blob: 06d05d349f36679643637bdc6d36f01b199b1e11 [file] [log] [blame]
//===-- SIRegisterInfo.cpp - SI Register Information ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// SI implementation of the TargetRegisterInfo class.
//
//===----------------------------------------------------------------------===//
#include "SIRegisterInfo.h"
#include "AMDGPURegisterBankInfo.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "MCTargetDesc/AMDGPUInstPrinter.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
using namespace llvm;
#define GET_REGINFO_TARGET_DESC
#include "AMDGPUGenRegisterInfo.inc"
static cl::opt<bool> EnableSpillSGPRToVGPR(
"amdgpu-spill-sgpr-to-vgpr",
cl::desc("Enable spilling VGPRs to SGPRs"),
cl::ReallyHidden,
cl::init(true));
SIRegisterInfo::SIRegisterInfo(const GCNSubtarget &ST)
: AMDGPUGenRegisterInfo(AMDGPU::PC_REG, ST.getAMDGPUDwarfFlavour()), ST(ST),
SpillSGPRToVGPR(EnableSpillSGPRToVGPR), isWave32(ST.isWave32()) {
assert(getSubRegIndexLaneMask(AMDGPU::sub0).getAsInteger() == 3 &&
getSubRegIndexLaneMask(AMDGPU::sub31).getAsInteger() == (3ULL << 62) &&
(getSubRegIndexLaneMask(AMDGPU::lo16) |
getSubRegIndexLaneMask(AMDGPU::hi16)).getAsInteger() ==
getSubRegIndexLaneMask(AMDGPU::sub0).getAsInteger() &&
"getNumCoveredRegs() will not work with generated subreg masks!");
RegPressureIgnoredUnits.resize(getNumRegUnits());
RegPressureIgnoredUnits.set(*MCRegUnitIterator(AMDGPU::M0, this));
for (auto Reg : AMDGPU::VGPR_HI16RegClass)
RegPressureIgnoredUnits.set(*MCRegUnitIterator(Reg, this));
}
void SIRegisterInfo::reserveRegisterTuples(BitVector &Reserved,
MCRegister Reg) const {
MCRegAliasIterator R(Reg, this, true);
for (; R.isValid(); ++R)
Reserved.set(*R);
}
// Forced to be here by one .inc
const MCPhysReg *SIRegisterInfo::getCalleeSavedRegs(
const MachineFunction *MF) const {
CallingConv::ID CC = MF->getFunction().getCallingConv();
switch (CC) {
case CallingConv::C:
case CallingConv::Fast:
case CallingConv::Cold:
return CSR_AMDGPU_HighRegs_SaveList;
default: {
// Dummy to not crash RegisterClassInfo.
static const MCPhysReg NoCalleeSavedReg = AMDGPU::NoRegister;
return &NoCalleeSavedReg;
}
}
}
const MCPhysReg *
SIRegisterInfo::getCalleeSavedRegsViaCopy(const MachineFunction *MF) const {
return nullptr;
}
const uint32_t *SIRegisterInfo::getCallPreservedMask(const MachineFunction &MF,
CallingConv::ID CC) const {
switch (CC) {
case CallingConv::C:
case CallingConv::Fast:
case CallingConv::Cold:
return CSR_AMDGPU_HighRegs_RegMask;
default:
return nullptr;
}
}
Register SIRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
const SIFrameLowering *TFI =
MF.getSubtarget<GCNSubtarget>().getFrameLowering();
const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
// During ISel lowering we always reserve the stack pointer in entry
// functions, but never actually want to reference it when accessing our own
// frame. If we need a frame pointer we use it, but otherwise we can just use
// an immediate "0" which we represent by returning NoRegister.
if (FuncInfo->isEntryFunction()) {
return TFI->hasFP(MF) ? FuncInfo->getFrameOffsetReg() : Register();
}
return TFI->hasFP(MF) ? FuncInfo->getFrameOffsetReg()
: FuncInfo->getStackPtrOffsetReg();
}
const uint32_t *SIRegisterInfo::getAllVGPRRegMask() const {
return CSR_AMDGPU_AllVGPRs_RegMask;
}
const uint32_t *SIRegisterInfo::getAllAllocatableSRegMask() const {
return CSR_AMDGPU_AllAllocatableSRegs_RegMask;
}
// FIXME: TableGen should generate something to make this manageable for all
// register classes. At a minimum we could use the opposite of
// composeSubRegIndices and go up from the base 32-bit subreg.
unsigned SIRegisterInfo::getSubRegFromChannel(unsigned Channel,
unsigned NumRegs) {
// Table of NumRegs sized pieces at every 32-bit offset.
