blob: 1f898f2ba8b3eb199a46b2ae001c38c30b7a95ee [file] [log] [blame]
//===- AMDGPULegalizerInfo.cpp -----------------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the Machinelegalizer class for
/// AMDGPU.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "AMDGPULegalizerInfo.h"
#include "AMDGPU.h"
#include "AMDGPUGlobalISelUtils.h"
#include "AMDGPUInstrInfo.h"
#include "AMDGPUTargetMachine.h"
#include "SIMachineFunctionInfo.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#define DEBUG_TYPE "amdgpu-legalinfo"
using namespace llvm;
using namespace LegalizeActions;
using namespace LegalizeMutations;
using namespace LegalityPredicates;
using namespace MIPatternMatch;
// Hack until load/store selection patterns support any tuple of legal types.
static cl::opt<bool> EnableNewLegality(
"amdgpu-global-isel-new-legality",
cl::desc("Use GlobalISel desired legality, rather than try to use"
"rules compatible with selection patterns"),
cl::init(false),
cl::ReallyHidden);
static constexpr unsigned MaxRegisterSize = 1024;
// Round the number of elements to the next power of two elements
static LLT getPow2VectorType(LLT Ty) {
unsigned NElts = Ty.getNumElements();
unsigned Pow2NElts = 1 << Log2_32_Ceil(NElts);
return Ty.changeElementCount(ElementCount::getFixed(Pow2NElts));
}
// Round the number of bits to the next power of two bits
static LLT getPow2ScalarType(LLT Ty) {
unsigned Bits = Ty.getSizeInBits();
unsigned Pow2Bits = 1 << Log2_32_Ceil(Bits);
return LLT::scalar(Pow2Bits);
}
/// \returns true if this is an odd sized vector which should widen by adding an
/// additional element. This is mostly to handle <3 x s16> -> <4 x s16>. This
/// excludes s1 vectors, which should always be scalarized.
static LegalityPredicate isSmallOddVector(unsigned TypeIdx) {
return [=](const LegalityQuery &Query) {
const LLT Ty = Query.Types[TypeIdx];
if (!Ty.isVector())
return false;
const LLT EltTy = Ty.getElementType();
const unsigned EltSize = EltTy.getSizeInBits();
return Ty.getNumElements() % 2 != 0 &&
EltSize > 1 && EltSize < 32 &&
Ty.getSizeInBits() % 32 != 0;
};
}
static LegalityPredicate sizeIsMultipleOf32(unsigned TypeIdx) {
return [=](const LegalityQuery &Query) {
const LLT Ty = Query.Types[TypeIdx];
return Ty.getSizeInBits() % 32 == 0;
};
}
static LegalityPredicate isWideVec16(unsigned TypeIdx) {
return [=](const LegalityQuery &Query) {
const LLT Ty = Query.Types[TypeIdx];
const LLT EltTy = Ty.getScalarType();
return EltTy.getSizeInBits() == 16 && Ty.getNumElements() > 2;
};
}
static LegalizeMutation oneMoreElement(unsigned TypeIdx) {
return [=](const LegalityQuery &Query) {
const LLT Ty = Query.Types[TypeIdx];
const LLT EltTy = Ty.getElementType();
return std::make_pair(TypeIdx,
LLT::fixed_vector(Ty.getNumElements() + 1, EltTy));
};
}
static LegalizeMutation fewerEltsToSize64Vector(unsigned TypeIdx) {
return [=](const LegalityQuery &Query) {
const LLT Ty = Query.Types[TypeIdx];
const LLT EltTy = Ty.getElementType();
unsigned Size = Ty.getSizeInBits();
unsigned Pieces = (Size + 63) / 64;
unsigned NewNumElts = (Ty.getNumElements() + 1) / Pieces;
return std::make_pair(
TypeIdx,
LLT::scalarOrVector(ElementCount::getFixed(NewNumElts), EltTy));
};
}
// Increase the number of vector elements to reach the next multiple of 32-bit
// type.
static LegalizeMutation moreEltsToNext32Bit(unsigned TypeIdx) {
return [=](const LegalityQuery &Query) {
const LLT Ty = Query.Types[TypeIdx];
const LLT EltTy = Ty.getElementType();
const int Size = Ty.getSizeInBits();
const int EltSize = EltTy.getSizeInBits();
const int NextMul32 = (Size + 31) / 32;
assert(EltSize < 32);
const int NewNumElts = (32 * NextMul32 + EltSize - 1) / EltSize;
return std::make_pair(TypeIdx, LLT::fixed_vector(NewNumElts, EltTy));
};
}
static LLT getBitcastRegisterType(const LLT Ty) {
const unsigned Size = Ty.getSizeInBits();
LLT CoercedTy;
if (Size <= 32) {
// <2 x s8> -> s16
// <4 x s8> -> s32
return LLT::scalar(Size);
}
return LLT::scalarOrVector(ElementCount::getFixed(Size / 32), 32);
}
static LegalizeMutation bitcastToRegisterType(unsigned TypeIdx) {
return [=](const LegalityQuery &Query) {
const LLT Ty = Query.Types[TypeIdx];
return std::make_pair(TypeIdx, getBitcastRegisterType(Ty));
};
}
static LegalizeMutation bitcastToVectorElement32(unsigned TypeIdx) {
return [=](const LegalityQuery &Query) {
const LLT Ty = Query.Types[TypeIdx];
unsigned Size = Ty.getSizeInBits();
assert(Size % 32 == 0);
return std::make_pair(
TypeIdx, LLT::scalarOrVector(ElementCount::getFixed(Size / 32), 32));
};
}
static LegalityPredicate vectorSmallerThan(unsigned TypeIdx, unsigned Size) {
return [=](const LegalityQuery &Query) {
const LLT QueryTy = Query.Types[TypeIdx];
return QueryTy.isVector() && QueryTy.getSizeInBits() < Size;
};
}
static LegalityPredicate vectorWiderThan(unsigned TypeIdx, unsigned Size) {
return [=](const LegalityQuery &Query) {
const LLT QueryTy = Query.Types[TypeIdx];
return QueryTy.isVector() && QueryTy.getSizeInBits() > Size;
};
}
static LegalityPredicate numElementsNotEven(unsigned TypeIdx) {
return [=](const LegalityQuery &Query) {
const LLT QueryTy = Query.Types[TypeIdx];
return QueryTy.isVector() && QueryTy.getNumElements() % 2 != 0;
};
}
static bool isRegisterSize(unsigned Size) {
return Size % 32 == 0 && Size <= MaxRegisterSize;
}
static bool isRegisterVectorElementType(LLT EltTy) {
const int EltSize = EltTy.getSizeInBits();
return EltSize == 16 || EltSize % 32 == 0;
}
static bool isRegisterVectorType(LLT Ty) {
const int EltSize = Ty.getElementType().getSizeInBits();
return EltSize == 32 || EltSize == 64 ||
(EltSize == 16 && Ty.getNumElements() % 2 == 0) ||
EltSize == 128 || EltSize == 256;
}
static bool isRegisterType(LLT Ty) {
if (!isRegisterSize(Ty.getSizeInBits()))
return false;
if (Ty.isVector())
return isRegisterVectorType(Ty);
return true;
}
// Any combination of 32 or 64-bit elements up the maximum register size, and
// multiples of v2s16.
static LegalityPredicate isRegisterType(unsigned TypeIdx) {
return [=](const LegalityQuery &Query) {
return isRegisterType(Query.Types[TypeIdx]);
};
}
static LegalityPredicate elementTypeIsLegal(unsigned TypeIdx) {
return [=](const LegalityQuery &Query) {
const LLT QueryTy = Query.Types[TypeIdx];
if (!QueryTy.isVector())
return false;
const LLT EltTy = QueryTy.getElementType();
return EltTy == LLT::scalar(16) || EltTy.getSizeInBits() >= 32;
};
}
// If we have a truncating store or an extending load with a data size larger
// than 32-bits, we need to reduce to a 32-bit type.
static LegalityPredicate isWideScalarExtLoadTruncStore(unsigned TypeIdx) {
return [=](const LegalityQuery &Query) {
const LLT Ty = Query.Types[TypeIdx];
return !Ty.isVector() && Ty.getSizeInBits() > 32 &&
Query.MMODescrs[0].MemoryTy.getSizeInBits() < Ty.getSizeInBits();
};
}
// TODO: Should load to s16 be legal? Most loads extend to 32-bits, but we
// handle some operations by just promoting the register during
// selection. There are also d16 loads on GFX9+ which preserve the high bits.
static unsigned maxSizeForAddrSpace(const GCNSubtarget &ST, unsigned AS,
bool IsLoad) {
switch (AS) {
case AMDGPUAS::PRIVATE_ADDRESS:
// FIXME: Private element size.
return ST.enableFlatScratch() ? 128 : 32;
case AMDGPUAS::LOCAL_ADDRESS:
return ST.useDS128() ? 128 : 64;
case AMDGPUAS::GLOBAL_ADDRESS:
case AMDGPUAS::CONSTANT_ADDRESS:
case AMDGPUAS::CONSTANT_ADDRESS_32BIT:
// Treat constant and global as identical. SMRD loads are sometimes usable for
// global loads (ideally constant address space should be eliminated)
// depending on the context. Legality cannot be context dependent, but
// RegBankSelect can split the load as necessary depending on the pointer
// register bank/uniformity and if the memory is invariant or not written in a
// kernel.
return IsLoad ? 512 : 128;
default:
// Flat addresses may contextually need to be split to 32-bit parts if they
// may alias scratch depending on the subtarget.
return 128;
}
}
static bool isLoadStoreSizeLegal(const GCNSubtarget &ST,
const LegalityQuery &Query) {
const LLT Ty = Query.Types[0];
// Handle G_LOAD, G_ZEXTLOAD, G_SEXTLOAD
const bool IsLoad = Query.Opcode != AMDGPU::G_STORE;
unsigned RegSize = Ty.getSizeInBits();
unsigned MemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits();
unsigned AlignBits = Query.MMODescrs[0].AlignInBits;
unsigned AS = Query.Types[1].getAddressSpace();
// All of these need to be custom lowered to cast the pointer operand.
if (AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT)
return false;
// Do not handle extending vector loads.
if (Ty.isVector() && MemSize != RegSize)
return false;
// TODO: We should be able to widen loads if the alignment is high enough, but
// we also need to modify the memory access size.
#if 0
// Accept widening loads based on alignment.
if (IsLoad && MemSize < Size)
MemSize = std::max(MemSize, Align);
#endif
// Only 1-byte and 2-byte to 32-bit extloads are valid.
if (MemSize != RegSize && RegSize != 32)
return false;
if (MemSize > maxSizeForAddrSpace(ST, AS, IsLoad))
return false;
switch (MemSize) {
case 8:
case 16:
case 32:
case 64:
case 128:
break;
case 96:
if (!ST.hasDwordx3LoadStores())
return false;
break;
case 256:
case 512:
// These may contextually need to be broken down.
break;
default:
return false;
}
assert(RegSize >= MemSize);
if (AlignBits < MemSize) {
const SITargetLowering *TLI = ST.getTargetLowering();
if (!TLI->allowsMisalignedMemoryAccessesImpl(MemSize, AS,
Align(AlignBits / 8)))
return false;
}
return true;
}
// The current selector can't handle <6 x s16>, <8 x s16>, s96, s128 etc, so
// workaround this. Eventually it should ignore the type for loads and only care
// about the size. Return true in cases where we will workaround this for now by
// bitcasting.
static bool loadStoreBitcastWorkaround(const LLT Ty) {
if (EnableNewLegality)
return false;
const unsigned Size = Ty.getSizeInBits();
if (Size <= 64)
return false;
if (!Ty.isVector())
return true;
LLT EltTy = Ty.getElementType();
if (EltTy.isPointer())
return true;
unsigned EltSize = EltTy.getSizeInBits();
return EltSize != 32 && EltSize != 64;
}
static bool isLoadStoreLegal(const GCNSubtarget &ST, const LegalityQuery &Query) {
const LLT Ty = Query.Types[0];
return isRegisterType(Ty) && isLoadStoreSizeLegal(ST, Query) &&
!loadStoreBitcastWorkaround(Ty);
}
/// Return true if a load or store of the type should be lowered with a bitcast
/// to a different type.
static bool shouldBitcastLoadStoreType(const GCNSubtarget &ST, const LLT Ty,
const LLT MemTy) {
const unsigned MemSizeInBits = MemTy.getSizeInBits();
const unsigned Size = Ty.getSizeInBits();
if (Size != MemSizeInBits)
return Size <= 32 && Ty.isVector();
if (loadStoreBitcastWorkaround(Ty) && isRegisterType(Ty))
return true;
// Don't try to handle bitcasting vector ext loads for now.
return Ty.isVector() && (!MemTy.isVector() || MemTy == Ty) &&
(Size <= 32 || isRegisterSize(Size)) &&
!isRegisterVectorElementType(Ty.getElementType());
}
/// Return true if we should legalize a load by widening an odd sized memory
/// access up to the alignment. Note this case when the memory access itself
/// changes, not the size of the result register.
static bool shouldWidenLoad(const GCNSubtarget &ST, LLT MemoryTy,
unsigned AlignInBits, unsigned AddrSpace,
unsigned Opcode) {
unsigned SizeInBits = MemoryTy.getSizeInBits();
// We don't want to widen cases that are naturally legal.
if (isPowerOf2_32(SizeInBits))
return false;
// If we have 96-bit memory operations, we shouldn't touch them. Note we may
// end up widening these for a scalar load during RegBankSelect, since there
// aren't 96-bit scalar loads.
if (SizeInBits == 96 && ST.hasDwordx3LoadStores())
return false;
if (SizeInBits >= maxSizeForAddrSpace(ST, AddrSpace, Opcode))
return false;
// A load is known dereferenceable up to the alignment, so it's legal to widen
// to it.
//
// TODO: Could check dereferenceable for less aligned cases.
unsigned RoundedSize = NextPowerOf2(SizeInBits);
if (AlignInBits < RoundedSize)
return false;
// Do not widen if it would introduce a slow unaligned load.
const SITargetLowering *TLI = ST.getTargetLowering();
bool Fast = false;
return TLI->allowsMisalignedMemoryAccessesImpl(
RoundedSize, AddrSpace, Align(AlignInBits / 8),
MachineMemOperand::MOLoad, &Fast) &&
Fast;
}
static bool shouldWidenLoad(const GCNSubtarget &ST, const LegalityQuery &Query,
unsigned Opcode) {
if (Query.MMODescrs[0].Ordering != AtomicOrdering::NotAtomic)
return false;
return shouldWidenLoad(ST, Query.MMODescrs[0].MemoryTy,
Query.MMODescrs[0].AlignInBits,
Query.Types[1].getAddressSpace(), Opcode);
}
AMDGPULegalizerInfo::AMDGPULegalizerInfo(const GCNSubtarget &ST_,
const GCNTargetMachine &TM)
: ST(ST_) {
using namespace TargetOpcode;
auto GetAddrSpacePtr = [&TM](unsigned AS) {
return LLT::pointer(AS, TM.getPointerSizeInBits(AS));
};
const LLT S1 = LLT::scalar(1);
const LLT S8 = LLT::scalar(8);
const LLT S16 = LLT::scalar(16);
const LLT S32 = LLT::scalar(32);
const LLT S64 = LLT::scalar(64);
const LLT S128 = LLT::scalar(128);
const LLT S256 = LLT::scalar(256);
const LLT S512 = LLT::scalar(512);
const LLT MaxScalar = LLT::scalar(MaxRegisterSize);
const LLT V2S8 = LLT::fixed_vector(2, 8);
const LLT V2S16 = LLT::fixed_vector(2, 16);
const LLT V4S16 = LLT::fixed_vector(4, 16);
const LLT V2S32 = LLT::fixed_vector(2, 32);
const LLT V3S32 = LLT::fixed_vector(3, 32);
const LLT V4S32 = LLT::fixed_vector(4, 32);
const LLT V5S32 = LLT::fixed_vector(5, 32);
const LLT V6S32 = LLT::fixed_vector(6, 32);
const LLT V7S32 = LLT::fixed_vector(7, 32);
const LLT V8S32 = LLT::fixed_vector(8, 32);
const LLT V9S32 = LLT::fixed_vector(9, 32);
const LLT V10S32 = LLT::fixed_vector(10, 32);
const LLT V11S32 = LLT::fixed_vector(11, 32);
const LLT V12S32 = LLT::fixed_vector(12, 32);
const LLT V13S32 = LLT::fixed_vector(13, 32);
const LLT V14S32 = LLT::fixed_vector(14, 32);
const LLT V15S32 = LLT::fixed_vector(15, 32);
const LLT V16S32 = LLT::fixed_vector(16, 32);
const LLT V32S32 = LLT::fixed_vector(32, 32);
const LLT V2S64 = LLT::fixed_vector(2, 64);
const LLT V3S64 = LLT::fixed_vector(3, 64);
const LLT V4S64 = LLT::fixed_vector(4, 64);
const LLT V5S64 = LLT::fixed_vector(5, 64);
const LLT V6S64 = LLT::fixed_vector(6, 64);
const LLT V7S64 = LLT::fixed_vector(7, 64);
const LLT V8S64 = LLT::fixed_vector(8, 64);
const LLT V16S64 = LLT::fixed_vector(16, 64);
std::initializer_list<LLT> AllS32Vectors =
{V2S32, V3S32, V4S32, V5S32, V6S32, V7S32, V8S32,
V9S32, V10S32, V11S32, V12S32, V13S32, V14S32, V15S32, V16S32, V32S32};
std::initializer_list<LLT> AllS64Vectors =
{V2S64, V3S64, V4S64, V5S64, V6S64, V7S64, V8S64, V16S64};
const LLT GlobalPtr = GetAddrSpacePtr(AMDGPUAS::GLOBAL_ADDRESS);
const LLT ConstantPtr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS);
const LLT Constant32Ptr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS_32BIT);
const LLT LocalPtr = GetAddrSpacePtr(AMDGPUAS::LOCAL_ADDRESS);
const LLT RegionPtr = GetAddrSpacePtr(AMDGPUAS::REGION_ADDRESS);
const LLT FlatPtr = GetAddrSpacePtr(AMDGPUAS::FLAT_ADDRESS);
const LLT PrivatePtr = GetAddrSpacePtr(AMDGPUAS::PRIVATE_ADDRESS);
const LLT CodePtr = FlatPtr;
const std::initializer_list<LLT> AddrSpaces64 = {
GlobalPtr, ConstantPtr, FlatPtr
};
const std::initializer_list<LLT> AddrSpaces32 = {
LocalPtr, PrivatePtr, Constant32Ptr, RegionPtr
};
const std::initializer_list<LLT> FPTypesBase = {
S32, S64
};
const std::initializer_list<LLT> FPTypes16 = {
S32, S64, S16
};
const std::initializer_list<LLT> FPTypesPK16 = {
S32, S64, S16, V2S16
};
const LLT MinScalarFPTy = ST.has16BitInsts() ? S16 : S32;
// s1 for VCC branches, s32 for SCC branches.
getActionDefinitionsBuilder(G_BRCOND).legalFor({S1, S32});
// TODO: All multiples of 32, vectors of pointers, all v2s16 pairs, more
// elements for v3s16
getActionDefinitionsBuilder(G_PHI)
.legalFor({S32, S64, V2S16, S16, V4S16, S1, S128, S256})
.legalFor(AllS32Vectors)
.legalFor(AllS64Vectors)
.legalFor(AddrSpaces64)
.legalFor(AddrSpaces32)
.legalIf(isPointer(0))
.clampScalar(0, S16, S256)
.widenScalarToNextPow2(0, 32)
.clampMaxNumElements(0, S32, 16)
.moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
.scalarize(0);
if (ST.hasVOP3PInsts() && ST.hasAddNoCarry() && ST.hasIntClamp()) {
// Full set of gfx9 features.
getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL})
.legalFor({S32, S16, V2S16})
.minScalar(0, S16)
.clampMaxNumElements(0, S16, 2)
.widenScalarToNextMultipleOf(0, 32)
.maxScalar(0, S32)
.scalarize(0);
getActionDefinitionsBuilder({G_UADDSAT, G_USUBSAT, G_SADDSAT, G_SSUBSAT})
.legalFor({S32, S16, V2S16}) // Clamp modifier
.minScalarOrElt(0, S16)
.clampMaxNumElements(0, S16, 2)
.scalarize(0)
.widenScalarToNextPow2(0, 32)
.lower();
} else if (ST.has16BitInsts()) {
getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL})
.legalFor({S32, S16})
.minScalar(0, S16)
.widenScalarToNextMultipleOf(0, 32)
.maxScalar(0, S32)
.scalarize(0);
// Technically the saturating operations require clamp bit support, but this
// was introduced at the same time as 16-bit operations.
getActionDefinitionsBuilder({G_UADDSAT, G_USUBSAT})
.legalFor({S32, S16}) // Clamp modifier
.minScalar(0, S16)
.scalarize(0)
.widenScalarToNextPow2(0, 16)
.lower();
// We're just lowering this, but it helps get a better result to try to
// coerce to the desired type first.
getActionDefinitionsBuilder({G_SADDSAT, G_SSUBSAT})
.minScalar(0, S16)
.scalarize(0)
.lower();
} else {
getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL})
.legalFor({S32})
.widenScalarToNextMultipleOf(0, 32)
.clampScalar(0, S32, S32)
.scalarize(0);
if (ST.hasIntClamp()) {
getActionDefinitionsBuilder({G_UADDSAT, G_USUBSAT})
.legalFor({S32}) // Clamp modifier.
.scalarize(0)
.minScalarOrElt(0, S32)
.lower();
} else {
// Clamp bit support was added in VI, along with 16-bit operations.
getActionDefinitionsBuilder({G_UADDSAT, G_USUBSAT})
.minScalar(0, S32)
.scalarize(0)
.lower();
}
// FIXME: DAG expansion gets better results. The widening uses the smaller
// range values and goes for the min/max lowering directly.
getActionDefinitionsBuilder({G_SADDSAT, G_SSUBSAT})
.minScalar(0, S32)
.scalarize(0)
.lower();
}
getActionDefinitionsBuilder(
{G_SDIV, G_UDIV, G_SREM, G_UREM, G_SDIVREM, G_UDIVREM})
.customFor({S32, S64})
.clampScalar(0, S32, S64)
.widenScalarToNextPow2(0, 32)
.scalarize(0);
auto &Mulh = getActionDefinitionsBuilder({G_UMULH, G_SMULH})
.legalFor({S32})
.maxScalar(0, S32);
if (ST.hasVOP3PInsts()) {
Mulh
.clampMaxNumElements(0, S8, 2)
.lowerFor({V2S8});
}
Mulh
.scalarize(0)
.lower();
// Report legal for any types we can handle anywhere. For the cases only legal
// on the SALU, RegBankSelect will be able to re-legalize.
getActionDefinitionsBuilder({G_AND, G_OR, G_XOR})
.legalFor({S32, S1, S64, V2S32, S16, V2S16, V4S16})
.clampScalar(0, S32, S64)
.moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
.fewerElementsIf(vectorWiderThan(0, 64), fewerEltsToSize64Vector(0))
.widenScalarToNextPow2(0)
.scalarize(0);
getActionDefinitionsBuilder({G_UADDO, G_USUBO,
G_UADDE, G_SADDE, G_USUBE, G_SSUBE})
.legalFor({{S32, S1}, {S32, S32}})
.minScalar(0, S32)
// TODO: .scalarize(0)
.lower();
getActionDefinitionsBuilder(G_BITCAST)
// Don't worry about the size constraint.
.legalIf(all(isRegisterType(0), isRegisterType(1)))
.lower();
getActionDefinitionsBuilder(G_CONSTANT)
.legalFor({S1, S32, S64, S16, GlobalPtr,
LocalPtr, ConstantPtr, PrivatePtr, FlatPtr })
.legalIf(isPointer(0))
.clampScalar(0, S32, S64)
.widenScalarToNextPow2(0);
getActionDefinitionsBuilder(G_FCONSTANT)
.legalFor({S32, S64, S16})
.clampScalar(0, S16, S64);
getActionDefinitionsBuilder({G_IMPLICIT_DEF, G_FREEZE})
.legalIf(isRegisterType(0))
// s1 and s16 are special cases because they have legal operations on
// them, but don't really occupy registers in the normal way.
