| //===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// This pass optimizes atomic operations by using a single lane of a wavefront |
| /// to perform the atomic operation, thus reducing contention on that memory |
| /// location. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "AMDGPU.h" |
| #include "GCNSubtarget.h" |
| #include "llvm/Analysis/LegacyDivergenceAnalysis.h" |
| #include "llvm/CodeGen/TargetPassConfig.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstVisitor.h" |
| #include "llvm/IR/IntrinsicsAMDGPU.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| |
| #define DEBUG_TYPE "amdgpu-atomic-optimizer" |
| |
| using namespace llvm; |
| using namespace llvm::AMDGPU; |
| |
| namespace { |
| |
| struct ReplacementInfo { |
| Instruction *I; |
| AtomicRMWInst::BinOp Op; |
| unsigned ValIdx; |
| bool ValDivergent; |
| }; |
| |
| class AMDGPUAtomicOptimizer : public FunctionPass, |
| public InstVisitor<AMDGPUAtomicOptimizer> { |
| private: |
| SmallVector<ReplacementInfo, 8> ToReplace; |
| const LegacyDivergenceAnalysis *DA; |
| const DataLayout *DL; |
| DominatorTree *DT; |
| const GCNSubtarget *ST; |
| bool IsPixelShader; |
| |
| Value *buildReduction(IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *V, |
| Value *const Identity) const; |
| Value *buildScan(IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *V, |
| Value *const Identity) const; |
| Value *buildShiftRight(IRBuilder<> &B, Value *V, Value *const Identity) const; |
| void optimizeAtomic(Instruction &I, AtomicRMWInst::BinOp Op, unsigned ValIdx, |
| bool ValDivergent) const; |
| |
| public: |
| static char ID; |
| |
| AMDGPUAtomicOptimizer() : FunctionPass(ID) {} |
| |
| bool runOnFunction(Function &F) override; |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addPreserved<DominatorTreeWrapperPass>(); |
| AU.addRequired<LegacyDivergenceAnalysis>(); |
| AU.addRequired<TargetPassConfig>(); |
| } |
| |
| void visitAtomicRMWInst(AtomicRMWInst &I); |
| void visitIntrinsicInst(IntrinsicInst &I); |
| }; |
| |
| } // namespace |
| |
| char AMDGPUAtomicOptimizer::ID = 0; |
| |
| char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID; |
| |
| bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) { |
| if (skipFunction(F)) { |
| return false; |
| } |
| |
| DA = &getAnalysis<LegacyDivergenceAnalysis>(); |
| DL = &F.getParent()->getDataLayout(); |
| DominatorTreeWrapperPass *const DTW = |
| getAnalysisIfAvailable<DominatorTreeWrapperPass>(); |
| DT = DTW ? &DTW->getDomTree() : nullptr; |
| const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>(); |
| const TargetMachine &TM = TPC.getTM<TargetMachine>(); |
| ST = &TM.getSubtarget<GCNSubtarget>(F); |
| IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS; |
| |
| visit(F); |
| |
| const bool Changed = !ToReplace.empty(); |
| |
| for (ReplacementInfo &Info : ToReplace) { |
| optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent); |
| } |
| |
| ToReplace.clear(); |
| |
| return Changed; |
| } |
| |
| void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) { |
| // Early exit for unhandled address space atomic instructions. |
| switch (I.getPointerAddressSpace()) { |
| default: |
| return; |
| case AMDGPUAS::GLOBAL_ADDRESS: |
| case AMDGPUAS::LOCAL_ADDRESS: |
| break; |
| } |
| |
| AtomicRMWInst::BinOp Op = I.getOperation(); |
| |
| switch (Op) { |
| default: |
| return; |
| case AtomicRMWInst::Add: |
| case AtomicRMWInst::Sub: |
| case AtomicRMWInst::And: |
| case AtomicRMWInst::Or: |
| case AtomicRMWInst::Xor: |
| case AtomicRMWInst::Max: |
