| //===- lib/Support/YAMLTraits.cpp -----------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Support/YAMLTraits.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Errc.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/Format.h" |
| #include "llvm/Support/LineIterator.h" |
| #include "llvm/Support/MemoryBuffer.h" |
| #include "llvm/Support/Unicode.h" |
| #include "llvm/Support/YAMLParser.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <cstdlib> |
| #include <cstring> |
| #include <string> |
| #include <vector> |
| |
| using namespace llvm; |
| using namespace yaml; |
| |
| //===----------------------------------------------------------------------===// |
| // IO |
| //===----------------------------------------------------------------------===// |
| |
| IO::IO(void *Context) : Ctxt(Context) {} |
| |
| IO::~IO() = default; |
| |
| void *IO::getContext() const { |
| return Ctxt; |
| } |
| |
| void IO::setContext(void *Context) { |
| Ctxt = Context; |
| } |
| |
| void IO::setAllowUnknownKeys(bool Allow) { |
| llvm_unreachable("Only supported for Input"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Input |
| //===----------------------------------------------------------------------===// |
| |
| Input::Input(StringRef InputContent, void *Ctxt, |
| SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt) |
| : IO(Ctxt), Strm(new Stream(InputContent, SrcMgr, false, &EC)) { |
| if (DiagHandler) |
| SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt); |
| DocIterator = Strm->begin(); |
| } |
| |
| Input::Input(MemoryBufferRef Input, void *Ctxt, |
| SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt) |
| : IO(Ctxt), Strm(new Stream(Input, SrcMgr, false, &EC)) { |
| if (DiagHandler) |
| SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt); |
| DocIterator = Strm->begin(); |
| } |
| |
| Input::~Input() = default; |
| |
| std::error_code Input::error() { return EC; } |
| |
| // Pin the vtables to this file. |
| void Input::HNode::anchor() {} |
| void Input::EmptyHNode::anchor() {} |
| void Input::ScalarHNode::anchor() {} |
| void Input::MapHNode::anchor() {} |
| void Input::SequenceHNode::anchor() {} |
| |
| bool Input::outputting() const { |
| return false; |
| } |
| |
| bool Input::setCurrentDocument() { |
| if (DocIterator != Strm->end()) { |
| Node *N = DocIterator->getRoot(); |
| if (!N) { |
| EC = make_error_code(errc::invalid_argument); |
| return false; |
| } |
| |
| if (isa<NullNode>(N)) { |
| // Empty files are allowed and ignored |
| ++DocIterator; |
| return setCurrentDocument(); |
| } |
| TopNode = createHNodes(N); |
| CurrentNode = TopNode.get(); |
| return true; |
| } |
| return false; |
| } |
| |
| bool Input::nextDocument() { |
| return ++DocIterator != Strm->end(); |
| } |
| |
| const Node *Input::getCurrentNode() const { |
| return CurrentNode ? CurrentNode->_node : nullptr; |
| } |
| |
| bool Input::mapTag(StringRef Tag, bool Default) { |
| // CurrentNode can be null if setCurrentDocument() was unable to |
| // parse the document because it was invalid or empty. |
| if (!CurrentNode) |
| return false; |
| |
| std::string foundTag = CurrentNode->_node->getVerbatimTag(); |
| if (foundTag.empty()) { |
| // If no tag found and 'Tag' is the default, say it was found. |
| return Default; |
| } |
| // Return true iff found tag matches supplied tag. |
| return Tag.equals(foundTag); |
| } |
| |
| void Input::beginMapping() { |
| if (EC) |
| return; |
| // CurrentNode can be null if the document is empty. |
| MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode); |
| if (MN) { |
| MN->ValidKeys.clear(); |
| } |
| } |
| |
| std::vector<StringRef> Input::keys() { |
| MapHNode *MN = dyn_cast<MapHNode>(CurrentNode); |
| std::vector<StringRef> Ret; |
| if (!MN) { |
| setError(CurrentNode, "not a mapping"); |
| return Ret; |
| } |
| for (auto &P : MN->Mapping) |
