| //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// |
| /// This file contains definition for AMDGPU ISA disassembler |
| // |
| //===----------------------------------------------------------------------===// |
| |
| // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)? |
| |
| #include "Disassembler/AMDGPUDisassembler.h" |
| #include "MCTargetDesc/AMDGPUMCTargetDesc.h" |
| #include "TargetInfo/AMDGPUTargetInfo.h" |
| #include "Utils/AMDGPUBaseInfo.h" |
| #include "llvm-c/DisassemblerTypes.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/MC/MCFixedLenDisassembler.h" |
| #include "llvm/MC/TargetRegistry.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/Support/AMDHSAKernelDescriptor.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "amdgpu-disassembler" |
| |
| #define SGPR_MAX \ |
| (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10 \ |
| : AMDGPU::EncValues::SGPR_MAX_SI) |
| |
| using DecodeStatus = llvm::MCDisassembler::DecodeStatus; |
| |
| AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI, |
| MCContext &Ctx, |
| MCInstrInfo const *MCII) : |
| MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()), |
| TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) { |
| |
| // ToDo: AMDGPUDisassembler supports only VI ISA. |
| if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus()) |
| report_fatal_error("Disassembly not yet supported for subtarget"); |
| } |
| |
| inline static MCDisassembler::DecodeStatus |
| addOperand(MCInst &Inst, const MCOperand& Opnd) { |
| Inst.addOperand(Opnd); |
| return Opnd.isValid() ? |
| MCDisassembler::Success : |
| MCDisassembler::Fail; |
| } |
| |
| static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op, |
| uint16_t NameIdx) { |
| int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx); |
| if (OpIdx != -1) { |
| auto I = MI.begin(); |
| std::advance(I, OpIdx); |
| MI.insert(I, Op); |
| } |
| return OpIdx; |
| } |
| |
| static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm, |
| uint64_t Addr, const void *Decoder) { |
| auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); |
| |
| // Our branches take a simm16, but we need two extra bits to account for the |
| // factor of 4. |
| APInt SignedOffset(18, Imm * 4, true); |
| int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue(); |
| |
| if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2)) |
| return MCDisassembler::Success; |
| return addOperand(Inst, MCOperand::createImm(Imm)); |
| } |
| |
| static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, |
| uint64_t Addr, const void *Decoder) { |
| auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); |
| int64_t Offset; |
| if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets. |
| Offset = Imm & 0xFFFFF; |
| } else { // GFX9+ supports 21-bit signed offsets. |
| Offset = SignExtend64<21>(Imm); |
| } |
| return addOperand(Inst, MCOperand::createImm(Offset)); |
| } |
| |
| static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, |
| uint64_t Addr, const void *Decoder) { |
| auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); |
| return addOperand(Inst, DAsm->decodeBoolReg(Val)); |
| } |
| |
| #define DECODE_OPERAND(StaticDecoderName, DecoderName) \ |
| static DecodeStatus StaticDecoderName(MCInst &Inst, \ |
| unsigned Imm, \ |
| uint64_t /*Addr*/, \ |
| const void *Decoder) { \ |
| auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); \ |
| return addOperand(Inst, DAsm->DecoderName(Imm)); \ |
| } |
| |
| #define DECODE_OPERAND_REG(RegClass) \ |
| DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass) |
| |
| DECODE_OPERAND_REG(VGPR_32) |
| DECODE_OPERAND_REG(VRegOrLds_32) |
| DECODE_OPERAND_REG(VS_32) |
| DECODE_OPERAND_REG(VS_64) |
| DECODE_OPERAND_REG(VS_128) |
| |
| DECODE_OPERAND_REG(VReg_64) |
| DECODE_OPERAND_REG(VReg_96) |
| DECODE_OPERAND_REG(VReg_128) |
| DECODE_OPERAND_REG(VReg_256) |
| DECODE_OPERAND_REG(VReg_512) |
| DECODE_OPERAND_REG(VReg_1024) |
| |
| DECODE_OPERAND_REG(SReg_32) |
| DECODE_OPERAND_REG(SReg_32_XM0_XEXEC) |
| DECODE_OPERAND_REG(SReg_32_XEXEC_HI) |
| DECODE_OPERAND_REG(SRegOrLds_32) |
| DECODE_OPERAND_REG(SReg_64) |
| DECODE_OPERAND_REG(SReg_64_XEXEC) |
| DECODE_OPERAND_REG(SReg_128) |
| DECODE_OPERAND_REG(SReg_256) |
| DECODE_OPERAND_REG(SReg_512) |
| |
| DECODE_OPERAND_REG(AGPR_32) |
| DECODE_OPERAND_REG(AReg_64) |
| DECODE_OPERAND_REG(AReg_128) |
| DECODE_OPERAND_REG(AReg_256) |
| DECODE_OPERAND_REG(AReg_512) |
| DECODE_OPERAND_REG(AReg_1024) |
| DECODE_OPERAND_REG(AV_32) |
| DECODE_OPERAND_REG(AV_64) |
| |
| static DecodeStatus decodeOperand_VSrc16(MCInst &Inst, |
| unsigned Imm, |
| uint64_t Addr, |
| const void *Decoder) { |
| auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); |
| return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm)); |
| } |
| |
| static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst, |
| unsigned Imm, |
| uint64_t Addr, |
| const void *Decoder) { |
| auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); |
| return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm)); |
| } |
| |
| static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst, |
| unsigned Imm, |
| uint64_t Addr, |
| const void *Decoder) { |
| auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); |
| return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm)); |
| } |
| |
| static DecodeStatus decodeOperand_VS_16(MCInst &Inst, |
| unsigned Imm, |
| uint64_t Addr, |
| const void *Decoder) { |
| auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); |
| return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm)); |
| } |
| |
| static DecodeStatus decodeOperand_VS_32(MCInst &Inst, |
| unsigned Imm, |
| uint64_t Addr, |
| const void *Decoder) { |
| auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); |
| return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm)); |
| } |
| |
| static DecodeStatus decodeOperand_AReg_64(MCInst &Inst, |
| unsigned Imm, |
| uint64_t Addr, |
| const void *Decoder) { |
| auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); |
| return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512)); |
| } |
| |
| static DecodeStatus decodeOperand_AReg_128(MCInst &Inst, |
| unsigned Imm, |
| uint64_t Addr, |
| const void *Decoder) { |
| auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); |
| return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512)); |
| } |
| |
| static DecodeStatus decodeOperand_AReg_256(MCInst &Inst, |
| unsigned Imm, |
| uint64_t Addr, |
| const void *Decoder) { |
| auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); |
| return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512)); |
| } |
| |
| static DecodeStatus decodeOperand_AReg_512(MCInst &Inst, |
| unsigned Imm, |
| uint64_t Addr, |
| const void *Decoder) { |
| auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); |
| return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512)); |
| } |
| |
| static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst, |
| unsigned Imm, |
| uint64_t Addr, |
| const void *Decoder) { |
| auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); |
| return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512)); |
| } |
| |
| static DecodeStatus decodeOperand_VReg_64(MCInst &Inst, |
| unsigned Imm, |
| uint64_t Addr, |
| const void *Decoder) { |
| auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); |
| return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm)); |
| } |
| |
| static DecodeStatus decodeOperand_VReg_128(MCInst &Inst, |
| unsigned Imm, |
| uint64_t Addr, |
| const void *Decoder) { |
| auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); |
| return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm)); |
| } |
| |
| static DecodeStatus decodeOperand_VReg_256(MCInst &Inst, |
| unsigned Imm, |
| uint64_t Addr, |
| const void *Decoder) { |
| auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); |
| return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm)); |
| } |
| |
| static DecodeStatus decodeOperand_VReg_512(MCInst &Inst, |
| unsigned Imm, |
| uint64_t Addr, |
| const void *Decoder) { |
| auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); |
| return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm)); |
| } |
| |
| static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst, |
| unsigned Imm, |
| uint64_t Addr, |
| const void *Decoder) { |
| auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); |
| return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm)); |
| } |
| |
| static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm, |
| uint64_t Addr, const void *Decoder) { |
| const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); |
| return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm)); |
| } |
| |
| static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm, |
| uint64_t Addr, const void *Decoder) { |
| const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); |
| return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm)); |
| } |
| |
| static DecodeStatus decodeOperand_VS_16_Deferred(MCInst &Inst, unsigned Imm, |
| uint64_t Addr, |
| const void *Decoder) { |
| const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); |
| return addOperand( |
| Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW16, Imm, true)); |
| } |
| |
| static DecodeStatus decodeOperand_VS_32_Deferred(MCInst &Inst, unsigned Imm, |
| uint64_t Addr, |
| const void *Decoder) { |
| const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); |
| return addOperand( |
| Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW32, Imm, true)); |
| } |
| |
| static bool IsAGPROperand(const MCInst &Inst, int OpIdx, |
| const MCRegisterInfo *MRI) { |
| if (OpIdx < 0) |
| return false; |
| |
| const MCOperand &Op = Inst.getOperand(OpIdx); |
| if (!Op.isReg()) |
| return false; |
| |
| unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0); |
| auto Reg = Sub ? Sub : Op.getReg(); |
| return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255; |
| } |
| |
| static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, |
| unsigned Imm, |
| AMDGPUDisassembler::OpWidthTy Opw, |
| const void *Decoder) { |
| auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); |
| if (!DAsm->isGFX90A()) { |
| Imm &= 511; |
| } else { |
| // If atomic has both vdata and vdst their register classes are tied. |
| // The bit is decoded along with the vdst, first operand. We need to |
| // change register class to AGPR if vdst was AGPR. |
| // If a DS instruction has both data0 and data1 their register classes |
| // are also tied. |
| unsigned Opc = Inst.getOpcode(); |
| uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags; |
| uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0 |
| : AMDGPU::OpName::vdata; |
| const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo(); |
| int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx); |
| if ((int)Inst.getNumOperands() == DataIdx) { |
| int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); |
| if (IsAGPROperand(Inst, DstIdx, MRI)) |
| Imm |= 512; |
| } |
| |
| if (TSFlags & SIInstrFlags::DS) { |
| int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1); |
| if ((int)Inst.getNumOperands() == Data2Idx && |
| IsAGPROperand(Inst, DataIdx, MRI)) |
| Imm |= 512; |
| } |
| } |
| return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256)); |
| } |
| |
| static DecodeStatus DecodeAVLdSt_32RegisterClass(MCInst &Inst, |
| unsigned Imm, |
| uint64_t Addr, |
| const void *Decoder) { |
| return decodeOperand_AVLdSt_Any(Inst, Imm, |
| AMDGPUDisassembler::OPW32, Decoder); |
| } |
| |
| static DecodeStatus DecodeAVLdSt_64RegisterClass(MCInst &Inst, |
| unsigned Imm, |
| uint64_t Addr, |
| const void *Decoder) { |
| return decodeOperand_AVLdSt_Any(Inst, Imm, |
| AMDGPUDisassembler::OPW64, Decoder); |
| } |
| |
| static DecodeStatus DecodeAVLdSt_96RegisterClass(MCInst &Inst, |
| unsigned Imm, |
| uint64_t Addr, |
| const void *Decoder) { |
| return decodeOperand_AVLdSt_Any(Inst, Imm, |
| AMDGPUDisassembler::OPW96, Decoder); |
| } |
| |
| static DecodeStatus DecodeAVLdSt_128RegisterClass(MCInst &Inst, |
| unsigned Imm, |
| uint64_t Addr, |
| const void *Decoder) { |
| return decodeOperand_AVLdSt_Any(Inst, Imm, |
| AMDGPUDisassembler::OPW128, Decoder); |
| } |
| |
| static DecodeStatus decodeOperand_SReg_32(MCInst &Inst, |
| unsigned Imm, |
| uint64_t Addr, |
| const void *Decoder) { |
| auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); |
| return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm)); |
| } |
| |
| static DecodeStatus decodeOperand_VGPR_32(MCInst &Inst, |
| unsigned Imm, |
| uint64_t Addr, |
| const void *Decoder) { |
| auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); |
| return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW32, Imm)); |
| } |
| |
| #define DECODE_SDWA(DecName) \ |
| DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName) |
| |
| DECODE_SDWA(Src32) |
| DECODE_SDWA(Src16) |
| DECODE_SDWA(VopcDst) |
| |
| #include "AMDGPUGenDisassemblerTables.inc" |
| |
| //===----------------------------------------------------------------------===// |
| // |
| //===----------------------------------------------------------------------===// |
| |
| template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) { |
| assert(Bytes.size() >= sizeof(T)); |
| const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data()); |
| Bytes = Bytes.slice(sizeof(T)); |
| return Res; |
| } |
| |
| DecodeStatus AMDGPUDisassembler::tryDecodeInst(const uint8_t* Table, |
| MCInst &MI, |
| uint64_t Inst, |
| uint64_t Address) const { |
| assert(MI.getOpcode() == 0); |
| assert(MI.getNumOperands() == 0); |
| MCInst TmpInst; |
| HasLiteral = false; |
| const auto SavedBytes = Bytes; |
| if (decodeInstruction(Table, TmpInst, Inst, Address, this, STI)) { |
| MI = TmpInst; |
| return MCDisassembler::Success; |
| } |
| Bytes = SavedBytes; |
| return MCDisassembler::Fail; |
| } |
| |
| // The disassembler is greedy, so we need to check FI operand value to |
| // not parse a dpp if the correct literal is not set. For dpp16 the |
| // autogenerated decoder checks the dpp literal |
| static bool isValidDPP8(const MCInst &MI) { |
| using namespace llvm::AMDGPU::DPP; |
| int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi); |
| assert(FiIdx != -1); |
| if ((unsigned)FiIdx >= MI.getNumOperands()) |
| return false; |
| unsigned Fi = MI.getOperand(FiIdx).getImm(); |
| return Fi == DPP8_FI_0 || Fi == DPP8_FI_1; |
| } |
| |
| DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size, |
| ArrayRef<uint8_t> Bytes_, |
| uint64_t Address, |
| raw_ostream &CS) const { |
| CommentStream = &CS; |
| bool IsSDWA = false; |
| |
| unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size()); |
| Bytes = Bytes_.slice(0, MaxInstBytesNum); |
| |
| DecodeStatus Res = MCDisassembler::Fail; |
| do { |
| // ToDo: better to switch encoding length using some bit predicate |
| // but it is unknown yet, so try all we can |
| |
| // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2 |
| // encodings |
| if (Bytes.size() >= 8) { |
| const uint64_t QW = eatBytes<uint64_t>(Bytes); |
| |
| if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) { |
| Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address); |
| if (Res) { |
| if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8) |
| == -1) |
| break; |
| if (convertDPP8Inst(MI) == MCDisassembler::Success) |
| break; |
| MI = MCInst(); // clear |
| } |
| } |
| |
| Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address); |
| if (Res && convertDPP8Inst(MI) == MCDisassembler::Success) |
| break; |
| |
| MI = MCInst(); // clear |
| |
| Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address); |
| if (Res) break; |
| |
| Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address); |
| if (Res) { IsSDWA = true; break; } |
| |
| Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address); |
| if (Res) { IsSDWA = true; break; } |
| |
| Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address); |
| if (Res) { IsSDWA = true; break; } |
| |
| if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) { |
| Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address); |