| case AtomicRMWInst::Min: |
| case AtomicRMWInst::UMax: |
| case AtomicRMWInst::UMin: |
| break; |
| } |
| |
| const unsigned PtrIdx = 0; |
| const unsigned ValIdx = 1; |
| |
| // If the pointer operand is divergent, then each lane is doing an atomic |
| // operation on a different address, and we cannot optimize that. |
| if (DA->isDivergentUse(&I.getOperandUse(PtrIdx))) { |
| return; |
| } |
| |
| const bool ValDivergent = DA->isDivergentUse(&I.getOperandUse(ValIdx)); |
| |
| // If the value operand is divergent, each lane is contributing a different |
| // value to the atomic calculation. We can only optimize divergent values if |
| // we have DPP available on our subtarget, and the atomic operation is 32 |
| // bits. |
| if (ValDivergent && |
| (!ST->hasDPP() || DL->getTypeSizeInBits(I.getType()) != 32)) { |
| return; |
| } |
| |
| // If we get here, we can optimize the atomic using a single wavefront-wide |
| // atomic operation to do the calculation for the entire wavefront, so |
| // remember the instruction so we can come back to it. |
| const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent}; |
| |
| ToReplace.push_back(Info); |
| } |
| |
| void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) { |
| AtomicRMWInst::BinOp Op; |
| |
| switch (I.getIntrinsicID()) { |
| default: |
| return; |
| case Intrinsic::amdgcn_buffer_atomic_add: |
| case Intrinsic::amdgcn_struct_buffer_atomic_add: |
| case Intrinsic::amdgcn_raw_buffer_atomic_add: |
| Op = AtomicRMWInst::Add; |
| break; |
| case Intrinsic::amdgcn_buffer_atomic_sub: |
| case Intrinsic::amdgcn_struct_buffer_atomic_sub: |
| case Intrinsic::amdgcn_raw_buffer_atomic_sub: |
| Op = AtomicRMWInst::Sub; |
| break; |
| case Intrinsic::amdgcn_buffer_atomic_and: |
| case Intrinsic::amdgcn_struct_buffer_atomic_and: |
| case Intrinsic::amdgcn_raw_buffer_atomic_and: |
| Op = AtomicRMWInst::And; |
| break; |
| case Intrinsic::amdgcn_buffer_atomic_or: |
| case Intrinsic::amdgcn_struct_buffer_atomic_or: |
| case Intrinsic::amdgcn_raw_buffer_atomic_or: |
| Op = AtomicRMWInst::Or; |
| break; |
| case Intrinsic::amdgcn_buffer_atomic_xor: |
| case Intrinsic::amdgcn_struct_buffer_atomic_xor: |
| case Intrinsic::amdgcn_raw_buffer_atomic_xor: |
| Op = AtomicRMWInst::Xor; |
| break; |
| case Intrinsic::amdgcn_buffer_atomic_smin: |
| case Intrinsic::amdgcn_struct_buffer_atomic_smin: |
| case Intrinsic::amdgcn_raw_buffer_atomic_smin: |
| Op = AtomicRMWInst::Min; |
| break; |
| case Intrinsic::amdgcn_buffer_atomic_umin: |
| case Intrinsic::amdgcn_struct_buffer_atomic_umin: |
| case Intrinsic::amdgcn_raw_buffer_atomic_umin: |
| Op = AtomicRMWInst::UMin; |
| break; |
| case Intrinsic::amdgcn_buffer_atomic_smax: |
| case Intrinsic::amdgcn_struct_buffer_atomic_smax: |
| case Intrinsic::amdgcn_raw_buffer_atomic_smax: |
| Op = AtomicRMWInst::Max; |
| break; |
| case Intrinsic::amdgcn_buffer_atomic_umax: |
| case Intrinsic::amdgcn_struct_buffer_atomic_umax: |
| case Intrinsic::amdgcn_raw_buffer_atomic_umax: |
| Op = AtomicRMWInst::UMax; |
| break; |
| } |
| |
| const unsigned ValIdx = 0; |
| |
| const bool ValDivergent = DA->isDivergentUse(&I.getOperandUse(ValIdx)); |
| |
| // If the value operand is divergent, each lane is contributing a different |
| // value to the atomic calculation. We can only optimize divergent values if |
| // we have DPP available on our subtarget, and the atomic operation is 32 |
| // bits. |
| if (ValDivergent && |
| (!ST->hasDPP() || DL->getTypeSizeInBits(I.getType()) != 32)) { |
| return; |
| } |
| |
| // If any of the other arguments to the intrinsic are divergent, we can't |