static const uint16_t SubRegFromChannelTable[][32] = {
{AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7,
AMDGPU::sub8, AMDGPU::sub9, AMDGPU::sub10, AMDGPU::sub11,
AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14, AMDGPU::sub15,
AMDGPU::sub16, AMDGPU::sub17, AMDGPU::sub18, AMDGPU::sub19,
AMDGPU::sub20, AMDGPU::sub21, AMDGPU::sub22, AMDGPU::sub23,
AMDGPU::sub24, AMDGPU::sub25, AMDGPU::sub26, AMDGPU::sub27,
AMDGPU::sub28, AMDGPU::sub29, AMDGPU::sub30, AMDGPU::sub31},
{AMDGPU::sub0_sub1, AMDGPU::sub1_sub2, AMDGPU::sub2_sub3,
AMDGPU::sub3_sub4, AMDGPU::sub4_sub5, AMDGPU::sub5_sub6,
AMDGPU::sub6_sub7, AMDGPU::sub7_sub8, AMDGPU::sub8_sub9,
AMDGPU::sub9_sub10, AMDGPU::sub10_sub11, AMDGPU::sub11_sub12,
AMDGPU::sub12_sub13, AMDGPU::sub13_sub14, AMDGPU::sub14_sub15,
AMDGPU::sub15_sub16, AMDGPU::sub16_sub17, AMDGPU::sub17_sub18,
AMDGPU::sub18_sub19, AMDGPU::sub19_sub20, AMDGPU::sub20_sub21,
AMDGPU::sub21_sub22, AMDGPU::sub22_sub23, AMDGPU::sub23_sub24,
AMDGPU::sub24_sub25, AMDGPU::sub25_sub26, AMDGPU::sub26_sub27,
AMDGPU::sub27_sub28, AMDGPU::sub28_sub29, AMDGPU::sub29_sub30,
AMDGPU::sub30_sub31, AMDGPU::NoSubRegister},
{AMDGPU::sub0_sub1_sub2, AMDGPU::sub1_sub2_sub3,
AMDGPU::sub2_sub3_sub4, AMDGPU::sub3_sub4_sub5,
AMDGPU::sub4_sub5_sub6, AMDGPU::sub5_sub6_sub7,
AMDGPU::sub6_sub7_sub8, AMDGPU::sub7_sub8_sub9,
AMDGPU::sub8_sub9_sub10, AMDGPU::sub9_sub10_sub11,
AMDGPU::sub10_sub11_sub12, AMDGPU::sub11_sub12_sub13,
AMDGPU::sub12_sub13_sub14, AMDGPU::sub13_sub14_sub15,
AMDGPU::sub14_sub15_sub16, AMDGPU::sub15_sub16_sub17,
AMDGPU::sub16_sub17_sub18, AMDGPU::sub17_sub18_sub19,
AMDGPU::sub18_sub19_sub20, AMDGPU::sub19_sub20_sub21,
AMDGPU::sub20_sub21_sub22, AMDGPU::sub21_sub22_sub23,
AMDGPU::sub22_sub23_sub24, AMDGPU::sub23_sub24_sub25,
AMDGPU::sub24_sub25_sub26, AMDGPU::sub25_sub26_sub27,
AMDGPU::sub26_sub27_sub28, AMDGPU::sub27_sub28_sub29,
AMDGPU::sub28_sub29_sub30, AMDGPU::sub29_sub30_sub31,
AMDGPU::NoSubRegister, AMDGPU::NoSubRegister},
{AMDGPU::sub0_sub1_sub2_sub3, AMDGPU::sub1_sub2_sub3_sub4,
AMDGPU::sub2_sub3_sub4_sub5, AMDGPU::sub3_sub4_sub5_sub6,
AMDGPU::sub4_sub5_sub6_sub7, AMDGPU::sub5_sub6_sub7_sub8,
AMDGPU::sub6_sub7_sub8_sub9, AMDGPU::sub7_sub8_sub9_sub10,
AMDGPU::sub8_sub9_sub10_sub11, AMDGPU::sub9_sub10_sub11_sub12,
AMDGPU::sub10_sub11_sub12_sub13, AMDGPU::sub11_sub12_sub13_sub14,
AMDGPU::sub12_sub13_sub14_sub15, AMDGPU::sub13_sub14_sub15_sub16,
AMDGPU::sub14_sub15_sub16_sub17, AMDGPU::sub15_sub16_sub17_sub18,
AMDGPU::sub16_sub17_sub18_sub19, AMDGPU::sub17_sub18_sub19_sub20,
AMDGPU::sub18_sub19_sub20_sub21, AMDGPU::sub19_sub20_sub21_sub22,
AMDGPU::sub20_sub21_sub22_sub23, AMDGPU::sub21_sub22_sub23_sub24,
AMDGPU::sub22_sub23_sub24_sub25, AMDGPU::sub23_sub24_sub25_sub26,
AMDGPU::sub24_sub25_sub26_sub27, AMDGPU::sub25_sub26_sub27_sub28,
AMDGPU::sub26_sub27_sub28_sub29, AMDGPU::sub27_sub28_sub29_sub30,
AMDGPU::sub28_sub29_sub30_sub31, AMDGPU::NoSubRegister,
AMDGPU::NoSubRegister, AMDGPU::NoSubRegister}};
const unsigned NumRegIndex = NumRegs - 1;
assert(NumRegIndex < array_lengthof(SubRegFromChannelTable) &&
"Not implemented");
assert(Channel < array_lengthof(SubRegFromChannelTable[0]));
return SubRegFromChannelTable[NumRegIndex][Channel];
}
MCRegister SIRegisterInfo::reservedPrivateSegmentBufferReg(
const MachineFunction &MF) const {
unsigned BaseIdx = alignDown(ST.getMaxNumSGPRs(MF), 4) - 4;
MCRegister BaseReg(AMDGPU::SGPR_32RegClass.getRegister(BaseIdx));
return getMatchingSuperReg(BaseReg, AMDGPU::sub0, &AMDGPU::SGPR_128RegClass);
}
BitVector SIRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
BitVector Reserved(getNumRegs());
// EXEC_LO and EXEC_HI could be allocated and used as regular register, but
// this seems likely to result in bugs, so I'm marking them as reserved.