| if (Res) |
| break; |
| } |
| |
| // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and |
| // v_mad_mixhi_f16 for FMA variants. Try to decode using this special |
| // table first so we print the correct name. |
| if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) { |
| Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address); |
| if (Res) |
| break; |
| } |
| } |
| |
| // Reinitialize Bytes as DPP64 could have eaten too much |
| Bytes = Bytes_.slice(0, MaxInstBytesNum); |
| |
| // Try decode 32-bit instruction |
| if (Bytes.size() < 4) break; |
| const uint32_t DW = eatBytes<uint32_t>(Bytes); |
| Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address); |
| if (Res) break; |
| |
| Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address); |
| if (Res) break; |
| |
| Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address); |
| if (Res) break; |
| |
| if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) { |
| Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address); |
| if (Res) |
| break; |
| } |
| |
| if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) { |
| Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address); |
| if (Res) break; |
| } |
| |
| Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address); |
| if (Res) break; |
| |
| if (Bytes.size() < 4) break; |
| const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW; |
| |
| if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) { |
| Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address); |
| if (Res) |
| break; |
| } |
| |
| Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address); |
| if (Res) break; |
| |
| Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address); |
| if (Res) break; |
| |
| Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address); |
| if (Res) break; |
| |
| Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address); |
| } while (false); |
| |
| if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi || |
| MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 || |
| MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 || |
| MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 || |
| MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 || |
| MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi || |
| MI.getOpcode() == AMDGPU::V_FMAC_F64_e64_gfx90a || |
| MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi || |
| MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 || |
| MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 || |
| MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10)) { |
| // Insert dummy unused src2_modifiers. |
| insertNamedMCOperand(MI, MCOperand::createImm(0), |
| AMDGPU::OpName::src2_modifiers); |
| } |
| |
| if (Res && (MCII->get(MI.getOpcode()).TSFlags & |
| (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) { |
| int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(), |
| AMDGPU::OpName::cpol); |
| if (CPolPos != -1) { |
| unsigned CPol = |
| (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ? |
| AMDGPU::CPol::GLC : 0; |
| if (MI.getNumOperands() <= (unsigned)CPolPos) { |
| insertNamedMCOperand(MI, MCOperand::createImm(CPol), |
| AMDGPU::OpName::cpol); |
| } else if (CPol) { |
| MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol); |
| } |
| } |
| } |
| |
| if (Res && (MCII->get(MI.getOpcode()).TSFlags & |
| (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) && |
| (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) { |
| // GFX90A lost TFE, its place is occupied by ACC. |
| int TFEOpIdx = |
| AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe); |
| if (TFEOpIdx != -1) { |
| auto TFEIter = MI.begin(); |
| std::advance(TFEIter, TFEOpIdx); |
| MI.insert(TFEIter, MCOperand::createImm(0)); |
| } |
| } |
| |
| if (Res && (MCII->get(MI.getOpcode()).TSFlags & |
| (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) { |
| int SWZOpIdx = |
| AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz); |
| if (SWZOpIdx != -1) { |
| auto SWZIter = MI.begin(); |
| std::advance(SWZIter, SWZOpIdx); |
| MI.insert(SWZIter, MCOperand::createImm(0)); |
| } |
| } |
| |
| if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) { |
| int VAddr0Idx = |
| AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); |
| int RsrcIdx = |
| AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); |
| unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1; |
| if (VAddr0Idx >= 0 && NSAArgs > 0) { |
| unsigned NSAWords = (NSAArgs + 3) / 4; |
| if (Bytes.size() < 4 * NSAWords) { |
| Res = MCDisassembler::Fail; |
| } else { |
| for (unsigned i = 0; i < NSAArgs; ++i) { |
| MI.insert(MI.begin() + VAddr0Idx + 1 + i, |
| decodeOperand_VGPR_32(Bytes[i])); |
| } |
| Bytes = Bytes.slice(4 * NSAWords); |
| } |
| } |
| |
| if (Res) |
| Res = convertMIMGInst(MI); |
| } |
| |
| if (Res && IsSDWA) |
| Res = convertSDWAInst(MI); |
| |
| int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), |
| AMDGPU::OpName::vdst_in); |
| if (VDstIn_Idx != -1) { |
| int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx, |
| MCOI::OperandConstraint::TIED_TO); |
| if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx || |
| !MI.getOperand(VDstIn_Idx).isReg() || |
| MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) { |
| if (MI.getNumOperands() > (unsigned)VDstIn_Idx) |
| MI.erase(&MI.getOperand(VDstIn_Idx)); |
| insertNamedMCOperand(MI, |
| MCOperand::createReg(MI.getOperand(Tied).getReg()), |
| AMDGPU::OpName::vdst_in); |
| } |
| } |
| |
| int ImmLitIdx = |
| AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm); |
| if (Res && ImmLitIdx != -1) |
| Res = convertFMAanyK(MI, ImmLitIdx); |
| |
| // if the opcode was not recognized we'll assume a Size of 4 bytes |
| // (unless there are fewer bytes left) |
| Size = Res ? (MaxInstBytesNum - Bytes.size()) |
| : std::min((size_t)4, Bytes_.size()); |
| return Res; |
| } |
| |
| DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const { |
| if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] || |
| STI.getFeatureBits()[AMDGPU::FeatureGFX10]) { |
| if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1) |
| // VOPC - insert clamp |
| insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp); |
| } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) { |
| int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst); |
| if (SDst != -1) { |
| // VOPC - insert VCC register as sdst |
| insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC), |
| AMDGPU::OpName::sdst); |
| } else { |
| // VOP1/2 - insert omod if present in instruction |
| insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod); |
| } |
| } |
| return MCDisassembler::Success; |
| } |
| |
| // We must check FI == literal to reject not genuine dpp8 insts, and we must |
| // first add optional MI operands to check FI |
| DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const { |
| unsigned Opc = MI.getOpcode(); |
| unsigned DescNumOps = MCII->get(Opc).getNumOperands(); |
| |
| // Insert dummy unused src modifiers. |
| if (MI.getNumOperands() < DescNumOps && |
| AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1) |
| insertNamedMCOperand(MI, MCOperand::createImm(0), |
| AMDGPU::OpName::src0_modifiers); |
| |
| if (MI.getNumOperands() < DescNumOps && |
| AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1) |
| insertNamedMCOperand(MI, MCOperand::createImm(0), |
| AMDGPU::OpName::src1_modifiers); |
| |
| return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail; |
| } |
| |
| // Note that before gfx10, the MIMG encoding provided no information about |
| // VADDR size. Consequently, decoded instructions always show address as if it |
| // has 1 dword, which could be not really so. |
| DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const { |
| |
| int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), |
| AMDGPU::OpName::vdst); |
| |
| int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), |
| AMDGPU::OpName::vdata); |
| int VAddr0Idx = |
| AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); |
| int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), |