| // optimize the operation. |
| for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) { |
| if (DA->isDivergentUse(&I.getOperandUse(Idx))) { |
| return; |
| } |
| } |
| |
| // If we get here, we can optimize the atomic using a single wavefront-wide |
| // atomic operation to do the calculation for the entire wavefront, so |
| // remember the instruction so we can come back to it. |
| const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent}; |
| |
| ToReplace.push_back(Info); |
| } |
| |
| // Use the builder to create the non-atomic counterpart of the specified |
| // atomicrmw binary op. |
| static Value *buildNonAtomicBinOp(IRBuilder<> &B, AtomicRMWInst::BinOp Op, |
| Value *LHS, Value *RHS) { |
| CmpInst::Predicate Pred; |
| |
| switch (Op) { |
| default: |
| llvm_unreachable("Unhandled atomic op"); |
| case AtomicRMWInst::Add: |
| return B.CreateBinOp(Instruction::Add, LHS, RHS); |
| case AtomicRMWInst::Sub: |
| return B.CreateBinOp(Instruction::Sub, LHS, RHS); |
| case AtomicRMWInst::And: |
| return B.CreateBinOp(Instruction::And, LHS, RHS); |
| case AtomicRMWInst::Or: |
| return B.CreateBinOp(Instruction::Or, LHS, RHS); |
| case AtomicRMWInst::Xor: |
| return B.CreateBinOp(Instruction::Xor, LHS, RHS); |
| |
| case AtomicRMWInst::Max: |
| Pred = CmpInst::ICMP_SGT; |
| break; |
| case AtomicRMWInst::Min: |
| Pred = CmpInst::ICMP_SLT; |
| break; |
| case AtomicRMWInst::UMax: |
| Pred = CmpInst::ICMP_UGT; |
| break; |
| case AtomicRMWInst::UMin: |
| Pred = CmpInst::ICMP_ULT; |
| break; |
| } |
| Value *Cond = B.CreateICmp(Pred, LHS, RHS); |
| return B.CreateSelect(Cond, LHS, RHS); |
| } |
| |
| // Use the builder to create a reduction of V across the wavefront, with all |
| // lanes active, returning the same result in all lanes. |
| Value *AMDGPUAtomicOptimizer::buildReduction(IRBuilder<> &B, |
| AtomicRMWInst::BinOp Op, Value *V, |
| Value *const Identity) const { |
| Type *const Ty = V->getType(); |
| Module *M = B.GetInsertBlock()->getModule(); |
| Function *UpdateDPP = |
| Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, Ty); |
| |
| // Reduce within each row of 16 lanes. |
| for (unsigned Idx = 0; Idx < 4; Idx++) { |
| V = buildNonAtomicBinOp( |
| B, Op, V, |
| B.CreateCall(UpdateDPP, |
| {Identity, V, B.getInt32(DPP::ROW_XMASK0 | 1 << Idx), |
| B.getInt32(0xf), B.getInt32(0xf), B.getFalse()})); |
| } |
| |
| // Reduce within each pair of rows (i.e. 32 lanes). |
| assert(ST->hasPermLaneX16()); |
| V = buildNonAtomicBinOp( |
| B, Op, V, |
| B.CreateIntrinsic( |
| Intrinsic::amdgcn_permlanex16, {}, |
| {V, V, B.getInt32(-1), B.getInt32(-1), B.getFalse(), B.getFalse()})); |
| |
| if (ST->isWave32()) |
| return V; |
| |
| // Pick an arbitrary lane from 0..31 and an arbitrary lane from 32..63 and |
| // combine them with a scalar operation. |
| Function *ReadLane = |
| Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, {}); |
| Value *const Lane0 = B.CreateCall(ReadLane, {V, B.getInt32(0)}); |
| Value *const Lane32 = B.CreateCall(ReadLane, {V, B.getInt32(32)}); |
| return buildNonAtomicBinOp(B, Op, Lane0, Lane32); |
| } |
| |
| // Use the builder to create an inclusive scan of V across the wavefront, with |
| // all lanes active. |
| Value *AMDGPUAtomicOptimizer::buildScan(IRBuilder<> &B, AtomicRMWInst::BinOp Op, |
| Value *V, Value *const Identity) const { |
| Type *const Ty = V->getType(); |
| Module *M = B.GetInsertBlock()->getModule(); |
| Function *UpdateDPP = |
| Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, Ty); |
| |
| for (unsigned Idx = 0; Idx < 4; Idx++) { |
