;
Header.amd_kernel_code_version_minor = 2;
Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
Header.amd_machine_version_major = Version.Major;
Header.amd_machine_version_minor = Version.Minor;
Header.amd_machine_version_stepping = Version.Stepping;
Header.kernel_code_entry_byte_offset = sizeof(Header);
Header.wavefront_size = 6;
// If the code object does not support indirect functions, then the value must
// be 0xffffffff.
Header.call_convention = -1;
// These alignment values are specified in powers of two, so alignment =
// 2^n. The minimum alignment is 2^4 = 16.
Header.kernarg_segment_alignment = 4;
Header.group_segment_alignment = 4;
Header.private_segment_alignment = 4;
if (Version.Major >= 10) {
if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
Header.wavefront_size = 5;
Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
}
Header.compute_pgm_resource_registers |=
S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
S_00B848_MEM_ORDERED(1);
}
}
amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
const MCSubtargetInfo *STI) {
IsaVersion Version = getIsaVersion(STI->getCPU());
amdhsa::kernel_descriptor_t KD;
memset(&KD, 0, sizeof(KD));
AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
if (Version.Major >= 10) {
AMDHSA_BITS_SET(KD.kernel_code_properties,
amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0);
AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
}
if (AMDGPU::isGFX90A(*STI)) {
AMDHSA_BITS_SET(KD.compute_pgm_rsrc3,
amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT,
STI->getFeatureBits().test(FeatureTgSplit) ? 1 : 0);
}
return KD;
}
bool isGroupSegment(const GlobalValue *GV) {
return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
}
bool isGlobalSegment(const GlobalValue *GV) {
return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
}
bool isReadOnlySegment(const GlobalValue *GV) {
unsigned AS = GV->getAddressSpace();
return AS == AMDGPUAS::CONSTANT_ADDRESS ||
AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
}
bool shouldEmitConstantsToTextSection(const Triple &TT) {
return TT.getArch() == Triple::r600;
}
int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
Attribute A = F.getFnAttribute(Name);
int Result = Default;
if (A.isStringAttribute()) {
StringRef Str = A.getValueAsString();
if (Str.getAsInteger(0, Result)) {
LLVMContext &Ctx = F.getContext();
Ctx.emitError("can't parse integer attribute " + Name);
}
}
return Result;
}
std::pair<int, int> getIntegerPairAttribute(const Function &F,
StringRef Name,
std::pair<int, int> Default,
bool OnlyFirstRequired) {
Attribute A = F.getFnAttribute(Name);
if (!A.isStringAttribute())
return Default;
LLVMContext &Ctx = F.getContext();
std::pair<int, int> Ints = Default;
std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
if (Strs.first.trim().getAsInteger(0, Ints.first)) {
Ctx.emitError("can't parse first integer attribute " + Name);
return Default;
}
if (Strs.second.trim().getAsInteger(0, Ints.second)) {
if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
Ctx.emitError("can't parse second integer attribute " + Name);
return Default;
}
}
return Ints;
}
unsigned getVmcntBitMask(const IsaVersion &Version) {
unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
if (Version.Major < 9)
return VmcntLo;
unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
return VmcntLo | VmcntHi;
}
unsigned getExpcntBitMask(const IsaVersion &Version) {
return (1 << getExpcntBitWidth()) - 1;
}
unsigned getLgkmcntBitMask(const IsaVersion &Version) {
return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
}
unsigned getWaitcntBitMask(const IsaVersion &Version) {
unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(),
getLgkmcntBitWidth(Version.Major));
unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
if (Version.Major < 9)
return Waitcnt;
unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
return Waitcnt | VmcntHi;
}
unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
unsigned VmcntLo =
unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
if (Version.Major < 9)
return VmcntLo;
unsigned VmcntHi =
unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
VmcntHi <<= getVmcntBitWidthLo();
return VmcntLo | VmcntHi;
}
unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
}
unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
return unpackBits(Waitcnt, getLgkmcntBitShift(),
getLgkmcntBitWidth(Version.Major));
}
void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
Vmcnt = decodeVmcnt(Version, Waitcnt);
Expcnt = decodeExpcnt(Version, Waitcnt);
Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
}
Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
Waitcnt Decoded;
Decoded.VmCnt = decodeVmcnt(Version, Encoded);
Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
return Decoded;
}
unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