reserveRegisterTuples(Reserved, AMDGPU::EXEC);
reserveRegisterTuples(Reserved, AMDGPU::FLAT_SCR);
// M0 has to be reserved so that llvm accepts it as a live-in into a block.
reserveRegisterTuples(Reserved, AMDGPU::M0);
// Reserve src_vccz, src_execz, src_scc.
reserveRegisterTuples(Reserved, AMDGPU::SRC_VCCZ);
reserveRegisterTuples(Reserved, AMDGPU::SRC_EXECZ);
reserveRegisterTuples(Reserved, AMDGPU::SRC_SCC);
// Reserve the memory aperture registers.
reserveRegisterTuples(Reserved, AMDGPU::SRC_SHARED_BASE);
reserveRegisterTuples(Reserved, AMDGPU::SRC_SHARED_LIMIT);
reserveRegisterTuples(Reserved, AMDGPU::SRC_PRIVATE_BASE);
reserveRegisterTuples(Reserved, AMDGPU::SRC_PRIVATE_LIMIT);
// Reserve src_pops_exiting_wave_id - support is not implemented in Codegen.
reserveRegisterTuples(Reserved, AMDGPU::SRC_POPS_EXITING_WAVE_ID);
// Reserve xnack_mask registers - support is not implemented in Codegen.
reserveRegisterTuples(Reserved, AMDGPU::XNACK_MASK);
// Reserve lds_direct register - support is not implemented in Codegen.
reserveRegisterTuples(Reserved, AMDGPU::LDS_DIRECT);
// Reserve Trap Handler registers - support is not implemented in Codegen.
reserveRegisterTuples(Reserved, AMDGPU::TBA);
reserveRegisterTuples(Reserved, AMDGPU::TMA);
reserveRegisterTuples(Reserved, AMDGPU::TTMP0_TTMP1);
reserveRegisterTuples(Reserved, AMDGPU::TTMP2_TTMP3);
reserveRegisterTuples(Reserved, AMDGPU::TTMP4_TTMP5);
reserveRegisterTuples(Reserved, AMDGPU::TTMP6_TTMP7);
reserveRegisterTuples(Reserved, AMDGPU::TTMP8_TTMP9);
reserveRegisterTuples(Reserved, AMDGPU::TTMP10_TTMP11);
reserveRegisterTuples(Reserved, AMDGPU::TTMP12_TTMP13);
reserveRegisterTuples(Reserved, AMDGPU::TTMP14_TTMP15);
// Reserve null register - it shall never be allocated
reserveRegisterTuples(Reserved, AMDGPU::SGPR_NULL);
// Disallow vcc_hi allocation in wave32. It may be allocated but most likely
// will result in bugs.
if (isWave32) {
Reserved.set(AMDGPU::VCC);
Reserved.set(AMDGPU::VCC_HI);
}
unsigned MaxNumSGPRs = ST.getMaxNumSGPRs(MF);
unsigned TotalNumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
for (unsigned i = MaxNumSGPRs; i < TotalNumSGPRs; ++i) {
unsigned Reg = AMDGPU::SGPR_32RegClass.getRegister(i);
reserveRegisterTuples(Reserved, Reg);
}
unsigned MaxNumVGPRs = ST.getMaxNumVGPRs(MF);
unsigned TotalNumVGPRs = AMDGPU::VGPR_32RegClass.getNumRegs();
for (unsigned i = MaxNumVGPRs; i < TotalNumVGPRs; ++i) {
unsigned Reg = AMDGPU::VGPR_32RegClass.getRegister(i);
reserveRegisterTuples(Reserved, Reg);
Reg = AMDGPU::AGPR_32RegClass.getRegister(i);
reserveRegisterTuples(Reserved, Reg);
}
// Reserve all the rest AGPRs if there are no instructions to use it.
if (!ST.hasMAIInsts()) {
for (unsigned i = 0; i < MaxNumVGPRs; ++i) {
unsigned Reg = AMDGPU::AGPR_32RegClass.getRegister(i);
reserveRegisterTuples(Reserved, Reg);
}
}
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
unsigned ScratchRSrcReg = MFI->getScratchRSrcReg();
if (ScratchRSrcReg != AMDGPU::NoRegister) {
// Reserve 4 SGPRs for the scratch buffer resource descriptor in case we need
// to spill.
// TODO: May need to reserve a VGPR if doing LDS spilling.
reserveRegisterTuples(Reserved, ScratchRSrcReg);
}
// We have to assume the SP is needed in case there are calls in the function,
// which is detected after the function is lowered. If we aren't really going
// to need SP, don't bother reserving it.