| V = buildNonAtomicBinOp( |
| B, Op, V, |
| B.CreateCall(UpdateDPP, |
| {Identity, V, B.getInt32(DPP::ROW_SHR0 | 1 << Idx), |
| B.getInt32(0xf), B.getInt32(0xf), B.getFalse()})); |
| } |
| if (ST->hasDPPBroadcasts()) { |
| // GFX9 has DPP row broadcast operations. |
| V = buildNonAtomicBinOp( |
| B, Op, V, |
| B.CreateCall(UpdateDPP, |
| {Identity, V, B.getInt32(DPP::BCAST15), B.getInt32(0xa), |
| B.getInt32(0xf), B.getFalse()})); |
| V = buildNonAtomicBinOp( |
| B, Op, V, |
| B.CreateCall(UpdateDPP, |
| {Identity, V, B.getInt32(DPP::BCAST31), B.getInt32(0xc), |
| B.getInt32(0xf), B.getFalse()})); |
| } else { |
| // On GFX10 all DPP operations are confined to a single row. To get cross- |
| // row operations we have to use permlane or readlane. |
| |
| // Combine lane 15 into lanes 16..31 (and, for wave 64, lane 47 into lanes |
| // 48..63). |
| assert(ST->hasPermLaneX16()); |
| Value *const PermX = B.CreateIntrinsic( |
| Intrinsic::amdgcn_permlanex16, {}, |
| {V, V, B.getInt32(-1), B.getInt32(-1), B.getFalse(), B.getFalse()}); |
| V = buildNonAtomicBinOp( |
| B, Op, V, |
| B.CreateCall(UpdateDPP, |
| {Identity, PermX, B.getInt32(DPP::QUAD_PERM_ID), |
| B.getInt32(0xa), B.getInt32(0xf), B.getFalse()})); |
| if (!ST->isWave32()) { |
| // Combine lane 31 into lanes 32..63. |
| Value *const Lane31 = B.CreateIntrinsic(Intrinsic::amdgcn_readlane, {}, |
| {V, B.getInt32(31)}); |
| V = buildNonAtomicBinOp( |
| B, Op, V, |
| B.CreateCall(UpdateDPP, |
| {Identity, Lane31, B.getInt32(DPP::QUAD_PERM_ID), |
| B.getInt32(0xc), B.getInt32(0xf), B.getFalse()})); |
| } |
| } |
| return V; |
| } |
| |
| // Use the builder to create a shift right of V across the wavefront, with all |
| // lanes active, to turn an inclusive scan into an exclusive scan. |
| Value *AMDGPUAtomicOptimizer::buildShiftRight(IRBuilder<> &B, Value *V, |
| Value *const Identity) const { |
| Type *const Ty = V->getType(); |
| Module *M = B.GetInsertBlock()->getModule(); |
| Function *UpdateDPP = |
| Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, Ty); |
| |
| if (ST->hasDPPWavefrontShifts()) { |
| // GFX9 has DPP wavefront shift operations. |
| V = B.CreateCall(UpdateDPP, |
| {Identity, V, B.getInt32(DPP::WAVE_SHR1), B.getInt32(0xf), |
| B.getInt32(0xf), B.getFalse()}); |
| } else { |
| Function *ReadLane = |
| Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, {}); |
| Function *WriteLane = |
| Intrinsic::getDeclaration(M, Intrinsic::amdgcn_writelane, {}); |
| |
| // On GFX10 all DPP operations are confined to a single row. To get cross- |
| // row operations we have to use permlane or readlane. |
| Value *Old = V; |
| V = B.CreateCall(UpdateDPP, |
| {Identity, V, B.getInt32(DPP::ROW_SHR0 + 1), |
| B.getInt32(0xf), B.getInt32(0xf), B.getFalse()}); |
| |
| // Copy the old lane 15 to the new lane 16. |
| V = B.CreateCall(WriteLane, {B.CreateCall(ReadLane, {Old, B.getInt32(15)}), |
| B.getInt32(16), V}); |
| |
| if (!ST->isWave32()) { |
| // Copy the old lane 31 to the new lane 32. |
| V = B.CreateCall( |
| WriteLane, |
| {B.CreateCall(ReadLane, {Old, B.getInt32(31)}), B.getInt32(32), V}); |
| |
| // Copy the old lane 47 to the new lane 48. |
| V = B.CreateCall( |
| WriteLane, |
| {B.CreateCall(ReadLane, {Old, B.getInt32(47)}), B.getInt32(48), V}); |
| } |
| } |
| |
| return V; |
| } |
| |
| static APInt getIdentityValueForAtomicOp(AtomicRMWInst::BinOp Op, |
| unsigned BitWidth) { |
| switch (Op) { |
| default: |
| llvm_unreachable("Unhandled atomic op"); |
| case AtomicRMWInst::Add: |
| case AtomicRMWInst::Sub: |