unsigned Vmcnt) {
Waitcnt =
packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
if (Version.Major < 9)
return Waitcnt;
Vmcnt >>= getVmcntBitWidthLo();
return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
}
unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
unsigned Expcnt) {
return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
}
unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
unsigned Lgkmcnt) {
return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(),
getLgkmcntBitWidth(Version.Major));
}
unsigned encodeWaitcnt(const IsaVersion &Version,
unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
unsigned Waitcnt = getWaitcntBitMask(Version);
Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
return Waitcnt;
}
unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
}
//===----------------------------------------------------------------------===//
// hwreg
//===----------------------------------------------------------------------===//
namespace Hwreg {
int64_t getHwregId(const StringRef Name) {
for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) {
if (IdSymbolic[Id] && Name == IdSymbolic[Id])
return Id;
}
return ID_UNKNOWN_;
}
static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) {
if (isSI(STI) || isCI(STI) || isVI(STI))
return ID_SYMBOLIC_FIRST_GFX9_;
else if (isGFX9(STI))
return ID_SYMBOLIC_FIRST_GFX10_;
else if (isGFX10(STI) && !isGFX10_BEncoding(STI))
return ID_SYMBOLIC_FIRST_GFX1030_;
else
return ID_SYMBOLIC_LAST_;
}
bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) {
return
ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) &&
IdSymbolic[Id] && (Id != ID_XNACK_MASK || !AMDGPU::isGFX10_BEncoding(STI));
}
bool isValidHwreg(int64_t Id) {
return 0 <= Id && isUInt<ID_WIDTH_>(Id);
}
bool isValidHwregOffset(int64_t Offset) {
return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset);
}
bool isValidHwregWidth(int64_t Width) {
return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1);
}
uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) {
return (Id << ID_SHIFT_) |
(Offset << OFFSET_SHIFT_) |
((Width - 1) << WIDTH_M1_SHIFT_);
}
StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) {
return isValidHwreg(Id, STI) ? IdSymbolic[Id] : "";
}
void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) {
Id = (Val & ID_MASK_) >> ID_SHIFT_;
Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_;
Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1;
}
} // namespace Hwreg
//===----------------------------------------------------------------------===//
// exp tgt
//===----------------------------------------------------------------------===//
namespace Exp {
struct ExpTgt {
StringLiteral Name;
unsigned Tgt;
unsigned MaxIndex;
};
static constexpr ExpTgt ExpTgtInfo[] = {
{{"null"}, ET_NULL, ET_NULL_MAX_IDX},
{{"mrtz"}, ET_MRTZ, ET_MRTZ_MAX_IDX},
{{"prim"}, ET_PRIM, ET_PRIM_MAX_IDX},
{{"mrt"}, ET_MRT0, ET_MRT_MAX_IDX},
{{"pos"}, ET_POS0, ET_POS_MAX_IDX},
{{"param"}, ET_PARAM0, ET_PARAM_MAX_IDX},
};
bool getTgtName(unsigned Id, StringRef &Name, int &Index) {
for (const ExpTgt &Val : ExpTgtInfo) {
if (Val.Tgt <= Id && Id <= Val.Tgt + Val.MaxIndex) {
Index = (Val.MaxIndex == 0) ? -1 : (Id - Val.Tgt);
Name = Val.Name;
return true;
}
}
return false;
}
unsigned getTgtId(const StringRef Name) {
for (const ExpTgt &Val : ExpTgtInfo) {
if (Val.MaxIndex == 0 && Name == Val.Name)
return Val.Tgt;
if (Val.MaxIndex > 0 && Name.startswith(Val.Name)) {
StringRef Suffix = Name.drop_front(Val.Name.size());
unsigned Id;
if (Suffix.getAsInteger(10, Id) || Id > Val.MaxIndex)
return ET_INVALID;
// Disable leading zeroes
if (Suffix.size() > 1 && Suffix[0] == '0')
return ET_INVALID;
return Val.Tgt + Id;
}
}
return ET_INVALID;
}
bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI) {
return (Id != ET_POS4 && Id != ET_PRIM) || isGFX10Plus(STI);
}
} // namespace Exp
//===----------------------------------------------------------------------===//
// MTBUF Format
//===----------------------------------------------------------------------===//
namespace MTBUFFormat {
int64_t getDfmt(const StringRef Name) {
for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) {
if (Name == DfmtSymbolic[Id])
return Id;
}
return DFMT_UNDEF;
}
StringRef getDfmtName(unsigned Id) {
assert(Id <= DFMT_MAX);
return DfmtSymbolic[Id];
}
static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) {
if (isSI(STI) || isCI(STI))
return NfmtSymbolicSICI;
if (isVI(STI) || isGFX9(STI))
return NfmtSymbolicVI;
return NfmtSymbolicGFX10;
}
int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) {
auto lookupTable = getNfmtLookupTable(STI);
for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) {
if (Name == lookupTable[Id])
return Id;
}
return NFMT_UNDEF;
}
StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) {