MCRegister StackPtrReg = MFI->getStackPtrOffsetReg();
if (StackPtrReg) {
reserveRegisterTuples(Reserved, StackPtrReg);
assert(!isSubRegister(ScratchRSrcReg, StackPtrReg));
}
MCRegister FrameReg = MFI->getFrameOffsetReg();
if (FrameReg) {
reserveRegisterTuples(Reserved, FrameReg);
assert(!isSubRegister(ScratchRSrcReg, FrameReg));
}
for (MCRegister Reg : MFI->WWMReservedRegs) {
reserveRegisterTuples(Reserved, Reg);
}
// FIXME: Stop using reserved registers for this.
for (MCPhysReg Reg : MFI->getAGPRSpillVGPRs())
reserveRegisterTuples(Reserved, Reg);
for (MCPhysReg Reg : MFI->getVGPRSpillAGPRs())
reserveRegisterTuples(Reserved, Reg);
return Reserved;
}
bool SIRegisterInfo::canRealignStack(const MachineFunction &MF) const {
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
// On entry, the base address is 0, so it can't possibly need any more
// alignment.
// FIXME: Should be able to specify the entry frame alignment per calling
// convention instead.
if (Info->isEntryFunction())
return false;
return TargetRegisterInfo::canRealignStack(MF);
}
bool SIRegisterInfo::requiresRegisterScavenging(const MachineFunction &Fn) const {
const SIMachineFunctionInfo *Info = Fn.getInfo<SIMachineFunctionInfo>();
if (Info->isEntryFunction()) {
const MachineFrameInfo &MFI = Fn.getFrameInfo();
return MFI.hasStackObjects() || MFI.hasCalls();
}
// May need scavenger for dealing with callee saved registers.
return true;
}
bool SIRegisterInfo::requiresFrameIndexScavenging(
const MachineFunction &MF) const {
// Do not use frame virtual registers. They used to be used for SGPRs, but
// once we reach PrologEpilogInserter, we can no longer spill SGPRs. If the
// scavenger fails, we can increment/decrement the necessary SGPRs to avoid a
// spill.
return false;
}
bool SIRegisterInfo::requiresFrameIndexReplacementScavenging(
const MachineFunction &MF) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
return MFI.hasStackObjects();
}
bool SIRegisterInfo::requiresVirtualBaseRegisters(
const MachineFunction &) const {
// There are no special dedicated stack or frame pointers.
return true;
}
int64_t SIRegisterInfo::getMUBUFInstrOffset(const MachineInstr *MI) const {
assert(SIInstrInfo::isMUBUF(*MI));
int OffIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
AMDGPU::OpName::offset);
return MI->getOperand(OffIdx).getImm();
}
int64_t SIRegisterInfo::getFrameIndexInstrOffset(const MachineInstr *MI,
int Idx) const {
if (!SIInstrInfo::isMUBUF(*MI))
return 0;
assert(Idx == AMDGPU::getNamedOperandIdx(MI->getOpcode(),
AMDGPU::OpName::vaddr) &&
"Should never see frame index on non-address operand");
return getMUBUFInstrOffset(MI);
}
bool SIRegisterInfo::needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
if (!MI->mayLoadOrStore())
return false;
int64_t FullOffset = Offset + getMUBUFInstrOffset(MI);
return !isUInt<12>(FullOffset);
}
void SIRegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
unsigned BaseReg,
int FrameIdx,
int64_t Offset) const {
MachineBasicBlock::iterator Ins = MBB->begin();
DebugLoc DL; // Defaults to "unknown"
if (Ins != MBB->end())
DL = Ins->getDebugLoc();
MachineFunction *MF = MBB->getParent();
const SIInstrInfo *TII = ST.getInstrInfo();
if (Offset == 0) {
BuildMI(*MBB, Ins, DL, TII->get(AMDGPU::V_MOV_B32_e32), BaseReg)
.addFrameIndex(FrameIdx);
return;
}
MachineRegisterInfo &MRI = MF->getRegInfo();
Register OffsetReg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
Register FIReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
BuildMI(*MBB, Ins, DL, TII->get(AMDGPU::S_MOV_B32), OffsetReg)
.addImm(Offset);
BuildMI(*MBB, Ins, DL, TII->get(AMDGPU::V_MOV_B32_e32), FIReg)
.addFrameIndex(FrameIdx);
TII->getAddNoCarry(*MBB, Ins, DL, BaseReg)
.addReg(OffsetReg, RegState::Kill)
.addReg(FIReg)
.addImm(0); // clamp bit
}
void SIRegisterInfo::resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
int64_t Offset) const {
const SIInstrInfo *TII = ST.getInstrInfo();
#ifndef NDEBUG
// FIXME: Is it possible to be storing a frame index to itself?
bool SeenFI = false;
for (const MachineOperand &MO: MI.operands()) {
if (MO.isFI()) {
if (SeenFI)
llvm_unreachable("should not see multiple frame indices");
SeenFI = true;
}
}
#endif
MachineOperand *FIOp = TII->getNamedOperand(MI, AMDGPU::OpName::vaddr);
#ifndef NDEBUG
MachineBasicBlock *MBB = MI.getParent();
MachineFunction *MF = MBB->getParent();
#endif
assert(FIOp && FIOp->isFI() && "frame index must be address operand");
assert(TII->isMUBUF(MI));
assert(TII->getNamedOperand(MI, AMDGPU::OpName::soffset)->getReg() ==
MF->getInfo<SIMachineFunctionInfo>()->getStackPtrOffsetReg() &&
"should only be seeing stack pointer offset relative FrameIndex");
MachineOperand *OffsetOp = TII->getNamedOperand(MI, AMDGPU::OpName::offset);
int64_t NewOffset = OffsetOp->getImm() + Offset;
assert(isUInt<12>(NewOffset) && "offset should be legal");
FIOp->ChangeToRegister(BaseReg, false);
OffsetOp->setImm(NewOffset);
}
bool SIRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
unsigned BaseReg,
int64_t Offset) const {
if (!SIInstrInfo::isMUBUF(*MI))
return false;
int64_t NewOffset = Offset + getMUBUFInstrOffset(MI);
return isUInt<12>(NewOffset);
}
const TargetRegisterClass *SIRegisterInfo::getPointerRegClass(
const MachineFunction &MF, unsigned Kind) const {
// This is inaccurate. It depends on the instruction and address space. The
// only place where we should hit this is for dealing with frame indexes /
// private accesses, so this is correct in that case.