.legalFor({S1, S16})
.moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
.clampScalarOrElt(0, S32, MaxScalar)
.widenScalarToNextPow2(0, 32)
.clampMaxNumElements(0, S32, 16);
getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({PrivatePtr});
// If the amount is divergent, we have to do a wave reduction to get the
// maximum value, so this is expanded during RegBankSelect.
getActionDefinitionsBuilder(G_DYN_STACKALLOC)
.legalFor({{PrivatePtr, S32}});
getActionDefinitionsBuilder(G_GLOBAL_VALUE)
.customIf(typeIsNot(0, PrivatePtr));
getActionDefinitionsBuilder(G_BLOCK_ADDR).legalFor({CodePtr});
auto &FPOpActions = getActionDefinitionsBuilder(
{ G_FADD, G_FMUL, G_FMA, G_FCANONICALIZE})
.legalFor({S32, S64});
auto &TrigActions = getActionDefinitionsBuilder({G_FSIN, G_FCOS})
.customFor({S32, S64});
auto &FDIVActions = getActionDefinitionsBuilder(G_FDIV)
.customFor({S32, S64});
if (ST.has16BitInsts()) {
if (ST.hasVOP3PInsts())
FPOpActions.legalFor({S16, V2S16});
else
FPOpActions.legalFor({S16});
TrigActions.customFor({S16});
FDIVActions.customFor({S16});
}
auto &MinNumMaxNum = getActionDefinitionsBuilder({
G_FMINNUM, G_FMAXNUM, G_FMINNUM_IEEE, G_FMAXNUM_IEEE});
if (ST.hasVOP3PInsts()) {
MinNumMaxNum.customFor(FPTypesPK16)
.moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
.clampMaxNumElements(0, S16, 2)
.clampScalar(0, S16, S64)
.scalarize(0);
} else if (ST.has16BitInsts()) {
MinNumMaxNum.customFor(FPTypes16)
.clampScalar(0, S16, S64)
.scalarize(0);
} else {
MinNumMaxNum.customFor(FPTypesBase)
.clampScalar(0, S32, S64)
.scalarize(0);
}
if (ST.hasVOP3PInsts())
FPOpActions.clampMaxNumElements(0, S16, 2);
FPOpActions
.scalarize(0)
.clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64);
TrigActions
.scalarize(0)
.clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64);
FDIVActions
.scalarize(0)
.clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64);
getActionDefinitionsBuilder({G_FNEG, G_FABS})
.legalFor(FPTypesPK16)
.clampMaxNumElements(0, S16, 2)
.scalarize(0)
.clampScalar(0, S16, S64);
if (ST.has16BitInsts()) {
getActionDefinitionsBuilder({G_FSQRT, G_FFLOOR})
.legalFor({S32, S64, S16})
.scalarize(0)
.clampScalar(0, S16, S64);
} else {
getActionDefinitionsBuilder(G_FSQRT)
.legalFor({S32, S64})
.scalarize(0)
.clampScalar(0, S32, S64);
if (ST.hasFractBug()) {
getActionDefinitionsBuilder(G_FFLOOR)
.customFor({S64})
.legalFor({S32, S64})
.scalarize(0)
.clampScalar(0, S32, S64);
} else {
getActionDefinitionsBuilder(G_FFLOOR)
.legalFor({S32, S64})
.scalarize(0)
.clampScalar(0, S32, S64);
}
}
getActionDefinitionsBuilder(G_FPTRUNC)
.legalFor({{S32, S64}, {S16, S32}})
.scalarize(0)
.lower();
getActionDefinitionsBuilder(G_FPEXT)
.legalFor({{S64, S32}, {S32, S16}})
.narrowScalarFor({{S64, S16}}, changeTo(0, S32))
.scalarize(0);
getActionDefinitionsBuilder(G_FSUB)
// Use actual fsub instruction
.legalFor({S32})
// Must use fadd + fneg
.lowerFor({S64, S16, V2S16})
.scalarize(0)
.clampScalar(0, S32, S64);
// Whether this is legal depends on the floating point mode for the function.
auto &FMad = getActionDefinitionsBuilder(G_FMAD);
if (ST.hasMadF16() && ST.hasMadMacF32Insts())
FMad.customFor({S32, S16});
else if (ST.hasMadMacF32Insts())
FMad.customFor({S32});
else if (ST.hasMadF16())
FMad.customFor({S16});
FMad.scalarize(0)
.lower();
auto &FRem = getActionDefinitionsBuilder(G_FREM);
if (ST.has16BitInsts()) {
FRem.customFor({S16, S32, S64});
} else {
FRem.minScalar(0, S32)
.customFor({S32, S64});
}
FRem.scalarize(0);
// TODO: Do we need to clamp maximum bitwidth?
getActionDefinitionsBuilder(G_TRUNC)
.legalIf(isScalar(0))
.legalFor({{V2S16, V2S32}})
.clampMaxNumElements(0, S16, 2)
// Avoid scalarizing in cases that should be truly illegal. In unresolvable
// situations (like an invalid implicit use), we don't want to infinite loop
// in the legalizer.
.fewerElementsIf(elementTypeIsLegal(0), LegalizeMutations::scalarize(0))
.alwaysLegal();
getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT})
.legalFor({{S64, S32}, {S32, S16}, {S64, S16},
{S32, S1}, {S64, S1}, {S16, S1}})
.scalarize(0)
.clampScalar(0, S32, S64)
.widenScalarToNextPow2(1, 32);
// TODO: Split s1->s64 during regbankselect for VALU.
auto &IToFP = getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
.legalFor({{S32, S32}, {S64, S32}, {S16, S32}})
.lowerIf(typeIs(1, S1))
.customFor({{S32, S64}, {S64, S64}});
if (ST.has16BitInsts())
IToFP.legalFor({{S16, S16}});
IToFP.clampScalar(1, S32, S64)
.minScalar(0, S32)
.scalarize(0)
.widenScalarToNextPow2(1);
auto &FPToI = getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
.legalFor({{S32, S32}, {S32, S64}, {S32, S16}})
.customFor({{S64, S32}, {S64, S64}})
.narrowScalarFor({{S64, S16}}, changeTo(0, S32));
if (ST.has16BitInsts())
FPToI.legalFor({{S16, S16}});
else
FPToI.minScalar(1, S32);
FPToI.minScalar(0, S32)
.widenScalarToNextPow2(0, 32)
.scalarize(0)
.lower();
// Lower roundeven into G_FRINT
getActionDefinitionsBuilder({G_INTRINSIC_ROUND, G_INTRINSIC_ROUNDEVEN})
.scalarize(0)
.lower();
if (ST.has16BitInsts()) {
getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT})
.legalFor({S16, S32, S64})
.clampScalar(0, S16, S64)
.scalarize(0);
} else if (ST.getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT})
.legalFor({S32, S64})
.clampScalar(0, S32, S64)
.scalarize(0);
} else {
getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT})
.legalFor({S32})
.customFor({S64})
.clampScalar(0, S32, S64)
.scalarize(0);
}
getActionDefinitionsBuilder(G_PTR_ADD)
.legalIf(all(isPointer(0), sameSize(0, 1)))
.scalarize(0)
.scalarSameSizeAs(1, 0);
getActionDefinitionsBuilder(G_PTRMASK)
.legalIf(all(sameSize(0, 1), typeInSet(1, {S64, S32})))
.scalarSameSizeAs(1, 0)
.scalarize(0);
auto &CmpBuilder =
getActionDefinitionsBuilder(G_ICMP)
// The compare output type differs based on the register bank of the output,
// so make both s1 and s32 legal.
//
// Scalar compares producing output in scc will be promoted to s32, as that
// is the allocatable register type that will be needed for the copy from
// scc. This will be promoted during RegBankSelect, and we assume something
// before that won't try to use s32 result types.
//
// Vector compares producing an output in vcc/SGPR will use s1 in VCC reg
// bank.
.legalForCartesianProduct(
{S1}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr})
.legalForCartesianProduct(
{S32}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr});
if (ST.has16BitInsts()) {
CmpBuilder.legalFor({{S1, S16}});
}
CmpBuilder
.widenScalarToNextPow2(1)
.clampScalar(1, S32, S64)
.scalarize(0)
.legalIf(all(typeInSet(0, {S1, S32}), isPointer(1)));
getActionDefinitionsBuilder(G_FCMP)
.legalForCartesianProduct({S1}, ST.has16BitInsts() ? FPTypes16 : FPTypesBase)
.widenScalarToNextPow2(1)
.clampScalar(1, S32, S64)
.scalarize(0);
// FIXME: fpow has a selection pattern that should move to custom lowering.
auto &Exp2Ops = getActionDefinitionsBuilder({G_FEXP2, G_FLOG2});
if (ST.has16BitInsts())
Exp2Ops.legalFor({S32, S16});
else
Exp2Ops.legalFor({S32});
Exp2Ops.clampScalar(0, MinScalarFPTy, S32);
Exp2Ops.scalarize(0);
auto &ExpOps = getActionDefinitionsBuilder({G_FEXP, G_FLOG, G_FLOG10, G_FPOW});
if (ST.has16BitInsts())
ExpOps.customFor({{S32}, {S16}});
else
ExpOps.customFor({S32});
ExpOps.clampScalar(0, MinScalarFPTy, S32)
.scalarize(0);
getActionDefinitionsBuilder(G_FPOWI)
.clampScalar(0, MinScalarFPTy, S32)
.lower();
// The 64-bit versions produce 32-bit results, but only on the SALU.
getActionDefinitionsBuilder(G_CTPOP)
.legalFor({{S32, S32}, {S32, S64}})
.clampScalar(0, S32, S32)
.clampScalar(1, S32, S64)
.scalarize(0)
.widenScalarToNextPow2(0, 32)
.widenScalarToNextPow2(1, 32);
// The hardware instructions return a different result on 0 than the generic
// instructions expect. The hardware produces -1, but these produce the
// bitwidth.
getActionDefinitionsBuilder({G_CTLZ, G_CTTZ})
.scalarize(0)
.clampScalar(0, S32, S32)
.clampScalar(1, S32, S64)
.widenScalarToNextPow2(0, 32)
.widenScalarToNextPow2(1, 32)
.custom();
// The 64-bit versions produce 32-bit results, but only on the SALU.
getActionDefinitionsBuilder({G_CTLZ_ZERO_UNDEF, G_CTTZ_ZERO_UNDEF})
.legalFor({{S32, S32}, {S32, S64}})
.clampScalar(0, S32, S32)
.clampScalar(1, S32, S64)
.scalarize(0)
.widenScalarToNextPow2(0, 32)
.widenScalarToNextPow2(1, 32);
// S64 is only legal on SALU, and needs to be broken into 32-bit elements in
// RegBankSelect.
getActionDefinitionsBuilder(G_BITREVERSE)
.legalFor({S32, S64})
.clampScalar(0, S32, S64)
.scalarize(0)
.widenScalarToNextPow2(0);
if (ST.has16BitInsts()) {
getActionDefinitionsBuilder(G_BSWAP)
.legalFor({S16, S32, V2S16})
.clampMaxNumElements(0, S16, 2)
// FIXME: Fixing non-power-of-2 before clamp is workaround for
// narrowScalar limitation.
.widenScalarToNextPow2(0)
.clampScalar(0, S16, S32)
.scalarize(0);
if (ST.hasVOP3PInsts()) {
getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX, G_ABS})
.legalFor({S32, S16, V2S16})
.moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
.clampMaxNumElements(0, S16, 2)
.minScalar(0, S16)
.widenScalarToNextPow2(0)
.scalarize(0)
.lower();
} else {
getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX, G_ABS})
.legalFor({S32, S16})
.widenScalarToNextPow2(0)
.minScalar(0, S16)
.scalarize(0)
.lower();
}
} else {
// TODO: Should have same legality without v_perm_b32
getActionDefinitionsBuilder(G_BSWAP)
.legalFor({S32})
.lowerIf(scalarNarrowerThan(0, 32))
// FIXME: Fixing non-power-of-2 before clamp is workaround for
// narrowScalar limitation.
.widenScalarToNextPow2(0)
.maxScalar(0, S32)
.scalarize(0)
.lower();
getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX, G_ABS})
.legalFor({S32})
.minScalar(0, S32)
.widenScalarToNextPow2(0)
.scalarize(0)
.lower();
}
getActionDefinitionsBuilder(G_INTTOPTR)
// List the common cases
.legalForCartesianProduct(AddrSpaces64, {S64})
.legalForCartesianProduct(AddrSpaces32, {S32})
.scalarize(0)
// Accept any address space as long as the size matches
.legalIf(sameSize(0, 1))
.widenScalarIf(smallerThan(1, 0),
[](const LegalityQuery &Query) {
return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits()));
})
.narrowScalarIf(largerThan(1, 0),
[](const LegalityQuery &Query) {
return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits()));
});
getActionDefinitionsBuilder(G_PTRTOINT)
// List the common cases
.legalForCartesianProduct(AddrSpaces64, {S64})
.legalForCartesianProduct(AddrSpaces32, {S32})
.scalarize(0)
// Accept any address space as long as the size matches
.legalIf(sameSize(0, 1))
.widenScalarIf(smallerThan(0, 1),
[](const LegalityQuery &Query) {
return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits()));
})
.narrowScalarIf(
largerThan(0, 1),
[](const LegalityQuery &Query) {
return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits()));
});
getActionDefinitionsBuilder(G_ADDRSPACE_CAST)
.scalarize(0)
.custom();
const auto needToSplitMemOp = [=](const LegalityQuery &Query,
bool IsLoad) -> bool {
const LLT DstTy = Query.Types[0];
// Split vector extloads.
unsigned MemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits();
unsigned AlignBits = Query.MMODescrs[0].AlignInBits;
if (MemSize < DstTy.getSizeInBits())
MemSize = std::max(MemSize, AlignBits);
if (DstTy.isVector() && DstTy.getSizeInBits() > MemSize)
return true;
const LLT PtrTy = Query.Types[1];
unsigned AS = PtrTy.getAddressSpace();
if (MemSize > maxSizeForAddrSpace(ST, AS, IsLoad))
return true;
// Catch weird sized loads that don't evenly divide into the access sizes
// TODO: May be able to widen depending on alignment etc.
unsigned NumRegs = (MemSize + 31) / 32;
if (NumRegs == 3) {
if (!ST.hasDwordx3LoadStores())
return true;
} else {
// If the alignment allows, these should have been widened.
if (!isPowerOf2_32(NumRegs))
return true;
}
if (AlignBits < MemSize) {
const SITargetLowering *TLI = ST.getTargetLowering();
return !TLI->allowsMisalignedMemoryAccessesImpl(MemSize, AS,
Align(AlignBits / 8));
}
return false;
};
unsigned GlobalAlign32 = ST.hasUnalignedBufferAccessEnabled() ? 0 : 32;
unsigned GlobalAlign16 = ST.hasUnalignedBufferAccessEnabled() ? 0 : 16;
unsigned GlobalAlign8 = ST.hasUnalignedBufferAccessEnabled() ? 0 : 8;
// TODO: Refine based on subtargets which support unaligned access or 128-bit
// LDS
// TODO: Unsupported flat for SI.
for (unsigned Op : {G_LOAD, G_STORE}) {
const bool IsStore = Op == G_STORE;
auto &Actions = getActionDefinitionsBuilder(Op);
// Explicitly list some common cases.
// TODO: Does this help compile time at all?
Actions.legalForTypesWithMemDesc({{S32, GlobalPtr, S32, GlobalAlign32},
{V2S32, GlobalPtr, V2S32, GlobalAlign32},
{V4S32, GlobalPtr, V4S32, GlobalAlign32},
{S64, GlobalPtr, S64, GlobalAlign32},
{V2S64, GlobalPtr, V2S64, GlobalAlign32},
{V2S16, GlobalPtr, V2S16, GlobalAlign32},
{S32, GlobalPtr, S8, GlobalAlign8},
{S32, GlobalPtr, S16, GlobalAlign16},
{S32, LocalPtr, S32, 32},
{S64, LocalPtr, S64, 32},
{V2S32, LocalPtr, V2S32, 32},
{S32, LocalPtr, S8, 8},
{S32, LocalPtr, S16, 16},
{V2S16, LocalPtr, S32, 32},
{S32, PrivatePtr, S32, 32},
{S32, PrivatePtr, S8, 8},
{S32, PrivatePtr, S16, 16},
{V2S16, PrivatePtr, S32, 32},
{S32, ConstantPtr, S32, GlobalAlign32},
{V2S32, ConstantPtr, V2S32, GlobalAlign32},
{V4S32, ConstantPtr, V4S32, GlobalAlign32},
{S64, ConstantPtr, S64, GlobalAlign32},
{V2S32, ConstantPtr, V2S32, GlobalAlign32}});
Actions.legalIf(
[=](const LegalityQuery &Query) -> bool {
return isLoadStoreLegal(ST, Query);
});
// Constant 32-bit is handled by addrspacecasting the 32-bit pointer to
// 64-bits.
//
// TODO: Should generalize bitcast action into coerce, which will also cover
// inserting addrspacecasts.
Actions.customIf(typeIs(1, Constant32Ptr));
// Turn any illegal element vectors into something easier to deal
// with. These will ultimately produce 32-bit scalar shifts to extract the
// parts anyway.
//
// For odd 16-bit element vectors, prefer to split those into pieces with
// 16-bit vector parts.
Actions.bitcastIf(
[=](const LegalityQuery &Query) -> bool {
return shouldBitcastLoadStoreType(ST, Query.Types[0],
Query.MMODescrs[0].MemoryTy);
}, bitcastToRegisterType(0));
if (!IsStore) {
// Widen suitably aligned loads by loading extra bytes. The standard
// legalization actions can't properly express widening memory operands.
Actions.customIf([=](const LegalityQuery &Query) -> bool {
return shouldWidenLoad(ST, Query, G_LOAD);
});
}
// FIXME: load/store narrowing should be moved to lower action
Actions
.narrowScalarIf(
[=](const LegalityQuery &Query) -> bool {
return !Query.Types[0].isVector() &&
needToSplitMemOp(Query, Op == G_LOAD);
},
[=](const LegalityQuery &Query) -> std::pair<unsigned, LLT> {
const LLT DstTy = Query.Types[0];
const LLT PtrTy = Query.Types[1];
const unsigned DstSize = DstTy.getSizeInBits();
unsigned MemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits();
// Split extloads.
if (DstSize > MemSize)
return std::make_pair(0, LLT::scalar(MemSize));
if (!isPowerOf2_32(DstSize)) {
// We're probably decomposing an odd sized store. Try to split
// to the widest type. TODO: Account for alignment. As-is it
// should be OK, since the new parts will be further legalized.
unsigned FloorSize = PowerOf2Floor(DstSize);
return std::make_pair(0, LLT::scalar(FloorSize));
}
if (DstSize > 32 && (DstSize % 32 != 0)) {
// FIXME: Need a way to specify non-extload of larger size if
// suitably aligned.
return std::make_pair(0, LLT::scalar(32 * (DstSize / 32)));
}
unsigned MaxSize = maxSizeForAddrSpace(ST,
PtrTy.getAddressSpace(),
Op == G_LOAD);
if (MemSize > MaxSize)
return std::make_pair(0, LLT::scalar(MaxSize));
unsigned Align = Query.MMODescrs[0].AlignInBits;
return std::make_pair(0, LLT::scalar(Align));
})
.fewerElementsIf(
[=](const LegalityQuery &Query) -> bool {
return Query.Types[0].isVector() &&
needToSplitMemOp(Query, Op == G_LOAD);
},
[=](const LegalityQuery &Query) -> std::pair<unsigned, LLT> {
const LLT DstTy = Query.Types[0];
const LLT PtrTy = Query.Types[1];
LLT EltTy = DstTy.getElementType();
unsigned MaxSize = maxSizeForAddrSpace(ST,
PtrTy.getAddressSpace(),
Op == G_LOAD);
// FIXME: Handle widened to power of 2 results better. This ends
// up scalarizing.
// FIXME: 3 element stores scalarized on SI
// Split if it's too large for the address space.
unsigned MemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits();
if (MemSize > MaxSize) {
unsigned NumElts = DstTy.getNumElements();
unsigned EltSize = EltTy.getSizeInBits();
if (MaxSize % EltSize == 0) {
return std::make_pair(
0, LLT::scalarOrVector(
ElementCount::getFixed(MaxSize / EltSize), EltTy));
}
unsigned NumPieces = MemSize / MaxSize;
// FIXME: Refine when odd breakdowns handled
// The scalars will need to be re-legalized.
if (NumPieces == 1 || NumPieces >= NumElts ||
NumElts % NumPieces != 0)
return std::make_pair(0, EltTy);
return std::make_pair(
0, LLT::fixed_vector(NumElts / NumPieces, EltTy));
}
// FIXME: We could probably handle weird extending loads better.
if (DstTy.getSizeInBits() > MemSize)
return std::make_pair(0, EltTy);
unsigned EltSize = EltTy.getSizeInBits();
unsigned DstSize = DstTy.getSizeInBits();
if (!isPowerOf2_32(DstSize)) {
// We're probably decomposing an odd sized store. Try to split
// to the widest type. TODO: Account for alignment. As-is it
// should be OK, since the new parts will be further legalized.
unsigned FloorSize = PowerOf2Floor(DstSize);
return std::make_pair(
0, LLT::scalarOrVector(
ElementCount::getFixed(FloorSize / EltSize), EltTy));
}
// Need to split because of alignment.
unsigned Align = Query.MMODescrs[0].AlignInBits;
if (EltSize > Align &&
(EltSize / Align < DstTy.getNumElements())) {
return std::make_pair(
0, LLT::fixed_vector(EltSize / Align, EltTy));
}
// May need relegalization for the scalars.
return std::make_pair(0, EltTy);
})
.minScalar(0, S32)
.narrowScalarIf(isWideScalarExtLoadTruncStore(0), changeTo(0, S32))
.widenScalarToNextPow2(0)
.moreElementsIf(vectorSmallerThan(0, 32), moreEltsToNext32Bit(0))
.lower();
}
// FIXME: Unaligned accesses not lowered.
auto &ExtLoads = getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD})
.legalForTypesWithMemDesc({{S32, GlobalPtr, S8, 8},
{S32, GlobalPtr, S16, 2 * 8},
{S32, LocalPtr, S8, 8},
{S32, LocalPtr, S16, 16},
{S32, PrivatePtr, S8, 8},
{S32, PrivatePtr, S16, 16},
{S32, ConstantPtr, S8, 8},
{S32, ConstantPtr, S16, 2 * 8}})
.legalIf(
[=](const LegalityQuery &Query) -> bool {
return isLoadStoreLegal(ST, Query);
});
if (ST.hasFlatAddressSpace()) {
ExtLoads.legalForTypesWithMemDesc(
{{S32, FlatPtr, S8, 8}, {S32, FlatPtr, S16, 16}});
}
// Constant 32-bit is handled by addrspacecasting the 32-bit pointer to
// 64-bits.
//
// TODO: Should generalize bitcast action into coerce, which will also cover
// inserting addrspacecasts.