assert(Id <= NFMT_MAX);
return getNfmtLookupTable(STI)[Id];
}
bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) {
unsigned Dfmt;
unsigned Nfmt;
decodeDfmtNfmt(Id, Dfmt, Nfmt);
return isValidNfmt(Nfmt, STI);
}
bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) {
return !getNfmtName(Id, STI).empty();
}
int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) {
return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT);
}
void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) {
Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK;
Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK;
}
int64_t getUnifiedFormat(const StringRef Name) {
for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
if (Name == UfmtSymbolic[Id])
return Id;
}
return UFMT_UNDEF;
}
StringRef getUnifiedFormatName(unsigned Id) {
return isValidUnifiedFormat(Id) ? UfmtSymbolic[Id] : "";
}
bool isValidUnifiedFormat(unsigned Id) {
return Id <= UFMT_LAST;
}
int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt) {
int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt);
for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
if (Fmt == DfmtNfmt2UFmt[Id])
return Id;
}
return UFMT_UNDEF;
}
bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) {
return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX);
}
unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) {
if (isGFX10Plus(STI))
return UFMT_DEFAULT;
return DFMT_NFMT_DEFAULT;
}
} // namespace MTBUFFormat
//===----------------------------------------------------------------------===//
// SendMsg
//===----------------------------------------------------------------------===//
namespace SendMsg {
int64_t getMsgId(const StringRef Name) {
for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) {
if (IdSymbolic[i] && Name == IdSymbolic[i])
return i;
}
return ID_UNKNOWN_;
}
bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) {
if (Strict) {
switch (MsgId) {
case ID_SAVEWAVE:
return isVI(STI) || isGFX9Plus(STI);
case ID_STALL_WAVE_GEN:
case ID_HALT_WAVES:
case ID_ORDERED_PS_DONE:
case ID_GS_ALLOC_REQ:
case ID_GET_DOORBELL:
return isGFX9Plus(STI);
case ID_EARLY_PRIM_DEALLOC:
return isGFX9(STI);
case ID_GET_DDID:
return isGFX10Plus(STI);
default:
return 0 <= MsgId && MsgId < ID_GAPS_LAST_ && IdSymbolic[MsgId];
}
} else {
return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId);
}
}
StringRef getMsgName(int64_t MsgId) {
assert(0 <= MsgId && MsgId < ID_GAPS_LAST_);
return IdSymbolic[MsgId];
}
int64_t getMsgOpId(int64_t MsgId, const StringRef Name) {
const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic;
const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_;
const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_;
for (int i = F; i < L; ++i) {
if (Name == S[i]) {
return i;
}
}
return OP_UNKNOWN_;
}
bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI,
bool Strict) {
assert(isValidMsgId(MsgId, STI, Strict));
if (!Strict)
return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
switch(MsgId)
{
case ID_GS:
return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP;
case ID_GS_DONE:
return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_;
case ID_SYSMSG:
return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_;
default:
return OpId == OP_NONE_;
}
}
StringRef getMsgOpName(int64_t MsgId, int64_t OpId) {
assert(msgRequiresOp(MsgId));
return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId];
}
bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId,
const MCSubtargetInfo &STI, bool Strict) {
assert(isValidMsgOp(MsgId, OpId, STI, Strict));
if (!Strict)
return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId);
switch(MsgId)
{
case ID_GS:
return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_;
case ID_GS_DONE:
return (OpId == OP_GS_NOP)?
(StreamId == STREAM_ID_NONE_) :
(STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_);
default:
return StreamId == STREAM_ID_NONE_;
}
}
bool msgRequiresOp(int64_t MsgId) {
return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG;
}
bool msgSupportsStream(int64_t MsgId, int64_t OpId) {
return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP;
}
void decodeMsg(unsigned Val,
uint16_t &MsgId,
uint16_t &OpId,
uint16_t &StreamId) {
MsgId = Val & ID_MASK_;
OpId = (Val & OP_MASK_) >> OP_SHIFT_;
StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_;
}
uint64_t encodeMsg(uint64_t MsgId,
uint64_t OpId,
uint64_t StreamId) {
return (MsgId << ID_SHIFT_) |
(OpId << OP_SHIFT_) |
(StreamId << STREAM_ID_SHIFT_);
}
} // namespace SendMsg
//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//
unsigned getInitialPSInputAddr(const Function &F) {
return getIntegerAttribute(F, "InitialPSInputAddr", 0);
}
bool getHasColorExport(const Function &F) {
// As a safe default always respond as if PS has color exports.