| case AtomicRMWInst::Or: |
| case AtomicRMWInst::Xor: |
| case AtomicRMWInst::UMax: |
| return APInt::getMinValue(BitWidth); |
| case AtomicRMWInst::And: |
| case AtomicRMWInst::UMin: |
| return APInt::getMaxValue(BitWidth); |
| case AtomicRMWInst::Max: |
| return APInt::getSignedMinValue(BitWidth); |
| case AtomicRMWInst::Min: |
| return APInt::getSignedMaxValue(BitWidth); |
| } |
| } |
| |
| static Value *buildMul(IRBuilder<> &B, Value *LHS, Value *RHS) { |
| const ConstantInt *CI = dyn_cast<ConstantInt>(LHS); |
| return (CI && CI->isOne()) ? RHS : B.CreateMul(LHS, RHS); |
| } |
| |
| void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I, |
| AtomicRMWInst::BinOp Op, |
| unsigned ValIdx, |
| bool ValDivergent) const { |
| // Start building just before the instruction. |
| IRBuilder<> B(&I); |
| |
| // If we are in a pixel shader, because of how we have to mask out helper |
| // lane invocations, we need to record the entry and exit BB's. |
| BasicBlock *PixelEntryBB = nullptr; |
| BasicBlock *PixelExitBB = nullptr; |
| |
| // If we're optimizing an atomic within a pixel shader, we need to wrap the |
| // entire atomic operation in a helper-lane check. We do not want any helper |
| // lanes that are around only for the purposes of derivatives to take part |
| // in any cross-lane communication, and we use a branch on whether the lane is |
| // live to do this. |
| if (IsPixelShader) { |
| // Record I's original position as the entry block. |
| PixelEntryBB = I.getParent(); |
| |
| Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {}); |
| Instruction *const NonHelperTerminator = |
| SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr); |
| |
| // Record I's new position as the exit block. |
| PixelExitBB = I.getParent(); |
| |
| I.moveBefore(NonHelperTerminator); |
| B.SetInsertPoint(&I); |
| } |
| |
| Type *const Ty = I.getType(); |
| const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty); |
| auto *const VecTy = FixedVectorType::get(B.getInt32Ty(), 2); |
| |
| // This is the value in the atomic operation we need to combine in order to |
| // reduce the number of atomic operations. |
| Value *const V = I.getOperand(ValIdx); |
| |
| // We need to know how many lanes are active within the wavefront, and we do |
| // this by doing a ballot of active lanes. |
| Type *const WaveTy = B.getIntNTy(ST->getWavefrontSize()); |
| CallInst *const Ballot = |
| B.CreateIntrinsic(Intrinsic::amdgcn_ballot, WaveTy, B.getTrue()); |
| |
| // We need to know how many lanes are active within the wavefront that are |
| // below us. If we counted each lane linearly starting from 0, a lane is |
| // below us only if its associated index was less than ours. We do this by |
| // using the mbcnt intrinsic. |
| Value *Mbcnt; |
| if (ST->isWave32()) { |
| Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {}, |
| {Ballot, B.getInt32(0)}); |
| } else { |
| Value *const BitCast = B.CreateBitCast(Ballot, VecTy); |
| Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0)); |
| Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1)); |
| Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {}, |
| {ExtractLo, B.getInt32(0)}); |
| Mbcnt = |
| B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {}, {ExtractHi, Mbcnt}); |
| } |
| Mbcnt = B.CreateIntCast(Mbcnt, Ty, false); |
| |
| Value *const Identity = B.getInt(getIdentityValueForAtomicOp(Op, TyBitWidth)); |
| |
| Value *ExclScan = nullptr; |
| Value *NewV = nullptr; |
| |
| const bool NeedResult = !I.use_empty(); |
| |
| // If we have a divergent value in each lane, we need to combine the value |