ExtLoads.customIf(typeIs(1, Constant32Ptr));
ExtLoads.clampScalar(0, S32, S32)
.widenScalarToNextPow2(0)
.lower();
auto &Atomics = getActionDefinitionsBuilder(
{G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB,
G_ATOMICRMW_AND, G_ATOMICRMW_OR, G_ATOMICRMW_XOR,
G_ATOMICRMW_MAX, G_ATOMICRMW_MIN, G_ATOMICRMW_UMAX,
G_ATOMICRMW_UMIN})
.legalFor({{S32, GlobalPtr}, {S32, LocalPtr},
{S64, GlobalPtr}, {S64, LocalPtr},
{S32, RegionPtr}, {S64, RegionPtr}});
if (ST.hasFlatAddressSpace()) {
Atomics.legalFor({{S32, FlatPtr}, {S64, FlatPtr}});
}
auto &Atomic = getActionDefinitionsBuilder(G_ATOMICRMW_FADD);
if (ST.hasLDSFPAtomicAdd()) {
Atomic.legalFor({{S32, LocalPtr}, {S32, RegionPtr}});
if (ST.hasGFX90AInsts())
Atomic.legalFor({{S64, LocalPtr}});
}
if (ST.hasAtomicFaddInsts())
Atomic.legalFor({{S32, GlobalPtr}});
// BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, and output
// demarshalling
getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG)
.customFor({{S32, GlobalPtr}, {S64, GlobalPtr},
{S32, FlatPtr}, {S64, FlatPtr}})
.legalFor({{S32, LocalPtr}, {S64, LocalPtr},
{S32, RegionPtr}, {S64, RegionPtr}});
// TODO: Pointer types, any 32-bit or 64-bit vector
// Condition should be s32 for scalar, s1 for vector.
getActionDefinitionsBuilder(G_SELECT)
.legalForCartesianProduct({S32, S64, S16, V2S32, V2S16, V4S16, GlobalPtr,
LocalPtr, FlatPtr, PrivatePtr,
LLT::fixed_vector(2, LocalPtr),
LLT::fixed_vector(2, PrivatePtr)},
{S1, S32})
.clampScalar(0, S16, S64)
.scalarize(1)
.moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
.fewerElementsIf(numElementsNotEven(0), scalarize(0))
.clampMaxNumElements(0, S32, 2)
.clampMaxNumElements(0, LocalPtr, 2)
.clampMaxNumElements(0, PrivatePtr, 2)
.scalarize(0)
.widenScalarToNextPow2(0)
.legalIf(all(isPointer(0), typeInSet(1, {S1, S32})));
// TODO: Only the low 4/5/6 bits of the shift amount are observed, so we can
// be more flexible with the shift amount type.
auto &Shifts = getActionDefinitionsBuilder({G_SHL, G_LSHR, G_ASHR})
.legalFor({{S32, S32}, {S64, S32}});
if (ST.has16BitInsts()) {
if (ST.hasVOP3PInsts()) {
Shifts.legalFor({{S16, S16}, {V2S16, V2S16}})
.clampMaxNumElements(0, S16, 2);
} else
Shifts.legalFor({{S16, S16}});
// TODO: Support 16-bit shift amounts for all types
Shifts.widenScalarIf(
[=](const LegalityQuery &Query) {
// Use 16-bit shift amounts for any 16-bit shift. Otherwise we want a
// 32-bit amount.
const LLT ValTy = Query.Types[0];
const LLT AmountTy = Query.Types[1];
return ValTy.getSizeInBits() <= 16 &&
AmountTy.getSizeInBits() < 16;
}, changeTo(1, S16));
Shifts.maxScalarIf(typeIs(0, S16), 1, S16);
Shifts.clampScalar(1, S32, S32);
Shifts.clampScalar(0, S16, S64);
Shifts.widenScalarToNextPow2(0, 16);
getActionDefinitionsBuilder({G_SSHLSAT, G_USHLSAT})
.minScalar(0, S16)
.scalarize(0)
.lower();
} else {
// Make sure we legalize the shift amount type first, as the general
// expansion for the shifted type will produce much worse code if it hasn't
// been truncated already.
Shifts.clampScalar(1, S32, S32);
Shifts.clampScalar(0, S32, S64);
Shifts.widenScalarToNextPow2(0, 32);
getActionDefinitionsBuilder({G_SSHLSAT, G_USHLSAT})
.minScalar(0, S32)
.scalarize(0)
.lower();
}
Shifts.scalarize(0);
for (unsigned Op : {G_EXTRACT_VECTOR_ELT, G_INSERT_VECTOR_ELT}) {
unsigned VecTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 1 : 0;
unsigned EltTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 0 : 1;
unsigned IdxTypeIdx = 2;
getActionDefinitionsBuilder(Op)
.customIf([=](const LegalityQuery &Query) {
const LLT EltTy = Query.Types[EltTypeIdx];
const LLT VecTy = Query.Types[VecTypeIdx];
const LLT IdxTy = Query.Types[IdxTypeIdx];
const unsigned EltSize = EltTy.getSizeInBits();
return (EltSize == 32 || EltSize == 64) &&
VecTy.getSizeInBits() % 32 == 0 &&
VecTy.getSizeInBits() <= MaxRegisterSize &&
IdxTy.getSizeInBits() == 32;
})
.bitcastIf(all(sizeIsMultipleOf32(VecTypeIdx), scalarOrEltNarrowerThan(VecTypeIdx, 32)),
bitcastToVectorElement32(VecTypeIdx))
//.bitcastIf(vectorSmallerThan(1, 32), bitcastToScalar(1))
.bitcastIf(
all(sizeIsMultipleOf32(VecTypeIdx), scalarOrEltWiderThan(VecTypeIdx, 64)),
[=](const LegalityQuery &Query) {
// For > 64-bit element types, try to turn this into a 64-bit
// element vector since we may be able to do better indexing
// if this is scalar. If not, fall back to 32.
const LLT EltTy = Query.Types[EltTypeIdx];
const LLT VecTy = Query.Types[VecTypeIdx];
const unsigned DstEltSize = EltTy.getSizeInBits();
const unsigned VecSize = VecTy.getSizeInBits();
const unsigned TargetEltSize = DstEltSize % 64 == 0 ? 64 : 32;
return std::make_pair(
VecTypeIdx,
LLT::fixed_vector(VecSize / TargetEltSize, TargetEltSize));
})
.clampScalar(EltTypeIdx, S32, S64)
.clampScalar(VecTypeIdx, S32, S64)
.clampScalar(IdxTypeIdx, S32, S32)
.clampMaxNumElements(VecTypeIdx, S32, 32)
// TODO: Clamp elements for 64-bit vectors?
// It should only be necessary with variable indexes.
// As a last resort, lower to the stack
.lower();
}
getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT)
.unsupportedIf([=](const LegalityQuery &Query) {
const LLT &EltTy = Query.Types[1].getElementType();
return Query.Types[0] != EltTy;
});
for (unsigned Op : {G_EXTRACT, G_INSERT}) {
unsigned BigTyIdx = Op == G_EXTRACT ? 1 : 0;
unsigned LitTyIdx = Op == G_EXTRACT ? 0 : 1;
// FIXME: Doesn't handle extract of illegal sizes.
getActionDefinitionsBuilder(Op)
.lowerIf(all(typeIs(LitTyIdx, S16), sizeIs(BigTyIdx, 32)))
// FIXME: Multiples of 16 should not be legal.
.legalIf([=](const LegalityQuery &Query) {
const LLT BigTy = Query.Types[BigTyIdx];
const LLT LitTy = Query.Types[LitTyIdx];
return (BigTy.getSizeInBits() % 32 == 0) &&
(LitTy.getSizeInBits() % 16 == 0);
})
.widenScalarIf(
[=](const LegalityQuery &Query) {
const LLT BigTy = Query.Types[BigTyIdx];
return (BigTy.getScalarSizeInBits() < 16);
},
LegalizeMutations::widenScalarOrEltToNextPow2(BigTyIdx, 16))
.widenScalarIf(
[=](const LegalityQuery &Query) {
const LLT LitTy = Query.Types[LitTyIdx];
return (LitTy.getScalarSizeInBits() < 16);
},
LegalizeMutations::widenScalarOrEltToNextPow2(LitTyIdx, 16))
.moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx))
.widenScalarToNextPow2(BigTyIdx, 32);
}
auto &BuildVector = getActionDefinitionsBuilder(G_BUILD_VECTOR)
.legalForCartesianProduct(AllS32Vectors, {S32})
.legalForCartesianProduct(AllS64Vectors, {S64})
.clampNumElements(0, V16S32, V32S32)
.clampNumElements(0, V2S64, V16S64)
.fewerElementsIf(isWideVec16(0), changeTo(0, V2S16));
if (ST.hasScalarPackInsts()) {
BuildVector
// FIXME: Should probably widen s1 vectors straight to s32
.minScalarOrElt(0, S16)
// Widen source elements and produce a G_BUILD_VECTOR_TRUNC
.minScalar(1, S32);
getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC)
.legalFor({V2S16, S32})
.lower();
BuildVector.minScalarOrElt(0, S32);
} else {
BuildVector.customFor({V2S16, S16});
BuildVector.minScalarOrElt(0, S32);
getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC)
.customFor({V2S16, S32})
.lower();
}
BuildVector.legalIf(isRegisterType(0));
// FIXME: Clamp maximum size
getActionDefinitionsBuilder(G_CONCAT_VECTORS)
.legalIf(all(isRegisterType(0), isRegisterType(1)))
.clampMaxNumElements(0, S32, 32)
.clampMaxNumElements(1, S16, 2) // TODO: Make 4?
.clampMaxNumElements(0, S16, 64);
// TODO: Don't fully scalarize v2s16 pieces? Or combine out thosse
// pre-legalize.
if (ST.hasVOP3PInsts()) {
getActionDefinitionsBuilder(G_SHUFFLE_VECTOR)
.customFor({V2S16, V2S16})
.lower();
} else
getActionDefinitionsBuilder(G_SHUFFLE_VECTOR).lower();
// Merge/Unmerge
for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;
auto notValidElt = [=](const LegalityQuery &Query, unsigned TypeIdx) {
const LLT Ty = Query.Types[TypeIdx];
if (Ty.isVector()) {
const LLT &EltTy = Ty.getElementType();
if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 512)
return true;
if (!isPowerOf2_32(EltTy.getSizeInBits()))
return true;
}
return false;
};
auto &Builder = getActionDefinitionsBuilder(Op)
.legalIf(all(isRegisterType(0), isRegisterType(1)))
.lowerFor({{S16, V2S16}})
.lowerIf([=](const LegalityQuery &Query) {
const LLT BigTy = Query.Types[BigTyIdx];
return BigTy.getSizeInBits() == 32;
})
// Try to widen to s16 first for small types.
// TODO: Only do this on targets with legal s16 shifts
.minScalarOrEltIf(scalarNarrowerThan(LitTyIdx, 16), LitTyIdx, S16)
.widenScalarToNextPow2(LitTyIdx, /*Min*/ 16)
.moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx))
.fewerElementsIf(all(typeIs(0, S16), vectorWiderThan(1, 32),
elementTypeIs(1, S16)),
changeTo(1, V2S16))
// Clamp the little scalar to s8-s256 and make it a power of 2. It's not
// worth considering the multiples of 64 since 2*192 and 2*384 are not
// valid.
.clampScalar(LitTyIdx, S32, S512)
.widenScalarToNextPow2(LitTyIdx, /*Min*/ 32)
// Break up vectors with weird elements into scalars
.fewerElementsIf(
[=](const LegalityQuery &Query) { return notValidElt(Query, LitTyIdx); },
scalarize(0))
.fewerElementsIf(
[=](const LegalityQuery &Query) { return notValidElt(Query, BigTyIdx); },
scalarize(1))
.clampScalar(BigTyIdx, S32, MaxScalar);
if (Op == G_MERGE_VALUES) {
Builder.widenScalarIf(
// TODO: Use 16-bit shifts if legal for 8-bit values?
[=](const LegalityQuery &Query) {
const LLT Ty = Query.Types[LitTyIdx];
return Ty.getSizeInBits() < 32;
},
changeTo(LitTyIdx, S32));
}
Builder.widenScalarIf(
[=](const LegalityQuery &Query) {
const LLT Ty = Query.Types[BigTyIdx];
return !isPowerOf2_32(Ty.getSizeInBits()) &&
Ty.getSizeInBits() % 16 != 0;
},
[=](const LegalityQuery &Query) {
// Pick the next power of 2, or a multiple of 64 over 128.
// Whichever is smaller.
const LLT &Ty = Query.Types[BigTyIdx];
unsigned NewSizeInBits = 1 << Log2_32_Ceil(Ty.getSizeInBits() + 1);
if (NewSizeInBits >= 256) {
unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1);
if (RoundedTo < NewSizeInBits)
NewSizeInBits = RoundedTo;
}
return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits));
})
// Any vectors left are the wrong size. Scalarize them.
.scalarize(0)
.scalarize(1);
}
// S64 is only legal on SALU, and needs to be broken into 32-bit elements in
// RegBankSelect.
auto &SextInReg = getActionDefinitionsBuilder(G_SEXT_INREG)
.legalFor({{S32}, {S64}});
if (ST.hasVOP3PInsts()) {
SextInReg.lowerFor({{V2S16}})
// Prefer to reduce vector widths for 16-bit vectors before lowering, to
// get more vector shift opportunities, since we'll get those when
// expanded.
.fewerElementsIf(elementTypeIs(0, S16), changeTo(0, V2S16));
} else if (ST.has16BitInsts()) {
SextInReg.lowerFor({{S32}, {S64}, {S16}});
} else {
// Prefer to promote to s32 before lowering if we don't have 16-bit
// shifts. This avoid a lot of intermediate truncate and extend operations.
SextInReg.lowerFor({{S32}, {S64}});
}
SextInReg
.scalarize(0)
.clampScalar(0, S32, S64)
.lower();
getActionDefinitionsBuilder({G_ROTR, G_ROTL})
.scalarize(0)
.lower();
// TODO: Only Try to form v2s16 with legal packed instructions.
getActionDefinitionsBuilder(G_FSHR)
.legalFor({{S32, S32}})
.lowerFor({{V2S16, V2S16}})
.fewerElementsIf(elementTypeIs(0, S16), changeTo(0, V2S16))
.scalarize(0)
.lower();
if (ST.hasVOP3PInsts()) {
getActionDefinitionsBuilder(G_FSHL)
.lowerFor({{V2S16, V2S16}})
.fewerElementsIf(elementTypeIs(0, S16), changeTo(0, V2S16))
.scalarize(0)
.lower();
} else {
getActionDefinitionsBuilder(G_FSHL)
.scalarize(0)
.lower();
}
getActionDefinitionsBuilder(G_READCYCLECOUNTER)
.legalFor({S64});
getActionDefinitionsBuilder(G_FENCE)
.alwaysLegal();
getActionDefinitionsBuilder({G_SMULO, G_UMULO})
.scalarize(0)
.minScalar(0, S32)
.lower();
getActionDefinitionsBuilder({G_SBFX, G_UBFX})
.legalFor({{S32, S32}, {S64, S32}})
.clampScalar(1, S32, S32)
.clampScalar(0, S32, S64)
.widenScalarToNextPow2(0)
.scalarize(0);
getActionDefinitionsBuilder({
// TODO: Verify V_BFI_B32 is generated from expanded bit ops
G_FCOPYSIGN,
G_ATOMIC_CMPXCHG_WITH_SUCCESS,
G_ATOMICRMW_NAND,
G_ATOMICRMW_FSUB,
G_READ_REGISTER,
G_WRITE_REGISTER,
G_SADDO, G_SSUBO,
// TODO: Implement
G_FMINIMUM, G_FMAXIMUM}).lower();
getActionDefinitionsBuilder({G_MEMCPY, G_MEMCPY_INLINE, G_MEMMOVE, G_MEMSET})
.lower();
getActionDefinitionsBuilder({G_VASTART, G_VAARG, G_BRJT, G_JUMP_TABLE,
G_INDEXED_LOAD, G_INDEXED_SEXTLOAD,
G_INDEXED_ZEXTLOAD, G_INDEXED_STORE})
.unsupported();
getLegacyLegalizerInfo().computeTables();
verify(*ST.getInstrInfo());
}
bool AMDGPULegalizerInfo::legalizeCustom(LegalizerHelper &Helper,
MachineInstr &MI) const {
MachineIRBuilder &B = Helper.MIRBuilder;
MachineRegisterInfo &MRI = *B.getMRI();
switch (MI.getOpcode()) {
case TargetOpcode::G_ADDRSPACE_CAST:
return legalizeAddrSpaceCast(MI, MRI, B);
case TargetOpcode::G_FRINT:
return legalizeFrint(MI, MRI, B);
case TargetOpcode::G_FCEIL:
return legalizeFceil(MI, MRI, B);
case TargetOpcode::G_FREM:
return legalizeFrem(MI, MRI, B);
case TargetOpcode::G_INTRINSIC_TRUNC:
return legalizeIntrinsicTrunc(MI, MRI, B);
case TargetOpcode::G_SITOFP:
return legalizeITOFP(MI, MRI, B, true);
case TargetOpcode::G_UITOFP:
return legalizeITOFP(MI, MRI, B, false);
case TargetOpcode::G_FPTOSI:
return legalizeFPTOI(MI, MRI, B, true);
case TargetOpcode::G_FPTOUI:
return legalizeFPTOI(MI, MRI, B, false);
case TargetOpcode::G_FMINNUM:
case TargetOpcode::G_FMAXNUM:
case TargetOpcode::G_FMINNUM_IEEE:
case TargetOpcode::G_FMAXNUM_IEEE:
return legalizeMinNumMaxNum(Helper, MI);
case TargetOpcode::G_EXTRACT_VECTOR_ELT:
return legalizeExtractVectorElt(MI, MRI, B);
case TargetOpcode::G_INSERT_VECTOR_ELT:
return legalizeInsertVectorElt(MI, MRI, B);
case TargetOpcode::G_SHUFFLE_VECTOR:
return legalizeShuffleVector(MI, MRI, B);
case TargetOpcode::G_FSIN:
case TargetOpcode::G_FCOS:
return legalizeSinCos(MI, MRI, B);
case TargetOpcode::G_GLOBAL_VALUE:
return legalizeGlobalValue(MI, MRI, B);
case TargetOpcode::G_LOAD:
case TargetOpcode::G_SEXTLOAD:
case TargetOpcode::G_ZEXTLOAD:
return legalizeLoad(Helper, MI);
case TargetOpcode::G_FMAD:
return legalizeFMad(MI, MRI, B);
case TargetOpcode::G_FDIV:
return legalizeFDIV(MI, MRI, B);
case TargetOpcode::G_UDIV:
case TargetOpcode::G_UREM:
case TargetOpcode::G_UDIVREM:
return legalizeUnsignedDIV_REM(MI, MRI, B);
case TargetOpcode::G_SDIV:
case TargetOpcode::G_SREM:
case TargetOpcode::G_SDIVREM:
return legalizeSignedDIV_REM(MI, MRI, B);
case TargetOpcode::G_ATOMIC_CMPXCHG:
return legalizeAtomicCmpXChg(MI, MRI, B);
case TargetOpcode::G_FLOG:
return legalizeFlog(MI, B, numbers::ln2f);
case TargetOpcode::G_FLOG10:
return legalizeFlog(MI, B, numbers::ln2f / numbers::ln10f);
case TargetOpcode::G_FEXP:
return legalizeFExp(MI, B);
case TargetOpcode::G_FPOW:
return legalizeFPow(MI, B);
case TargetOpcode::G_FFLOOR:
return legalizeFFloor(MI, MRI, B);
case TargetOpcode::G_BUILD_VECTOR:
return legalizeBuildVector(MI, MRI, B);
case TargetOpcode::G_CTLZ:
case TargetOpcode::G_CTTZ:
return legalizeCTLZ_CTTZ(MI, MRI, B);
default:
return false;
}
llvm_unreachable("expected switch to return");
}
Register AMDGPULegalizerInfo::getSegmentAperture(
unsigned AS,
MachineRegisterInfo &MRI,
MachineIRBuilder &B) const {
MachineFunction &MF = B.getMF();
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
const LLT S32 = LLT::scalar(32);
assert(AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS);
if (ST.hasApertureRegs()) {
// FIXME: Use inline constants (src_{shared, private}_base) instead of
// getreg.
unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
unsigned Encoding =
AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
Register GetReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
B.buildInstr(AMDGPU::S_GETREG_B32)
.addDef(GetReg)
.addImm(Encoding);
MRI.setType(GetReg, S32);
auto ShiftAmt = B.buildConstant(S32, WidthM1 + 1);
return B.buildShl(S32, GetReg, ShiftAmt).getReg(0);
}
Register QueuePtr = MRI.createGenericVirtualRegister(
LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
if (!loadInputValue(QueuePtr, B, AMDGPUFunctionArgInfo::QUEUE_PTR))
return Register();
// Offset into amd_queue_t for group_segment_aperture_base_hi /
// private_segment_aperture_base_hi.
uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
// TODO: can we be smarter about machine pointer info?
MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
MachineMemOperand *MMO = MF.getMachineMemOperand(
PtrInfo,
MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant,
LLT::scalar(32), commonAlignment(Align(64), StructOffset));
Register LoadAddr;
B.materializePtrAdd(LoadAddr, QueuePtr, LLT::scalar(64), StructOffset);
return B.buildLoad(S32, LoadAddr, *MMO).getReg(0);
}
bool AMDGPULegalizerInfo::legalizeAddrSpaceCast(
MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B) const {
MachineFunction &MF = B.getMF();
const LLT S32 = LLT::scalar(32);
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(Dst);
LLT SrcTy = MRI.getType(Src);
unsigned DestAS = DstTy.getAddressSpace();
unsigned SrcAS = SrcTy.getAddressSpace();
// TODO: Avoid reloading from the queue ptr for each cast, or at least each
// vector element.
assert(!DstTy.isVector());
const AMDGPUTargetMachine &TM
= static_cast<const AMDGPUTargetMachine &>(MF.getTarget());
if (TM.isNoopAddrSpaceCast(SrcAS, DestAS)) {
MI.setDesc(B.getTII().get(TargetOpcode::G_BITCAST));
return true;
}
if (DestAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
// Truncate.
B.buildExtract(Dst, Src, 0);
MI.eraseFromParent();
return true;
}
if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
uint32_t AddrHiVal = Info->get32BitAddressHighBits();
// FIXME: This is a bit ugly due to creating a merge of 2 pointers to
// another. Merge operands are required to be the same type, but creating an
// extra ptrtoint would be kind of pointless.
auto HighAddr = B.buildConstant(
LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS_32BIT, 32), AddrHiVal);
B.buildMerge(Dst, {Src, HighAddr});
MI.eraseFromParent();
return true;
}
if (SrcAS == AMDGPUAS::FLAT_ADDRESS) {
assert(DestAS == AMDGPUAS::LOCAL_ADDRESS ||
DestAS == AMDGPUAS::PRIVATE_ADDRESS);
unsigned NullVal = TM.getNullPointerValue(DestAS);
auto SegmentNull = B.buildConstant(DstTy, NullVal);
auto FlatNull = B.buildConstant(SrcTy, 0);
// Extract low 32-bits of the pointer.
auto PtrLo32 = B.buildExtract(DstTy, Src, 0);
auto CmpRes =
B.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Src, FlatNull.getReg(0));
B.buildSelect(Dst, CmpRes, PtrLo32, SegmentNull.getReg(0));
MI.eraseFromParent();
return true;
}
if (SrcAS != AMDGPUAS::LOCAL_ADDRESS && SrcAS != AMDGPUAS::PRIVATE_ADDRESS)
return false;
if (!ST.hasFlatAddressSpace())
return false;
auto SegmentNull =
B.buildConstant(SrcTy, TM.getNullPointerValue(SrcAS));
auto FlatNull =
B.buildConstant(DstTy, TM.getNullPointerValue(DestAS));
Register ApertureReg = getSegmentAperture(SrcAS, MRI, B);
if (!ApertureReg.isValid())
return false;
auto CmpRes =
B.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Src, SegmentNull.getReg(0));
// Coerce the type of the low half of the result so we can use merge_values.
Register SrcAsInt = B.buildPtrToInt(S32, Src).getReg(0);
// TODO: Should we allow mismatched types but matching sizes in merges to
// avoid the ptrtoint?
auto BuildPtr = B.buildMerge(DstTy, {SrcAsInt, ApertureReg});
B.buildSelect(Dst, CmpRes, BuildPtr, FlatNull);
MI.eraseFromParent();
return true;
}
bool AMDGPULegalizerInfo::legalizeFrint(
MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B) const {
Register Src = MI.getOperand(1).getReg();
LLT Ty = MRI.getType(Src);
assert(Ty.isScalar() && Ty.getSizeInBits() == 64);
APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
auto C1 = B.buildFConstant(Ty, C1Val);
auto CopySign = B.buildFCopysign(Ty, C1, Src);
// TODO: Should this propagate fast-math-flags?
auto Tmp1 = B.buildFAdd(Ty, Src, CopySign);
auto Tmp2 = B.buildFSub(Ty, Tmp1, CopySign);
auto C2 = B.buildFConstant(Ty, C2Val);
auto Fabs = B.buildFAbs(Ty, Src);
auto Cond = B.buildFCmp(CmpInst::FCMP_OGT, LLT::scalar(1), Fabs, C2);
B.buildSelect(MI.getOperand(0).getReg(), Cond, Src, Tmp2);
MI.eraseFromParent();
return true;
}
bool AMDGPULegalizerInfo::legalizeFceil(
MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B) const {
const LLT S1 = LLT::scalar(1);
const LLT S64 = LLT::scalar(64);
Register Src = MI.getOperand(1).getReg();
assert(MRI.getType(Src) == S64);
// result = trunc(src)
// if (src > 0.0 && src != result)
// result += 1.0
auto Trunc = B.buildIntrinsicTrunc(S64, Src);
const auto Zero = B.buildFConstant(S64, 0.0);
const auto One = B.buildFConstant(S64, 1.0);
auto Lt0 = B.buildFCmp(CmpInst::FCMP_OGT, S1, Src, Zero);
auto NeTrunc = B.buildFCmp(CmpInst::FCMP_ONE, S1, Src, Trunc);
auto And = B.buildAnd(S1, Lt0, NeTrunc);
auto Add = B.buildSelect(S64, And, One, Zero);
// TODO: Should this propagate fast-math-flags?