return getIntegerAttribute(
F, "amdgpu-color-export",
F.getCallingConv() == CallingConv::AMDGPU_PS ? 1 : 0) != 0;
}
bool getHasDepthExport(const Function &F) {
return getIntegerAttribute(F, "amdgpu-depth-export", 0) != 0;
}
bool isShader(CallingConv::ID cc) {
switch(cc) {
case CallingConv::AMDGPU_VS:
case CallingConv::AMDGPU_LS:
case CallingConv::AMDGPU_HS:
case CallingConv::AMDGPU_ES:
case CallingConv::AMDGPU_GS:
case CallingConv::AMDGPU_PS:
case CallingConv::AMDGPU_CS:
return true;
default:
return false;
}
}
bool isGraphics(CallingConv::ID cc) {
return isShader(cc) || cc == CallingConv::AMDGPU_Gfx;
}
bool isCompute(CallingConv::ID cc) {
return !isGraphics(cc) || cc == CallingConv::AMDGPU_CS;
}
bool isEntryFunctionCC(CallingConv::ID CC) {
switch (CC) {
case CallingConv::AMDGPU_KERNEL:
case CallingConv::SPIR_KERNEL:
case CallingConv::AMDGPU_VS:
case CallingConv::AMDGPU_GS:
case CallingConv::AMDGPU_PS:
case CallingConv::AMDGPU_CS:
case CallingConv::AMDGPU_ES:
case CallingConv::AMDGPU_HS:
case CallingConv::AMDGPU_LS:
return true;
default:
return false;
}
}
bool isModuleEntryFunctionCC(CallingConv::ID CC) {
switch (CC) {
case CallingConv::AMDGPU_Gfx:
return true;
default:
return isEntryFunctionCC(CC);
}
}
bool hasXNACK(const MCSubtargetInfo &STI) {
return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
}
bool hasSRAMECC(const MCSubtargetInfo &STI) {
return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
}
bool hasMIMG_R128(const MCSubtargetInfo &STI) {
return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16];
}
bool hasGFX10A16(const MCSubtargetInfo &STI) {
return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16];
}
bool hasG16(const MCSubtargetInfo &STI) {
return STI.getFeatureBits()[AMDGPU::FeatureG16];
}
bool hasPackedD16(const MCSubtargetInfo &STI) {
return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
}
bool isSI(const MCSubtargetInfo &STI) {
return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
}
bool isCI(const MCSubtargetInfo &STI) {
return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
}
bool isVI(const MCSubtargetInfo &STI) {
return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
}
bool isGFX9(const MCSubtargetInfo &STI) {
return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
}
bool isGFX9Plus(const MCSubtargetInfo &STI) {
return isGFX9(STI) || isGFX10Plus(STI);
}
bool isGFX10(const MCSubtargetInfo &STI) {
return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
}
bool isGFX10Plus(const MCSubtargetInfo &STI) { return isGFX10(STI); }
bool isGCN3Encoding(const MCSubtargetInfo &STI) {
return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
}
bool isGFX10_AEncoding(const MCSubtargetInfo &STI) {
return STI.getFeatureBits()[AMDGPU::FeatureGFX10_AEncoding];
}
bool isGFX10_BEncoding(const MCSubtargetInfo &STI) {
return STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding];
}
bool hasGFX10_3Insts(const MCSubtargetInfo &STI) {
return STI.getFeatureBits()[AMDGPU::FeatureGFX10_3Insts];
}
bool isGFX90A(const MCSubtargetInfo &STI) {
return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
}
bool hasArchitectedFlatScratch(const MCSubtargetInfo &STI) {
return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
}
bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0);