return &AMDGPU::VGPR_32RegClass;
}
static unsigned getNumSubRegsForSpillOp(unsigned Op) {
switch (Op) {
case AMDGPU::SI_SPILL_S1024_SAVE:
case AMDGPU::SI_SPILL_S1024_RESTORE:
case AMDGPU::SI_SPILL_V1024_SAVE:
case AMDGPU::SI_SPILL_V1024_RESTORE:
case AMDGPU::SI_SPILL_A1024_SAVE:
case AMDGPU::SI_SPILL_A1024_RESTORE:
return 32;
case AMDGPU::SI_SPILL_S512_SAVE:
case AMDGPU::SI_SPILL_S512_RESTORE:
case AMDGPU::SI_SPILL_V512_SAVE:
case AMDGPU::SI_SPILL_V512_RESTORE:
case AMDGPU::SI_SPILL_A512_SAVE:
case AMDGPU::SI_SPILL_A512_RESTORE:
return 16;
case AMDGPU::SI_SPILL_S256_SAVE:
case AMDGPU::SI_SPILL_S256_RESTORE:
case AMDGPU::SI_SPILL_V256_SAVE:
case AMDGPU::SI_SPILL_V256_RESTORE:
return 8;
case AMDGPU::SI_SPILL_S160_SAVE:
case AMDGPU::SI_SPILL_S160_RESTORE:
case AMDGPU::SI_SPILL_V160_SAVE:
case AMDGPU::SI_SPILL_V160_RESTORE:
return 5;
case AMDGPU::SI_SPILL_S128_SAVE:
case AMDGPU::SI_SPILL_S128_RESTORE:
case AMDGPU::SI_SPILL_V128_SAVE:
case AMDGPU::SI_SPILL_V128_RESTORE:
case AMDGPU::SI_SPILL_A128_SAVE:
case AMDGPU::SI_SPILL_A128_RESTORE:
return 4;
case AMDGPU::SI_SPILL_S96_SAVE:
case AMDGPU::SI_SPILL_S96_RESTORE:
case AMDGPU::SI_SPILL_V96_SAVE:
case AMDGPU::SI_SPILL_V96_RESTORE:
return 3;
case AMDGPU::SI_SPILL_S64_SAVE:
case AMDGPU::SI_SPILL_S64_RESTORE:
case AMDGPU::SI_SPILL_V64_SAVE:
case AMDGPU::SI_SPILL_V64_RESTORE:
case AMDGPU::SI_SPILL_A64_SAVE:
case AMDGPU::SI_SPILL_A64_RESTORE:
return 2;
case AMDGPU::SI_SPILL_S32_SAVE:
case AMDGPU::SI_SPILL_S32_RESTORE:
case AMDGPU::SI_SPILL_V32_SAVE:
case AMDGPU::SI_SPILL_V32_RESTORE:
case AMDGPU::SI_SPILL_A32_SAVE:
case AMDGPU::SI_SPILL_A32_RESTORE:
return 1;
default: llvm_unreachable("Invalid spill opcode");
}
}
static int getOffsetMUBUFStore(unsigned Opc) {
switch (Opc) {
case AMDGPU::BUFFER_STORE_DWORD_OFFEN:
return AMDGPU::BUFFER_STORE_DWORD_OFFSET;
case AMDGPU::BUFFER_STORE_BYTE_OFFEN:
return AMDGPU::BUFFER_STORE_BYTE_OFFSET;
case AMDGPU::BUFFER_STORE_SHORT_OFFEN:
return AMDGPU::BUFFER_STORE_SHORT_OFFSET;
case AMDGPU::BUFFER_STORE_DWORDX2_OFFEN:
return AMDGPU::BUFFER_STORE_DWORDX2_OFFSET;
case AMDGPU::BUFFER_STORE_DWORDX4_OFFEN:
return AMDGPU::BUFFER_STORE_DWORDX4_OFFSET;
case AMDGPU::BUFFER_STORE_SHORT_D16_HI_OFFEN:
return AMDGPU::BUFFER_STORE_SHORT_D16_HI_OFFSET;
case AMDGPU::BUFFER_STORE_BYTE_D16_HI_OFFEN:
return AMDGPU::BUFFER_STORE_BYTE_D16_HI_OFFSET;
default:
return -1;
}
}
static int getOffsetMUBUFLoad(unsigned Opc) {
switch (Opc) {
case AMDGPU::BUFFER_LOAD_DWORD_OFFEN:
return AMDGPU::BUFFER_LOAD_DWORD_OFFSET;
case AMDGPU::BUFFER_LOAD_UBYTE_OFFEN:
return AMDGPU::BUFFER_LOAD_UBYTE_OFFSET;
case AMDGPU::BUFFER_LOAD_SBYTE_OFFEN:
return AMDGPU::BUFFER_LOAD_SBYTE_OFFSET;
case AMDGPU::BUFFER_LOAD_USHORT_OFFEN:
return AMDGPU::BUFFER_LOAD_USHORT_OFFSET;
case AMDGPU::BUFFER_LOAD_SSHORT_OFFEN:
return AMDGPU::BUFFER_LOAD_SSHORT_OFFSET;
case AMDGPU::BUFFER_LOAD_DWORDX2_OFFEN:
return AMDGPU::BUFFER_LOAD_DWORDX2_OFFSET;
case AMDGPU::BUFFER_LOAD_DWORDX4_OFFEN:
return AMDGPU::BUFFER_LOAD_DWORDX4_OFFSET;
case AMDGPU::BUFFER_LOAD_UBYTE_D16_OFFEN:
return AMDGPU::BUFFER_LOAD_UBYTE_D16_OFFSET;
case AMDGPU::BUFFER_LOAD_UBYTE_D16_HI_OFFEN:
return AMDGPU::BUFFER_LOAD_UBYTE_D16_HI_OFFSET;
case AMDGPU::BUFFER_LOAD_SBYTE_D16_OFFEN:
return AMDGPU::BUFFER_LOAD_SBYTE_D16_OFFSET;
case AMDGPU::BUFFER_LOAD_SBYTE_D16_HI_OFFEN:
return AMDGPU::BUFFER_LOAD_SBYTE_D16_HI_OFFSET;
case AMDGPU::BUFFER_LOAD_SHORT_D16_OFFEN:
return AMDGPU::BUFFER_LOAD_SHORT_D16_OFFSET;
case AMDGPU::BUFFER_LOAD_SHORT_D16_HI_OFFEN:
return AMDGPU::BUFFER_LOAD_SHORT_D16_HI_OFFSET;
default:
return -1;
}
}