B.buildFAdd(MI.getOperand(0).getReg(), Trunc, Add);
return true;
}
bool AMDGPULegalizerInfo::legalizeFrem(
MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B) const {
Register DstReg = MI.getOperand(0).getReg();
Register Src0Reg = MI.getOperand(1).getReg();
Register Src1Reg = MI.getOperand(2).getReg();
auto Flags = MI.getFlags();
LLT Ty = MRI.getType(DstReg);
auto Div = B.buildFDiv(Ty, Src0Reg, Src1Reg, Flags);
auto Trunc = B.buildIntrinsicTrunc(Ty, Div, Flags);
auto Neg = B.buildFNeg(Ty, Trunc, Flags);
B.buildFMA(DstReg, Neg, Src1Reg, Src0Reg, Flags);
MI.eraseFromParent();
return true;
}
static MachineInstrBuilder extractF64Exponent(Register Hi,
MachineIRBuilder &B) {
const unsigned FractBits = 52;
const unsigned ExpBits = 11;
LLT S32 = LLT::scalar(32);
auto Const0 = B.buildConstant(S32, FractBits - 32);
auto Const1 = B.buildConstant(S32, ExpBits);
auto ExpPart = B.buildIntrinsic(Intrinsic::amdgcn_ubfe, {S32}, false)
.addUse(Hi)
.addUse(Const0.getReg(0))
.addUse(Const1.getReg(0));
return B.buildSub(S32, ExpPart, B.buildConstant(S32, 1023));
}
bool AMDGPULegalizerInfo::legalizeIntrinsicTrunc(
MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B) const {
const LLT S1 = LLT::scalar(1);
const LLT S32 = LLT::scalar(32);
const LLT S64 = LLT::scalar(64);
Register Src = MI.getOperand(1).getReg();
assert(MRI.getType(Src) == S64);
// TODO: Should this use extract since the low half is unused?
auto Unmerge = B.buildUnmerge({S32, S32}, Src);
Register Hi = Unmerge.getReg(1);
// Extract the upper half, since this is where we will find the sign and
// exponent.
auto Exp = extractF64Exponent(Hi, B);
const unsigned FractBits = 52;
// Extract the sign bit.
const auto SignBitMask = B.buildConstant(S32, UINT32_C(1) << 31);
auto SignBit = B.buildAnd(S32, Hi, SignBitMask);
const auto FractMask = B.buildConstant(S64, (UINT64_C(1) << FractBits) - 1);
const auto Zero32 = B.buildConstant(S32, 0);
// Extend back to 64-bits.
auto SignBit64 = B.buildMerge(S64, {Zero32, SignBit});
auto Shr = B.buildAShr(S64, FractMask, Exp);
auto Not = B.buildNot(S64, Shr);
auto Tmp0 = B.buildAnd(S64, Src, Not);
auto FiftyOne = B.buildConstant(S32, FractBits - 1);
auto ExpLt0 = B.buildICmp(CmpInst::ICMP_SLT, S1, Exp, Zero32);
auto ExpGt51 = B.buildICmp(CmpInst::ICMP_SGT, S1, Exp, FiftyOne);
auto Tmp1 = B.buildSelect(S64, ExpLt0, SignBit64, Tmp0);
B.buildSelect(MI.getOperand(0).getReg(), ExpGt51, Src, Tmp1);
MI.eraseFromParent();
return true;
}
bool AMDGPULegalizerInfo::legalizeITOFP(
MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B, bool Signed) const {
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
const LLT S64 = LLT::scalar(64);
const LLT S32 = LLT::scalar(32);
assert(MRI.getType(Src) == S64);
auto Unmerge = B.buildUnmerge({S32, S32}, Src);
auto ThirtyTwo = B.buildConstant(S32, 32);
if (MRI.getType(Dst) == S64) {
auto CvtHi = Signed ? B.buildSITOFP(S64, Unmerge.getReg(1))
: B.buildUITOFP(S64, Unmerge.getReg(1));
auto CvtLo = B.buildUITOFP(S64, Unmerge.getReg(0));
auto LdExp = B.buildIntrinsic(Intrinsic::amdgcn_ldexp, {S64}, false)
.addUse(CvtHi.getReg(0))
.addUse(ThirtyTwo.getReg(0));
// TODO: Should this propagate fast-math-flags?
B.buildFAdd(Dst, LdExp, CvtLo);
MI.eraseFromParent();
return true;
}
assert(MRI.getType(Dst) == S32);
auto One = B.buildConstant(S32, 1);
MachineInstrBuilder ShAmt;
if (Signed) {
auto ThirtyOne = B.buildConstant(S32, 31);
auto X = B.buildXor(S32, Unmerge.getReg(0), Unmerge.getReg(1));
auto OppositeSign = B.buildAShr(S32, X, ThirtyOne);
auto MaxShAmt = B.buildAdd(S32, ThirtyTwo, OppositeSign);
auto LS = B.buildIntrinsic(Intrinsic::amdgcn_sffbh, {S32},
/*HasSideEffects=*/false)
.addUse(Unmerge.getReg(1));
auto LS2 = B.buildSub(S32, LS, One);
ShAmt = B.buildUMin(S32, LS2, MaxShAmt);
} else
ShAmt = B.buildCTLZ(S32, Unmerge.getReg(1));
auto Norm = B.buildShl(S64, Src, ShAmt);
auto Unmerge2 = B.buildUnmerge({S32, S32}, Norm);
auto Adjust = B.buildUMin(S32, One, Unmerge2.getReg(0));
auto Norm2 = B.buildOr(S32, Unmerge2.getReg(1), Adjust);
auto FVal = Signed ? B.buildSITOFP(S32, Norm2) : B.buildUITOFP(S32, Norm2);
auto Scale = B.buildSub(S32, ThirtyTwo, ShAmt);
B.buildIntrinsic(Intrinsic::amdgcn_ldexp, ArrayRef<Register>{Dst},
/*HasSideEffects=*/false)
.addUse(FVal.getReg(0))
.addUse(Scale.getReg(0));
MI.eraseFromParent();
return true;
}
// TODO: Copied from DAG implementation. Verify logic and document how this
// actually works.
bool AMDGPULegalizerInfo::legalizeFPTOI(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &B,
bool Signed) const {
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
const LLT S64 = LLT::scalar(64);
const LLT S32 = LLT::scalar(32);
const LLT SrcLT = MRI.getType(Src);
assert((SrcLT == S32 || SrcLT == S64) && MRI.getType(Dst) == S64);
unsigned Flags = MI.getFlags();
// The basic idea of converting a floating point number into a pair of 32-bit
// integers is illustrated as follows:
//
// tf := trunc(val);
// hif := floor(tf * 2^-32);
// lof := tf - hif * 2^32; // lof is always positive due to floor.
// hi := fptoi(hif);
// lo := fptoi(lof);
//
auto Trunc = B.buildIntrinsicTrunc(SrcLT, Src, Flags);
MachineInstrBuilder Sign;
if (Signed && SrcLT == S32) {
// However, a 32-bit floating point number has only 23 bits mantissa and
// it's not enough to hold all the significant bits of `lof` if val is
// negative. To avoid the loss of precision, We need to take the absolute
// value after truncating and flip the result back based on the original
// signedness.
Sign = B.buildAShr(S32, Src, B.buildConstant(S32, 31));
Trunc = B.buildFAbs(S32, Trunc, Flags);
}
MachineInstrBuilder K0, K1;
if (SrcLT == S64) {
K0 = B.buildFConstant(S64,
BitsToDouble(UINT64_C(/*2^-32*/ 0x3df0000000000000)));
K1 = B.buildFConstant(S64,
BitsToDouble(UINT64_C(/*-2^32*/ 0xc1f0000000000000)));
} else {
K0 = B.buildFConstant(S32, BitsToFloat(UINT32_C(/*2^-32*/ 0x2f800000)));
K1 = B.buildFConstant(S32, BitsToFloat(UINT32_C(/*-2^32*/ 0xcf800000)));
}
auto Mul = B.buildFMul(SrcLT, Trunc, K0, Flags);
auto FloorMul = B.buildFFloor(SrcLT, Mul, Flags);
auto Fma = B.buildFMA(SrcLT, FloorMul, K1, Trunc, Flags);
auto Hi = (Signed && SrcLT == S64) ? B.buildFPTOSI(S32, FloorMul)
: B.buildFPTOUI(S32, FloorMul);
auto Lo = B.buildFPTOUI(S32, Fma);
if (Signed && SrcLT == S32) {
// Flip the result based on the signedness, which is either all 0s or 1s.
Sign = B.buildMerge(S64, {Sign, Sign});
// r := xor({lo, hi}, sign) - sign;
B.buildSub(Dst, B.buildXor(S64, B.buildMerge(S64, {Lo, Hi}), Sign), Sign);
} else
B.buildMerge(Dst, {Lo, Hi});
MI.eraseFromParent();
return true;
}
bool AMDGPULegalizerInfo::legalizeMinNumMaxNum(LegalizerHelper &Helper,
MachineInstr &MI) const {
MachineFunction &MF = Helper.MIRBuilder.getMF();
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
const bool IsIEEEOp = MI.getOpcode() == AMDGPU::G_FMINNUM_IEEE ||
MI.getOpcode() == AMDGPU::G_FMAXNUM_IEEE;
// With ieee_mode disabled, the instructions have the correct behavior
// already for G_FMINNUM/G_FMAXNUM
if (!MFI->getMode().IEEE)
return !IsIEEEOp;
if (IsIEEEOp)
return true;
return Helper.lowerFMinNumMaxNum(MI) == LegalizerHelper::Legalized;
}
bool AMDGPULegalizerInfo::legalizeExtractVectorElt(
MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B) const {
// TODO: Should move some of this into LegalizerHelper.
// TODO: Promote dynamic indexing of s16 to s32
// FIXME: Artifact combiner probably should have replaced the truncated
// constant before this, so we shouldn't need
// getIConstantVRegValWithLookThrough.
Optional<ValueAndVReg> MaybeIdxVal =
getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
if (!MaybeIdxVal) // Dynamic case will be selected to register indexing.
return true;
const int64_t IdxVal = MaybeIdxVal->Value.getSExtValue();
Register Dst = MI.getOperand(0).getReg();
Register Vec = MI.getOperand(1).getReg();
LLT VecTy = MRI.getType(Vec);
LLT EltTy = VecTy.getElementType();
assert(EltTy == MRI.getType(Dst));
if (IdxVal < VecTy.getNumElements())
B.buildExtract(Dst, Vec, IdxVal * EltTy.getSizeInBits());
else
B.buildUndef(Dst);
MI.eraseFromParent();
return true;
}
bool AMDGPULegalizerInfo::legalizeInsertVectorElt(
MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B) const {
// TODO: Should move some of this into LegalizerHelper.
// TODO: Promote dynamic indexing of s16 to s32
// FIXME: Artifact combiner probably should have replaced the truncated
// constant before this, so we shouldn't need
// getIConstantVRegValWithLookThrough.
Optional<ValueAndVReg> MaybeIdxVal =
getIConstantVRegValWithLookThrough(MI.getOperand(3).getReg(), MRI);
if (!MaybeIdxVal) // Dynamic case will be selected to register indexing.
return true;
int64_t IdxVal = MaybeIdxVal->Value.getSExtValue();
Register Dst = MI.getOperand(0).getReg();
Register Vec = MI.getOperand(1).getReg();
Register Ins = MI.getOperand(2).getReg();
LLT VecTy = MRI.getType(Vec);
LLT EltTy = VecTy.getElementType();
assert(EltTy == MRI.getType(Ins));
if (IdxVal < VecTy.getNumElements())
B.buildInsert(Dst, Vec, Ins, IdxVal * EltTy.getSizeInBits());
else
B.buildUndef(Dst);
MI.eraseFromParent();
return true;
}
bool AMDGPULegalizerInfo::legalizeShuffleVector(
MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B) const {
const LLT V2S16 = LLT::fixed_vector(2, 16);
Register Dst = MI.getOperand(0).getReg();
Register Src0 = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(Dst);
LLT SrcTy = MRI.getType(Src0);
if (SrcTy == V2S16 && DstTy == V2S16 &&
AMDGPU::isLegalVOP3PShuffleMask(MI.getOperand(3).getShuffleMask()))
return true;
MachineIRBuilder HelperBuilder(MI);
GISelObserverWrapper DummyObserver;
LegalizerHelper Helper(B.getMF(), DummyObserver, HelperBuilder);
return Helper.lowerShuffleVector(MI) == LegalizerHelper::Legalized;
}
bool AMDGPULegalizerInfo::legalizeSinCos(
MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B) const {
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
LLT Ty = MRI.getType(DstReg);
unsigned Flags = MI.getFlags();
Register TrigVal;
auto OneOver2Pi = B.buildFConstant(Ty, 0.5 * numbers::inv_pi);
if (ST.hasTrigReducedRange()) {
auto MulVal = B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags);
TrigVal = B.buildIntrinsic(Intrinsic::amdgcn_fract, {Ty}, false)
.addUse(MulVal.getReg(0))
.setMIFlags(Flags).getReg(0);
} else
TrigVal = B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags).getReg(0);
Intrinsic::ID TrigIntrin = MI.getOpcode() == AMDGPU::G_FSIN ?
Intrinsic::amdgcn_sin : Intrinsic::amdgcn_cos;
B.buildIntrinsic(TrigIntrin, makeArrayRef<Register>(DstReg), false)
.addUse(TrigVal)
.setMIFlags(Flags);
MI.eraseFromParent();
return true;
}
bool AMDGPULegalizerInfo::buildPCRelGlobalAddress(Register DstReg, LLT PtrTy,
MachineIRBuilder &B,
const GlobalValue *GV,
int64_t Offset,
unsigned GAFlags) const {
assert(isInt<32>(Offset + 4) && "32-bit offset is expected!");
// In order to support pc-relative addressing, SI_PC_ADD_REL_OFFSET is lowered
// to the following code sequence:
//
// For constant address space:
// s_getpc_b64 s[0:1]
// s_add_u32 s0, s0, $symbol
// s_addc_u32 s1, s1, 0
//
// s_getpc_b64 returns the address of the s_add_u32 instruction and then
// a fixup or relocation is emitted to replace $symbol with a literal
// constant, which is a pc-relative offset from the encoding of the $symbol
// operand to the global variable.
//
// For global address space:
// s_getpc_b64 s[0:1]
// s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
// s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
//
// s_getpc_b64 returns the address of the s_add_u32 instruction and then
// fixups or relocations are emitted to replace $symbol@*@lo and
// $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
// which is a 64-bit pc-relative offset from the encoding of the $symbol
// operand to the global variable.
//
// What we want here is an offset from the value returned by s_getpc
// (which is the address of the s_add_u32 instruction) to the global
// variable, but since the encoding of $symbol starts 4 bytes after the start
// of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
// small. This requires us to add 4 to the global variable offset in order to
// compute the correct address. Similarly for the s_addc_u32 instruction, the
// encoding of $symbol starts 12 bytes after the start of the s_add_u32
// instruction.
LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
Register PCReg = PtrTy.getSizeInBits() != 32 ? DstReg :
B.getMRI()->createGenericVirtualRegister(ConstPtrTy);
MachineInstrBuilder MIB = B.buildInstr(AMDGPU::SI_PC_ADD_REL_OFFSET)
.addDef(PCReg);
MIB.addGlobalAddress(GV, Offset + 4, GAFlags);
if (GAFlags == SIInstrInfo::MO_NONE)
MIB.addImm(0);
else
MIB.addGlobalAddress(GV, Offset + 12, GAFlags + 1);
B.getMRI()->setRegClass(PCReg, &AMDGPU::SReg_64RegClass);
if (PtrTy.getSizeInBits() == 32)
B.buildExtract(DstReg, PCReg, 0);
return true;
}
bool AMDGPULegalizerInfo::legalizeGlobalValue(
MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B) const {
Register DstReg = MI.getOperand(0).getReg();
LLT Ty = MRI.getType(DstReg);
unsigned AS = Ty.getAddressSpace();
const GlobalValue *GV = MI.getOperand(1).getGlobal();
MachineFunction &MF = B.getMF();
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
if (!MFI->isModuleEntryFunction() &&
!GV->getName().equals("llvm.amdgcn.module.lds")) {
const Function &Fn = MF.getFunction();
DiagnosticInfoUnsupported BadLDSDecl(
Fn, "local memory global used by non-kernel function", MI.getDebugLoc(),
DS_Warning);
Fn.getContext().diagnose(BadLDSDecl);
// We currently don't have a way to correctly allocate LDS objects that
// aren't directly associated with a kernel. We do force inlining of
// functions that use local objects. However, if these dead functions are
// not eliminated, we don't want a compile time error. Just emit a warning
// and a trap, since there should be no callable path here.
B.buildIntrinsic(Intrinsic::trap, ArrayRef<Register>(), true);
B.buildUndef(DstReg);
MI.eraseFromParent();
return true;
}
// TODO: We could emit code to handle the initialization somewhere.
// We ignore the initializer for now and legalize it to allow selection.
// The initializer will anyway get errored out during assembly emission.
const SITargetLowering *TLI = ST.getTargetLowering();
if (!TLI->shouldUseLDSConstAddress(GV)) {
MI.getOperand(1).setTargetFlags(SIInstrInfo::MO_ABS32_LO);
return true; // Leave in place;
}
if (AS == AMDGPUAS::LOCAL_ADDRESS && GV->hasExternalLinkage()) {
Type *Ty = GV->getValueType();
// HIP uses an unsized array `extern __shared__ T s[]` or similar
// zero-sized type in other languages to declare the dynamic shared
// memory which size is not known at the compile time. They will be
// allocated by the runtime and placed directly after the static
// allocated ones. They all share the same offset.
if (B.getDataLayout().getTypeAllocSize(Ty).isZero()) {
// Adjust alignment for that dynamic shared memory array.
MFI->setDynLDSAlign(B.getDataLayout(), *cast<GlobalVariable>(GV));
LLT S32 = LLT::scalar(32);
auto Sz =
B.buildIntrinsic(Intrinsic::amdgcn_groupstaticsize, {S32}, false);
B.buildIntToPtr(DstReg, Sz);
MI.eraseFromParent();
return true;
}
}
B.buildConstant(DstReg, MFI->allocateLDSGlobal(B.getDataLayout(),
*cast<GlobalVariable>(GV)));
MI.eraseFromParent();
return true;
}
const SITargetLowering *TLI = ST.getTargetLowering();
if (TLI->shouldEmitFixup(GV)) {
buildPCRelGlobalAddress(DstReg, Ty, B, GV, 0);
MI.eraseFromParent();
return true;
}
if (TLI->shouldEmitPCReloc(GV)) {
buildPCRelGlobalAddress(DstReg, Ty, B, GV, 0, SIInstrInfo::MO_REL32);
MI.eraseFromParent();
return true;
}
LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
Register GOTAddr = MRI.createGenericVirtualRegister(PtrTy);
LLT LoadTy = Ty.getSizeInBits() == 32 ? PtrTy : Ty;
MachineMemOperand *GOTMMO = MF.getMachineMemOperand(
MachinePointerInfo::getGOT(MF),
MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant,
LoadTy, Align(8));
buildPCRelGlobalAddress(GOTAddr, PtrTy, B, GV, 0, SIInstrInfo::MO_GOTPCREL32);
if (Ty.getSizeInBits() == 32) {
// Truncate if this is a 32-bit constant address.
auto Load = B.buildLoad(PtrTy, GOTAddr, *GOTMMO);
B.buildExtract(DstReg, Load, 0);
} else
B.buildLoad(DstReg, GOTAddr, *GOTMMO);
MI.eraseFromParent();
return true;
}
static LLT widenToNextPowerOf2(LLT Ty) {
if (Ty.isVector())
return Ty.changeElementCount(
ElementCount::getFixed(PowerOf2Ceil(Ty.getNumElements())));
return LLT::scalar(PowerOf2Ceil(Ty.getSizeInBits()));
}
bool AMDGPULegalizerInfo::legalizeLoad(LegalizerHelper &Helper,
MachineInstr &MI) const {
MachineIRBuilder &B = Helper.MIRBuilder;
MachineRegisterInfo &MRI = *B.getMRI();
GISelChangeObserver &Observer = Helper.Observer;
Register PtrReg = MI.getOperand(1).getReg();
LLT PtrTy = MRI.getType(PtrReg);
unsigned AddrSpace = PtrTy.getAddressSpace();
if (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
LLT ConstPtr = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
auto Cast = B.buildAddrSpaceCast(ConstPtr, PtrReg);
Observer.changingInstr(MI);
MI.getOperand(1).setReg(Cast.getReg(0));
Observer.changedInstr(MI);
return true;
}
if (MI.getOpcode() != AMDGPU::G_LOAD)
return false;
Register ValReg = MI.getOperand(0).getReg();
LLT ValTy = MRI.getType(ValReg);
MachineMemOperand *MMO = *MI.memoperands_begin();
const unsigned ValSize = ValTy.getSizeInBits();
const LLT MemTy = MMO->getMemoryType();
const Align MemAlign = MMO->getAlign();
const unsigned MemSize = MemTy.getSizeInBits();
const unsigned AlignInBits = 8 * MemAlign.value();
// Widen non-power-of-2 loads to the alignment if needed
if (shouldWidenLoad(ST, MemTy, AlignInBits, AddrSpace, MI.getOpcode())) {
const unsigned WideMemSize = PowerOf2Ceil(MemSize);
// This was already the correct extending load result type, so just adjust
// the memory type.
if (WideMemSize == ValSize) {
MachineFunction &MF = B.getMF();
MachineMemOperand *WideMMO =
MF.getMachineMemOperand(MMO, 0, WideMemSize / 8);
Observer.changingInstr(MI);
MI.setMemRefs(MF, {WideMMO});
Observer.changedInstr(MI);
return true;
}
// Don't bother handling edge case that should probably never be produced.
if (ValSize > WideMemSize)
return false;
LLT WideTy = widenToNextPowerOf2(ValTy);
Register WideLoad;
if (!WideTy.isVector()) {
WideLoad = B.buildLoadFromOffset(WideTy, PtrReg, *MMO, 0).getReg(0);
B.buildTrunc(ValReg, WideLoad).getReg(0);
} else {
// Extract the subvector.
if (isRegisterType(ValTy)) {
// If this a case where G_EXTRACT is legal, use it.
// (e.g. <3 x s32> -> <4 x s32>)
WideLoad = B.buildLoadFromOffset(WideTy, PtrReg, *MMO, 0).getReg(0);
B.buildExtract(ValReg, WideLoad, 0);
} else {
// For cases where the widened type isn't a nice register value, unmerge
// from a widened register (e.g. <3 x s16> -> <4 x s16>)
B.setInsertPt(B.getMBB(), ++B.getInsertPt());
WideLoad = Helper.widenWithUnmerge(WideTy, ValReg);
B.setInsertPt(B.getMBB(), MI.getIterator());
B.buildLoadFromOffset(WideLoad, PtrReg, *MMO, 0);
}
}
MI.eraseFromParent();
return true;
}
return false;
}
bool AMDGPULegalizerInfo::legalizeFMad(
MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B) const {
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
assert(Ty.isScalar());
MachineFunction &MF = B.getMF();
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
// TODO: Always legal with future ftz flag.