| Ret.push_back(P.first()); |
| return Ret; |
| } |
| |
| bool Input::preflightKey(const char *Key, bool Required, bool, bool &UseDefault, |
| void *&SaveInfo) { |
| UseDefault = false; |
| if (EC) |
| return false; |
| |
| // CurrentNode is null for empty documents, which is an error in case required |
| // nodes are present. |
| if (!CurrentNode) { |
| if (Required) |
| EC = make_error_code(errc::invalid_argument); |
| return false; |
| } |
| |
| MapHNode *MN = dyn_cast<MapHNode>(CurrentNode); |
| if (!MN) { |
| if (Required || !isa<EmptyHNode>(CurrentNode)) |
| setError(CurrentNode, "not a mapping"); |
| else |
| UseDefault = true; |
| return false; |
| } |
| MN->ValidKeys.push_back(Key); |
| HNode *Value = MN->Mapping[Key].first.get(); |
| if (!Value) { |
| if (Required) |
| setError(CurrentNode, Twine("missing required key '") + Key + "'"); |
| else |
| UseDefault = true; |
| return false; |
| } |
| SaveInfo = CurrentNode; |
| CurrentNode = Value; |
| return true; |
| } |
| |
| void Input::postflightKey(void *saveInfo) { |
| CurrentNode = reinterpret_cast<HNode *>(saveInfo); |
| } |
| |
| void Input::endMapping() { |
| if (EC) |
| return; |
| // CurrentNode can be null if the document is empty. |
| MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode); |
| if (!MN) |
| return; |
| for (const auto &NN : MN->Mapping) { |
| if (!is_contained(MN->ValidKeys, NN.first())) { |
| const SMRange &ReportLoc = NN.second.second; |
| if (!AllowUnknownKeys) { |
| setError(ReportLoc, Twine("unknown key '") + NN.first() + "'"); |
| break; |
| } else |
| reportWarning(ReportLoc, Twine("unknown key '") + NN.first() + "'"); |
| } |
| } |
| } |
| |
| void Input::beginFlowMapping() { beginMapping(); } |
| |
| void Input::endFlowMapping() { endMapping(); } |
| |
| unsigned Input::beginSequence() { |
| if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) |
| return SQ->Entries.size(); |
| if (isa<EmptyHNode>(CurrentNode)) |
| return 0; |
| // Treat case where there's a scalar "null" value as an empty sequence. |
| if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) { |
| if (isNull(SN->value())) |
| return 0; |
| } |
| // Any other type of HNode is an error. |
| setError(CurrentNode, "not a sequence"); |
| return 0; |
| } |
| |
| void Input::endSequence() { |
| } |
| |
| bool Input::preflightElement(unsigned Index, void *&SaveInfo) { |
| if (EC) |
| return false; |
| if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) { |
| SaveInfo = CurrentNode; |
| CurrentNode = SQ->Entries[Index].get(); |
| return true; |
| } |
| return false; |
| } |
| |
| void Input::postflightElement(void *SaveInfo) { |
| CurrentNode = reinterpret_cast<HNode *>(SaveInfo); |
| } |
| |
| unsigned Input::beginFlowSequence() { return beginSequence(); } |
| |
| bool Input::preflightFlowElement(unsigned index, void *&SaveInfo) { |
| if (EC) |
| return false; |
| if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) { |
| SaveInfo = CurrentNode; |
| CurrentNode = SQ->Entries[index].get(); |
| return true; |
| } |
| return false; |
| } |
| |
| void Input::postflightFlowElement(void *SaveInfo) { |
| CurrentNode = reinterpret_cast<HNode *>(SaveInfo); |
| } |
| |
| void Input::endFlowSequence() { |
| } |
| |
| void Input::beginEnumScalar() { |
| ScalarMatchFound = false; |
| } |
| |
| bool Input::matchEnumScalar(const char *Str, bool) { |
| if (ScalarMatchFound) |
| return false; |
| if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) { |
| if (SN->value().equals(Str)) { |
| ScalarMatchFound = true; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool Input::matchEnumFallback() { |
| if (ScalarMatchFound) |
| return false; |
| ScalarMatchFound = true; |
| return true; |
| } |
| |
| void Input::endEnumScalar() { |
| if (!ScalarMatchFound) { |
| setError(CurrentNode, "unknown enumerated scalar"); |
| } |
| } |
| |
| bool Input::beginBitSetScalar(bool &DoClear) { |