static MachineInstrBuilder spillVGPRtoAGPR(const GCNSubtarget &ST,
MachineBasicBlock::iterator MI,
int Index,
unsigned Lane,
unsigned ValueReg,
bool IsKill) {
MachineBasicBlock *MBB = MI->getParent();
MachineFunction *MF = MI->getParent()->getParent();
SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
const SIInstrInfo *TII = ST.getInstrInfo();
MCPhysReg Reg = MFI->getVGPRToAGPRSpill(Index, Lane);
if (Reg == AMDGPU::NoRegister)
return MachineInstrBuilder();
bool IsStore = MI->mayStore();
MachineRegisterInfo &MRI = MF->getRegInfo();
auto *TRI = static_cast<const SIRegisterInfo*>(MRI.getTargetRegisterInfo());
unsigned Dst = IsStore ? Reg : ValueReg;
unsigned Src = IsStore ? ValueReg : Reg;
unsigned Opc = (IsStore ^ TRI->isVGPR(MRI, Reg)) ? AMDGPU::V_ACCVGPR_WRITE_B32
: AMDGPU::V_ACCVGPR_READ_B32;
return BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(Opc), Dst)
.addReg(Src, getKillRegState(IsKill));
}
// This differs from buildSpillLoadStore by only scavenging a VGPR. It does not
// need to handle the case where an SGPR may need to be spilled while spilling.
static bool buildMUBUFOffsetLoadStore(const GCNSubtarget &ST,
MachineFrameInfo &MFI,
MachineBasicBlock::iterator MI,
int Index,
int64_t Offset) {
const SIInstrInfo *TII = ST.getInstrInfo();
MachineBasicBlock *MBB = MI->getParent();
const DebugLoc &DL = MI->getDebugLoc();
bool IsStore = MI->mayStore();
unsigned Opc = MI->getOpcode();
int LoadStoreOp = IsStore ?
getOffsetMUBUFStore(Opc) : getOffsetMUBUFLoad(Opc);
if (LoadStoreOp == -1)
return false;
const MachineOperand *Reg = TII->getNamedOperand(*MI, AMDGPU::OpName::vdata);
if (spillVGPRtoAGPR(ST, MI, Index, 0, Reg->getReg(), false).getInstr())
return true;
MachineInstrBuilder NewMI =
BuildMI(*MBB, MI, DL, TII->get(LoadStoreOp))
.add(*Reg)
.add(*TII->getNamedOperand(*MI, AMDGPU::OpName::srsrc))
.add(*TII->getNamedOperand(*MI, AMDGPU::OpName::soffset))
.addImm(Offset)
.addImm(0) // glc
.addImm(0) // slc
.addImm(0) // tfe
.addImm(0) // dlc
.addImm(0) // swz
.cloneMemRefs(*MI);
const MachineOperand *VDataIn = TII->getNamedOperand(*MI,
AMDGPU::OpName::vdata_in);
if (VDataIn)
NewMI.add(*VDataIn);
return true;
}
void SIRegisterInfo::buildSpillLoadStore(MachineBasicBlock::iterator MI,
unsigned LoadStoreOp,
int Index,
Register ValueReg,
bool IsKill,
MCRegister ScratchRsrcReg,
MCRegister ScratchOffsetReg,
int64_t InstOffset,
MachineMemOperand *MMO,
RegScavenger *RS) const {
MachineBasicBlock *MBB = MI->getParent();
MachineFunction *MF = MI->getParent()->getParent();
const SIInstrInfo *TII = ST.getInstrInfo();
const MachineFrameInfo &MFI = MF->getFrameInfo();
const MCInstrDesc &Desc = TII->get(LoadStoreOp);
const DebugLoc &DL = MI->getDebugLoc();
bool IsStore = Desc.mayStore();
bool Scavenged = false;
MCRegister SOffset = ScratchOffsetReg;
const unsigned EltSize = 4;
const TargetRegisterClass *RC = getRegClassForReg(MF->getRegInfo(), ValueReg);
unsigned NumSubRegs = AMDGPU::getRegBitWidth(RC->getID()) / (EltSize * CHAR_BIT);
unsigned Size = NumSubRegs * EltSize;
int64_t Offset = InstOffset + MFI.getObjectOffset(Index);
int64_t ScratchOffsetRegDelta = 0;
Align Alignment = MFI.getObjectAlign(Index);
const MachinePointerInfo &BasePtrInfo = MMO->getPointerInfo();
Register TmpReg =
hasAGPRs(RC) ? TII->getNamedOperand(*MI, AMDGPU::OpName::tmp)->getReg()
: Register();
assert((Offset % EltSize) == 0 && "unexpected VGPR spill offset");
if (!isUInt<12>(Offset + Size - EltSize)) {
SOffset = MCRegister();
// We currently only support spilling VGPRs to EltSize boundaries, meaning
// we can simplify the adjustment of Offset here to just scale with
// WavefrontSize.