// FIXME: Do we need just output?
if (Ty == LLT::scalar(32) && !MFI->getMode().allFP32Denormals())
return true;
if (Ty == LLT::scalar(16) && !MFI->getMode().allFP64FP16Denormals())
return true;
MachineIRBuilder HelperBuilder(MI);
GISelObserverWrapper DummyObserver;
LegalizerHelper Helper(MF, DummyObserver, HelperBuilder);
return Helper.lowerFMad(MI) == LegalizerHelper::Legalized;
}
bool AMDGPULegalizerInfo::legalizeAtomicCmpXChg(
MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
Register DstReg = MI.getOperand(0).getReg();
Register PtrReg = MI.getOperand(1).getReg();
Register CmpVal = MI.getOperand(2).getReg();
Register NewVal = MI.getOperand(3).getReg();
assert(AMDGPU::isFlatGlobalAddrSpace(MRI.getType(PtrReg).getAddressSpace()) &&
"this should not have been custom lowered");
LLT ValTy = MRI.getType(CmpVal);
LLT VecTy = LLT::fixed_vector(2, ValTy);
Register PackedVal = B.buildBuildVector(VecTy, { NewVal, CmpVal }).getReg(0);
B.buildInstr(AMDGPU::G_AMDGPU_ATOMIC_CMPXCHG)
.addDef(DstReg)
.addUse(PtrReg)
.addUse(PackedVal)
.setMemRefs(MI.memoperands());
MI.eraseFromParent();
return true;
}
bool AMDGPULegalizerInfo::legalizeFlog(
MachineInstr &MI, MachineIRBuilder &B, double Log2BaseInverted) const {
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
LLT Ty = B.getMRI()->getType(Dst);
unsigned Flags = MI.getFlags();
auto Log2Operand = B.buildFLog2(Ty, Src, Flags);
auto Log2BaseInvertedOperand = B.buildFConstant(Ty, Log2BaseInverted);
B.buildFMul(Dst, Log2Operand, Log2BaseInvertedOperand, Flags);
MI.eraseFromParent();
return true;
}
bool AMDGPULegalizerInfo::legalizeFExp(MachineInstr &MI,
MachineIRBuilder &B) const {
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
unsigned Flags = MI.getFlags();
LLT Ty = B.getMRI()->getType(Dst);
auto K = B.buildFConstant(Ty, numbers::log2e);
auto Mul = B.buildFMul(Ty, Src, K, Flags);
B.buildFExp2(Dst, Mul, Flags);
MI.eraseFromParent();
return true;
}
bool AMDGPULegalizerInfo::legalizeFPow(MachineInstr &MI,
MachineIRBuilder &B) const {
Register Dst = MI.getOperand(0).getReg();
Register Src0 = MI.getOperand(1).getReg();
Register Src1 = MI.getOperand(2).getReg();
unsigned Flags = MI.getFlags();
LLT Ty = B.getMRI()->getType(Dst);
const LLT S16 = LLT::scalar(16);
const LLT S32 = LLT::scalar(32);
if (Ty == S32) {
auto Log = B.buildFLog2(S32, Src0, Flags);
auto Mul = B.buildIntrinsic(Intrinsic::amdgcn_fmul_legacy, {S32}, false)
.addUse(Log.getReg(0))
.addUse(Src1)
.setMIFlags(Flags);
B.buildFExp2(Dst, Mul, Flags);
} else if (Ty == S16) {
// There's no f16 fmul_legacy, so we need to convert for it.
auto Log = B.buildFLog2(S16, Src0, Flags);
auto Ext0 = B.buildFPExt(S32, Log, Flags);
auto Ext1 = B.buildFPExt(S32, Src1, Flags);
auto Mul = B.buildIntrinsic(Intrinsic::amdgcn_fmul_legacy, {S32}, false)
.addUse(Ext0.getReg(0))
.addUse(Ext1.getReg(0))
.setMIFlags(Flags);
B.buildFExp2(Dst, B.buildFPTrunc(S16, Mul), Flags);
} else
return false;
MI.eraseFromParent();
return true;
}
// Find a source register, ignoring any possible source modifiers.
static Register stripAnySourceMods(Register OrigSrc, MachineRegisterInfo &MRI) {
Register ModSrc = OrigSrc;
if (MachineInstr *SrcFNeg = getOpcodeDef(AMDGPU::G_FNEG, ModSrc, MRI)) {
ModSrc = SrcFNeg->getOperand(1).getReg();
if (MachineInstr *SrcFAbs = getOpcodeDef(AMDGPU::G_FABS, ModSrc, MRI))
ModSrc = SrcFAbs->getOperand(1).getReg();
} else if (MachineInstr *SrcFAbs = getOpcodeDef(AMDGPU::G_FABS, ModSrc, MRI))
ModSrc = SrcFAbs->getOperand(1).getReg();
return ModSrc;
}
bool AMDGPULegalizerInfo::legalizeFFloor(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &B) const {
const LLT S1 = LLT::scalar(1);
const LLT S64 = LLT::scalar(64);
Register Dst = MI.getOperand(0).getReg();
Register OrigSrc = MI.getOperand(1).getReg();
unsigned Flags = MI.getFlags();
assert(ST.hasFractBug() && MRI.getType(Dst) == S64 &&
"this should not have been custom lowered");
// V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x))
// is used instead. However, SI doesn't have V_FLOOR_F64, so the most
// efficient way to implement it is using V_FRACT_F64. The workaround for the
// V_FRACT bug is:
// fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999)
//
// Convert floor(x) to (x - fract(x))
auto Fract = B.buildIntrinsic(Intrinsic::amdgcn_fract, {S64}, false)
.addUse(OrigSrc)
.setMIFlags(Flags);
// Give source modifier matching some assistance before obscuring a foldable
// pattern.
// TODO: We can avoid the neg on the fract? The input sign to fract
// shouldn't matter?
Register ModSrc = stripAnySourceMods(OrigSrc, MRI);
auto Const = B.buildFConstant(S64, BitsToDouble(0x3fefffffffffffff));
Register Min = MRI.createGenericVirtualRegister(S64);
// We don't need to concern ourselves with the snan handling difference, so
// use the one which will directly select.
const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
if (MFI->getMode().IEEE)
B.buildFMinNumIEEE(Min, Fract, Const, Flags);
else
B.buildFMinNum(Min, Fract, Const, Flags);
Register CorrectedFract = Min;
if (!MI.getFlag(MachineInstr::FmNoNans)) {
auto IsNan = B.buildFCmp(CmpInst::FCMP_ORD, S1, ModSrc, ModSrc, Flags);
CorrectedFract = B.buildSelect(S64, IsNan, ModSrc, Min, Flags).getReg(0);
}
auto NegFract = B.buildFNeg(S64, CorrectedFract, Flags);
B.buildFAdd(Dst, OrigSrc, NegFract, Flags);
MI.eraseFromParent();
return true;
}
// Turn an illegal packed v2s16 build vector into bit operations.
// TODO: This should probably be a bitcast action in LegalizerHelper.
bool AMDGPULegalizerInfo::legalizeBuildVector(
MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
Register Dst = MI.getOperand(0).getReg();
const LLT S32 = LLT::scalar(32);
assert(MRI.getType(Dst) == LLT::fixed_vector(2, 16));
Register Src0 = MI.getOperand(1).getReg();
Register Src1 = MI.getOperand(2).getReg();
assert(MRI.getType(Src0) == LLT::scalar(16));
auto Merge = B.buildMerge(S32, {Src0, Src1});
B.buildBitcast(Dst, Merge);
MI.eraseFromParent();
return true;
}
// Legalize ctlz/cttz to ffbh/ffbl instead of the default legalization to
// ctlz/cttz_zero_undef. This allows us to fix up the result for the zero input
// case with a single min instruction instead of a compare+select.
bool AMDGPULegalizerInfo::legalizeCTLZ_CTTZ(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &B) const {
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(Dst);
LLT SrcTy = MRI.getType(Src);
unsigned NewOpc = MI.getOpcode() == AMDGPU::G_CTLZ
? AMDGPU::G_AMDGPU_FFBH_U32
: AMDGPU::G_AMDGPU_FFBL_B32;
auto Tmp = B.buildInstr(NewOpc, {DstTy}, {Src});
B.buildUMin(Dst, Tmp, B.buildConstant(DstTy, SrcTy.getSizeInBits()));
MI.eraseFromParent();
return true;
}
// Check that this is a G_XOR x, -1
static bool isNot(const MachineRegisterInfo &MRI, const MachineInstr &MI) {
if (MI.getOpcode() != TargetOpcode::G_XOR)
return false;
auto ConstVal = getIConstantVRegSExtVal(MI.getOperand(2).getReg(), MRI);
return ConstVal && *ConstVal == -1;
}
// Return the use branch instruction, otherwise null if the usage is invalid.
static MachineInstr *
verifyCFIntrinsic(MachineInstr &MI, MachineRegisterInfo &MRI, MachineInstr *&Br,
MachineBasicBlock *&UncondBrTarget, bool &Negated) {
Register CondDef = MI.getOperand(0).getReg();
if (!MRI.hasOneNonDBGUse(CondDef))
return nullptr;
MachineBasicBlock *Parent = MI.getParent();
MachineInstr *UseMI = &*MRI.use_instr_nodbg_begin(CondDef);
if (isNot(MRI, *UseMI)) {
Register NegatedCond = UseMI->getOperand(0).getReg();
if (!MRI.hasOneNonDBGUse(NegatedCond))
return nullptr;
// We're deleting the def of this value, so we need to remove it.
eraseInstr(*UseMI, MRI);
UseMI = &*MRI.use_instr_nodbg_begin(NegatedCond);
Negated = true;
}
if (UseMI->getParent() != Parent || UseMI->getOpcode() != AMDGPU::G_BRCOND)
return nullptr;
// Make sure the cond br is followed by a G_BR, or is the last instruction.
MachineBasicBlock::iterator Next = std::next(UseMI->getIterator());
if (Next == Parent->end()) {
MachineFunction::iterator NextMBB = std::next(Parent->getIterator());
if (NextMBB == Parent->getParent()->end()) // Illegal intrinsic use.
return nullptr;
UncondBrTarget = &*NextMBB;
} else {
if (Next->getOpcode() != AMDGPU::G_BR)
return nullptr;
Br = &*Next;
UncondBrTarget = Br->getOperand(0).getMBB();
}
return UseMI;
}
bool AMDGPULegalizerInfo::loadInputValue(Register DstReg, MachineIRBuilder &B,
const ArgDescriptor *Arg,
const TargetRegisterClass *ArgRC,
LLT ArgTy) const {
MCRegister SrcReg = Arg->getRegister();
assert(Register::isPhysicalRegister(SrcReg) && "Physical register expected");
assert(DstReg.isVirtual() && "Virtual register expected");
Register LiveIn = getFunctionLiveInPhysReg(B.getMF(), B.getTII(), SrcReg, *ArgRC,
ArgTy);
if (Arg->isMasked()) {
// TODO: Should we try to emit this once in the entry block?
const LLT S32 = LLT::scalar(32);
const unsigned Mask = Arg->getMask();
const unsigned Shift = countTrailingZeros<unsigned>(Mask);
Register AndMaskSrc = LiveIn;
if (Shift != 0) {
auto ShiftAmt = B.buildConstant(S32, Shift);
AndMaskSrc = B.buildLShr(S32, LiveIn, ShiftAmt).getReg(0);
}
B.buildAnd(DstReg, AndMaskSrc, B.buildConstant(S32, Mask >> Shift));
} else {
B.buildCopy(DstReg, LiveIn);
}
return true;
}
bool AMDGPULegalizerInfo::loadInputValue(
Register DstReg, MachineIRBuilder &B,
AMDGPUFunctionArgInfo::PreloadedValue ArgType) const {
const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
const ArgDescriptor *Arg;
const TargetRegisterClass *ArgRC;
LLT ArgTy;
std::tie(Arg, ArgRC, ArgTy) = MFI->getPreloadedValue(ArgType);
if (!Arg) {
if (ArgType == AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR) {
// The intrinsic may appear when we have a 0 sized kernarg segment, in which
// case the pointer argument may be missing and we use null.
B.buildConstant(DstReg, 0);
return true;
}
// It's undefined behavior if a function marked with the amdgpu-no-*
// attributes uses the corresponding intrinsic.
B.buildUndef(DstReg);
return true;
}
if (!Arg->isRegister() || !Arg->getRegister().isValid())
return false; // TODO: Handle these
return loadInputValue(DstReg, B, Arg, ArgRC, ArgTy);
}
bool AMDGPULegalizerInfo::legalizePreloadedArgIntrin(
MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B,
AMDGPUFunctionArgInfo::PreloadedValue ArgType) const {
if (!loadInputValue(MI.getOperand(0).getReg(), B, ArgType))
return false;
MI.eraseFromParent();
return true;
}
bool AMDGPULegalizerInfo::legalizeFDIV(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &B) const {
Register Dst = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(Dst);
LLT S16 = LLT::scalar(16);
LLT S32 = LLT::scalar(32);
LLT S64 = LLT::scalar(64);
if (DstTy == S16)
return legalizeFDIV16(MI, MRI, B);
if (DstTy == S32)
return legalizeFDIV32(MI, MRI, B);
if (DstTy == S64)
return legalizeFDIV64(MI, MRI, B);
return false;
}
void AMDGPULegalizerInfo::legalizeUnsignedDIV_REM32Impl(MachineIRBuilder &B,
Register DstDivReg,
Register DstRemReg,
Register X,
Register Y) const {
const LLT S1 = LLT::scalar(1);
const LLT S32 = LLT::scalar(32);
// See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the
// algorithm used here.
// Initial estimate of inv(y).
auto FloatY = B.buildUITOFP(S32, Y);
auto RcpIFlag = B.buildInstr(AMDGPU::G_AMDGPU_RCP_IFLAG, {S32}, {FloatY});
auto Scale = B.buildFConstant(S32, BitsToFloat(0x4f7ffffe));
auto ScaledY = B.buildFMul(S32, RcpIFlag, Scale);
auto Z = B.buildFPTOUI(S32, ScaledY);
// One round of UNR.
auto NegY = B.buildSub(S32, B.buildConstant(S32, 0), Y);
auto NegYZ = B.buildMul(S32, NegY, Z);
Z = B.buildAdd(S32, Z, B.buildUMulH(S32, Z, NegYZ));
// Quotient/remainder estimate.
auto Q = B.buildUMulH(S32, X, Z);
auto R = B.buildSub(S32, X, B.buildMul(S32, Q, Y));
// First quotient/remainder refinement.
auto One = B.buildConstant(S32, 1);
auto Cond = B.buildICmp(CmpInst::ICMP_UGE, S1, R, Y);
if (DstDivReg)
Q = B.buildSelect(S32, Cond, B.buildAdd(S32, Q, One), Q);
R = B.buildSelect(S32, Cond, B.buildSub(S32, R, Y), R);
// Second quotient/remainder refinement.
Cond = B.buildICmp(CmpInst::ICMP_UGE, S1, R, Y);
if (DstDivReg)
B.buildSelect(DstDivReg, Cond, B.buildAdd(S32, Q, One), Q);
if (DstRemReg)
B.buildSelect(DstRemReg, Cond, B.buildSub(S32, R, Y), R);
}
// Build integer reciprocal sequence around V_RCP_IFLAG_F32
//
// Return lo, hi of result
//
// %cvt.lo = G_UITOFP Val.lo
// %cvt.hi = G_UITOFP Val.hi
// %mad = G_FMAD %cvt.hi, 2**32, %cvt.lo
// %rcp = G_AMDGPU_RCP_IFLAG %mad
// %mul1 = G_FMUL %rcp, 0x5f7ffffc
// %mul2 = G_FMUL %mul1, 2**(-32)
// %trunc = G_INTRINSIC_TRUNC %mul2
// %mad2 = G_FMAD %trunc, -(2**32), %mul1
// return {G_FPTOUI %mad2, G_FPTOUI %trunc}
static std::pair<Register, Register> emitReciprocalU64(MachineIRBuilder &B,
Register Val) {
const LLT S32 = LLT::scalar(32);
auto Unmerge = B.buildUnmerge(S32, Val);
auto CvtLo = B.buildUITOFP(S32, Unmerge.getReg(0));
auto CvtHi = B.buildUITOFP(S32, Unmerge.getReg(1));
auto Mad = B.buildFMAD(S32, CvtHi, // 2**32
B.buildFConstant(S32, BitsToFloat(0x4f800000)), CvtLo);
auto Rcp = B.buildInstr(AMDGPU::G_AMDGPU_RCP_IFLAG, {S32}, {Mad});
auto Mul1 =
B.buildFMul(S32, Rcp, B.buildFConstant(S32, BitsToFloat(0x5f7ffffc)));
// 2**(-32)
auto Mul2 =
B.buildFMul(S32, Mul1, B.buildFConstant(S32, BitsToFloat(0x2f800000)));
auto Trunc = B.buildIntrinsicTrunc(S32, Mul2);
// -(2**32)
auto Mad2 = B.buildFMAD(S32, Trunc,
B.buildFConstant(S32, BitsToFloat(0xcf800000)), Mul1);
auto ResultLo = B.buildFPTOUI(S32, Mad2);
auto ResultHi = B.buildFPTOUI(S32, Trunc);
return {ResultLo.getReg(0), ResultHi.getReg(0)};
}
void AMDGPULegalizerInfo::legalizeUnsignedDIV_REM64Impl(MachineIRBuilder &B,
Register DstDivReg,
Register DstRemReg,
Register Numer,
Register Denom) const {
const LLT S32 = LLT::scalar(32);
const LLT S64 = LLT::scalar(64);
const LLT S1 = LLT::scalar(1);
Register RcpLo, RcpHi;
std::tie(RcpLo, RcpHi) = emitReciprocalU64(B, Denom);
auto Rcp = B.buildMerge(S64, {RcpLo, RcpHi});
auto Zero64 = B.buildConstant(S64, 0);
auto NegDenom = B.buildSub(S64, Zero64, Denom);
auto MulLo1 = B.buildMul(S64, NegDenom, Rcp);
auto MulHi1 = B.buildUMulH(S64, Rcp, MulLo1);
auto UnmergeMulHi1 = B.buildUnmerge(S32, MulHi1);
Register MulHi1_Lo = UnmergeMulHi1.getReg(0);
Register MulHi1_Hi = UnmergeMulHi1.getReg(1);
auto Add1_Lo = B.buildUAddo(S32, S1, RcpLo, MulHi1_Lo);
auto Add1_Hi = B.buildUAdde(S32, S1, RcpHi, MulHi1_Hi, Add1_Lo.getReg(1));
auto Add1 = B.buildMerge(S64, {Add1_Lo, Add1_Hi});
auto MulLo2 = B.buildMul(S64, NegDenom, Add1);
auto MulHi2 = B.buildUMulH(S64, Add1, MulLo2);
auto UnmergeMulHi2 = B.buildUnmerge(S32, MulHi2);
Register MulHi2_Lo = UnmergeMulHi2.getReg(0);
Register MulHi2_Hi = UnmergeMulHi2.getReg(1);
auto Zero32 = B.buildConstant(S32, 0);
auto Add2_Lo = B.buildUAddo(S32, S1, Add1_Lo, MulHi2_Lo);
auto Add2_Hi = B.buildUAdde(S32, S1, Add1_Hi, MulHi2_Hi, Add2_Lo.getReg(1));
auto Add2 = B.buildMerge(S64, {Add2_Lo, Add2_Hi});
auto UnmergeNumer = B.buildUnmerge(S32, Numer);
Register NumerLo = UnmergeNumer.getReg(0);
Register NumerHi = UnmergeNumer.getReg(1);
auto MulHi3 = B.buildUMulH(S64, Numer, Add2);
auto Mul3 = B.buildMul(S64, Denom, MulHi3);
auto UnmergeMul3 = B.buildUnmerge(S32, Mul3);
Register Mul3_Lo = UnmergeMul3.getReg(0);
Register Mul3_Hi = UnmergeMul3.getReg(1);
auto Sub1_Lo = B.buildUSubo(S32, S1, NumerLo, Mul3_Lo);
auto Sub1_Hi = B.buildUSube(S32, S1, NumerHi, Mul3_Hi, Sub1_Lo.getReg(1));
auto Sub1_Mi = B.buildSub(S32, NumerHi, Mul3_Hi);
auto Sub1 = B.buildMerge(S64, {Sub1_Lo, Sub1_Hi});
auto UnmergeDenom = B.buildUnmerge(S32, Denom);
Register DenomLo = UnmergeDenom.getReg(0);
Register DenomHi = UnmergeDenom.getReg(1);
auto CmpHi = B.buildICmp(CmpInst::ICMP_UGE, S1, Sub1_Hi, DenomHi);
auto C1 = B.buildSExt(S32, CmpHi);
auto CmpLo = B.buildICmp(CmpInst::ICMP_UGE, S1, Sub1_Lo, DenomLo);
auto C2 = B.buildSExt(S32, CmpLo);
auto CmpEq = B.buildICmp(CmpInst::ICMP_EQ, S1, Sub1_Hi, DenomHi);
auto C3 = B.buildSelect(S32, CmpEq, C2, C1);
// TODO: Here and below portions of the code can be enclosed into if/endif.
// Currently control flow is unconditional and we have 4 selects after
// potential endif to substitute PHIs.
// if C3 != 0 ...