return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
Reg == AMDGPU::SCC;
}
bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
if (*R == Reg1) return true;
}
return false;
}
#define MAP_REG2REG \
using namespace AMDGPU; \
switch(Reg) { \
default: return Reg; \
CASE_CI_VI(FLAT_SCR) \
CASE_CI_VI(FLAT_SCR_LO) \
CASE_CI_VI(FLAT_SCR_HI) \
CASE_VI_GFX9PLUS(TTMP0) \
CASE_VI_GFX9PLUS(TTMP1) \
CASE_VI_GFX9PLUS(TTMP2) \
CASE_VI_GFX9PLUS(TTMP3) \
CASE_VI_GFX9PLUS(TTMP4) \
CASE_VI_GFX9PLUS(TTMP5) \
CASE_VI_GFX9PLUS(TTMP6) \
CASE_VI_GFX9PLUS(TTMP7) \
CASE_VI_GFX9PLUS(TTMP8) \
CASE_VI_GFX9PLUS(TTMP9) \
CASE_VI_GFX9PLUS(TTMP10) \
CASE_VI_GFX9PLUS(TTMP11) \
CASE_VI_GFX9PLUS(TTMP12) \
CASE_VI_GFX9PLUS(TTMP13) \
CASE_VI_GFX9PLUS(TTMP14) \
CASE_VI_GFX9PLUS(TTMP15) \
CASE_VI_GFX9PLUS(TTMP0_TTMP1) \
CASE_VI_GFX9PLUS(TTMP2_TTMP3) \
CASE_VI_GFX9PLUS(TTMP4_TTMP5) \
CASE_VI_GFX9PLUS(TTMP6_TTMP7) \
CASE_VI_GFX9PLUS(TTMP8_TTMP9) \
CASE_VI_GFX9PLUS(TTMP10_TTMP11) \
CASE_VI_GFX9PLUS(TTMP12_TTMP13) \
CASE_VI_GFX9PLUS(TTMP14_TTMP15) \
CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \
CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \
CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \
CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \
CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
}
#define CASE_CI_VI(node) \
assert(!isSI(STI)); \
case node: return isCI(STI) ? node##_ci : node##_vi;
#define CASE_VI_GFX9PLUS(node) \
case node: return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi;
unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
if (STI.getTargetTriple().getArch() == Triple::r600)
return Reg;
MAP_REG2REG
}
#undef CASE_CI_VI
#undef CASE_VI_GFX9PLUS
#define CASE_CI_VI(node) case node##_ci: case node##_vi: return node;
#define CASE_VI_GFX9PLUS(node) case node##_vi: case node##_gfx9plus: return node;
unsigned mc2PseudoReg(unsigned Reg) {
MAP_REG2REG
}
#undef CASE_CI_VI
#undef CASE_VI_GFX9PLUS
#undef MAP_REG2REG
bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
assert(OpNo < Desc.NumOperands);
unsigned OpType = Desc.OpInfo[OpNo].OperandType;
return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
OpType <= AMDGPU::OPERAND_SRC_LAST;
}
bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
assert(OpNo < Desc.NumOperands);
unsigned OpType = Desc.OpInfo[OpNo].OperandType;
switch (OpType) {
case AMDGPU::OPERAND_REG_IMM_FP32:
case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED:
case AMDGPU::OPERAND_REG_IMM_FP64:
case AMDGPU::OPERAND_REG_IMM_FP16:
case AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED:
case AMDGPU::OPERAND_REG_IMM_V2FP16:
case AMDGPU::OPERAND_REG_IMM_V2INT16:
case AMDGPU::OPERAND_REG_INLINE_C_FP32:
case AMDGPU::OPERAND_REG_INLINE_C_FP64:
case AMDGPU::OPERAND_REG_INLINE_C_FP16:
case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
case AMDGPU::OPERAND_REG_IMM_V2FP32:
case AMDGPU::OPERAND_REG_INLINE_C_V2FP32:
case AMDGPU::OPERAND_REG_INLINE_AC_FP64:
return true;
default:
return false;
}
}
bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
assert(OpNo < Desc.NumOperands);
unsigned OpType = Desc.OpInfo[OpNo].OperandType;
return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
}
// Avoid using MCRegisterClass::getSize, since that function will go away
// (move from MC* level to Target* level). Return size in bits.