Offset *= ST.getWavefrontSize();
// We don't have access to the register scavenger if this function is called
// during PEI::scavengeFrameVirtualRegs().
if (RS)
SOffset = RS->scavengeRegister(&AMDGPU::SGPR_32RegClass, MI, 0, false);
if (!SOffset) {
if (!ScratchOffsetReg) {
report_fatal_error("could not scavenge SGPR to spill in entry function");
}
// There are no free SGPRs, and since we are in the process of spilling
// VGPRs too. Since we need a VGPR in order to spill SGPRs (this is true
// on SI/CI and on VI it is true until we implement spilling using scalar
// stores), we have no way to free up an SGPR. Our solution here is to
// add the offset directly to the ScratchOffset register, and then
// subtract the offset after the spill to return ScratchOffset to it's
// original value.
SOffset = ScratchOffsetReg;
ScratchOffsetRegDelta = Offset;
} else {
Scavenged = true;
}
if (ScratchOffsetReg == AMDGPU::NoRegister) {
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_MOV_B32), SOffset)
.addImm(Offset);
} else {
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_ADD_U32), SOffset)
.addReg(ScratchOffsetReg)
.addImm(Offset);
}
Offset = 0;
}
for (unsigned i = 0, e = NumSubRegs; i != e; ++i, Offset += EltSize) {
Register SubReg = NumSubRegs == 1
? Register(ValueReg)
: getSubReg(ValueReg, getSubRegFromChannel(i));
unsigned SOffsetRegState = 0;
unsigned SrcDstRegState = getDefRegState(!IsStore);
if (i + 1 == e) {
SOffsetRegState |= getKillRegState(Scavenged);
// The last implicit use carries the "Kill" flag.
SrcDstRegState |= getKillRegState(IsKill);
}
auto MIB = spillVGPRtoAGPR(ST, MI, Index, i, SubReg, IsKill);
if (!MIB.getInstr()) {
unsigned FinalReg = SubReg;
if (TmpReg != AMDGPU::NoRegister) {
if (IsStore)
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::V_ACCVGPR_READ_B32), TmpReg)
.addReg(SubReg, getKillRegState(IsKill));
SubReg = TmpReg;
}
MachinePointerInfo PInfo = BasePtrInfo.getWithOffset(EltSize * i);
MachineMemOperand *NewMMO =
MF->getMachineMemOperand(PInfo, MMO->getFlags(), EltSize,
commonAlignment(Alignment, EltSize * i));
MIB = BuildMI(*MBB, MI, DL, Desc)
.addReg(SubReg,
getDefRegState(!IsStore) | getKillRegState(IsKill))
.addReg(ScratchRsrcReg);
if (SOffset == AMDGPU::NoRegister) {
MIB.addImm(0);
} else {
MIB.addReg(SOffset, SOffsetRegState);
}
MIB.addImm(Offset)
.addImm(0) // glc
.addImm(0) // slc
.addImm(0) // tfe
.addImm(0) // dlc
.addImm(0) // swz
.addMemOperand(NewMMO);
if (!IsStore && TmpReg != AMDGPU::NoRegister)
MIB = BuildMI(*MBB, MI, DL, TII->get(AMDGPU::V_ACCVGPR_WRITE_B32),
FinalReg)
.addReg(TmpReg, RegState::Kill);
}
if (NumSubRegs > 1)
MIB.addReg(ValueReg, RegState::Implicit | SrcDstRegState);
}
if (ScratchOffsetRegDelta != 0) {
// Subtract the offset we added to the ScratchOffset register.