auto Sub2_Lo = B.buildUSubo(S32, S1, Sub1_Lo, DenomLo);
auto Sub2_Mi = B.buildUSube(S32, S1, Sub1_Mi, DenomHi, Sub1_Lo.getReg(1));
auto Sub2_Hi = B.buildUSube(S32, S1, Sub2_Mi, Zero32, Sub2_Lo.getReg(1));
auto Sub2 = B.buildMerge(S64, {Sub2_Lo, Sub2_Hi});
auto One64 = B.buildConstant(S64, 1);
auto Add3 = B.buildAdd(S64, MulHi3, One64);
auto C4 =
B.buildSExt(S32, B.buildICmp(CmpInst::ICMP_UGE, S1, Sub2_Hi, DenomHi));
auto C5 =
B.buildSExt(S32, B.buildICmp(CmpInst::ICMP_UGE, S1, Sub2_Lo, DenomLo));
auto C6 = B.buildSelect(
S32, B.buildICmp(CmpInst::ICMP_EQ, S1, Sub2_Hi, DenomHi), C5, C4);
// if (C6 != 0)
auto Add4 = B.buildAdd(S64, Add3, One64);
auto Sub3_Lo = B.buildUSubo(S32, S1, Sub2_Lo, DenomLo);
auto Sub3_Mi = B.buildUSube(S32, S1, Sub2_Mi, DenomHi, Sub2_Lo.getReg(1));
auto Sub3_Hi = B.buildUSube(S32, S1, Sub3_Mi, Zero32, Sub3_Lo.getReg(1));
auto Sub3 = B.buildMerge(S64, {Sub3_Lo, Sub3_Hi});
// endif C6
// endif C3
if (DstDivReg) {
auto Sel1 = B.buildSelect(
S64, B.buildICmp(CmpInst::ICMP_NE, S1, C6, Zero32), Add4, Add3);
B.buildSelect(DstDivReg, B.buildICmp(CmpInst::ICMP_NE, S1, C3, Zero32),
Sel1, MulHi3);
}
if (DstRemReg) {
auto Sel2 = B.buildSelect(
S64, B.buildICmp(CmpInst::ICMP_NE, S1, C6, Zero32), Sub3, Sub2);
B.buildSelect(DstRemReg, B.buildICmp(CmpInst::ICMP_NE, S1, C3, Zero32),
Sel2, Sub1);
}
}
bool AMDGPULegalizerInfo::legalizeUnsignedDIV_REM(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &B) const {
Register DstDivReg, DstRemReg;
switch (MI.getOpcode()) {
default:
llvm_unreachable("Unexpected opcode!");
case AMDGPU::G_UDIV: {
DstDivReg = MI.getOperand(0).getReg();
break;
}
case AMDGPU::G_UREM: {
DstRemReg = MI.getOperand(0).getReg();
break;
}
case AMDGPU::G_UDIVREM: {
DstDivReg = MI.getOperand(0).getReg();
DstRemReg = MI.getOperand(1).getReg();
break;
}
}
const LLT S64 = LLT::scalar(64);
const LLT S32 = LLT::scalar(32);
const unsigned FirstSrcOpIdx = MI.getNumExplicitDefs();
Register Num = MI.getOperand(FirstSrcOpIdx).getReg();
Register Den = MI.getOperand(FirstSrcOpIdx + 1).getReg();
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
if (Ty == S32)
legalizeUnsignedDIV_REM32Impl(B, DstDivReg, DstRemReg, Num, Den);
else if (Ty == S64)
legalizeUnsignedDIV_REM64Impl(B, DstDivReg, DstRemReg, Num, Den);
else
return false;
MI.eraseFromParent();
return true;
}
bool AMDGPULegalizerInfo::legalizeSignedDIV_REM(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &B) const {
const LLT S64 = LLT::scalar(64);
const LLT S32 = LLT::scalar(32);
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
if (Ty != S32 && Ty != S64)
return false;
const unsigned FirstSrcOpIdx = MI.getNumExplicitDefs();
Register LHS = MI.getOperand(FirstSrcOpIdx).getReg();
Register RHS = MI.getOperand(FirstSrcOpIdx + 1).getReg();
auto SignBitOffset = B.buildConstant(S32, Ty.getSizeInBits() - 1);
auto LHSign = B.buildAShr(Ty, LHS, SignBitOffset);
auto RHSign = B.buildAShr(Ty, RHS, SignBitOffset);
LHS = B.buildAdd(Ty, LHS, LHSign).getReg(0);
RHS = B.buildAdd(Ty, RHS, RHSign).getReg(0);
LHS = B.buildXor(Ty, LHS, LHSign).getReg(0);
RHS = B.buildXor(Ty, RHS, RHSign).getReg(0);
Register DstDivReg, DstRemReg, TmpDivReg, TmpRemReg;
switch (MI.getOpcode()) {
default:
llvm_unreachable("Unexpected opcode!");
case AMDGPU::G_SDIV: {
DstDivReg = MI.getOperand(0).getReg();
TmpDivReg = MRI.createGenericVirtualRegister(Ty);
break;
}
case AMDGPU::G_SREM: {
DstRemReg = MI.getOperand(0).getReg();
TmpRemReg = MRI.createGenericVirtualRegister(Ty);
break;
}
case AMDGPU::G_SDIVREM: {
DstDivReg = MI.getOperand(0).getReg();
DstRemReg = MI.getOperand(1).getReg();
TmpDivReg = MRI.createGenericVirtualRegister(Ty);
TmpRemReg = MRI.createGenericVirtualRegister(Ty);
break;
}
}
if (Ty == S32)
legalizeUnsignedDIV_REM32Impl(B, TmpDivReg, TmpRemReg, LHS, RHS);
else
legalizeUnsignedDIV_REM64Impl(B, TmpDivReg, TmpRemReg, LHS, RHS);
if (DstDivReg) {
auto Sign = B.buildXor(Ty, LHSign, RHSign).getReg(0);
auto SignXor = B.buildXor(Ty, TmpDivReg, Sign).getReg(0);
B.buildSub(DstDivReg, SignXor, Sign);
}
if (DstRemReg) {
auto Sign = LHSign.getReg(0); // Remainder sign is the same as LHS
auto SignXor = B.buildXor(Ty, TmpRemReg, Sign).getReg(0);
B.buildSub(DstRemReg, SignXor, Sign);
}
MI.eraseFromParent();
return true;
}
bool AMDGPULegalizerInfo::legalizeFastUnsafeFDIV(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &B) const {
Register Res = MI.getOperand(0).getReg();
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
uint16_t Flags = MI.getFlags();
LLT ResTy = MRI.getType(Res);
const MachineFunction &MF = B.getMF();
bool AllowInaccurateRcp = MF.getTarget().Options.UnsafeFPMath ||
MI.getFlag(MachineInstr::FmAfn);
if (!AllowInaccurateRcp)
return false;
if (auto CLHS = getConstantFPVRegVal(LHS, MRI)) {
// 1 / x -> RCP(x)
if (CLHS->isExactlyValue(1.0)) {
B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res, false)
.addUse(RHS)
.setMIFlags(Flags);
MI.eraseFromParent();
return true;
}
// -1 / x -> RCP( FNEG(x) )
if (CLHS->isExactlyValue(-1.0)) {
auto FNeg = B.buildFNeg(ResTy, RHS, Flags);
B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res, false)
.addUse(FNeg.getReg(0))
.setMIFlags(Flags);
MI.eraseFromParent();
return true;
}
}
// x / y -> x * (1.0 / y)
auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {ResTy}, false)
.addUse(RHS)
.setMIFlags(Flags);
B.buildFMul(Res, LHS, RCP, Flags);
MI.eraseFromParent();
return true;
}
bool AMDGPULegalizerInfo::legalizeFastUnsafeFDIV64(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &B) const {
Register Res = MI.getOperand(0).getReg();
Register X = MI.getOperand(1).getReg();
Register Y = MI.getOperand(2).getReg();
uint16_t Flags = MI.getFlags();
LLT ResTy = MRI.getType(Res);
const MachineFunction &MF = B.getMF();
bool AllowInaccurateRcp = MF.getTarget().Options.UnsafeFPMath ||
MI.getFlag(MachineInstr::FmAfn);
if (!AllowInaccurateRcp)
return false;
auto NegY = B.buildFNeg(ResTy, Y);
auto One = B.buildFConstant(ResTy, 1.0);
auto R = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {ResTy}, false)
.addUse(Y)
.setMIFlags(Flags);
auto Tmp0 = B.buildFMA(ResTy, NegY, R, One);
R = B.buildFMA(ResTy, Tmp0, R, R);
auto Tmp1 = B.buildFMA(ResTy, NegY, R, One);
R = B.buildFMA(ResTy, Tmp1, R, R);
auto Ret = B.buildFMul(ResTy, X, R);
auto Tmp2 = B.buildFMA(ResTy, NegY, Ret, X);
B.buildFMA(Res, Tmp2, R, Ret);
MI.eraseFromParent();
return true;
}
bool AMDGPULegalizerInfo::legalizeFDIV16(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &B) const {
if (legalizeFastUnsafeFDIV(MI, MRI, B))
return true;
Register Res = MI.getOperand(0).getReg();
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
uint16_t Flags = MI.getFlags();
LLT S16 = LLT::scalar(16);
LLT S32 = LLT::scalar(32);
auto LHSExt = B.buildFPExt(S32, LHS, Flags);
auto RHSExt = B.buildFPExt(S32, RHS, Flags);
auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false)
.addUse(RHSExt.getReg(0))
.setMIFlags(Flags);
auto QUOT = B.buildFMul(S32, LHSExt, RCP, Flags);
auto RDst = B.buildFPTrunc(S16, QUOT, Flags);
B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res, false)
.addUse(RDst.getReg(0))
.addUse(RHS)
.addUse(LHS)
.setMIFlags(Flags);
MI.eraseFromParent();
return true;
}
// Enable or disable FP32 denorm mode. When 'Enable' is true, emit instructions
// to enable denorm mode. When 'Enable' is false, disable denorm mode.
static void toggleSPDenormMode(bool Enable,
MachineIRBuilder &B,
const GCNSubtarget &ST,
AMDGPU::SIModeRegisterDefaults Mode) {
// Set SP denorm mode to this value.
unsigned SPDenormMode =
Enable ? FP_DENORM_FLUSH_NONE : Mode.fpDenormModeSPValue();
if (ST.hasDenormModeInst()) {
// Preserve default FP64FP16 denorm mode while updating FP32 mode.
uint32_t DPDenormModeDefault = Mode.fpDenormModeDPValue();
uint32_t NewDenormModeValue = SPDenormMode | (DPDenormModeDefault << 2);
B.buildInstr(AMDGPU::S_DENORM_MODE)
.addImm(NewDenormModeValue);
} else {
// Select FP32 bit field in mode register.
unsigned SPDenormModeBitField = AMDGPU::Hwreg::ID_MODE |
(4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
(1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
B.buildInstr(AMDGPU::S_SETREG_IMM32_B32)
.addImm(SPDenormMode)
.addImm(SPDenormModeBitField);
}
}
bool AMDGPULegalizerInfo::legalizeFDIV32(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &B) const {
if (legalizeFastUnsafeFDIV(MI, MRI, B))
return true;
Register Res = MI.getOperand(0).getReg();
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
AMDGPU::SIModeRegisterDefaults Mode = MFI->getMode();
uint16_t Flags = MI.getFlags();
LLT S32 = LLT::scalar(32);
LLT S1 = LLT::scalar(1);
auto One = B.buildFConstant(S32, 1.0f);
auto DenominatorScaled =
B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S32, S1}, false)
.addUse(LHS)
.addUse(RHS)
.addImm(0)
.setMIFlags(Flags);
auto NumeratorScaled =
B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S32, S1}, false)
.addUse(LHS)
.addUse(RHS)
.addImm(1)
.setMIFlags(Flags);
auto ApproxRcp = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false)
.addUse(DenominatorScaled.getReg(0))
.setMIFlags(Flags);
auto NegDivScale0 = B.buildFNeg(S32, DenominatorScaled, Flags);
// FIXME: Doesn't correctly model the FP mode switch, and the FP operations
// aren't modeled as reading it.
if (!Mode.allFP32Denormals())
toggleSPDenormMode(true, B, ST, Mode);
auto Fma0 = B.buildFMA(S32, NegDivScale0, ApproxRcp, One, Flags);
auto Fma1 = B.buildFMA(S32, Fma0, ApproxRcp, ApproxRcp, Flags);
auto Mul = B.buildFMul(S32, NumeratorScaled, Fma1, Flags);
auto Fma2 = B.buildFMA(S32, NegDivScale0, Mul, NumeratorScaled, Flags);
auto Fma3 = B.buildFMA(S32, Fma2, Fma1, Mul, Flags);
auto Fma4 = B.buildFMA(S32, NegDivScale0, Fma3, NumeratorScaled, Flags);
if (!Mode.allFP32Denormals())
toggleSPDenormMode(false, B, ST, Mode);
auto Fmas = B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {S32}, false)
.addUse(Fma4.getReg(0))
.addUse(Fma1.getReg(0))
.addUse(Fma3.getReg(0))
.addUse(NumeratorScaled.getReg(1))
.setMIFlags(Flags);
B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res, false)
.addUse(Fmas.getReg(0))
.addUse(RHS)
.addUse(LHS)
.setMIFlags(Flags);
MI.eraseFromParent();
return true;
}
bool AMDGPULegalizerInfo::legalizeFDIV64(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &B) const {
if (legalizeFastUnsafeFDIV64(MI, MRI, B))
return true;
Register Res = MI.getOperand(0).getReg();
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
uint16_t Flags = MI.getFlags();
LLT S64 = LLT::scalar(64);
LLT S1 = LLT::scalar(1);
auto One = B.buildFConstant(S64, 1.0);
auto DivScale0 = B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S64, S1}, false)
.addUse(LHS)
.addUse(RHS)
.addImm(0)
.setMIFlags(Flags);
auto NegDivScale0 = B.buildFNeg(S64, DivScale0.getReg(0), Flags);
auto Rcp = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S64}, false)
.addUse(DivScale0.getReg(0))
.setMIFlags(Flags);
auto Fma0 = B.buildFMA(S64, NegDivScale0, Rcp, One, Flags);
auto Fma1 = B.buildFMA(S64, Rcp, Fma0, Rcp, Flags);
auto Fma2 = B.buildFMA(S64, NegDivScale0, Fma1, One, Flags);
auto DivScale1 = B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S64, S1}, false)
.addUse(LHS)
.addUse(RHS)
.addImm(1)
.setMIFlags(Flags);
auto Fma3 = B.buildFMA(S64, Fma1, Fma2, Fma1, Flags);
auto Mul = B.buildFMul(S64, DivScale1.getReg(0), Fma3, Flags);
auto Fma4 = B.buildFMA(S64, NegDivScale0, Mul, DivScale1.getReg(0), Flags);
Register Scale;
if (!ST.hasUsableDivScaleConditionOutput()) {
// Workaround a hardware bug on SI where the condition output from div_scale
// is not usable.
LLT S32 = LLT::scalar(32);
auto NumUnmerge = B.buildUnmerge(S32, LHS);
auto DenUnmerge = B.buildUnmerge(S32, RHS);
auto Scale0Unmerge = B.buildUnmerge(S32, DivScale0);
auto Scale1Unmerge = B.buildUnmerge(S32, DivScale1);
auto CmpNum = B.buildICmp(ICmpInst::ICMP_EQ, S1, NumUnmerge.getReg(1),
Scale1Unmerge.getReg(1));
auto CmpDen = B.buildICmp(ICmpInst::ICMP_EQ, S1, DenUnmerge.getReg(1),
Scale0Unmerge.getReg(1));
Scale = B.buildXor(S1, CmpNum, CmpDen).getReg(0);
} else {
Scale = DivScale1.getReg(1);
}
auto Fmas = B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {S64}, false)
.addUse(Fma4.getReg(0))
.addUse(Fma3.getReg(0))
.addUse(Mul.getReg(0))
.addUse(Scale)
.setMIFlags(Flags);
B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, makeArrayRef(Res), false)
.addUse(Fmas.getReg(0))
.addUse(RHS)
.addUse(LHS)
.setMIFlags(Flags);
MI.eraseFromParent();
return true;
}
bool AMDGPULegalizerInfo::legalizeFDIVFastIntrin(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &B) const {
Register Res = MI.getOperand(0).getReg();
Register LHS = MI.getOperand(2).getReg();
Register RHS = MI.getOperand(3).getReg();
uint16_t Flags = MI.getFlags();
LLT S32 = LLT::scalar(32);
LLT S1 = LLT::scalar(1);
auto Abs = B.buildFAbs(S32, RHS, Flags);
const APFloat C0Val(1.0f);
auto C0 = B.buildConstant(S32, 0x6f800000);
auto C1 = B.buildConstant(S32, 0x2f800000);
auto C2 = B.buildConstant(S32, FloatToBits(1.0f));
auto CmpRes = B.buildFCmp(CmpInst::FCMP_OGT, S1, Abs, C0, Flags);
auto Sel = B.buildSelect(S32, CmpRes, C1, C2, Flags);
auto Mul0 = B.buildFMul(S32, RHS, Sel, Flags);
auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false)
.addUse(Mul0.getReg(0))
.setMIFlags(Flags);
auto Mul1 = B.buildFMul(S32, LHS, RCP, Flags);
B.buildFMul(Res, Sel, Mul1, Flags);
MI.eraseFromParent();
return true;
}
// Expand llvm.amdgcn.rsq.clamp on targets that don't support the instruction.
// FIXME: Why do we handle this one but not other removed instructions?
//
// Reciprocal square root. The clamp prevents infinite results, clamping
// infinities to max_float. D.f = 1.0 / sqrt(S0.f), result clamped to
// +-max_float.
bool AMDGPULegalizerInfo::legalizeRsqClampIntrinsic(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &B) const {
if (ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
return true;
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(2).getReg();
auto Flags = MI.getFlags();
LLT Ty = MRI.getType(Dst);
const fltSemantics *FltSemantics;
if (Ty == LLT::scalar(32))
FltSemantics = &APFloat::IEEEsingle();
else if (Ty == LLT::scalar(64))
FltSemantics = &APFloat::IEEEdouble();
else
return false;
auto Rsq = B.buildIntrinsic(Intrinsic::amdgcn_rsq, {Ty}, false)
.addUse(Src)
.setMIFlags(Flags);
// We don't need to concern ourselves with the snan handling difference, since
// the rsq quieted (or not) so use the one which will directly select.
const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
const bool UseIEEE = MFI->getMode().IEEE;
auto MaxFlt = B.buildFConstant(Ty, APFloat::getLargest(*FltSemantics));
auto ClampMax = UseIEEE ? B.buildFMinNumIEEE(Ty, Rsq, MaxFlt, Flags) :
B.buildFMinNum(Ty, Rsq, MaxFlt, Flags);
auto MinFlt = B.buildFConstant(Ty, APFloat::getLargest(*FltSemantics, true));
if (UseIEEE)
B.buildFMaxNumIEEE(Dst, ClampMax, MinFlt, Flags);
else
B.buildFMaxNum(Dst, ClampMax, MinFlt, Flags);
MI.eraseFromParent();
return true;
}
static unsigned getDSFPAtomicOpcode(Intrinsic::ID IID) {
switch (IID) {
case Intrinsic::amdgcn_ds_fadd:
return AMDGPU::G_ATOMICRMW_FADD;
case Intrinsic::amdgcn_ds_fmin:
return AMDGPU::G_AMDGPU_ATOMIC_FMIN;
case Intrinsic::amdgcn_ds_fmax:
return AMDGPU::G_AMDGPU_ATOMIC_FMAX;
default:
llvm_unreachable("not a DS FP intrinsic");
}
}
bool AMDGPULegalizerInfo::legalizeDSAtomicFPIntrinsic(LegalizerHelper &Helper,
MachineInstr &MI,
Intrinsic::ID IID) const {
GISelChangeObserver &Observer = Helper.Observer;
Observer.changingInstr(MI);
MI.setDesc(ST.getInstrInfo()->get(getDSFPAtomicOpcode(IID)));
// The remaining operands were used to set fields in the MemOperand on
// construction.
for (int I = 6; I > 3; --I)
MI.RemoveOperand(I);
MI.RemoveOperand(1); // Remove the intrinsic ID.
Observer.changedInstr(MI);
return true;
}
bool AMDGPULegalizerInfo::getImplicitArgPtr(Register DstReg,
MachineRegisterInfo &MRI,
MachineIRBuilder &B) const {
uint64_t Offset =
ST.getTargetLowering()->getImplicitParameterOffset(
B.getMF(), AMDGPUTargetLowering::FIRST_IMPLICIT);
LLT DstTy = MRI.getType(DstReg);
LLT IdxTy = LLT::scalar(DstTy.getSizeInBits());
Register KernargPtrReg = MRI.createGenericVirtualRegister(DstTy);
if (!loadInputValue(KernargPtrReg, B,
AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR))
return false;
// FIXME: This should be nuw
B.buildPtrAdd(DstReg, KernargPtrReg, B.buildConstant(IdxTy, Offset).getReg(0));
return true;
}
bool AMDGPULegalizerInfo::legalizeImplicitArgPtr(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &B) const {
const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
if (!MFI->isEntryFunction()) {
return legalizePreloadedArgIntrin(MI, MRI, B,
AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
}
Register DstReg = MI.getOperand(0).getReg();
if (!getImplicitArgPtr(DstReg, MRI, B))
return false;
MI.eraseFromParent();
return true;
}
bool AMDGPULegalizerInfo::legalizeIsAddrSpace(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &B,
unsigned AddrSpace) const {
Register ApertureReg = getSegmentAperture(AddrSpace, MRI, B);
auto Unmerge = B.buildUnmerge(LLT::scalar(32), MI.getOperand(2).getReg());
Register Hi32 = Unmerge.getReg(1);
B.buildICmp(ICmpInst::ICMP_EQ, MI.getOperand(0), Hi32, ApertureReg);
MI.eraseFromParent();
return true;
}
// The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
// offset (the offset that is included in bounds checking and swizzling, to be
// split between the instruction's voffset and immoffset fields) and soffset
// (the offset that is excluded from bounds checking and swizzling, to go in
// the instruction's soffset field). This function takes the first kind of
// offset and figures out how to split it between voffset and immoffset.
std::pair<Register, unsigned>
AMDGPULegalizerInfo::splitBufferOffsets(MachineIRBuilder &B,
Register OrigOffset) const {
const unsigned MaxImm = 4095;
Register BaseReg;
unsigned ImmOffset;
const LLT S32 = LLT::scalar(32);
MachineRegisterInfo &MRI = *B.getMRI();
std::tie(BaseReg, ImmOffset) =
AMDGPU::getBaseWithConstantOffset(MRI, OrigOffset);
// If BaseReg is a pointer, convert it to int.
if (MRI.getType(BaseReg).isPointer())
BaseReg = B.buildPtrToInt(MRI.getType(OrigOffset), BaseReg).getReg(0);
// If the immediate value is too big for the immoffset field, put the value
// and -4096 into the immoffset field so that the value that is copied/added
// for the voffset field is a multiple of 4096, and it stands more chance
// of being CSEd with the copy/add for another similar load/store.
// However, do not do that rounding down to a multiple of 4096 if that is a
// negative number, as it appears to be illegal to have a negative offset
// in the vgpr, even if adding the immediate offset makes it positive.
unsigned Overflow = ImmOffset & ~MaxImm;
ImmOffset -= Overflow;
if ((int32_t)Overflow < 0) {
Overflow += ImmOffset;
ImmOffset = 0;
}
if (Overflow != 0) {
if (!BaseReg) {
BaseReg = B.buildConstant(S32, Overflow).getReg(0);
} else {
auto OverflowVal = B.buildConstant(S32, Overflow);
BaseReg = B.buildAdd(S32, BaseReg, OverflowVal).getReg(0);
}
}
if (!BaseReg)
BaseReg = B.buildConstant(S32, 0).getReg(0);
return std::make_pair(BaseReg, ImmOffset);
}
/// Update \p MMO based on the offset inputs to a raw/struct buffer intrinsic.
void AMDGPULegalizerInfo::updateBufferMMO(MachineMemOperand *MMO,
Register VOffset, Register SOffset,
unsigned ImmOffset, Register VIndex,
MachineRegisterInfo &MRI) const {
Optional<ValueAndVReg> MaybeVOffsetVal =
getIConstantVRegValWithLookThrough(VOffset, MRI);
Optional<ValueAndVReg> MaybeSOffsetVal =
getIConstantVRegValWithLookThrough(SOffset, MRI);
Optional<ValueAndVReg> MaybeVIndexVal =
getIConstantVRegValWithLookThrough(VIndex, MRI);
// If the combined VOffset + SOffset + ImmOffset + strided VIndex is constant,
// update the MMO with that offset. The stride is unknown so we can only do
// this if VIndex is constant 0.
if (MaybeVOffsetVal && MaybeSOffsetVal && MaybeVIndexVal &&
MaybeVIndexVal->Value == 0) {
uint64_t TotalOffset = MaybeVOffsetVal->Value.getZExtValue() +
MaybeSOffsetVal->Value.getZExtValue() + ImmOffset;
MMO->setOffset(TotalOffset);
} else {
// We don't have a constant combined offset to use in the MMO. Give up.
MMO->setValue((Value *)nullptr);
}
}
/// Handle register layout difference for f16 images for some subtargets.
Register AMDGPULegalizerInfo::handleD16VData(MachineIRBuilder &B,
MachineRegisterInfo &MRI,
Register Reg,
bool ImageStore) const {
const LLT S16 = LLT::scalar(16);
const LLT S32 = LLT::scalar(32);
LLT StoreVT = MRI.getType(Reg);
assert(StoreVT.isVector() && StoreVT.getElementType() == S16);
if (ST.hasUnpackedD16VMem()) {
auto Unmerge = B.buildUnmerge(S16, Reg);
SmallVector<Register, 4> WideRegs;
for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
WideRegs.push_back(B.buildAnyExt(S32, Unmerge.getReg(I)).getReg(0));
int NumElts = StoreVT.getNumElements();
return B.buildBuildVector(LLT::fixed_vector(NumElts, S32), WideRegs)
.getReg(0);
}
if (ImageStore && ST.hasImageStoreD16Bug()) {
if (StoreVT.getNumElements() == 2) {
SmallVector<Register, 4> PackedRegs;
Reg = B.buildBitcast(S32, Reg).getReg(0);
PackedRegs.push_back(Reg);
PackedRegs.resize(2, B.buildUndef(S32).getReg(0));
return B.buildBuildVector(LLT::fixed_vector(2, S32), PackedRegs)
.getReg(0);
}
if (StoreVT.getNumElements() == 3) {
SmallVector<Register, 4> PackedRegs;
auto Unmerge = B.buildUnmerge(S16, Reg);
for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
PackedRegs.push_back(Unmerge.getReg(I));
PackedRegs.resize(6, B.buildUndef(S16).getReg(0));
Reg = B.buildBuildVector(LLT::fixed_vector(6, S16), PackedRegs).getReg(0);
return B.buildBitcast(LLT::fixed_vector(3, S32), Reg).getReg(0);
}
if (StoreVT.getNumElements() == 4) {
SmallVector<Register, 4> PackedRegs;
Reg = B.buildBitcast(LLT::fixed_vector(2, S32), Reg).getReg(0);
auto Unmerge = B.buildUnmerge(S32, Reg);
for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
PackedRegs.push_back(Unmerge.getReg(I));
PackedRegs.resize(4, B.buildUndef(S32).getReg(0));
return B.buildBuildVector(LLT::fixed_vector(4, S32), PackedRegs)
.getReg(0);
}
llvm_unreachable("invalid data type");
}
return Reg;
}
Register AMDGPULegalizerInfo::fixStoreSourceType(
MachineIRBuilder &B, Register VData, bool IsFormat) const {
MachineRegisterInfo *MRI = B.getMRI();
LLT Ty = MRI->getType(VData);
const LLT S16 = LLT::scalar(16);
// Fixup illegal register types for i8 stores.
if (Ty == LLT::scalar(8) || Ty == S16) {
Register AnyExt = B.buildAnyExt(LLT::scalar(32), VData).getReg(0);
return AnyExt;
}
if (Ty.isVector()) {
if (Ty.getElementType() == S16 && Ty.getNumElements() <= 4) {
if (IsFormat)
return handleD16VData(B, *MRI, VData);
}
}
return VData;
}
bool AMDGPULegalizerInfo::legalizeBufferStore(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &B,
bool IsTyped,
bool IsFormat) const {
Register VData = MI.getOperand(1).getReg();
LLT Ty = MRI.getType(VData);
LLT EltTy = Ty.getScalarType();
const bool IsD16 = IsFormat && (EltTy.getSizeInBits() == 16);
const LLT S32 = LLT::scalar(32);
VData = fixStoreSourceType(B, VData, IsFormat);
Register RSrc = MI.getOperand(2).getReg();
MachineMemOperand *MMO = *MI.memoperands_begin();
const int MemSize = MMO->getSize();
unsigned ImmOffset;
// The typed intrinsics add an immediate after the registers.
const unsigned NumVIndexOps = IsTyped ? 8 : 7;
// The struct intrinsic variants add one additional operand over raw.
const bool HasVIndex = MI.getNumOperands() == NumVIndexOps;
Register VIndex;
int OpOffset = 0;
if (HasVIndex) {
VIndex = MI.getOperand(3).getReg();
OpOffset = 1;
} else {
VIndex = B.buildConstant(S32, 0).getReg(0);
}
Register VOffset = MI.getOperand(3 + OpOffset).getReg();
Register SOffset = MI.getOperand(4 + OpOffset).getReg();
unsigned Format = 0;
if (IsTyped) {
Format = MI.getOperand(5 + OpOffset).getImm();
++OpOffset;
}
unsigned AuxiliaryData = MI.getOperand(5 + OpOffset).getImm();
std::tie(VOffset, ImmOffset) = splitBufferOffsets(B, VOffset);
updateBufferMMO(MMO, VOffset, SOffset, ImmOffset, VIndex, MRI);
unsigned Opc;
if (IsTyped) {
Opc = IsD16 ? AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT_D16 :
AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT;
} else if (IsFormat) {
Opc = IsD16 ? AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT_D16 :
AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT;
} else {
switch (MemSize) {
case 1:
Opc = AMDGPU::G_AMDGPU_BUFFER_STORE_BYTE;
break;
case 2:
Opc = AMDGPU::G_AMDGPU_BUFFER_STORE_SHORT;
break;
default:
Opc = AMDGPU::G_AMDGPU_BUFFER_STORE;
break;
}
}
auto MIB = B.buildInstr(Opc)
.addUse(VData) // vdata
.addUse(RSrc) // rsrc
.addUse(VIndex) // vindex
.addUse(VOffset) // voffset
.addUse(SOffset) // soffset
.addImm(ImmOffset); // offset(imm)
if (IsTyped)
MIB.addImm(Format);
MIB.addImm(AuxiliaryData) // cachepolicy, swizzled buffer(imm)
.addImm(HasVIndex ? -1 : 0) // idxen(imm)
.addMemOperand(MMO);
MI.eraseFromParent();
return true;
}
bool AMDGPULegalizerInfo::legalizeBufferLoad(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &B,
bool IsFormat,
bool IsTyped) const {
// FIXME: Verifier should enforce 1 MMO for these intrinsics.