| // using DPP. |
| if (ValDivergent) { |
| // First we need to set all inactive invocations to the identity value, so |
| // that they can correctly contribute to the final result. |
| NewV = B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, Ty, {V, Identity}); |
| |
| const AtomicRMWInst::BinOp ScanOp = |
| Op == AtomicRMWInst::Sub ? AtomicRMWInst::Add : Op; |
| if (!NeedResult && ST->hasPermLaneX16()) { |
| // On GFX10 the permlanex16 instruction helps us build a reduction without |
| // too many readlanes and writelanes, which are generally bad for |
| // performance. |
| NewV = buildReduction(B, ScanOp, NewV, Identity); |
| } else { |
| NewV = buildScan(B, ScanOp, NewV, Identity); |
| if (NeedResult) |
| ExclScan = buildShiftRight(B, NewV, Identity); |
| |
| // Read the value from the last lane, which has accumulated the values of |
| // each active lane in the wavefront. This will be our new value which we |
| // will provide to the atomic operation. |
| Value *const LastLaneIdx = B.getInt32(ST->getWavefrontSize() - 1); |
| assert(TyBitWidth == 32); |
| NewV = B.CreateIntrinsic(Intrinsic::amdgcn_readlane, {}, |
| {NewV, LastLaneIdx}); |
| } |
| |
| // Finally mark the readlanes in the WWM section. |
| NewV = B.CreateIntrinsic(Intrinsic::amdgcn_strict_wwm, Ty, NewV); |
| } else { |
| switch (Op) { |
| default: |
| llvm_unreachable("Unhandled atomic op"); |
| |
| case AtomicRMWInst::Add: |
| case AtomicRMWInst::Sub: { |
| // The new value we will be contributing to the atomic operation is the |
| // old value times the number of active lanes. |
| Value *const Ctpop = B.CreateIntCast( |
| B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false); |
| NewV = buildMul(B, V, Ctpop); |
| break; |
| } |
| |
| case AtomicRMWInst::And: |
| case AtomicRMWInst::Or: |
| case AtomicRMWInst::Max: |
| case AtomicRMWInst::Min: |
| case AtomicRMWInst::UMax: |
| case AtomicRMWInst::UMin: |
| // These operations with a uniform value are idempotent: doing the atomic |
| // operation multiple times has the same effect as doing it once. |
| NewV = V; |
| break; |
| |
| case AtomicRMWInst::Xor: |
| // The new value we will be contributing to the atomic operation is the |
| // old value times the parity of the number of active lanes. |
| Value *const Ctpop = B.CreateIntCast( |
| B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false); |
| NewV = buildMul(B, V, B.CreateAnd(Ctpop, 1)); |
| break; |
| } |
| } |
| |
| // We only want a single lane to enter our new control flow, and we do this |
| // by checking if there are any active lanes below us. Only one lane will |
| // have 0 active lanes below us, so that will be the only one to progress. |
| Value *const Cond = B.CreateICmpEQ(Mbcnt, B.getIntN(TyBitWidth, 0)); |
| |
| // Store I's original basic block before we split the block. |
| BasicBlock *const EntryBB = I.getParent(); |
| |
| // We need to introduce some new control flow to force a single lane to be |
| // active. We do this by splitting I's basic block at I, and introducing the |
| // new block such that: |
| // entry --> single_lane -\ |
| // \------------------> exit |
| Instruction *const SingleLaneTerminator = |
| SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr); |
| |
| // Move the IR builder into single_lane next. |
| B.SetInsertPoint(SingleLaneTerminator); |
| |
| // Clone the original atomic operation into single lane, replacing the |
| // original value with our newly created one. |
| Instruction *const NewI = I.clone(); |
| B.Insert(NewI); |
| NewI->setOperand(ValIdx, NewV); |