| BitValuesUsed.clear(); |
| if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) { |
| BitValuesUsed.insert(BitValuesUsed.begin(), SQ->Entries.size(), false); |
| } else { |
| setError(CurrentNode, "expected sequence of bit values"); |
| } |
| DoClear = true; |
| return true; |
| } |
| |
| bool Input::bitSetMatch(const char *Str, bool) { |
| if (EC) |
| return false; |
| if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) { |
| unsigned Index = 0; |
| for (auto &N : SQ->Entries) { |
| if (ScalarHNode *SN = dyn_cast<ScalarHNode>(N.get())) { |
| if (SN->value().equals(Str)) { |
| BitValuesUsed[Index] = true; |
| return true; |
| } |
| } else { |
| setError(CurrentNode, "unexpected scalar in sequence of bit values"); |
| } |
| ++Index; |
| } |
| } else { |
| setError(CurrentNode, "expected sequence of bit values"); |
| } |
| return false; |
| } |
| |
| void Input::endBitSetScalar() { |
| if (EC) |
| return; |
| if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) { |
| assert(BitValuesUsed.size() == SQ->Entries.size()); |
| for (unsigned i = 0; i < SQ->Entries.size(); ++i) { |
| if (!BitValuesUsed[i]) { |
| setError(SQ->Entries[i].get(), "unknown bit value"); |
| return; |
| } |
| } |
| } |
| } |
| |
| void Input::scalarString(StringRef &S, QuotingType) { |
| if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) { |
| S = SN->value(); |
| } else { |
| setError(CurrentNode, "unexpected scalar"); |
| } |
| } |
| |
| void Input::blockScalarString(StringRef &S) { scalarString(S, QuotingType::None); } |
| |
| void Input::scalarTag(std::string &Tag) { |
| Tag = CurrentNode->_node->getVerbatimTag(); |
| } |
| |
| void Input::setError(HNode *hnode, const Twine &message) { |
| assert(hnode && "HNode must not be NULL"); |
| setError(hnode->_node, message); |
| } |
| |
| NodeKind Input::getNodeKind() { |
| if (isa<ScalarHNode>(CurrentNode)) |
| return NodeKind::Scalar; |
| else if (isa<MapHNode>(CurrentNode)) |
| return NodeKind::Map; |
| else if (isa<SequenceHNode>(CurrentNode)) |
| return NodeKind::Sequence; |
| llvm_unreachable("Unsupported node kind"); |
| } |
| |
| void Input::setError(Node *node, const Twine &message) { |
| Strm->printError(node, message); |
| EC = make_error_code(errc::invalid_argument); |
| } |
| |
| void Input::setError(const SMRange &range, const Twine &message) { |
| Strm->printError(range, message); |
| EC = make_error_code(errc::invalid_argument); |
| } |
| |
| void Input::reportWarning(HNode *hnode, const Twine &message) { |
| assert(hnode && "HNode must not be NULL"); |
| Strm->printError(hnode->_node, message, SourceMgr::DK_Warning); |
| } |
| |
| void Input::reportWarning(Node *node, const Twine &message) { |
| Strm->printError(node, message, SourceMgr::DK_Warning); |
| } |
| |
| void Input::reportWarning(const SMRange &range, const Twine &message) { |
| Strm->printError(range, message, SourceMgr::DK_Warning); |
| } |
| |
| std::unique_ptr<Input::HNode> Input::createHNodes(Node *N) { |
| SmallString<128> StringStorage; |
| if (ScalarNode *SN = dyn_cast<ScalarNode>(N)) { |
| StringRef KeyStr = SN->getValue(StringStorage); |
| if (!StringStorage.empty()) { |
| // Copy string to permanent storage |
| KeyStr = StringStorage.str().copy(StringAllocator); |
| } |
| return std::make_unique<ScalarHNode>(N, KeyStr); |
| } else if (BlockScalarNode *BSN = dyn_cast<BlockScalarNode>(N)) { |
| StringRef ValueCopy = BSN->getValue().copy(StringAllocator); |
| return std::make_unique<ScalarHNode>(N, ValueCopy); |
| } else if (SequenceNode *SQ = dyn_cast<SequenceNode>(N)) { |
| auto SQHNode = std::make_unique<SequenceHNode>(N); |
| for (Node &SN : *SQ) { |
| auto Entry = createHNodes(&SN); |
| if (EC) |
| break; |
| SQHNode->Entries.push_back(std::move(Entry)); |
| } |
| return std::move(SQHNode); |
| } else if (MappingNode *Map = dyn_cast<MappingNode>(N)) { |