MachineMemOperand *MMO = *MI.memoperands_begin();
const LLT MemTy = MMO->getMemoryType();
const LLT S32 = LLT::scalar(32);
Register Dst = MI.getOperand(0).getReg();
Register RSrc = MI.getOperand(2).getReg();
// The typed intrinsics add an immediate after the registers.
const unsigned NumVIndexOps = IsTyped ? 8 : 7;
// The struct intrinsic variants add one additional operand over raw.
const bool HasVIndex = MI.getNumOperands() == NumVIndexOps;
Register VIndex;
int OpOffset = 0;
if (HasVIndex) {
VIndex = MI.getOperand(3).getReg();
OpOffset = 1;
} else {
VIndex = B.buildConstant(S32, 0).getReg(0);
}
Register VOffset = MI.getOperand(3 + OpOffset).getReg();
Register SOffset = MI.getOperand(4 + OpOffset).getReg();
unsigned Format = 0;
if (IsTyped) {
Format = MI.getOperand(5 + OpOffset).getImm();
++OpOffset;
}
unsigned AuxiliaryData = MI.getOperand(5 + OpOffset).getImm();
unsigned ImmOffset;
LLT Ty = MRI.getType(Dst);
LLT EltTy = Ty.getScalarType();
const bool IsD16 = IsFormat && (EltTy.getSizeInBits() == 16);
const bool Unpacked = ST.hasUnpackedD16VMem();
std::tie(VOffset, ImmOffset) = splitBufferOffsets(B, VOffset);
updateBufferMMO(MMO, VOffset, SOffset, ImmOffset, VIndex, MRI);
unsigned Opc;
if (IsTyped) {
Opc = IsD16 ? AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT_D16 :
AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT;
} else if (IsFormat) {
Opc = IsD16 ? AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT_D16 :
AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT;
} else {
switch (MemTy.getSizeInBits()) {
case 8:
Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE;
break;
case 16:
Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT;
break;
default:
Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD;
break;
}
}
Register LoadDstReg;
bool IsExtLoad =
(!IsD16 && MemTy.getSizeInBits() < 32) || (IsD16 && !Ty.isVector());
LLT UnpackedTy = Ty.changeElementSize(32);
if (IsExtLoad)
LoadDstReg = B.getMRI()->createGenericVirtualRegister(S32);
else if (Unpacked && IsD16 && Ty.isVector())
LoadDstReg = B.getMRI()->createGenericVirtualRegister(UnpackedTy);
else
LoadDstReg = Dst;
auto MIB = B.buildInstr(Opc)
.addDef(LoadDstReg) // vdata
.addUse(RSrc) // rsrc
.addUse(VIndex) // vindex
.addUse(VOffset) // voffset
.addUse(SOffset) // soffset
.addImm(ImmOffset); // offset(imm)
if (IsTyped)
MIB.addImm(Format);
MIB.addImm(AuxiliaryData) // cachepolicy, swizzled buffer(imm)
.addImm(HasVIndex ? -1 : 0) // idxen(imm)
.addMemOperand(MMO);
if (LoadDstReg != Dst) {
B.setInsertPt(B.getMBB(), ++B.getInsertPt());
// Widen result for extending loads was widened.
if (IsExtLoad)
B.buildTrunc(Dst, LoadDstReg);
else {
// Repack to original 16-bit vector result
// FIXME: G_TRUNC should work, but legalization currently fails
auto Unmerge = B.buildUnmerge(S32, LoadDstReg);
SmallVector<Register, 4> Repack;
for (unsigned I = 0, N = Unmerge->getNumOperands() - 1; I != N; ++I)
Repack.push_back(B.buildTrunc(EltTy, Unmerge.getReg(I)).getReg(0));
B.buildMerge(Dst, Repack);
}
}
MI.eraseFromParent();
return true;
}
bool AMDGPULegalizerInfo::legalizeAtomicIncDec(MachineInstr &MI,
MachineIRBuilder &B,
bool IsInc) const {
unsigned Opc = IsInc ? AMDGPU::G_AMDGPU_ATOMIC_INC :
AMDGPU::G_AMDGPU_ATOMIC_DEC;
B.buildInstr(Opc)
.addDef(MI.getOperand(0).getReg())
.addUse(MI.getOperand(2).getReg())
.addUse(MI.getOperand(3).getReg())
.cloneMemRefs(MI);
MI.eraseFromParent();
return true;
}
static unsigned getBufferAtomicPseudo(Intrinsic::ID IntrID) {
switch (IntrID) {
case Intrinsic::amdgcn_raw_buffer_atomic_swap:
case Intrinsic::amdgcn_struct_buffer_atomic_swap:
return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SWAP;
case Intrinsic::amdgcn_raw_buffer_atomic_add:
case Intrinsic::amdgcn_struct_buffer_atomic_add:
return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_ADD;
case Intrinsic::amdgcn_raw_buffer_atomic_sub:
case Intrinsic::amdgcn_struct_buffer_atomic_sub:
return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SUB;
case Intrinsic::amdgcn_raw_buffer_atomic_smin:
case Intrinsic::amdgcn_struct_buffer_atomic_smin:
return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMIN;
case Intrinsic::amdgcn_raw_buffer_atomic_umin:
case Intrinsic::amdgcn_struct_buffer_atomic_umin:
return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMIN;
case Intrinsic::amdgcn_raw_buffer_atomic_smax:
case Intrinsic::amdgcn_struct_buffer_atomic_smax:
return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMAX;
case Intrinsic::amdgcn_raw_buffer_atomic_umax:
case Intrinsic::amdgcn_struct_buffer_atomic_umax:
return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMAX;
case Intrinsic::amdgcn_raw_buffer_atomic_and:
case Intrinsic::amdgcn_struct_buffer_atomic_and:
return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_AND;
case Intrinsic::amdgcn_raw_buffer_atomic_or:
case Intrinsic::amdgcn_struct_buffer_atomic_or:
return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_OR;
case Intrinsic::amdgcn_raw_buffer_atomic_xor:
case Intrinsic::amdgcn_struct_buffer_atomic_xor:
return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_XOR;
case Intrinsic::amdgcn_raw_buffer_atomic_inc:
case Intrinsic::amdgcn_struct_buffer_atomic_inc:
return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_INC;
case Intrinsic::amdgcn_raw_buffer_atomic_dec:
case Intrinsic::amdgcn_struct_buffer_atomic_dec:
return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_DEC;
case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap:
case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap:
return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_CMPSWAP;
case Intrinsic::amdgcn_buffer_atomic_fadd:
case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FADD;
case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FMIN;
case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FMAX;
default:
llvm_unreachable("unhandled atomic opcode");
}
}
bool AMDGPULegalizerInfo::legalizeBufferAtomic(MachineInstr &MI,
MachineIRBuilder &B,
Intrinsic::ID IID) const {
const bool IsCmpSwap = IID == Intrinsic::amdgcn_raw_buffer_atomic_cmpswap ||
IID == Intrinsic::amdgcn_struct_buffer_atomic_cmpswap;
const bool HasReturn = MI.getNumExplicitDefs() != 0;
Register Dst;
int OpOffset = 0;
if (HasReturn) {
// A few FP atomics do not support return values.
Dst = MI.getOperand(0).getReg();
} else {
OpOffset = -1;
}
Register VData = MI.getOperand(2 + OpOffset).getReg();
Register CmpVal;
if (IsCmpSwap) {
CmpVal = MI.getOperand(3 + OpOffset).getReg();
++OpOffset;
}
Register RSrc = MI.getOperand(3 + OpOffset).getReg();
const unsigned NumVIndexOps = (IsCmpSwap ? 8 : 7) + HasReturn;
// The struct intrinsic variants add one additional operand over raw.
const bool HasVIndex = MI.getNumOperands() == NumVIndexOps;
Register VIndex;
if (HasVIndex) {
VIndex = MI.getOperand(4 + OpOffset).getReg();
++OpOffset;
} else {
VIndex = B.buildConstant(LLT::scalar(32), 0).getReg(0);
}
Register VOffset = MI.getOperand(4 + OpOffset).getReg();
Register SOffset = MI.getOperand(5 + OpOffset).getReg();
unsigned AuxiliaryData = MI.getOperand(6 + OpOffset).getImm();
MachineMemOperand *MMO = *MI.memoperands_begin();
unsigned ImmOffset;
std::tie(VOffset, ImmOffset) = splitBufferOffsets(B, VOffset);
updateBufferMMO(MMO, VOffset, SOffset, ImmOffset, VIndex, *B.getMRI());
auto MIB = B.buildInstr(getBufferAtomicPseudo(IID));
if (HasReturn)
MIB.addDef(Dst);
MIB.addUse(VData); // vdata
if (IsCmpSwap)
MIB.addReg(CmpVal);
MIB.addUse(RSrc) // rsrc
.addUse(VIndex) // vindex
.addUse(VOffset) // voffset
.addUse(SOffset) // soffset
.addImm(ImmOffset) // offset(imm)
.addImm(AuxiliaryData) // cachepolicy, swizzled buffer(imm)
.addImm(HasVIndex ? -1 : 0) // idxen(imm)
.addMemOperand(MMO);
MI.eraseFromParent();
return true;
}
/// Turn a set of s16 typed registers in \p AddrRegs into a dword sized
/// vector with s16 typed elements.
static void packImage16bitOpsToDwords(MachineIRBuilder &B, MachineInstr &MI,
SmallVectorImpl<Register> &PackedAddrs,
unsigned ArgOffset,
const AMDGPU::ImageDimIntrinsicInfo *Intr,
bool IsA16, bool IsG16) {
const LLT S16 = LLT::scalar(16);
const LLT V2S16 = LLT::fixed_vector(2, 16);
auto EndIdx = Intr->VAddrEnd;
for (unsigned I = Intr->VAddrStart; I < EndIdx; I++) {
MachineOperand &SrcOp = MI.getOperand(ArgOffset + I);
if (!SrcOp.isReg())
continue; // _L to _LZ may have eliminated this.
Register AddrReg = SrcOp.getReg();
if ((I < Intr->GradientStart) ||
(I >= Intr->GradientStart && I < Intr->CoordStart && !IsG16) ||
(I >= Intr->CoordStart && !IsA16)) {
// Handle any gradient or coordinate operands that should not be packed
AddrReg = B.buildBitcast(V2S16, AddrReg).getReg(0);
PackedAddrs.push_back(AddrReg);
} else {
// Dz/dh, dz/dv and the last odd coord are packed with undef. Also, in 1D,
// derivatives dx/dh and dx/dv are packed with undef.
if (((I + 1) >= EndIdx) ||
((Intr->NumGradients / 2) % 2 == 1 &&
(I == static_cast<unsigned>(Intr->GradientStart +
(Intr->NumGradients / 2) - 1) ||
I == static_cast<unsigned>(Intr->GradientStart +
Intr->NumGradients - 1))) ||
// Check for _L to _LZ optimization
!MI.getOperand(ArgOffset + I + 1).isReg()) {
PackedAddrs.push_back(
B.buildBuildVector(V2S16, {AddrReg, B.buildUndef(S16).getReg(0)})
.getReg(0));
} else {
PackedAddrs.push_back(
B.buildBuildVector(
V2S16, {AddrReg, MI.getOperand(ArgOffset + I + 1).getReg()})
.getReg(0));
++I;
}
}
}
}
/// Convert from separate vaddr components to a single vector address register,
/// and replace the remaining operands with $noreg.
static void convertImageAddrToPacked(MachineIRBuilder &B, MachineInstr &MI,
int DimIdx, int NumVAddrs) {
const LLT S32 = LLT::scalar(32);
SmallVector<Register, 8> AddrRegs;
for (int I = 0; I != NumVAddrs; ++I) {
MachineOperand &SrcOp = MI.getOperand(DimIdx + I);
if (SrcOp.isReg()) {
AddrRegs.push_back(SrcOp.getReg());
assert(B.getMRI()->getType(SrcOp.getReg()) == S32);
}
}
int NumAddrRegs = AddrRegs.size();
if (NumAddrRegs != 1) {
// Above 8 elements round up to next power of 2 (i.e. 16).
if (NumAddrRegs > 8 && !isPowerOf2_32(NumAddrRegs)) {
const int RoundedNumRegs = NextPowerOf2(NumAddrRegs);
auto Undef = B.buildUndef(S32);
AddrRegs.append(RoundedNumRegs - NumAddrRegs, Undef.getReg(0));
NumAddrRegs = RoundedNumRegs;
}
auto VAddr =
B.buildBuildVector(LLT::fixed_vector(NumAddrRegs, 32), AddrRegs);
MI.getOperand(DimIdx).setReg(VAddr.getReg(0));
}
for (int I = 1; I != NumVAddrs; ++I) {
MachineOperand &SrcOp = MI.getOperand(DimIdx + I);
if (SrcOp.isReg())
MI.getOperand(DimIdx + I).setReg(AMDGPU::NoRegister);
}
}
/// Rewrite image intrinsics to use register layouts expected by the subtarget.
///
/// Depending on the subtarget, load/store with 16-bit element data need to be
/// rewritten to use the low half of 32-bit registers, or directly use a packed
/// layout. 16-bit addresses should also sometimes be packed into 32-bit
/// registers.
///
/// We don't want to directly select image instructions just yet, but also want
/// to exposes all register repacking to the legalizer/combiners. We also don't
/// want a selected instrution entering RegBankSelect. In order to avoid
/// defining a multitude of intermediate image instructions, directly hack on
/// the intrinsic's arguments. In cases like a16 addresses, this requires
/// padding now unnecessary arguments with $noreg.
bool AMDGPULegalizerInfo::legalizeImageIntrinsic(
MachineInstr &MI, MachineIRBuilder &B, GISelChangeObserver &Observer,
const AMDGPU::ImageDimIntrinsicInfo *Intr) const {
const unsigned NumDefs = MI.getNumExplicitDefs();
const unsigned ArgOffset = NumDefs + 1;
bool IsTFE = NumDefs == 2;
// We are only processing the operands of d16 image operations on subtargets
// that use the unpacked register layout, or need to repack the TFE result.
// TODO: Do we need to guard against already legalized intrinsics?
const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
MachineRegisterInfo *MRI = B.getMRI();
const LLT S32 = LLT::scalar(32);
const LLT S16 = LLT::scalar(16);
const LLT V2S16 = LLT::fixed_vector(2, 16);
unsigned DMask = 0;
// Check for 16 bit addresses and pack if true.
LLT GradTy =
MRI->getType(MI.getOperand(ArgOffset + Intr->GradientStart).getReg());
LLT AddrTy =
MRI->getType(MI.getOperand(ArgOffset + Intr->CoordStart).getReg());
const bool IsG16 = GradTy == S16;
const bool IsA16 = AddrTy == S16;
int DMaskLanes = 0;
if (!BaseOpcode->Atomic) {
DMask = MI.getOperand(ArgOffset + Intr->DMaskIndex).getImm();
if (BaseOpcode->Gather4) {
DMaskLanes = 4;
} else if (DMask != 0) {
DMaskLanes = countPopulation(DMask);
} else if (!IsTFE && !BaseOpcode->Store) {
// If dmask is 0, this is a no-op load. This can be eliminated.
B.buildUndef(MI.getOperand(0));
MI.eraseFromParent();
return true;
}
}
Observer.changingInstr(MI);
auto ChangedInstr = make_scope_exit([&] { Observer.changedInstr(MI); });
unsigned NewOpcode = NumDefs == 0 ?
AMDGPU::G_AMDGPU_INTRIN_IMAGE_STORE : AMDGPU::G_AMDGPU_INTRIN_IMAGE_LOAD;
// Track that we legalized this
MI.setDesc(B.getTII().get(NewOpcode));
// Expecting to get an error flag since TFC is on - and dmask is 0 Force
// dmask to be at least 1 otherwise the instruction will fail
if (IsTFE && DMask == 0) {
DMask = 0x1;
DMaskLanes = 1;
MI.getOperand(ArgOffset + Intr->DMaskIndex).setImm(DMask);
}
if (BaseOpcode->Atomic) {
Register VData0 = MI.getOperand(2).getReg();
LLT Ty = MRI->getType(VData0);
// TODO: Allow atomic swap and bit ops for v2s16/v4s16
if (Ty.isVector())
return false;
if (BaseOpcode->AtomicX2) {
Register VData1 = MI.getOperand(3).getReg();
// The two values are packed in one register.
LLT PackedTy = LLT::fixed_vector(2, Ty);
auto Concat = B.buildBuildVector(PackedTy, {VData0, VData1});
MI.getOperand(2).setReg(Concat.getReg(0));
MI.getOperand(3).setReg(AMDGPU::NoRegister);
}
}
unsigned CorrectedNumVAddrs = Intr->NumVAddrs;
// Optimize _L to _LZ when _L is zero
if (const AMDGPU::MIMGLZMappingInfo *LZMappingInfo =
AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode)) {
const ConstantFP *ConstantLod;
if (mi_match(MI.getOperand(ArgOffset + Intr->LodIndex).getReg(), *MRI,
m_GFCst(ConstantLod))) {
if (ConstantLod->isZero() || ConstantLod->isNegative()) {
// Set new opcode to _lz variant of _l, and change the intrinsic ID.
const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr =
AMDGPU::getImageDimIntrinsicByBaseOpcode(LZMappingInfo->LZ,
Intr->Dim);
// The starting indexes should remain in the same place.
--CorrectedNumVAddrs;
MI.getOperand(MI.getNumExplicitDefs())
.setIntrinsicID(static_cast<Intrinsic::ID>(NewImageDimIntr->Intr));
MI.RemoveOperand(ArgOffset + Intr->LodIndex);
Intr = NewImageDimIntr;
}
}
}
// Optimize _mip away, when 'lod' is zero
if (AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode)) {
int64_t ConstantLod;
if (mi_match(MI.getOperand(ArgOffset + Intr->MipIndex).getReg(), *MRI,
m_ICst(ConstantLod))) {
if (ConstantLod == 0) {
// TODO: Change intrinsic opcode and remove operand instead or replacing
// it with 0, as the _L to _LZ handling is done above.
MI.getOperand(ArgOffset + Intr->MipIndex).ChangeToImmediate(0);
--CorrectedNumVAddrs;
}
}
}
// Rewrite the addressing register layout before doing anything else.
if (BaseOpcode->Gradients && !ST.hasG16() && (IsA16 != IsG16)) {
// 16 bit gradients are supported, but are tied to the A16 control
// so both gradients and addresses must be 16 bit
return false;
}
if (IsA16 && !ST.hasA16()) {
// A16 not supported
return false;
}
if (IsA16 || IsG16) {
if (Intr->NumVAddrs > 1) {
SmallVector<Register, 4> PackedRegs;
packImage16bitOpsToDwords(B, MI, PackedRegs, ArgOffset, Intr, IsA16,
IsG16);
// See also below in the non-a16 branch
const bool UseNSA = ST.hasNSAEncoding() && PackedRegs.size() >= 3 &&
PackedRegs.size() <= ST.getNSAMaxSize();
if (!UseNSA && PackedRegs.size() > 1) {
LLT PackedAddrTy = LLT::fixed_vector(2 * PackedRegs.size(), 16);
auto Concat = B.buildConcatVectors(PackedAddrTy, PackedRegs);
PackedRegs[0] = Concat.getReg(0);
PackedRegs.resize(1);
}
const unsigned NumPacked = PackedRegs.size();
for (unsigned I = Intr->VAddrStart; I < Intr->VAddrEnd; I++) {
MachineOperand &SrcOp = MI.getOperand(ArgOffset + I);
if (!SrcOp.isReg()) {
assert(SrcOp.isImm() && SrcOp.getImm() == 0);
continue;
}
assert(SrcOp.getReg() != AMDGPU::NoRegister);
if (I - Intr->VAddrStart < NumPacked)
SrcOp.setReg(PackedRegs[I - Intr->VAddrStart]);
else
SrcOp.setReg(AMDGPU::NoRegister);
}
}
} else {
// If the register allocator cannot place the address registers contiguously
// without introducing moves, then using the non-sequential address encoding
// is always preferable, since it saves VALU instructions and is usually a
// wash in terms of code size or even better.
//
// However, we currently have no way of hinting to the register allocator
// that MIMG addresses should be placed contiguously when it is possible to
// do so, so force non-NSA for the common 2-address case as a heuristic.
//
// SIShrinkInstructions will convert NSA encodings to non-NSA after register
// allocation when possible.
const bool UseNSA = ST.hasNSAEncoding() && CorrectedNumVAddrs >= 3 &&
CorrectedNumVAddrs <= ST.getNSAMaxSize();
if (!UseNSA && Intr->NumVAddrs > 1)
convertImageAddrToPacked(B, MI, ArgOffset + Intr->VAddrStart,
Intr->NumVAddrs);
}
int Flags = 0;
if (IsA16)
Flags |= 1;
if (IsG16)
Flags |= 2;
MI.addOperand(MachineOperand::CreateImm(Flags));
if (BaseOpcode->Store) { // No TFE for stores?
// TODO: Handle dmask trim
Register VData = MI.getOperand(1).getReg();
LLT Ty = MRI->getType(VData);
if (!Ty.isVector() || Ty.getElementType() != S16)
return true;
Register RepackedReg = handleD16VData(B, *MRI, VData, true);
if (RepackedReg != VData) {
MI.getOperand(1).setReg(RepackedReg);
}
return true;
}
Register DstReg = MI.getOperand(0).getReg();
LLT Ty = MRI->getType(DstReg);
const LLT EltTy = Ty.getScalarType();
const bool IsD16 = Ty.getScalarType() == S16;
const int NumElts = Ty.isVector() ? Ty.getNumElements() : 1;
// Confirm that the return type is large enough for the dmask specified
if (NumElts < DMaskLanes)
return false;
if (NumElts > 4 || DMaskLanes > 4)
return false;
const unsigned AdjustedNumElts = DMaskLanes == 0 ? 1 : DMaskLanes;
const LLT AdjustedTy =
Ty.changeElementCount(ElementCount::getFixed(AdjustedNumElts));
// The raw dword aligned data component of the load. The only legal cases
// where this matters should be when using the packed D16 format, for
// s16 -> <2 x s16>, and <3 x s16> -> <4 x s16>,
LLT RoundedTy;
// S32 vector to to cover all data, plus TFE result element.