| AMDGPU::OpName::dmask); |
| |
| int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), |
| AMDGPU::OpName::tfe); |
| int D16Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), |
| AMDGPU::OpName::d16); |
| |
| const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode()); |
| const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = |
| AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); |
| |
| assert(VDataIdx != -1); |
| if (BaseOpcode->BVH) { |
| // Add A16 operand for intersect_ray instructions |
| if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) { |
| addOperand(MI, MCOperand::createImm(1)); |
| } |
| return MCDisassembler::Success; |
| } |
| |
| bool IsAtomic = (VDstIdx != -1); |
| bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4; |
| bool IsNSA = false; |
| unsigned AddrSize = Info->VAddrDwords; |
| |
| if (STI.getFeatureBits()[AMDGPU::FeatureGFX10]) { |
| unsigned DimIdx = |
| AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim); |
| int A16Idx = |
| AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16); |
| const AMDGPU::MIMGDimInfo *Dim = |
| AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm()); |
| const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm()); |
| |
| AddrSize = |
| AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI)); |
| |
| IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA; |
| if (!IsNSA) { |
| if (AddrSize > 8) |
| AddrSize = 16; |
| } else { |
| if (AddrSize > Info->VAddrDwords) { |
| // The NSA encoding does not contain enough operands for the combination |
| // of base opcode / dimension. Should this be an error? |
| return MCDisassembler::Success; |
| } |
| } |
| } |
| |
| unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf; |
| unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u); |
| |
| bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm(); |
| if (D16 && AMDGPU::hasPackedD16(STI)) { |
| DstSize = (DstSize + 1) / 2; |
| } |
| |
| if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm()) |
| DstSize += 1; |
| |
| if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords) |
| return MCDisassembler::Success; |
| |
| int NewOpcode = |
| AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize); |
| if (NewOpcode == -1) |
| return MCDisassembler::Success; |
| |
| // Widen the register to the correct number of enabled channels. |
| unsigned NewVdata = AMDGPU::NoRegister; |
| if (DstSize != Info->VDataDwords) { |
| auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass; |
| |
| // Get first subregister of VData |
| unsigned Vdata0 = MI.getOperand(VDataIdx).getReg(); |
| unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0); |
| Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0; |
| |
| NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0, |
| &MRI.getRegClass(DataRCID)); |
| if (NewVdata == AMDGPU::NoRegister) { |
| // It's possible to encode this such that the low register + enabled |
| // components exceeds the register count. |
| return MCDisassembler::Success; |
| } |
| } |
| |
| unsigned NewVAddr0 = AMDGPU::NoRegister; |
| if (STI.getFeatureBits()[AMDGPU::FeatureGFX10] && !IsNSA && |
| AddrSize != Info->VAddrDwords) { |
| unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg(); |
| unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0); |
| VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0; |
| |
| auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass; |
| NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0, |
| &MRI.getRegClass(AddrRCID)); |
| if (NewVAddr0 == AMDGPU::NoRegister) |
| return MCDisassembler::Success; |
| } |
| |
| MI.setOpcode(NewOpcode); |
| |
| if (NewVdata != AMDGPU::NoRegister) { |
| MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata); |
| |
| if (IsAtomic) { |
| // Atomic operations have an additional operand (a copy of data) |
| MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata); |
| } |
| } |
| |
| if (NewVAddr0 != AMDGPU::NoRegister) { |
| MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0); |
| } else if (IsNSA) { |
| assert(AddrSize <= Info->VAddrDwords); |
| MI.erase(MI.begin() + VAddr0Idx + AddrSize, |
| MI.begin() + VAddr0Idx + Info->VAddrDwords); |
| } |
| |
| return MCDisassembler::Success; |
| } |
| |
| DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI, |
| int ImmLitIdx) const { |
| assert(HasLiteral && "Should have decoded a literal"); |
| const MCInstrDesc &Desc = MCII->get(MI.getOpcode()); |
| unsigned DescNumOps = Desc.getNumOperands(); |
| assert(DescNumOps == MI.getNumOperands()); |
| for (unsigned I = 0; I < DescNumOps; ++I) { |
| auto &Op = MI.getOperand(I); |
| auto OpType = Desc.OpInfo[I].OperandType; |
| bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED || |
| OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED); |
| if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST && |
| IsDeferredOp) |
| Op.setImm(Literal); |
| } |
| return MCDisassembler::Success; |
| } |
| |
| const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const { |
| return getContext().getRegisterInfo()-> |
| getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]); |
| } |
| |
| inline |
| MCOperand AMDGPUDisassembler::errOperand(unsigned V, |
| const Twine& ErrMsg) const { |
| *CommentStream << "Error: " + ErrMsg; |
| |
| // ToDo: add support for error operands to MCInst.h |
| // return MCOperand::createError(V); |
| return MCOperand(); |
| } |
| |
| inline |
| MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const { |
| return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI)); |
| } |
| |
| inline |
| MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID, |
| unsigned Val) const { |
| const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID]; |
| if (Val >= RegCl.getNumRegs()) |
| return errOperand(Val, Twine(getRegClassName(RegClassID)) + |
| ": unknown register " + Twine(Val)); |
| return createRegOperand(RegCl.getRegister(Val)); |
| } |
| |
| inline |
| MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID, |
| unsigned Val) const { |
| // ToDo: SI/CI have 104 SGPRs, VI - 102 |
| // Valery: here we accepting as much as we can, let assembler sort it out |
| int shift = 0; |
| switch (SRegClassID) { |
| case AMDGPU::SGPR_32RegClassID: |
| case AMDGPU::TTMP_32RegClassID: |
| break; |
| case AMDGPU::SGPR_64RegClassID: |
| case AMDGPU::TTMP_64RegClassID: |
| shift = 1; |
| break; |
| case AMDGPU::SGPR_128RegClassID: |
| case AMDGPU::TTMP_128RegClassID: |
| // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in |
| // this bundle? |
| case AMDGPU::SGPR_256RegClassID: |
| case AMDGPU::TTMP_256RegClassID: |
| // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in |
| // this bundle? |
| case AMDGPU::SGPR_512RegClassID: |
| case AMDGPU::TTMP_512RegClassID: |
| shift = 2; |
| break; |
| // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in |
| // this bundle? |
| default: |
| llvm_unreachable("unhandled register class"); |
| } |
| |
| if (Val % (1 << shift)) { |
| *CommentStream << "Warning: " << getRegClassName(SRegClassID) |
| << ": scalar reg isn't aligned " << Val; |
| } |
| |
| return createRegOperand(SRegClassID, Val >> shift); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const { |
| return decodeSrcOp(OPW32, Val); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const { |
| return decodeSrcOp(OPW64, Val); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const { |
| return decodeSrcOp(OPW128, Val); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const { |
| return decodeSrcOp(OPW16, Val); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const { |
| return decodeSrcOp(OPWV216, Val); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const { |
| return decodeSrcOp(OPWV232, Val); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const { |
| // Some instructions have operand restrictions beyond what the encoding |
| // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra |
| // high bit. |
| Val &= 255; |
| |
| return createRegOperand(AMDGPU::VGPR_32RegClassID, Val); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const { |