unsigned getRegBitWidth(unsigned RCID) {
switch (RCID) {
case AMDGPU::VGPR_LO16RegClassID:
case AMDGPU::VGPR_HI16RegClassID:
case AMDGPU::SGPR_LO16RegClassID:
case AMDGPU::AGPR_LO16RegClassID:
return 16;
case AMDGPU::SGPR_32RegClassID:
case AMDGPU::VGPR_32RegClassID:
case AMDGPU::VRegOrLds_32RegClassID:
case AMDGPU::AGPR_32RegClassID:
case AMDGPU::VS_32RegClassID:
case AMDGPU::AV_32RegClassID:
case AMDGPU::SReg_32RegClassID:
case AMDGPU::SReg_32_XM0RegClassID:
case AMDGPU::SRegOrLds_32RegClassID:
return 32;
case AMDGPU::SGPR_64RegClassID:
case AMDGPU::VS_64RegClassID:
case AMDGPU::SReg_64RegClassID:
case AMDGPU::VReg_64RegClassID:
case AMDGPU::AReg_64RegClassID:
case AMDGPU::SReg_64_XEXECRegClassID:
case AMDGPU::VReg_64_Align2RegClassID:
case AMDGPU::AReg_64_Align2RegClassID:
case AMDGPU::AV_64RegClassID:
case AMDGPU::AV_64_Align2RegClassID:
return 64;
case AMDGPU::SGPR_96RegClassID:
case AMDGPU::SReg_96RegClassID:
case AMDGPU::VReg_96RegClassID:
case AMDGPU::AReg_96RegClassID:
case AMDGPU::VReg_96_Align2RegClassID:
case AMDGPU::AReg_96_Align2RegClassID:
case AMDGPU::AV_96RegClassID:
case AMDGPU::AV_96_Align2RegClassID:
return 96;
case AMDGPU::SGPR_128RegClassID:
case AMDGPU::SReg_128RegClassID:
case AMDGPU::VReg_128RegClassID:
case AMDGPU::AReg_128RegClassID:
case AMDGPU::VReg_128_Align2RegClassID:
case AMDGPU::AReg_128_Align2RegClassID:
case AMDGPU::AV_128RegClassID:
case AMDGPU::AV_128_Align2RegClassID:
return 128;
case AMDGPU::SGPR_160RegClassID:
case AMDGPU::SReg_160RegClassID:
case AMDGPU::VReg_160RegClassID:
case AMDGPU::AReg_160RegClassID:
case AMDGPU::VReg_160_Align2RegClassID:
case AMDGPU::AReg_160_Align2RegClassID:
case AMDGPU::AV_160RegClassID:
case AMDGPU::AV_160_Align2RegClassID:
return 160;
case AMDGPU::SGPR_192RegClassID:
case AMDGPU::SReg_192RegClassID:
case AMDGPU::VReg_192RegClassID:
case AMDGPU::AReg_192RegClassID:
case AMDGPU::VReg_192_Align2RegClassID:
case AMDGPU::AReg_192_Align2RegClassID:
case AMDGPU::AV_192RegClassID:
case AMDGPU::AV_192_Align2RegClassID:
return 192;
case AMDGPU::SGPR_224RegClassID:
case AMDGPU::SReg_224RegClassID:
case AMDGPU::VReg_224RegClassID:
case AMDGPU::AReg_224RegClassID:
case AMDGPU::VReg_224_Align2RegClassID:
case AMDGPU::AReg_224_Align2RegClassID:
case AMDGPU::AV_224RegClassID:
case AMDGPU::AV_224_Align2RegClassID:
return 224;
case AMDGPU::SGPR_256RegClassID:
case AMDGPU::SReg_256RegClassID:
case AMDGPU::VReg_256RegClassID:
case AMDGPU::AReg_256RegClassID:
case AMDGPU::VReg_256_Align2RegClassID:
case AMDGPU::AReg_256_Align2RegClassID:
case AMDGPU::AV_256RegClassID:
case AMDGPU::AV_256_Align2RegClassID:
return 256;
case AMDGPU::SGPR_512RegClassID:
case AMDGPU::SReg_512RegClassID:
case AMDGPU::VReg_512RegClassID:
case AMDGPU::AReg_512RegClassID:
case AMDGPU::VReg_512_Align2RegClassID:
case AMDGPU::AReg_512_Align2RegClassID:
case AMDGPU::AV_512RegClassID:
case AMDGPU::AV_512_Align2RegClassID:
return 512;
case AMDGPU::SGPR_1024RegClassID:
case AMDGPU::SReg_1024RegClassID:
case AMDGPU::VReg_1024RegClassID:
case AMDGPU::AReg_1024RegClassID:
case AMDGPU::VReg_1024_Align2RegClassID:
case AMDGPU::AReg_1024_Align2RegClassID:
case AMDGPU::AV_1024RegClassID:
case AMDGPU::AV_1024_Align2RegClassID:
return 1024;
default:
llvm_unreachable("Unexpected register class");
}
}
unsigned getRegBitWidth(const MCRegisterClass &RC) {
return getRegBitWidth(RC.getID());
}
unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
unsigned OpNo) {
assert(OpNo < Desc.NumOperands);
unsigned RCID = Desc.OpInfo[OpNo].RegClass;
return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
}
bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
if (isInlinableIntLiteral(Literal))
return true;
uint64_t Val = static_cast<uint64_t>(Literal);
return (Val == DoubleToBits(0.0)) ||
(Val == DoubleToBits(1.0)) ||
(Val == DoubleToBits(-1.0)) ||
(Val == DoubleToBits(0.5)) ||
(Val == DoubleToBits(-0.5)) ||
(Val == DoubleToBits(2.0)) ||
(Val == DoubleToBits(-2.0)) ||
(Val == DoubleToBits(4.0)) ||
(Val == DoubleToBits(-4.0)) ||
(Val == 0x3fc45f306dc9c882 && HasInv2Pi);
}
bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
if (isInlinableIntLiteral(Literal))
return true;
// The actual type of the operand does not seem to matter as long
// as the bits match one of the inline immediate values. For example:
//
// -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
// so it is a legal inline immediate.