| auto mapHNode = std::make_unique<MapHNode>(N); |
| for (KeyValueNode &KVN : *Map) { |
| Node *KeyNode = KVN.getKey(); |
| ScalarNode *Key = dyn_cast_or_null<ScalarNode>(KeyNode); |
| Node *Value = KVN.getValue(); |
| if (!Key || !Value) { |
| if (!Key) |
| setError(KeyNode, "Map key must be a scalar"); |
| if (!Value) |
| setError(KeyNode, "Map value must not be empty"); |
| break; |
| } |
| StringStorage.clear(); |
| StringRef KeyStr = Key->getValue(StringStorage); |
| if (!StringStorage.empty()) { |
| // Copy string to permanent storage |
| KeyStr = StringStorage.str().copy(StringAllocator); |
| } |
| auto ValueHNode = createHNodes(Value); |
| if (EC) |
| break; |
| mapHNode->Mapping[KeyStr] = |
| std::make_pair(std::move(ValueHNode), KeyNode->getSourceRange()); |
| } |
| return std::move(mapHNode); |
| } else if (isa<NullNode>(N)) { |
| return std::make_unique<EmptyHNode>(N); |
| } else { |
| setError(N, "unknown node kind"); |
| return nullptr; |
| } |
| } |
| |
| void Input::setError(const Twine &Message) { |
| setError(CurrentNode, Message); |
| } |
| |
| void Input::setAllowUnknownKeys(bool Allow) { AllowUnknownKeys = Allow; } |
| |
| bool Input::canElideEmptySequence() { |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Output |
| //===----------------------------------------------------------------------===// |
| |
| Output::Output(raw_ostream &yout, void *context, int WrapColumn) |
| : IO(context), Out(yout), WrapColumn(WrapColumn) {} |
| |
| Output::~Output() = default; |
| |
| bool Output::outputting() const { |
| return true; |
| } |
| |
| void Output::beginMapping() { |
| StateStack.push_back(inMapFirstKey); |
| PaddingBeforeContainer = Padding; |
| Padding = "\n"; |
| } |
| |
| bool Output::mapTag(StringRef Tag, bool Use) { |
| if (Use) { |
| // If this tag is being written inside a sequence we should write the start |
| // of the sequence before writing the tag, otherwise the tag won't be |
| // attached to the element in the sequence, but rather the sequence itself. |
| bool SequenceElement = false; |
| if (StateStack.size() > 1) { |
| auto &E = StateStack[StateStack.size() - 2]; |
| SequenceElement = inSeqAnyElement(E) || inFlowSeqAnyElement(E); |
| } |
| if (SequenceElement && StateStack.back() == inMapFirstKey) { |
| newLineCheck(); |
| } else { |
| output(" "); |
| } |
| output(Tag); |
| if (SequenceElement) { |
| // If we're writing the tag during the first element of a map, the tag |
| // takes the place of the first element in the sequence. |
| if (StateStack.back() == inMapFirstKey) { |
| StateStack.pop_back(); |
| StateStack.push_back(inMapOtherKey); |
| } |
| // Tags inside maps in sequences should act as keys in the map from a |
| // formatting perspective, so we always want a newline in a sequence. |
| Padding = "\n"; |
| } |
| } |
| return Use; |
| } |
| |
| void Output::endMapping() { |
| // If we did not map anything, we should explicitly emit an empty map |
| if (StateStack.back() == inMapFirstKey) { |
| Padding = PaddingBeforeContainer; |
| newLineCheck(); |
| output("{}"); |
| Padding = "\n"; |
| } |
| StateStack.pop_back(); |
| } |
| |
| std::vector<StringRef> Output::keys() { |
| report_fatal_error("invalid call"); |
| } |
| |
| bool Output::preflightKey(const char *Key, bool Required, bool SameAsDefault, |
| bool &UseDefault, void *&) { |
| UseDefault = false; |
| if (Required || !SameAsDefault || WriteDefaultValues) { |
| auto State = StateStack.back(); |
| if (State == inFlowMapFirstKey || State == inFlowMapOtherKey) { |
| flowKey(Key); |
| } else { |
| newLineCheck(); |
| paddedKey(Key); |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| void Output::postflightKey(void *) { |
| if (StateStack.back() == inMapFirstKey) { |
| StateStack.pop_back(); |
| StateStack.push_back(inMapOtherKey); |
| } else if (StateStack.back() == inFlowMapFirstKey) { |
| StateStack.pop_back(); |