LLT TFETy;
// Register type to use for each loaded component. Will be S32 or V2S16.
LLT RegTy;
if (IsD16 && ST.hasUnpackedD16VMem()) {
RoundedTy =
LLT::scalarOrVector(ElementCount::getFixed(AdjustedNumElts), 32);
TFETy = LLT::fixed_vector(AdjustedNumElts + 1, 32);
RegTy = S32;
} else {
unsigned EltSize = EltTy.getSizeInBits();
unsigned RoundedElts = (AdjustedTy.getSizeInBits() + 31) / 32;
unsigned RoundedSize = 32 * RoundedElts;
RoundedTy = LLT::scalarOrVector(
ElementCount::getFixed(RoundedSize / EltSize), EltSize);
TFETy = LLT::fixed_vector(RoundedSize / 32 + 1, S32);
RegTy = !IsTFE && EltSize == 16 ? V2S16 : S32;
}
// The return type does not need adjustment.
// TODO: Should we change s16 case to s32 or <2 x s16>?
if (!IsTFE && (RoundedTy == Ty || !Ty.isVector()))
return true;
Register Dst1Reg;
// Insert after the instruction.
B.setInsertPt(*MI.getParent(), ++MI.getIterator());
// TODO: For TFE with d16, if we used a TFE type that was a multiple of <2 x
// s16> instead of s32, we would only need 1 bitcast instead of multiple.
const LLT LoadResultTy = IsTFE ? TFETy : RoundedTy;
const int ResultNumRegs = LoadResultTy.getSizeInBits() / 32;
Register NewResultReg = MRI->createGenericVirtualRegister(LoadResultTy);
MI.getOperand(0).setReg(NewResultReg);
// In the IR, TFE is supposed to be used with a 2 element struct return
// type. The instruction really returns these two values in one contiguous
// register, with one additional dword beyond the loaded data. Rewrite the
// return type to use a single register result.
if (IsTFE) {
Dst1Reg = MI.getOperand(1).getReg();
if (MRI->getType(Dst1Reg) != S32)
return false;
// TODO: Make sure the TFE operand bit is set.
MI.RemoveOperand(1);
// Handle the easy case that requires no repack instructions.
if (Ty == S32) {
B.buildUnmerge({DstReg, Dst1Reg}, NewResultReg);
return true;
}
}
// Now figure out how to copy the new result register back into the old
// result.
SmallVector<Register, 5> ResultRegs(ResultNumRegs, Dst1Reg);
const int NumDataRegs = IsTFE ? ResultNumRegs - 1 : ResultNumRegs;
if (ResultNumRegs == 1) {
assert(!IsTFE);
ResultRegs[0] = NewResultReg;
} else {
// We have to repack into a new vector of some kind.
for (int I = 0; I != NumDataRegs; ++I)
ResultRegs[I] = MRI->createGenericVirtualRegister(RegTy);
B.buildUnmerge(ResultRegs, NewResultReg);
// Drop the final TFE element to get the data part. The TFE result is
// directly written to the right place already.
if (IsTFE)
ResultRegs.resize(NumDataRegs);
}
// For an s16 scalar result, we form an s32 result with a truncate regardless
// of packed vs. unpacked.
if (IsD16 && !Ty.isVector()) {
B.buildTrunc(DstReg, ResultRegs[0]);
return true;
}
// Avoid a build/concat_vector of 1 entry.
if (Ty == V2S16 && NumDataRegs == 1 && !ST.hasUnpackedD16VMem()) {
B.buildBitcast(DstReg, ResultRegs[0]);
return true;
}
assert(Ty.isVector());
if (IsD16) {
// For packed D16 results with TFE enabled, all the data components are
// S32. Cast back to the expected type.
//
// TODO: We don't really need to use load s32 elements. We would only need one
// cast for the TFE result if a multiple of v2s16 was used.
if (RegTy != V2S16 && !ST.hasUnpackedD16VMem()) {
for (Register &Reg : ResultRegs)
Reg = B.buildBitcast(V2S16, Reg).getReg(0);
} else if (ST.hasUnpackedD16VMem()) {
for (Register &Reg : ResultRegs)
Reg = B.buildTrunc(S16, Reg).getReg(0);
}
}
auto padWithUndef = [&](LLT Ty, int NumElts) {
if (NumElts == 0)
return;
Register Undef = B.buildUndef(Ty).getReg(0);
for (int I = 0; I != NumElts; ++I)
ResultRegs.push_back(Undef);
};
// Pad out any elements eliminated due to the dmask.
LLT ResTy = MRI->getType(ResultRegs[0]);
if (!ResTy.isVector()) {
padWithUndef(ResTy, NumElts - ResultRegs.size());
B.buildBuildVector(DstReg, ResultRegs);
return true;
}
assert(!ST.hasUnpackedD16VMem() && ResTy == V2S16);
const int RegsToCover = (Ty.getSizeInBits() + 31) / 32;
// Deal with the one annoying legal case.
const LLT V3S16 = LLT::fixed_vector(3, 16);
if (Ty == V3S16) {
padWithUndef(ResTy, RegsToCover - ResultRegs.size() + 1);
auto Concat = B.buildConcatVectors(LLT::fixed_vector(6, 16), ResultRegs);
B.buildUnmerge({DstReg, MRI->createGenericVirtualRegister(V3S16)}, Concat);
return true;
}
padWithUndef(ResTy, RegsToCover - ResultRegs.size());
B.buildConcatVectors(DstReg, ResultRegs);
return true;
}
bool AMDGPULegalizerInfo::legalizeSBufferLoad(
LegalizerHelper &Helper, MachineInstr &MI) const {
MachineIRBuilder &B = Helper.MIRBuilder;
GISelChangeObserver &Observer = Helper.Observer;
Register Dst = MI.getOperand(0).getReg();
LLT Ty = B.getMRI()->getType(Dst);
unsigned Size = Ty.getSizeInBits();
MachineFunction &MF = B.getMF();
Observer.changingInstr(MI);
if (shouldBitcastLoadStoreType(ST, Ty, LLT::scalar(Size))) {
Ty = getBitcastRegisterType(Ty);
Helper.bitcastDst(MI, Ty, 0);
Dst = MI.getOperand(0).getReg();
B.setInsertPt(B.getMBB(), MI);
}
// FIXME: We don't really need this intermediate instruction. The intrinsic
// should be fixed to have a memory operand. Since it's readnone, we're not
// allowed to add one.
MI.setDesc(B.getTII().get(AMDGPU::G_AMDGPU_S_BUFFER_LOAD));
MI.RemoveOperand(1); // Remove intrinsic ID
// FIXME: When intrinsic definition is fixed, this should have an MMO already.
// TODO: Should this use datalayout alignment?
const unsigned MemSize = (Size + 7) / 8;
const Align MemAlign(4);
MachineMemOperand *MMO = MF.getMachineMemOperand(
MachinePointerInfo(),
MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant,
MemSize, MemAlign);
MI.addMemOperand(MF, MMO);
// There are no 96-bit result scalar loads, but widening to 128-bit should
// always be legal. We may need to restore this to a 96-bit result if it turns
// out this needs to be converted to a vector load during RegBankSelect.
if (!isPowerOf2_32(Size)) {
if (Ty.isVector())
Helper.moreElementsVectorDst(MI, getPow2VectorType(Ty), 0);
else
Helper.widenScalarDst(MI, getPow2ScalarType(Ty), 0);
}
Observer.changedInstr(MI);
return true;
}
// TODO: Move to selection
bool AMDGPULegalizerInfo::legalizeTrapIntrinsic(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &B) const {
if (!ST.isTrapHandlerEnabled() ||
ST.getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA)
return legalizeTrapEndpgm(MI, MRI, B);
if (Optional<uint8_t> HsaAbiVer = AMDGPU::getHsaAbiVersion(&ST)) {
switch (*HsaAbiVer) {
case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
return legalizeTrapHsaQueuePtr(MI, MRI, B);
case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
return ST.supportsGetDoorbellID() ?
legalizeTrapHsa(MI, MRI, B) :
legalizeTrapHsaQueuePtr(MI, MRI, B);
}
}
llvm_unreachable("Unknown trap handler");
}
bool AMDGPULegalizerInfo::legalizeTrapEndpgm(
MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
B.buildInstr(AMDGPU::S_ENDPGM).addImm(0);
MI.eraseFromParent();
return true;
}
bool AMDGPULegalizerInfo::legalizeTrapHsaQueuePtr(
MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
// Pass queue pointer to trap handler as input, and insert trap instruction
// Reference: https://llvm.org/docs/AMDGPUUsage.html#trap-handler-abi
Register LiveIn =
MRI.createGenericVirtualRegister(LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
if (!loadInputValue(LiveIn, B, AMDGPUFunctionArgInfo::QUEUE_PTR))
return false;
Register SGPR01(AMDGPU::SGPR0_SGPR1);
B.buildCopy(SGPR01, LiveIn);
B.buildInstr(AMDGPU::S_TRAP)
.addImm(static_cast<unsigned>(GCNSubtarget::TrapID::LLVMAMDHSATrap))
.addReg(SGPR01, RegState::Implicit);
MI.eraseFromParent();
return true;
}
bool AMDGPULegalizerInfo::legalizeTrapHsa(
MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
B.buildInstr(AMDGPU::S_TRAP)
.addImm(static_cast<unsigned>(GCNSubtarget::TrapID::LLVMAMDHSATrap));
MI.eraseFromParent();
return true;
}
bool AMDGPULegalizerInfo::legalizeDebugTrapIntrinsic(
MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
// Is non-HSA path or trap-handler disabled? Then, report a warning
// accordingly
if (!ST.isTrapHandlerEnabled() ||
ST.getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) {
DiagnosticInfoUnsupported NoTrap(B.getMF().getFunction(),
"debugtrap handler not supported",
MI.getDebugLoc(), DS_Warning);
LLVMContext &Ctx = B.getMF().getFunction().getContext();
Ctx.diagnose(NoTrap);
} else {
// Insert debug-trap instruction
B.buildInstr(AMDGPU::S_TRAP)
.addImm(static_cast<unsigned>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap));
}
MI.eraseFromParent();
return true;
}
bool AMDGPULegalizerInfo::legalizeBVHIntrinsic(MachineInstr &MI,
MachineIRBuilder &B) const {
MachineRegisterInfo &MRI = *B.getMRI();
const LLT S16 = LLT::scalar(16);
const LLT S32 = LLT::scalar(32);
Register DstReg = MI.getOperand(0).getReg();
Register NodePtr = MI.getOperand(2).getReg();
Register RayExtent = MI.getOperand(3).getReg();
Register RayOrigin = MI.getOperand(4).getReg();
Register RayDir = MI.getOperand(5).getReg();
Register RayInvDir = MI.getOperand(6).getReg();
Register TDescr = MI.getOperand(7).getReg();
if (!ST.hasGFX10_AEncoding()) {
DiagnosticInfoUnsupported BadIntrin(B.getMF().getFunction(),
"intrinsic not supported on subtarget",
MI.getDebugLoc());
B.getMF().getFunction().getContext().diagnose(BadIntrin);
return false;
}
const bool IsA16 = MRI.getType(RayDir).getElementType().getSizeInBits() == 16;
const bool Is64 = MRI.getType(NodePtr).getSizeInBits() == 64;
const unsigned NumVDataDwords = 4;
const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11);
const bool UseNSA =
ST.hasNSAEncoding() && NumVAddrDwords <= ST.getNSAMaxSize();
const unsigned BaseOpcodes[2][2] = {
{AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16},
{AMDGPU::IMAGE_BVH64_INTERSECT_RAY,
AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}};
int Opcode;
if (UseNSA) {
Opcode =
AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16], AMDGPU::MIMGEncGfx10NSA,
NumVDataDwords, NumVAddrDwords);
} else {
Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16],
AMDGPU::MIMGEncGfx10Default, NumVDataDwords,
PowerOf2Ceil(NumVAddrDwords));
}
assert(Opcode != -1);
SmallVector<Register, 12> Ops;
if (Is64) {
auto Unmerge = B.buildUnmerge({S32, S32}, NodePtr);
Ops.push_back(Unmerge.getReg(0));
Ops.push_back(Unmerge.getReg(1));
} else {
Ops.push_back(NodePtr);
}
Ops.push_back(RayExtent);
auto packLanes = [&Ops, &S32, &B] (Register Src) {
auto Unmerge = B.buildUnmerge({S32, S32, S32, S32}, Src);
Ops.push_back(Unmerge.getReg(0));
Ops.push_back(Unmerge.getReg(1));
Ops.push_back(Unmerge.getReg(2));
};
packLanes(RayOrigin);
if (IsA16) {
auto UnmergeRayDir = B.buildUnmerge({S16, S16, S16, S16}, RayDir);
auto UnmergeRayInvDir = B.buildUnmerge({S16, S16, S16, S16}, RayInvDir);
Register R1 = MRI.createGenericVirtualRegister(S32);
Register R2 = MRI.createGenericVirtualRegister(S32);
Register R3 = MRI.createGenericVirtualRegister(S32);
B.buildMerge(R1, {UnmergeRayDir.getReg(0), UnmergeRayDir.getReg(1)});
B.buildMerge(R2, {UnmergeRayDir.getReg(2), UnmergeRayInvDir.getReg(0)});
B.buildMerge(R3, {UnmergeRayInvDir.getReg(1), UnmergeRayInvDir.getReg(2)});
Ops.push_back(R1);
Ops.push_back(R2);
Ops.push_back(R3);
} else {
packLanes(RayDir);
packLanes(RayInvDir);
}
if (!UseNSA) {
// Build a single vector containing all the operands so far prepared.
LLT OpTy = LLT::fixed_vector(Ops.size(), 32);
Register MergedOps = B.buildMerge(OpTy, Ops).getReg(0);
Ops.clear();
Ops.push_back(MergedOps);
}
auto MIB = B.buildInstr(AMDGPU::G_AMDGPU_INTRIN_BVH_INTERSECT_RAY)
.addDef(DstReg)
.addImm(Opcode);
for (Register R : Ops) {
MIB.addUse(R);
}
MIB.addUse(TDescr)
.addImm(IsA16 ? 1 : 0)
.cloneMemRefs(MI);
MI.eraseFromParent();
return true;
}
bool AMDGPULegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper,
MachineInstr &MI) const {
MachineIRBuilder &B = Helper.MIRBuilder;
MachineRegisterInfo &MRI = *B.getMRI();
// Replace the use G_BRCOND with the exec manipulate and branch pseudos.
auto IntrID = MI.getIntrinsicID();
switch (IntrID) {
case Intrinsic::amdgcn_if:
case Intrinsic::amdgcn_else: {
MachineInstr *Br = nullptr;
MachineBasicBlock *UncondBrTarget = nullptr;
bool Negated = false;
if (MachineInstr *BrCond =
verifyCFIntrinsic(MI, MRI, Br, UncondBrTarget, Negated)) {
const SIRegisterInfo *TRI
= static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
Register Def = MI.getOperand(1).getReg();
Register Use = MI.getOperand(3).getReg();
MachineBasicBlock *CondBrTarget = BrCond->getOperand(1).getMBB();
if (Negated)
std::swap(CondBrTarget, UncondBrTarget);
B.setInsertPt(B.getMBB(), BrCond->getIterator());
if (IntrID == Intrinsic::amdgcn_if) {
B.buildInstr(AMDGPU::SI_IF)
.addDef(Def)
.addUse(Use)
.addMBB(UncondBrTarget);
} else {
B.buildInstr(AMDGPU::SI_ELSE)
.addDef(Def)
.addUse(Use)
.addMBB(UncondBrTarget);
}
if (Br) {
Br->getOperand(0).setMBB(CondBrTarget);
} else {
// The IRTranslator skips inserting the G_BR for fallthrough cases, but
// since we're swapping branch targets it needs to be reinserted.
// FIXME: IRTranslator should probably not do this
B.buildBr(*CondBrTarget);
}
MRI.setRegClass(Def, TRI->getWaveMaskRegClass());
MRI.setRegClass(Use, TRI->getWaveMaskRegClass());
MI.eraseFromParent();
BrCond->eraseFromParent();
return true;
}
return false;
}
case Intrinsic::amdgcn_loop: {
MachineInstr *Br = nullptr;
MachineBasicBlock *UncondBrTarget = nullptr;
bool Negated = false;
if (MachineInstr *BrCond =
verifyCFIntrinsic(MI, MRI, Br, UncondBrTarget, Negated)) {
const SIRegisterInfo *TRI
= static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
MachineBasicBlock *CondBrTarget = BrCond->getOperand(1).getMBB();
Register Reg = MI.getOperand(2).getReg();
if (Negated)
std::swap(CondBrTarget, UncondBrTarget);
B.setInsertPt(B.getMBB(), BrCond->getIterator());
B.buildInstr(AMDGPU::SI_LOOP)
.addUse(Reg)
.addMBB(UncondBrTarget);
if (Br)
Br->getOperand(0).setMBB(CondBrTarget);
else
B.buildBr(*CondBrTarget);
MI.eraseFromParent();
BrCond->eraseFromParent();
MRI.setRegClass(Reg, TRI->getWaveMaskRegClass());
return true;
}
return false;
}
case Intrinsic::amdgcn_kernarg_segment_ptr:
if (!AMDGPU::isKernel(B.getMF().getFunction().getCallingConv())) {
// This only makes sense to call in a kernel, so just lower to null.
B.buildConstant(MI.getOperand(0).getReg(), 0);
MI.eraseFromParent();
return true;
}
return legalizePreloadedArgIntrin(
MI, MRI, B, AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
case Intrinsic::amdgcn_implicitarg_ptr:
return legalizeImplicitArgPtr(MI, MRI, B);
case Intrinsic::amdgcn_workitem_id_x:
return legalizePreloadedArgIntrin(MI, MRI, B,
AMDGPUFunctionArgInfo::WORKITEM_ID_X);
case Intrinsic::amdgcn_workitem_id_y:
return legalizePreloadedArgIntrin(MI, MRI, B,
AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
case Intrinsic::amdgcn_workitem_id_z:
return legalizePreloadedArgIntrin(MI, MRI, B,
AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
case Intrinsic::amdgcn_workgroup_id_x:
return legalizePreloadedArgIntrin(MI, MRI, B,
AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
case Intrinsic::amdgcn_workgroup_id_y:
return legalizePreloadedArgIntrin(MI, MRI, B,
AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
case Intrinsic::amdgcn_workgroup_id_z:
return legalizePreloadedArgIntrin(MI, MRI, B,
AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
case Intrinsic::amdgcn_dispatch_ptr:
return legalizePreloadedArgIntrin(MI, MRI, B,
AMDGPUFunctionArgInfo::DISPATCH_PTR);
case Intrinsic::amdgcn_queue_ptr:
return legalizePreloadedArgIntrin(MI, MRI, B,
AMDGPUFunctionArgInfo::QUEUE_PTR);
case Intrinsic::amdgcn_implicit_buffer_ptr:
return legalizePreloadedArgIntrin(
MI, MRI, B, AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
case Intrinsic::amdgcn_dispatch_id:
return legalizePreloadedArgIntrin(MI, MRI, B,
AMDGPUFunctionArgInfo::DISPATCH_ID);
case Intrinsic::amdgcn_fdiv_fast:
return legalizeFDIVFastIntrin(MI, MRI, B);
case Intrinsic::amdgcn_is_shared:
return legalizeIsAddrSpace(MI, MRI, B, AMDGPUAS::LOCAL_ADDRESS);
case Intrinsic::amdgcn_is_private:
return legalizeIsAddrSpace(MI, MRI, B, AMDGPUAS::PRIVATE_ADDRESS);
case Intrinsic::amdgcn_wavefrontsize: {
B.buildConstant(MI.getOperand(0), ST.getWavefrontSize());
MI.eraseFromParent();
return true;
}
case Intrinsic::amdgcn_s_buffer_load:
return legalizeSBufferLoad(Helper, MI);
case Intrinsic::amdgcn_raw_buffer_store:
case Intrinsic::amdgcn_struct_buffer_store:
return legalizeBufferStore(MI, MRI, B, false, false);
case Intrinsic::amdgcn_raw_buffer_store_format:
case Intrinsic::amdgcn_struct_buffer_store_format:
return legalizeBufferStore(MI, MRI, B, false, true);
case Intrinsic::amdgcn_raw_tbuffer_store:
case Intrinsic::amdgcn_struct_tbuffer_store:
return legalizeBufferStore(MI, MRI, B, true, true);
case Intrinsic::amdgcn_raw_buffer_load:
case Intrinsic::amdgcn_struct_buffer_load:
return legalizeBufferLoad(MI, MRI, B, false, false);
case Intrinsic::amdgcn_raw_buffer_load_format:
case Intrinsic::amdgcn_struct_buffer_load_format:
return legalizeBufferLoad(MI, MRI, B, true, false);
case Intrinsic::amdgcn_raw_tbuffer_load:
case Intrinsic::amdgcn_struct_tbuffer_load:
return legalizeBufferLoad(MI, MRI, B, true, true);
case Intrinsic::amdgcn_raw_buffer_atomic_swap:
case Intrinsic::amdgcn_struct_buffer_atomic_swap:
case Intrinsic::amdgcn_raw_buffer_atomic_add:
case Intrinsic::amdgcn_struct_buffer_atomic_add:
case Intrinsic::amdgcn_raw_buffer_atomic_sub:
case Intrinsic::amdgcn_struct_buffer_atomic_sub:
case Intrinsic::amdgcn_raw_buffer_atomic_smin:
case Intrinsic::amdgcn_struct_buffer_atomic_smin:
case Intrinsic::amdgcn_raw_buffer_atomic_umin:
case Intrinsic::amdgcn_struct_buffer_atomic_umin:
case Intrinsic::amdgcn_raw_buffer_atomic_smax:
case Intrinsic::amdgcn_struct_buffer_atomic_smax:
case Intrinsic::amdgcn_raw_buffer_atomic_umax:
case Intrinsic::amdgcn_struct_buffer_atomic_umax:
case Intrinsic::amdgcn_raw_buffer_atomic_and:
case Intrinsic::amdgcn_struct_buffer_atomic_and:
case Intrinsic::amdgcn_raw_buffer_atomic_or:
case Intrinsic::amdgcn_struct_buffer_atomic_or:
case Intrinsic::amdgcn_raw_buffer_atomic_xor:
case Intrinsic::amdgcn_struct_buffer_atomic_xor:
case Intrinsic::amdgcn_raw_buffer_atomic_inc:
case Intrinsic::amdgcn_struct_buffer_atomic_inc:
case Intrinsic::amdgcn_raw_buffer_atomic_dec:
case Intrinsic::amdgcn_struct_buffer_atomic_dec:
case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap:
case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap:
case Intrinsic::amdgcn_buffer_atomic_fadd:
case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
return legalizeBufferAtomic(MI, B, IntrID);
case Intrinsic::amdgcn_atomic_inc:
return legalizeAtomicIncDec(MI, B, true);
case Intrinsic::amdgcn_atomic_dec:
return legalizeAtomicIncDec(MI, B, false);
case Intrinsic::trap:
return legalizeTrapIntrinsic(MI, MRI, B);
case Intrinsic::debugtrap:
return legalizeDebugTrapIntrinsic(MI, MRI, B);
case Intrinsic::amdgcn_rsq_clamp:
return legalizeRsqClampIntrinsic(MI, MRI, B);
case Intrinsic::amdgcn_ds_fadd:
case Intrinsic::amdgcn_ds_fmin:
case Intrinsic::amdgcn_ds_fmax:
return legalizeDSAtomicFPIntrinsic(Helper, MI, IntrID);
case Intrinsic::amdgcn_image_bvh_intersect_ray:
return legalizeBVHIntrinsic(MI, B);
default: {
if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
AMDGPU::getImageDimIntrinsicInfo(IntrID))
return legalizeImageIntrinsic(MI, B, Helper.Observer, ImageDimIntr);
return true;
}
}
return true;
}