//
// 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
// floating-point, so it is a legal inline immediate.
uint32_t Val = static_cast<uint32_t>(Literal);
return (Val == FloatToBits(0.0f)) ||
(Val == FloatToBits(1.0f)) ||
(Val == FloatToBits(-1.0f)) ||
(Val == FloatToBits(0.5f)) ||
(Val == FloatToBits(-0.5f)) ||
(Val == FloatToBits(2.0f)) ||
(Val == FloatToBits(-2.0f)) ||
(Val == FloatToBits(4.0f)) ||
(Val == FloatToBits(-4.0f)) ||
(Val == 0x3e22f983 && HasInv2Pi);
}
bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
if (!HasInv2Pi)
return false;
if (isInlinableIntLiteral(Literal))
return true;
uint16_t Val = static_cast<uint16_t>(Literal);
return Val == 0x3C00 || // 1.0
Val == 0xBC00 || // -1.0
Val == 0x3800 || // 0.5
Val == 0xB800 || // -0.5
Val == 0x4000 || // 2.0
Val == 0xC000 || // -2.0
Val == 0x4400 || // 4.0
Val == 0xC400 || // -4.0
Val == 0x3118; // 1/2pi
}
bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
assert(HasInv2Pi);
if (isInt<16>(Literal) || isUInt<16>(Literal)) {
int16_t Trunc = static_cast<int16_t>(Literal);
return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
}
if (!(Literal & 0xffff))
return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);
int16_t Lo16 = static_cast<int16_t>(Literal);
int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
}
bool isInlinableIntLiteralV216(int32_t Literal) {
int16_t Lo16 = static_cast<int16_t>(Literal);
if (isInt<16>(Literal) || isUInt<16>(Literal))
return isInlinableIntLiteral(Lo16);
int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
if (!(Literal & 0xffff))
return isInlinableIntLiteral(Hi16);
return Lo16 == Hi16 && isInlinableIntLiteral(Lo16);
}
bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi) {
assert(HasInv2Pi);
int16_t Lo16 = static_cast<int16_t>(Literal);
if (isInt<16>(Literal) || isUInt<16>(Literal))
return true;
int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
if (!(Literal & 0xffff))
return true;
return Lo16 == Hi16;
}
bool isArgPassedInSGPR(const Argument *A) {
const Function *F = A->getParent();
// Arguments to compute shaders are never a source of divergence.
CallingConv::ID CC = F->getCallingConv();
switch (CC) {
case CallingConv::AMDGPU_KERNEL:
case CallingConv::SPIR_KERNEL:
return true;
case CallingConv::AMDGPU_VS:
case CallingConv::AMDGPU_LS:
case CallingConv::AMDGPU_HS:
case CallingConv::AMDGPU_ES:
case CallingConv::AMDGPU_GS:
case CallingConv::AMDGPU_PS:
case CallingConv::AMDGPU_CS:
case CallingConv::AMDGPU_Gfx:
// For non-compute shaders, SGPR inputs are marked with either inreg or byval.
// Everything else is in VGPRs.
return F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::InReg) ||
F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::ByVal);
default:
// TODO: Should calls support inreg for SGPR inputs?
return false;
}
}
static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
return isGCN3Encoding(ST) || isGFX10Plus(ST);
}
static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) {
return isGFX9Plus(ST);
}
bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST,
int64_t EncodedOffset) {
return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset)
: isUInt<8>(EncodedOffset);
}
bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST,
int64_t EncodedOffset,
bool IsBuffer) {
return !IsBuffer &&
hasSMRDSignedImmOffset(ST) &&
isInt<21>(EncodedOffset);
}
static bool isDwordAligned(uint64_t ByteOffset) {
return (ByteOffset & 3) == 0;
}
uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST,
uint64_t ByteOffset) {
if (hasSMEMByteOffset(ST))
return ByteOffset;
assert(isDwordAligned(ByteOffset));
return ByteOffset >> 2;
}
Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST,
int64_t ByteOffset, bool IsBuffer) {
// The signed version is always a byte offset.