| StateStack.push_back(inFlowMapOtherKey); |
| } |
| } |
| |
| void Output::beginFlowMapping() { |
| StateStack.push_back(inFlowMapFirstKey); |
| newLineCheck(); |
| ColumnAtMapFlowStart = Column; |
| output("{ "); |
| } |
| |
| void Output::endFlowMapping() { |
| StateStack.pop_back(); |
| outputUpToEndOfLine(" }"); |
| } |
| |
| void Output::beginDocuments() { |
| outputUpToEndOfLine("---"); |
| } |
| |
| bool Output::preflightDocument(unsigned index) { |
| if (index > 0) |
| outputUpToEndOfLine("\n---"); |
| return true; |
| } |
| |
| void Output::postflightDocument() { |
| } |
| |
| void Output::endDocuments() { |
| output("\n...\n"); |
| } |
| |
| unsigned Output::beginSequence() { |
| StateStack.push_back(inSeqFirstElement); |
| PaddingBeforeContainer = Padding; |
| Padding = "\n"; |
| return 0; |
| } |
| |
| void Output::endSequence() { |
| // If we did not emit anything, we should explicitly emit an empty sequence |
| if (StateStack.back() == inSeqFirstElement) { |
| Padding = PaddingBeforeContainer; |
| newLineCheck(/*EmptySequence=*/true); |
| output("[]"); |
| Padding = "\n"; |
| } |
| StateStack.pop_back(); |
| } |
| |
| bool Output::preflightElement(unsigned, void *&) { |
| return true; |
| } |
| |
| void Output::postflightElement(void *) { |
| if (StateStack.back() == inSeqFirstElement) { |
| StateStack.pop_back(); |
| StateStack.push_back(inSeqOtherElement); |
| } else if (StateStack.back() == inFlowSeqFirstElement) { |
| StateStack.pop_back(); |
| StateStack.push_back(inFlowSeqOtherElement); |
| } |
| } |
| |
| unsigned Output::beginFlowSequence() { |
| StateStack.push_back(inFlowSeqFirstElement); |
| newLineCheck(); |
| ColumnAtFlowStart = Column; |
| output("[ "); |
| NeedFlowSequenceComma = false; |
| return 0; |
| } |
| |
| void Output::endFlowSequence() { |
| StateStack.pop_back(); |
| outputUpToEndOfLine(" ]"); |
| } |
| |
| bool Output::preflightFlowElement(unsigned, void *&) { |
| if (NeedFlowSequenceComma) |
| output(", "); |
| if (WrapColumn && Column > WrapColumn) { |
| output("\n"); |
| for (int i = 0; i < ColumnAtFlowStart; ++i) |
| output(" "); |
| Column = ColumnAtFlowStart; |
| output(" "); |
| } |
| return true; |
| } |
| |
| void Output::postflightFlowElement(void *) { |
| NeedFlowSequenceComma = true; |
| } |
| |
| void Output::beginEnumScalar() { |
| EnumerationMatchFound = false; |
| } |
| |
| bool Output::matchEnumScalar(const char *Str, bool Match) { |
| if (Match && !EnumerationMatchFound) { |
| newLineCheck(); |
| outputUpToEndOfLine(Str); |
| EnumerationMatchFound = true; |
| } |
| return false; |
| } |
| |
| bool Output::matchEnumFallback() { |
| if (EnumerationMatchFound) |
| return false; |
| EnumerationMatchFound = true; |
| return true; |
| } |
| |
| void Output::endEnumScalar() { |
| if (!EnumerationMatchFound) |
| llvm_unreachable("bad runtime enum value"); |
| } |
| |
| bool Output::beginBitSetScalar(bool &DoClear) { |
| newLineCheck(); |
| output("[ "); |
| NeedBitValueComma = false; |
| DoClear = false; |
| return true; |
| } |
| |
| bool Output::bitSetMatch(const char *Str, bool Matches) { |
| if (Matches) { |
| if (NeedBitValueComma) |
| output(", "); |
| output(Str); |
| NeedBitValueComma = true; |
| } |
| return false; |
| } |
| |
| void Output::endBitSetScalar() { |
| outputUpToEndOfLine(" ]"); |
| } |
| |
| void Output::scalarString(StringRef &S, QuotingType MustQuote) { |
| newLineCheck(); |
| if (S.empty()) { |
| // Print '' for the empty string because leaving the field empty is not |
| // allowed. |
| outputUpToEndOfLine("''"); |
| return; |
| } |
| if (MustQuote == QuotingType::None) { |
| // Only quote if we must. |
| outputUpToEndOfLine(S); |
| return; |
| } |
| |
| const char *const Quote = MustQuote == QuotingType::Single ? "'" : "\""; |
| output(Quote); // Starting quote. |
| |
| // When using double-quoted strings (and only in that case), non-printable characters may be |