| return decodeSrcOp(OPW32, Val); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const { |
| return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const { |
| return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const { |
| return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const { |
| return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const { |
| return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const { |
| return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const { |
| return decodeSrcOp(OPW32, Val); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const { |
| return decodeSrcOp(OPW64, Val); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const { |
| return createRegOperand(AMDGPU::VReg_64RegClassID, Val); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const { |
| return createRegOperand(AMDGPU::VReg_96RegClassID, Val); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const { |
| return createRegOperand(AMDGPU::VReg_128RegClassID, Val); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const { |
| return createRegOperand(AMDGPU::VReg_256RegClassID, Val); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const { |
| return createRegOperand(AMDGPU::VReg_512RegClassID, Val); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const { |
| return createRegOperand(AMDGPU::VReg_1024RegClassID, Val); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const { |
| // table-gen generated disassembler doesn't care about operand types |
| // leaving only registry class so SSrc_32 operand turns into SReg_32 |
| // and therefore we accept immediates and literals here as well |
| return decodeSrcOp(OPW32, Val); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC( |
| unsigned Val) const { |
| // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI |
| return decodeOperand_SReg_32(Val); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI( |
| unsigned Val) const { |
| // SReg_32_XM0 is SReg_32 without EXEC_HI |
| return decodeOperand_SReg_32(Val); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const { |
| // table-gen generated disassembler doesn't care about operand types |
| // leaving only registry class so SSrc_32 operand turns into SReg_32 |
| // and therefore we accept immediates and literals here as well |
| return decodeSrcOp(OPW32, Val); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const { |
| return decodeSrcOp(OPW64, Val); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const { |
| return decodeSrcOp(OPW64, Val); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const { |
| return decodeSrcOp(OPW128, Val); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const { |
| return decodeDstOp(OPW256, Val); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const { |
| return decodeDstOp(OPW512, Val); |
| } |
| |
| // Decode Literals for insts which always have a literal in the encoding |
| MCOperand |
| AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const { |
| if (HasLiteral) { |
| if (Literal != Val) |
| return errOperand(Val, "More than one unique literal is illegal"); |
| } |
| HasLiteral = true; |
| Literal = Val; |
| return MCOperand::createImm(Literal); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeLiteralConstant() const { |
| // For now all literal constants are supposed to be unsigned integer |
| // ToDo: deal with signed/unsigned 64-bit integer constants |
| // ToDo: deal with float/double constants |
| if (!HasLiteral) { |
| if (Bytes.size() < 4) { |
| return errOperand(0, "cannot read literal, inst bytes left " + |
| Twine(Bytes.size())); |
| } |
| HasLiteral = true; |
| Literal = eatBytes<uint32_t>(Bytes); |
| } |
| return MCOperand::createImm(Literal); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) { |
| using namespace AMDGPU::EncValues; |
| |
| assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX); |
| return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ? |
| (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) : |
| (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm))); |
| // Cast prevents negative overflow. |
| } |
| |
| static int64_t getInlineImmVal32(unsigned Imm) { |
| switch (Imm) { |
| case 240: |
| return FloatToBits(0.5f); |
| case 241: |
| return FloatToBits(-0.5f); |
| case 242: |
| return FloatToBits(1.0f); |
| case 243: |
| return FloatToBits(-1.0f); |
| case 244: |
| return FloatToBits(2.0f); |
| case 245: |
| return FloatToBits(-2.0f); |
| case 246: |
| return FloatToBits(4.0f); |
| case 247: |
| return FloatToBits(-4.0f); |
| case 248: // 1 / (2 * PI) |
| return 0x3e22f983; |
| default: |
| llvm_unreachable("invalid fp inline imm"); |
| } |
| } |
| |
| static int64_t getInlineImmVal64(unsigned Imm) { |
| switch (Imm) { |
| case 240: |
| return DoubleToBits(0.5); |
| case 241: |
| return DoubleToBits(-0.5); |
| case 242: |
| return DoubleToBits(1.0); |
| case 243: |
| return DoubleToBits(-1.0); |
| case 244: |
| return DoubleToBits(2.0); |
| case 245: |
| return DoubleToBits(-2.0); |
| case 246: |
| return DoubleToBits(4.0); |
| case 247: |
| return DoubleToBits(-4.0); |
| case 248: // 1 / (2 * PI) |
| return 0x3fc45f306dc9c882; |
| default: |
| llvm_unreachable("invalid fp inline imm"); |
| } |
| } |
| |
| static int64_t getInlineImmVal16(unsigned Imm) { |
| switch (Imm) { |
| case 240: |
| return 0x3800; |
| case 241: |
| return 0xB800; |
| case 242: |
| return 0x3C00; |
| case 243: |
| return 0xBC00; |
| case 244: |
| return 0x4000; |
| case 245: |
| return 0xC000; |
| case 246: |
| return 0x4400; |
| case 247: |
| return 0xC400; |
| case 248: // 1 / (2 * PI) |
| return 0x3118; |
| default: |
| llvm_unreachable("invalid fp inline imm"); |
| } |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) { |
| assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN |
| && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX); |
| |
| // ToDo: case 248: 1/(2*PI) - is allowed only on VI |
| switch (Width) { |
| case OPW32: |
| case OPW128: // splat constants |
| case OPW512: |
| case OPW1024: |
| case OPWV232: |
| return MCOperand::createImm(getInlineImmVal32(Imm)); |
| case OPW64: |
| case OPW256: |
| return MCOperand::createImm(getInlineImmVal64(Imm)); |
| case OPW16: |
| case OPWV216: |
| return MCOperand::createImm(getInlineImmVal16(Imm)); |
| default: |
| llvm_unreachable("implement me"); |
| } |
| } |
| |
| unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const { |
| using namespace AMDGPU; |
| |
| assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); |
| switch (Width) { |
| default: // fall |
| case OPW32: |
| case OPW16: |
| case OPWV216: |
| return VGPR_32RegClassID; |
| case OPW64: |
| case OPWV232: return VReg_64RegClassID; |
| case OPW96: return VReg_96RegClassID; |
| case OPW128: return VReg_128RegClassID; |
| case OPW160: return VReg_160RegClassID; |
| case OPW256: return VReg_256RegClassID; |
| case OPW512: return VReg_512RegClassID; |
| case OPW1024: return VReg_1024RegClassID; |
| } |
| } |
| |
| unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const { |
| using namespace AMDGPU; |
| |
| assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); |
| switch (Width) { |
| default: // fall |
| case OPW32: |
| case OPW16: |
| case OPWV216: |
| return AGPR_32RegClassID; |
| case OPW64: |
| case OPWV232: return AReg_64RegClassID; |
| case OPW96: return AReg_96RegClassID; |
| case OPW128: return AReg_128RegClassID; |
| case OPW160: return AReg_160RegClassID; |
| case OPW256: return AReg_256RegClassID; |
| case OPW512: return AReg_512RegClassID; |
| case OPW1024: return AReg_1024RegClassID; |
| } |
| } |
| |
| |
| unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const { |
| using namespace AMDGPU; |
| |
| assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); |
| switch (Width) { |
| default: // fall |
| case OPW32: |
| case OPW16: |
| case OPWV216: |
| return SGPR_32RegClassID; |
| case OPW64: |
| case OPWV232: return SGPR_64RegClassID; |
| case OPW96: return SGPR_96RegClassID; |
| case OPW128: return SGPR_128RegClassID; |
| case OPW160: return SGPR_160RegClassID; |