if (!IsBuffer && hasSMRDSignedImmOffset(ST)) {
assert(hasSMEMByteOffset(ST));
return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None;
}
if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST))
return None;
int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset)
? Optional<int64_t>(EncodedOffset)
: None;
}
Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST,
int64_t ByteOffset) {
if (!isCI(ST) || !isDwordAligned(ByteOffset))
return None;
int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None;
}
unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST, bool Signed) {
// Address offset is 12-bit signed for GFX10, 13-bit for GFX9.
if (AMDGPU::isGFX10(ST))
return Signed ? 12 : 11;
return Signed ? 13 : 12;
}
// Given Imm, split it into the values to put into the SOffset and ImmOffset
// fields in an MUBUF instruction. Return false if it is not possible (due to a
// hardware bug needing a workaround).
//
// The required alignment ensures that individual address components remain
// aligned if they are aligned to begin with. It also ensures that additional
// offsets within the given alignment can be added to the resulting ImmOffset.
bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
const GCNSubtarget *Subtarget, Align Alignment) {
const uint32_t MaxImm = alignDown(4095, Alignment.value());
uint32_t Overflow = 0;
if (Imm > MaxImm) {
if (Imm <= MaxImm + 64) {
// Use an SOffset inline constant for 4..64
Overflow = Imm - MaxImm;
Imm = MaxImm;
} else {
// Try to keep the same value in SOffset for adjacent loads, so that
// the corresponding register contents can be re-used.
//
// Load values with all low-bits (except for alignment bits) set into
// SOffset, so that a larger range of values can be covered using
// s_movk_i32.
//
// Atomic operations fail to work correctly when individual address
// components are unaligned, even if their sum is aligned.
uint32_t High = (Imm + Alignment.value()) & ~4095;
uint32_t Low = (Imm + Alignment.value()) & 4095;
Imm = Low;
Overflow = High - Alignment.value();
}
}
// There is a hardware bug in SI and CI which prevents address clamping in
// MUBUF instructions from working correctly with SOffsets. The immediate
// offset is unaffected.
if (Overflow > 0 &&
Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
return false;
ImmOffset = Imm;
SOffset = Overflow;
return true;
}
SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) {
*this = getDefaultForCallingConv(F.getCallingConv());
StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString();
if (!IEEEAttr.empty())
IEEE = IEEEAttr == "true";
StringRef DX10ClampAttr
= F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
if (!DX10ClampAttr.empty())
DX10Clamp = DX10ClampAttr == "true";
StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString();
if (!DenormF32Attr.empty()) {
DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr);
FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
}
StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString();
if (!DenormAttr.empty()) {
DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr);
if (DenormF32Attr.empty()) {
FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
}
FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE;
FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
}
}
namespace {
struct SourceOfDivergence {
unsigned Intr;
};
const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
#define GET_SourcesOfDivergence_IMPL
#define GET_Gfx9BufferFormat_IMPL
#define GET_Gfx10PlusBufferFormat_IMPL
#include "AMDGPUGenSearchableTables.inc"
} // end anonymous namespace
bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
return lookupSourceOfDivergence(IntrID);
}
const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp,
uint8_t NumComponents,
uint8_t NumFormat,
const MCSubtargetInfo &STI) {
return isGFX10Plus(STI)
? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents,
NumFormat)
: getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat);
}
const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format,
const MCSubtargetInfo &STI) {
return isGFX10Plus(STI) ? getGfx10PlusBufferFormatInfo(Format)
: getGfx9BufferFormatInfo(Format);
}
} // namespace AMDGPU
raw_ostream &operator<<(raw_ostream &OS,
const AMDGPU::IsaInfo::TargetIDSetting S) {
switch (S) {
case (AMDGPU::IsaInfo::TargetIDSetting::Unsupported):
OS << "Unsupported";
break;
case (AMDGPU::IsaInfo::TargetIDSetting::Any):
OS << "Any";
break;
case (AMDGPU::IsaInfo::TargetIDSetting::Off):
OS << "Off";
break;
case (AMDGPU::IsaInfo::TargetIDSetting::On):
OS << "On";
break;
}
return OS;
}
} // namespace llvm