| // present, and will be escaped using a variety of unicode-scalar and special short-form |
| // escapes. This is handled in yaml::escape. |
| if (MustQuote == QuotingType::Double) { |
| output(yaml::escape(S, /* EscapePrintable= */ false)); |
| outputUpToEndOfLine(Quote); |
| return; |
| } |
| |
| unsigned i = 0; |
| unsigned j = 0; |
| unsigned End = S.size(); |
| const char *Base = S.data(); |
| |
| // When using single-quoted strings, any single quote ' must be doubled to be escaped. |
| while (j < End) { |
| if (S[j] == '\'') { // Escape quotes. |
| output(StringRef(&Base[i], j - i)); // "flush". |
| output(StringLiteral("''")); // Print it as '' |
| i = j + 1; |
| } |
| ++j; |
| } |
| output(StringRef(&Base[i], j - i)); |
| outputUpToEndOfLine(Quote); // Ending quote. |
| } |
| |
| void Output::blockScalarString(StringRef &S) { |
| if (!StateStack.empty()) |
| newLineCheck(); |
| output(" |"); |
| outputNewLine(); |
| |
| unsigned Indent = StateStack.empty() ? 1 : StateStack.size(); |
| |
| auto Buffer = MemoryBuffer::getMemBuffer(S, "", false); |
| for (line_iterator Lines(*Buffer, false); !Lines.is_at_end(); ++Lines) { |
| for (unsigned I = 0; I < Indent; ++I) { |
| output(" "); |
| } |
| output(*Lines); |
| outputNewLine(); |
| } |
| } |
| |
| void Output::scalarTag(std::string &Tag) { |
| if (Tag.empty()) |
| return; |
| newLineCheck(); |
| output(Tag); |
| output(" "); |
| } |
| |
| void Output::setError(const Twine &message) { |
| } |
| |
| bool Output::canElideEmptySequence() { |
| // Normally, with an optional key/value where the value is an empty sequence, |
| // the whole key/value can be not written. But, that produces wrong yaml |
| // if the key/value is the only thing in the map and the map is used in |
| // a sequence. This detects if the this sequence is the first key/value |
| // in map that itself is embedded in a sequence. |
| if (StateStack.size() < 2) |
| return true; |
| if (StateStack.back() != inMapFirstKey) |
| return true; |
| return !inSeqAnyElement(StateStack[StateStack.size() - 2]); |
| } |
| |
| void Output::output(StringRef s) { |
| Column += s.size(); |
| Out << s; |
| } |
| |
| void Output::outputUpToEndOfLine(StringRef s) { |
| output(s); |
| if (StateStack.empty() || (!inFlowSeqAnyElement(StateStack.back()) && |
| !inFlowMapAnyKey(StateStack.back()))) |
| Padding = "\n"; |
| } |
| |
| void Output::outputNewLine() { |
| Out << "\n"; |
| Column = 0; |
| } |
| |
| // if seq at top, indent as if map, then add "- " |
| // if seq in middle, use "- " if firstKey, else use " " |
| // |
| |
| void Output::newLineCheck(bool EmptySequence) { |
| if (Padding != "\n") { |
| output(Padding); |
| Padding = {}; |
| return; |
| } |
| outputNewLine(); |
| Padding = {}; |
| |
| if (StateStack.size() == 0 || EmptySequence) |
| return; |
| |
| unsigned Indent = StateStack.size() - 1; |
| bool OutputDash = false; |
| |
| if (StateStack.back() == inSeqFirstElement || |
| StateStack.back() == inSeqOtherElement) { |
| OutputDash = true; |
| } else if ((StateStack.size() > 1) && |
| ((StateStack.back() == inMapFirstKey) || |
| inFlowSeqAnyElement(StateStack.back()) || |
| (StateStack.back() == inFlowMapFirstKey)) && |
| inSeqAnyElement(StateStack[StateStack.size() - 2])) { |
| --Indent; |
| OutputDash = true; |
| } |
| |
| for (unsigned i = 0; i < Indent; ++i) { |
| output(" "); |
| } |
| if (OutputDash) { |
| output("- "); |
| } |
| } |
| |
| void Output::paddedKey(StringRef key) { |
| output(key); |
| output(":"); |
| const char *spaces = " "; |
| if (key.size() < strlen(spaces)) |
| Padding = &spaces[key.size()]; |
| else |
| Padding = " "; |
| } |
| |
| void Output::flowKey(StringRef Key) { |
| if (StateStack.back() == inFlowMapOtherKey) |
| output(", "); |
| if (WrapColumn && Column > WrapColumn) { |
| output("\n"); |
| for (int I = 0; I < ColumnAtMapFlowStart; ++I) |