| case OPW256: return SGPR_256RegClassID; |
| case OPW512: return SGPR_512RegClassID; |
| } |
| } |
| |
| unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const { |
| using namespace AMDGPU; |
| |
| assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); |
| switch (Width) { |
| default: // fall |
| case OPW32: |
| case OPW16: |
| case OPWV216: |
| return TTMP_32RegClassID; |
| case OPW64: |
| case OPWV232: return TTMP_64RegClassID; |
| case OPW128: return TTMP_128RegClassID; |
| case OPW256: return TTMP_256RegClassID; |
| case OPW512: return TTMP_512RegClassID; |
| } |
| } |
| |
| int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const { |
| using namespace AMDGPU::EncValues; |
| |
| unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN; |
| unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX; |
| |
| return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1; |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val, |
| bool MandatoryLiteral) const { |
| using namespace AMDGPU::EncValues; |
| |
| assert(Val < 1024); // enum10 |
| |
| bool IsAGPR = Val & 512; |
| Val &= 511; |
| |
| if (VGPR_MIN <= Val && Val <= VGPR_MAX) { |
| return createRegOperand(IsAGPR ? getAgprClassId(Width) |
| : getVgprClassId(Width), Val - VGPR_MIN); |
| } |
| if (Val <= SGPR_MAX) { |
| // "SGPR_MIN <= Val" is always true and causes compilation warning. |
| static_assert(SGPR_MIN == 0, ""); |
| return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN); |
| } |
| |
| int TTmpIdx = getTTmpIdx(Val); |
| if (TTmpIdx >= 0) { |
| return createSRegOperand(getTtmpClassId(Width), TTmpIdx); |
| } |
| |
| if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX) |
| return decodeIntImmed(Val); |
| |
| if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX) |
| return decodeFPImmed(Width, Val); |
| |
| if (Val == LITERAL_CONST) { |
| if (MandatoryLiteral) |
| // Keep a sentinel value for deferred setting |
| return MCOperand::createImm(LITERAL_CONST); |
| else |
| return decodeLiteralConstant(); |
| } |
| |
| switch (Width) { |
| case OPW32: |
| case OPW16: |
| case OPWV216: |
| return decodeSpecialReg32(Val); |
| case OPW64: |
| case OPWV232: |
| return decodeSpecialReg64(Val); |
| default: |
| llvm_unreachable("unexpected immediate type"); |
| } |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const { |
| using namespace AMDGPU::EncValues; |
| |
| assert(Val < 128); |
| assert(Width == OPW256 || Width == OPW512); |
| |
| if (Val <= SGPR_MAX) { |
| // "SGPR_MIN <= Val" is always true and causes compilation warning. |
| static_assert(SGPR_MIN == 0, ""); |
| return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN); |
| } |
| |
| int TTmpIdx = getTTmpIdx(Val); |
| if (TTmpIdx >= 0) { |
| return createSRegOperand(getTtmpClassId(Width), TTmpIdx); |
| } |
| |
| llvm_unreachable("unknown dst register"); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const { |
| using namespace AMDGPU; |
| |
| switch (Val) { |
| case 102: return createRegOperand(FLAT_SCR_LO); |
| case 103: return createRegOperand(FLAT_SCR_HI); |
| case 104: return createRegOperand(XNACK_MASK_LO); |
| case 105: return createRegOperand(XNACK_MASK_HI); |
| case 106: return createRegOperand(VCC_LO); |
| case 107: return createRegOperand(VCC_HI); |
| case 108: return createRegOperand(TBA_LO); |
| case 109: return createRegOperand(TBA_HI); |
| case 110: return createRegOperand(TMA_LO); |
| case 111: return createRegOperand(TMA_HI); |
| case 124: return createRegOperand(M0); |
| case 125: return createRegOperand(SGPR_NULL); |
| case 126: return createRegOperand(EXEC_LO); |
| case 127: return createRegOperand(EXEC_HI); |
| case 235: return createRegOperand(SRC_SHARED_BASE); |
| case 236: return createRegOperand(SRC_SHARED_LIMIT); |
| case 237: return createRegOperand(SRC_PRIVATE_BASE); |
| case 238: return createRegOperand(SRC_PRIVATE_LIMIT); |
| case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); |
| case 251: return createRegOperand(SRC_VCCZ); |
| case 252: return createRegOperand(SRC_EXECZ); |
| case 253: return createRegOperand(SRC_SCC); |
| case 254: return createRegOperand(LDS_DIRECT); |
| default: break; |
| } |
| return errOperand(Val, "unknown operand encoding " + Twine(Val)); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const { |
| using namespace AMDGPU; |
| |
| switch (Val) { |
| case 102: return createRegOperand(FLAT_SCR); |
| case 104: return createRegOperand(XNACK_MASK); |
| case 106: return createRegOperand(VCC); |
| case 108: return createRegOperand(TBA); |
| case 110: return createRegOperand(TMA); |
| case 125: return createRegOperand(SGPR_NULL); |
| case 126: return createRegOperand(EXEC); |
| case 235: return createRegOperand(SRC_SHARED_BASE); |
| case 236: return createRegOperand(SRC_SHARED_LIMIT); |
| case 237: return createRegOperand(SRC_PRIVATE_BASE); |
| case 238: return createRegOperand(SRC_PRIVATE_LIMIT); |
| case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); |
| case 251: return createRegOperand(SRC_VCCZ); |
| case 252: return createRegOperand(SRC_EXECZ); |
| case 253: return createRegOperand(SRC_SCC); |
| default: break; |
| } |
| return errOperand(Val, "unknown operand encoding " + Twine(Val)); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width, |
| const unsigned Val) const { |
| using namespace AMDGPU::SDWA; |
| using namespace AMDGPU::EncValues; |
| |
| if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] || |
| STI.getFeatureBits()[AMDGPU::FeatureGFX10]) { |
| // XXX: cast to int is needed to avoid stupid warning: |
| // compare with unsigned is always true |
| if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) && |
| Val <= SDWA9EncValues::SRC_VGPR_MAX) { |
| return createRegOperand(getVgprClassId(Width), |
| Val - SDWA9EncValues::SRC_VGPR_MIN); |
| } |
| if (SDWA9EncValues::SRC_SGPR_MIN <= Val && |
| Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10 |
| : SDWA9EncValues::SRC_SGPR_MAX_SI)) { |
| return createSRegOperand(getSgprClassId(Width), |
| Val - SDWA9EncValues::SRC_SGPR_MIN); |
| } |
| if (SDWA9EncValues::SRC_TTMP_MIN <= Val && |
| Val <= SDWA9EncValues::SRC_TTMP_MAX) { |
| return createSRegOperand(getTtmpClassId(Width), |
| Val - SDWA9EncValues::SRC_TTMP_MIN); |
| } |
| |
| const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN; |
| |
| if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX) |
| return decodeIntImmed(SVal); |
| |
| if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX) |
| return decodeFPImmed(Width, SVal); |
| |
| return decodeSpecialReg32(SVal); |
| } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) { |
| return createRegOperand(getVgprClassId(Width), Val); |
| } |
| llvm_unreachable("unsupported target"); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const { |
| return decodeSDWASrc(OPW16, Val); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const { |
| return decodeSDWASrc(OPW32, Val); |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const { |
| using namespace AMDGPU::SDWA; |
| |
| assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] || |
| STI.getFeatureBits()[AMDGPU::FeatureGFX10]) && |
| "SDWAVopcDst should be present only on GFX9+"); |
| |
| bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64]; |
| |
| if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) { |
| Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK; |
| |
| int TTmpIdx = getTTmpIdx(Val); |
| if (TTmpIdx >= 0) { |
| auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32); |
| return createSRegOperand(TTmpClsId, TTmpIdx); |
| } else if (Val > SGPR_MAX) { |
| return IsWave64 ? decodeSpecialReg64(Val) |
| : decodeSpecialReg32(Val); |
| } else { |
| return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val); |
| } |
| } else { |
| return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO); |
| } |
| } |
| |
| MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const { |
| return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ? |
| decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val); |
| } |
| |
| bool AMDGPUDisassembler::isVI() const { |
| return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; |