| |
| // Move the IR builder into exit next, and start inserting just before the |
| // original instruction. |
| B.SetInsertPoint(&I); |
| |
| if (NeedResult) { |
| // Create a PHI node to get our new atomic result into the exit block. |
| PHINode *const PHI = B.CreatePHI(Ty, 2); |
| PHI->addIncoming(UndefValue::get(Ty), EntryBB); |
| PHI->addIncoming(NewI, SingleLaneTerminator->getParent()); |
| |
| // We need to broadcast the value who was the lowest active lane (the first |
| // lane) to all other lanes in the wavefront. We use an intrinsic for this, |
| // but have to handle 64-bit broadcasts with two calls to this intrinsic. |
| Value *BroadcastI = nullptr; |
| |
| if (TyBitWidth == 64) { |
| Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty()); |
| Value *const ExtractHi = |
| B.CreateTrunc(B.CreateLShr(PHI, 32), B.getInt32Ty()); |
| CallInst *const ReadFirstLaneLo = |
| B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo); |
| CallInst *const ReadFirstLaneHi = |
| B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi); |
| Value *const PartialInsert = B.CreateInsertElement( |
| UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0)); |
| Value *const Insert = |
| B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1)); |
| BroadcastI = B.CreateBitCast(Insert, Ty); |
| } else if (TyBitWidth == 32) { |
| |
| BroadcastI = B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI); |
| } else { |
| llvm_unreachable("Unhandled atomic bit width"); |
| } |
| |
| // Now that we have the result of our single atomic operation, we need to |
| // get our individual lane's slice into the result. We use the lane offset |
| // we previously calculated combined with the atomic result value we got |
| // from the first lane, to get our lane's index into the atomic result. |
| Value *LaneOffset = nullptr; |
| if (ValDivergent) { |
| LaneOffset = |
| B.CreateIntrinsic(Intrinsic::amdgcn_strict_wwm, Ty, ExclScan); |
| } else { |
| switch (Op) { |
| default: |
| llvm_unreachable("Unhandled atomic op"); |
| case AtomicRMWInst::Add: |
| case AtomicRMWInst::Sub: |
| LaneOffset = buildMul(B, V, Mbcnt); |
| break; |
| case AtomicRMWInst::And: |
| case AtomicRMWInst::Or: |
| case AtomicRMWInst::Max: |
| case AtomicRMWInst::Min: |
| case AtomicRMWInst::UMax: |
| case AtomicRMWInst::UMin: |
| LaneOffset = B.CreateSelect(Cond, Identity, V); |
| break; |
| case AtomicRMWInst::Xor: |
| LaneOffset = buildMul(B, V, B.CreateAnd(Mbcnt, 1)); |
| break; |
| } |
| } |
| Value *const Result = buildNonAtomicBinOp(B, Op, BroadcastI, LaneOffset); |
| |
| if (IsPixelShader) { |
| // Need a final PHI to reconverge to above the helper lane branch mask. |
| B.SetInsertPoint(PixelExitBB->getFirstNonPHI()); |
| |
| PHINode *const PHI = B.CreatePHI(Ty, 2); |
| PHI->addIncoming(UndefValue::get(Ty), PixelEntryBB); |
| PHI->addIncoming(Result, I.getParent()); |
| I.replaceAllUsesWith(PHI); |
| } else { |
| // Replace the original atomic instruction with the new one. |
| I.replaceAllUsesWith(Result); |
| } |
| } |
| |
| // And delete the original. |
| I.eraseFromParent(); |
| } |
| |
| INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE, |
| "AMDGPU atomic optimizations", false, false) |
| INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) |
| INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) |
| INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE, |
| "AMDGPU atomic optimizations", false, false) |
| |
| FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() { |
| return new AMDGPUAtomicOptimizer(); |
| } |