| output(" "); |
| Column = ColumnAtMapFlowStart; |
| output(" "); |
| } |
| output(Key); |
| output(": "); |
| } |
| |
| NodeKind Output::getNodeKind() { report_fatal_error("invalid call"); } |
| |
| bool Output::inSeqAnyElement(InState State) { |
| return State == inSeqFirstElement || State == inSeqOtherElement; |
| } |
| |
| bool Output::inFlowSeqAnyElement(InState State) { |
| return State == inFlowSeqFirstElement || State == inFlowSeqOtherElement; |
| } |
| |
| bool Output::inMapAnyKey(InState State) { |
| return State == inMapFirstKey || State == inMapOtherKey; |
| } |
| |
| bool Output::inFlowMapAnyKey(InState State) { |
| return State == inFlowMapFirstKey || State == inFlowMapOtherKey; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // traits for built-in types |
| //===----------------------------------------------------------------------===// |
| |
| void ScalarTraits<bool>::output(const bool &Val, void *, raw_ostream &Out) { |
| Out << (Val ? "true" : "false"); |
| } |
| |
| StringRef ScalarTraits<bool>::input(StringRef Scalar, void *, bool &Val) { |
| if (llvm::Optional<bool> Parsed = parseBool(Scalar)) { |
| Val = *Parsed; |
| return StringRef(); |
| } |
| return "invalid boolean"; |
| } |
| |
| void ScalarTraits<StringRef>::output(const StringRef &Val, void *, |
| raw_ostream &Out) { |
| Out << Val; |
| } |
| |
| StringRef ScalarTraits<StringRef>::input(StringRef Scalar, void *, |
| StringRef &Val) { |
| Val = Scalar; |
| return StringRef(); |
| } |
| |
| void ScalarTraits<std::string>::output(const std::string &Val, void *, |
| raw_ostream &Out) { |
| Out << Val; |
| } |
| |
| StringRef ScalarTraits<std::string>::input(StringRef Scalar, void *, |
| std::string &Val) { |
| Val = Scalar.str(); |
| return StringRef(); |
| } |
| |
| void ScalarTraits<uint8_t>::output(const uint8_t &Val, void *, |
| raw_ostream &Out) { |
| // use temp uin32_t because ostream thinks uint8_t is a character |
| uint32_t Num = Val; |
| Out << Num; |
| } |
| |
| StringRef ScalarTraits<uint8_t>::input(StringRef Scalar, void *, uint8_t &Val) { |
| unsigned long long n; |
| if (getAsUnsignedInteger(Scalar, 0, n)) |
| return "invalid number"; |
| if (n > 0xFF) |
| return "out of range number"; |
| Val = n; |
| return StringRef(); |
| } |
| |
| void ScalarTraits<uint16_t>::output(const uint16_t &Val, void *, |
| raw_ostream &Out) { |
| Out << Val; |
| } |
| |
| StringRef ScalarTraits<uint16_t>::input(StringRef Scalar, void *, |
| uint16_t &Val) { |
| unsigned long long n; |
| if (getAsUnsignedInteger(Scalar, 0, n)) |
| return "invalid number"; |
| if (n > 0xFFFF) |
| return "out of range number"; |
| Val = n; |
| return StringRef(); |
| } |
| |
| void ScalarTraits<uint32_t>::output(const uint32_t &Val, void *, |
| raw_ostream &Out) { |
| Out << Val; |
| } |
| |
| StringRef ScalarTraits<uint32_t>::input(StringRef Scalar, void *, |
| uint32_t &Val) { |
| unsigned long long n; |
| if (getAsUnsignedInteger(Scalar, 0, n)) |
| return "invalid number"; |
| if (n > 0xFFFFFFFFUL) |
| return "out of range number"; |
| Val = n; |
| return StringRef(); |
| } |
| |
| void ScalarTraits<uint64_t>::output(const uint64_t &Val, void *, |
| raw_ostream &Out) { |
| Out << Val; |
| } |
| |
| StringRef ScalarTraits<uint64_t>::input(StringRef Scalar, void *, |
| uint64_t &Val) { |
| unsigned long long N; |
| if (getAsUnsignedInteger(Scalar, 0, N)) |
| return "invalid number"; |
| Val = N; |
| return StringRef(); |
| } |
| |
| void ScalarTraits<int8_t>::output(const int8_t &Val, void *, raw_ostream &Out) { |
| // use temp in32_t because ostream thinks int8_t is a character |
| int32_t Num = Val; |
| Out << Num; |
| } |
| |
| StringRef ScalarTraits<int8_t>::input(StringRef Scalar, void *, int8_t &Val) { |
| long long N; |
| if (getAsSignedInteger(Scalar, 0, N)) |
| return "invalid number"; |
| if ((N > 127) || (N < -128)) |
| return "out of range number"; |