| } |
| |
| bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); } |
| |
| bool AMDGPUDisassembler::isGFX90A() const { |
| return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]; |
| } |
| |
| bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); } |
| |
| bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); } |
| |
| bool AMDGPUDisassembler::isGFX10Plus() const { |
| return AMDGPU::isGFX10Plus(STI); |
| } |
| |
| bool AMDGPUDisassembler::hasArchitectedFlatScratch() const { |
| return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch]; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AMDGPU specific symbol handling |
| //===----------------------------------------------------------------------===// |
| #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ |
| do { \ |
| KdStream << Indent << DIRECTIVE " " \ |
| << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \ |
| } while (0) |
| |
| // NOLINTNEXTLINE(readability-identifier-naming) |
| MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1( |
| uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { |
| using namespace amdhsa; |
| StringRef Indent = "\t"; |
| |
| // We cannot accurately backward compute #VGPRs used from |
| // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same |
| // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we |
| // simply calculate the inverse of what the assembler does. |
| |
| uint32_t GranulatedWorkitemVGPRCount = |
| (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >> |
| COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT; |
| |
| uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) * |
| AMDGPU::IsaInfo::getVGPREncodingGranule(&STI); |
| |
| KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n'; |
| |
| // We cannot backward compute values used to calculate |
| // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following |
| // directives can't be computed: |
| // .amdhsa_reserve_vcc |
| // .amdhsa_reserve_flat_scratch |
| // .amdhsa_reserve_xnack_mask |
| // They take their respective default values if not specified in the assembly. |
| // |
| // GRANULATED_WAVEFRONT_SGPR_COUNT |
| // = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK) |
| // |
| // We compute the inverse as though all directives apart from NEXT_FREE_SGPR |
| // are set to 0. So while disassembling we consider that: |
| // |
| // GRANULATED_WAVEFRONT_SGPR_COUNT |
| // = f(NEXT_FREE_SGPR + 0 + 0 + 0) |
| // |
| // The disassembler cannot recover the original values of those 3 directives. |
| |
| uint32_t GranulatedWavefrontSGPRCount = |
| (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >> |
| COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT; |
| |
| if (isGFX10Plus() && GranulatedWavefrontSGPRCount) |
| return MCDisassembler::Fail; |
| |
| uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) * |
| AMDGPU::IsaInfo::getSGPREncodingGranule(&STI); |
| |
| KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n'; |
| if (!hasArchitectedFlatScratch()) |
| KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n'; |
| KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n'; |
| KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n"; |
| |
| if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY) |
| return MCDisassembler::Fail; |
| |
| PRINT_DIRECTIVE(".amdhsa_float_round_mode_32", |
| COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32); |
| PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64", |
| COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64); |
| PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32", |
| COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32); |
| PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64", |
| COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64); |
| |
| if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV) |
| return MCDisassembler::Fail; |
| |
| PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP); |
| |
| if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE) |
| return MCDisassembler::Fail; |
| |
| PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE); |
| |
| if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY) |
| return MCDisassembler::Fail; |
| |
| if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER) |
| return MCDisassembler::Fail; |
| |
| PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL); |
| |
| if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0) |
| return MCDisassembler::Fail; |
| |
| if (isGFX10Plus()) { |
| PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode", |
| COMPUTE_PGM_RSRC1_WGP_MODE); |
| PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED); |
| PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS); |
| } |
| return MCDisassembler::Success; |
| } |
| |
| // NOLINTNEXTLINE(readability-identifier-naming) |
| MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2( |
| uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { |
| using namespace amdhsa; |
| StringRef Indent = "\t"; |
| if (hasArchitectedFlatScratch()) |
| PRINT_DIRECTIVE(".amdhsa_enable_private_segment", |
| COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); |
| else |
| PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset", |
| COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); |
| PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x", |
| COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X); |
| PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y", |
| COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y); |
| PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z", |
| COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z); |
| PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info", |
| COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO); |
| PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id", |
| COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID); |
| |
| if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH) |
| return MCDisassembler::Fail; |
| |
| if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY) |
| return MCDisassembler::Fail; |
| |
| if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE) |
| return MCDisassembler::Fail; |
| |
| PRINT_DIRECTIVE( |
| ".amdhsa_exception_fp_ieee_invalid_op", |
| COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION); |
| PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src", |
| COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE); |
| PRINT_DIRECTIVE( |
| ".amdhsa_exception_fp_ieee_div_zero", |
| COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO); |
| PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow", |
| COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW); |
| PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow", |
| COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW); |
| PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact", |
| COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT); |
| PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero", |
| COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO); |
| |
| if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0) |
| return MCDisassembler::Fail; |
| |
| return MCDisassembler::Success; |
| } |
| |
| #undef PRINT_DIRECTIVE |
| |
| MCDisassembler::DecodeStatus |
| AMDGPUDisassembler::decodeKernelDescriptorDirective( |
| DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes, |
| raw_string_ostream &KdStream) const { |
| #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ |
| do { \ |
| KdStream << Indent << DIRECTIVE " " \ |
| << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \ |
| } while (0) |
| |
| uint16_t TwoByteBuffer = 0; |
| uint32_t FourByteBuffer = 0; |
| |
| StringRef ReservedBytes; |
| StringRef Indent = "\t"; |
| |
| assert(Bytes.size() == 64); |
| DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8); |
| |
| switch (Cursor.tell()) { |
| case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET: |
| FourByteBuffer = DE.getU32(Cursor); |
| KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer |
| << '\n'; |
| return MCDisassembler::Success; |
| |
| case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET: |
| FourByteBuffer = DE.getU32(Cursor); |
| KdStream << Indent << ".amdhsa_private_segment_fixed_size " |
| << FourByteBuffer << '\n'; |
| return MCDisassembler::Success; |
| |
| case amdhsa::KERNARG_SIZE_OFFSET: |
| FourByteBuffer = DE.getU32(Cursor); |
| KdStream << Indent << ".amdhsa_kernarg_size " |
| << FourByteBuffer << '\n'; |
| return MCDisassembler::Success; |
| |
| case amdhsa::RESERVED0_OFFSET: |
| // 4 reserved bytes, must be 0. |
| ReservedBytes = DE.getBytes(Cursor, 4); |
| for (int I = 0; I < 4; ++I) { |
| if (ReservedBytes[I] != 0) { |
| return MCDisassembler::Fail; |
| } |
| } |
| return MCDisassembler::Success; |
| |
| case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET: |
| // KERNEL_CODE_ENTRY_BYTE_OFFSET |
| // So far no directive controls this for Code Object V3, so simply skip for |
| // disassembly. |
| DE.skip(Cursor, 8); |
| return MCDisassembler::Success; |
| |
| case amdhsa::RESERVED1_OFFSET: |
| // 20 reserved bytes, must be 0. |
| ReservedBytes = DE.getBytes(Cursor, 20); |
| for (int I = 0; I < 20; ++I) { |
| if (ReservedBytes[I] != 0) { |
| return MCDisassembler::Fail; |
| } |
| } |
| return MCDisassembler::Success; |
| |
| case amdhsa::COMPUTE_PGM_RSRC3_OFFSET: |
| // COMPUTE_PGM_RSRC3 |
| // - Only set for GFX10, GFX6-9 have this to be 0. |
| // - Currently no directives directly control this. |
| FourByteBuffer = DE.getU32(Cursor); |
| if (!isGFX10Plus() && FourByteBuffer) { |
| return MCDisassembler::Fail; |
| } |
| return MCDisassembler::Success; |
| |
| case amdhsa::COMPUTE_PGM_RSRC1_OFFSET: |
| FourByteBuffer = DE.getU32(Cursor); |
| if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) == |
| MCDisassembler::Fail) { |
| return MCDisassembler::Fail; |
| } |
| return MCDisassembler::Success; |
| |
| case amdhsa::COMPUTE_PGM_RSRC2_OFFSET: |
| FourByteBuffer = DE.getU32(Cursor); |
| if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) == |
| MCDisassembler::Fail) { |
| return MCDisassembler::Fail; |
| } |
| return MCDisassembler::Success; |
| |
| case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET: |
| using namespace amdhsa; |
| TwoByteBuffer = DE.getU16(Cursor); |
| |
| if (!hasArchitectedFlatScratch()) |
| PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer", |
| KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER); |
| PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr", |
| KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR); |
| PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr", |
| KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR); |
| PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr", |
| KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR); |
| PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id", |
| KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID); |
| if (!hasArchitectedFlatScratch()) |
| PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init", |
| KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT); |
| PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size", |
| KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE); |
| |
| if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0) |
| return MCDisassembler::Fail; |
| |
| // Reserved for GFX9 |
| if (isGFX9() && |
| (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) { |
| return MCDisassembler::Fail; |
| } else if (isGFX10Plus()) { |
| PRINT_DIRECTIVE(".amdhsa_wavefront_size32", |
| KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); |
| } |
| |
| if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1) |
| return MCDisassembler::Fail; |
| |
| return MCDisassembler::Success; |
| |
| case amdhsa::RESERVED2_OFFSET: |
| // 6 bytes from here are reserved, must be 0. |
| ReservedBytes = DE.getBytes(Cursor, 6); |
| for (int I = 0; I < 6; ++I) { |
| if (ReservedBytes[I] != 0) |
| return MCDisassembler::Fail; |
| } |
| return MCDisassembler::Success; |
| |
| default: |
| llvm_unreachable("Unhandled index. Case statements cover everything."); |
| return MCDisassembler::Fail; |
| } |
| #undef PRINT_DIRECTIVE |
| } |
| |
| MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor( |
| StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const { |
| // CP microcode requires the kernel descriptor to be 64 aligned. |
| if (Bytes.size() != 64 || KdAddress % 64 != 0) |
| return MCDisassembler::Fail; |
| |
| std::string Kd; |
| raw_string_ostream KdStream(Kd); |
| KdStream << ".amdhsa_kernel " << KdName << '\n'; |
| |
| DataExtractor::Cursor C(0); |
| while (C && C.tell() < Bytes.size()) { |
| MCDisassembler::DecodeStatus Status = |
| decodeKernelDescriptorDirective(C, Bytes, KdStream); |
| |
| cantFail(C.takeError()); |
| |
| if (Status == MCDisassembler::Fail) |
| return MCDisassembler::Fail; |
| } |
| KdStream << ".end_amdhsa_kernel\n"; |
| outs() << KdStream.str(); |
| return MCDisassembler::Success; |
| } |
| |
| Optional<MCDisassembler::DecodeStatus> |
| AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size, |
| ArrayRef<uint8_t> Bytes, uint64_t Address, |
| raw_ostream &CStream) const { |
| // Right now only kernel descriptor needs to be handled. |
| // We ignore all other symbols for target specific handling. |
| // TODO: |
| // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code |
| // Object V2 and V3 when symbols are marked protected. |
| |
| // amd_kernel_code_t for Code Object V2. |
| if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) { |
| Size = 256; |
| return MCDisassembler::Fail; |
| } |
| |
| // Code Object V3 kernel descriptors. |
| StringRef Name = Symbol.Name; |
| if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) { |
| Size = 64; // Size = 64 regardless of success or failure. |
| return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address); |
| } |
| return None; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AMDGPUSymbolizer |
| //===----------------------------------------------------------------------===// |
| |
| // Try to find symbol name for specified label |
| bool AMDGPUSymbolizer::tryAddingSymbolicOperand(MCInst &Inst, |
| raw_ostream &/*cStream*/, int64_t Value, |
| uint64_t /*Address*/, bool IsBranch, |
| uint64_t /*Offset*/, uint64_t /*InstSize*/) { |
| |
| if (!IsBranch) { |
| return false; |
| } |
| |
| auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo); |
| if (!Symbols) |
| return false; |
| |
| auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) { |
| return Val.Addr == static_cast<uint64_t>(Value) && |
| Val.Type == ELF::STT_NOTYPE; |
| }); |
| if (Result != Symbols->end()) { |
| auto *Sym = Ctx.getOrCreateSymbol(Result->Name); |
| const auto *Add = MCSymbolRefExpr::create(Sym, Ctx); |
| Inst.addOperand(MCOperand::createExpr(Add)); |
| return true; |
| } |
| // Add to list of referenced addresses, so caller can synthesize a label. |
| ReferencedAddresses.push_back(static_cast<uint64_t>(Value)); |
| return false; |
| } |
| |
| void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream, |
| int64_t Value, |
| uint64_t Address) { |
| llvm_unreachable("unimplemented"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Initialization |
| //===----------------------------------------------------------------------===// |
| |
| static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/, |
| LLVMOpInfoCallback /*GetOpInfo*/, |
| LLVMSymbolLookupCallback /*SymbolLookUp*/, |
| void *DisInfo, |
| MCContext *Ctx, |
| std::unique_ptr<MCRelocationInfo> &&RelInfo) { |
| return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo); |
| } |
| |
| static MCDisassembler *createAMDGPUDisassembler(const Target &T, |
| const MCSubtargetInfo &STI, |
| MCContext &Ctx) { |
| return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo()); |
| } |
| |
| extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() { |
| TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(), |
| createAMDGPUDisassembler); |
| TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(), |
| createAMDGPUSymbolizer); |
| } |