| Val = N; |
| return StringRef(); |
| } |
| |
| void ScalarTraits<int16_t>::output(const int16_t &Val, void *, |
| raw_ostream &Out) { |
| Out << Val; |
| } |
| |
| StringRef ScalarTraits<int16_t>::input(StringRef Scalar, void *, int16_t &Val) { |
| long long N; |
| if (getAsSignedInteger(Scalar, 0, N)) |
| return "invalid number"; |
| if ((N > INT16_MAX) || (N < INT16_MIN)) |
| return "out of range number"; |
| Val = N; |
| return StringRef(); |
| } |
| |
| void ScalarTraits<int32_t>::output(const int32_t &Val, void *, |
| raw_ostream &Out) { |
| Out << Val; |
| } |
| |
| StringRef ScalarTraits<int32_t>::input(StringRef Scalar, void *, int32_t &Val) { |
| long long N; |
| if (getAsSignedInteger(Scalar, 0, N)) |
| return "invalid number"; |
| if ((N > INT32_MAX) || (N < INT32_MIN)) |
| return "out of range number"; |
| Val = N; |
| return StringRef(); |
| } |
| |
| void ScalarTraits<int64_t>::output(const int64_t &Val, void *, |
| raw_ostream &Out) { |
| Out << Val; |
| } |
| |
| StringRef ScalarTraits<int64_t>::input(StringRef Scalar, void *, int64_t &Val) { |
| long long N; |
| if (getAsSignedInteger(Scalar, 0, N)) |
| return "invalid number"; |
| Val = N; |
| return StringRef(); |
| } |
| |
| void ScalarTraits<double>::output(const double &Val, void *, raw_ostream &Out) { |
| Out << format("%g", Val); |
| } |
| |
| StringRef ScalarTraits<double>::input(StringRef Scalar, void *, double &Val) { |
| if (to_float(Scalar, Val)) |
| return StringRef(); |
| return "invalid floating point number"; |
| } |
| |
| void ScalarTraits<float>::output(const float &Val, void *, raw_ostream &Out) { |
| Out << format("%g", Val); |
| } |
| |
| StringRef ScalarTraits<float>::input(StringRef Scalar, void *, float &Val) { |
| if (to_float(Scalar, Val)) |
| return StringRef(); |
| return "invalid floating point number"; |
| } |
| |
| void ScalarTraits<Hex8>::output(const Hex8 &Val, void *, raw_ostream &Out) { |
| Out << format("0x%" PRIX8, (uint8_t)Val); |
| } |
| |
| StringRef ScalarTraits<Hex8>::input(StringRef Scalar, void *, Hex8 &Val) { |
| unsigned long long n; |
| if (getAsUnsignedInteger(Scalar, 0, n)) |
| return "invalid hex8 number"; |
| if (n > 0xFF) |
| return "out of range hex8 number"; |
| Val = n; |
| return StringRef(); |
| } |
| |
| void ScalarTraits<Hex16>::output(const Hex16 &Val, void *, raw_ostream &Out) { |
| Out << format("0x%" PRIX16, (uint16_t)Val); |
| } |
| |
| StringRef ScalarTraits<Hex16>::input(StringRef Scalar, void *, Hex16 &Val) { |
| unsigned long long n; |
| if (getAsUnsignedInteger(Scalar, 0, n)) |
| return "invalid hex16 number"; |
| if (n > 0xFFFF) |
| return "out of range hex16 number"; |
| Val = n; |
| return StringRef(); |
| } |
| |
| void ScalarTraits<Hex32>::output(const Hex32 &Val, void *, raw_ostream &Out) { |
| Out << format("0x%" PRIX32, (uint32_t)Val); |
| } |
| |
| StringRef ScalarTraits<Hex32>::input(StringRef Scalar, void *, Hex32 &Val) { |
| unsigned long long n; |
| if (getAsUnsignedInteger(Scalar, 0, n)) |
| return "invalid hex32 number"; |
| if (n > 0xFFFFFFFFUL) |
| return "out of range hex32 number"; |
| Val = n; |
| return StringRef(); |
| } |
| |
| void ScalarTraits<Hex64>::output(const Hex64 &Val, void *, raw_ostream &Out) { |
| Out << format("0x%" PRIX64, (uint64_t)Val); |
| } |
| |
| StringRef ScalarTraits<Hex64>::input(StringRef Scalar, void *, Hex64 &Val) { |
| unsigned long long Num; |
| if (getAsUnsignedInteger(Scalar, 0, Num)) |
| return "invalid hex64 number"; |
| Val = Num; |
| return StringRef(); |
| } |
| |
| void ScalarTraits<VersionTuple>::output(const VersionTuple &Val, void *, |
| llvm::raw_ostream &Out) { |
| Out << Val.getAsString(); |
| } |
| |
| StringRef ScalarTraits<VersionTuple>::input(StringRef Scalar, void *, |
| VersionTuple &Val) { |
| if (Val.tryParse(Scalar)) |
| return "invalid version format"; |
| return StringRef(); |
| } |