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_SUB_U32), ScratchOffsetReg)
.addReg(ScratchOffsetReg)
.addImm(ScratchOffsetRegDelta);
}
}
bool SIRegisterInfo::spillSGPR(MachineBasicBlock::iterator MI,
int Index,
RegScavenger *RS,
bool OnlyToVGPR) const {
MachineBasicBlock *MBB = MI->getParent();
MachineFunction *MF = MBB->getParent();
SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
DenseSet<unsigned> SGPRSpillVGPRDefinedSet;
ArrayRef<SIMachineFunctionInfo::SpilledReg> VGPRSpills
= MFI->getSGPRToVGPRSpills(Index);
bool SpillToVGPR = !VGPRSpills.empty();
if (OnlyToVGPR && !SpillToVGPR)
return false;
const SIInstrInfo *TII = ST.getInstrInfo();
Register SuperReg = MI->getOperand(0).getReg();
bool IsKill = MI->getOperand(0).isKill();
const DebugLoc &DL = MI->getDebugLoc();
MachineFrameInfo &FrameInfo = MF->getFrameInfo();
assert(SpillToVGPR || (SuperReg != MFI->getStackPtrOffsetReg() &&
SuperReg != MFI->getFrameOffsetReg()));
assert(SuperReg != AMDGPU::M0 && "m0 should never spill");
unsigned EltSize = 4;
const TargetRegisterClass *RC = getPhysRegClass(SuperReg);
ArrayRef<int16_t> SplitParts = getRegSplitParts(RC, EltSize);
unsigned NumSubRegs = SplitParts.empty() ? 1 : SplitParts.size();
// Scavenged temporary VGPR to use. It must be scavenged once for any number
// of spilled subregs.
Register TmpVGPR;
// SubReg carries the "Kill" flag when SubReg == SuperReg.
unsigned SubKillState = getKillRegState((NumSubRegs == 1) && IsKill);
for (unsigned i = 0, e = NumSubRegs; i < e; ++i) {
Register SubReg =
NumSubRegs == 1 ? SuperReg : getSubReg(SuperReg, SplitParts[i]);
if (SpillToVGPR) {
SIMachineFunctionInfo::SpilledReg Spill = VGPRSpills[i];
// During SGPR spilling to VGPR, determine if the VGPR is defined. The
// only circumstance in which we say it is undefined is when it is the
// first spill to this VGPR in the first basic block.
bool VGPRDefined = true;
if (MBB == &MF->front())
VGPRDefined = !SGPRSpillVGPRDefinedSet.insert(Spill.VGPR).second;
// Mark the "old value of vgpr" input undef only if this is the first sgpr
// spill to this specific vgpr in the first basic block.
BuildMI(*MBB, MI, DL,
TII->getMCOpcodeFromPseudo(AMDGPU::V_WRITELANE_B32),
Spill.VGPR)
.addReg(SubReg, getKillRegState(IsKill))
.addImm(Spill.Lane)
.addReg(Spill.VGPR, VGPRDefined ? 0 : RegState::Undef);
// FIXME: Since this spills to another register instead of an actual
// frame index, we should delete the frame index when all references to
// it are fixed.
} else {
// XXX - Can to VGPR spill fail for some subregisters but not others?
if (OnlyToVGPR)
return false;
// Spill SGPR to a frame index.
if (!TmpVGPR.isValid())
TmpVGPR = RS->scavengeRegister(&AMDGPU::VGPR_32RegClass, MI, 0);
MachineInstrBuilder Mov
= BuildMI(*MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), TmpVGPR)
.addReg(SubReg, SubKillState);
// There could be undef components of a spilled super register.
// TODO: Can we detect this and skip the spill?
if (NumSubRegs > 1) {
// The last implicit use of the SuperReg carries the "Kill" flag.
unsigned SuperKillState = 0;
if (i + 1 == e)
SuperKillState |= getKillRegState(IsKill);
Mov.addReg(SuperReg, RegState::Implicit | SuperKillState);
}
Align Alignment = FrameInfo.getObjectAlign(Index);
MachinePointerInfo PtrInfo
= MachinePointerInfo::getFixedStack(*MF, Index, EltSize * i);
MachineMemOperand *MMO =
MF->getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, EltSize,
commonAlignment(Alignment, EltSize * i));
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::SI_SPILL_V32_SAVE))
.addReg(TmpVGPR, RegState::Kill) // src
.addFrameIndex(Index) // vaddr
.addReg(MFI->getScratchRSrcReg()) // srrsrc
.addReg(MFI->getStackPtrOffsetReg()) // soffset
.addImm(i * 4) // offset
.addMemOperand(MMO);
}
}
MI->eraseFromParent();
MFI->addToSpilledSGPRs(NumSubRegs);
return true;
}
bool SIRegisterInfo::restoreSGPR(MachineBasicBlock::iterator MI,
int Index,
RegScavenger *RS,
bool OnlyToVGPR) const {
MachineFunction *MF = MI->getParent()->getParent();
MachineBasicBlock *MBB = MI->getParent();
SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
ArrayRef<SIMachineFunctionInfo::SpilledReg> VGPRSpills
= MFI->getSGPRToVGPRSpills(Index);
bool SpillToVGPR = !VGPRSpills.empty();
if (OnlyToVGPR && !SpillToVGPR)
return false;
MachineFrameInfo &FrameInfo = MF->getFrameInfo();
const SIInstrInfo *TII = ST.getInstrInfo();
const DebugLoc &DL = MI->getDebugLoc();
Register SuperReg = MI->getOperand(0).getReg();
assert(SuperReg != AMDGPU::M0 && "m0 should never spill");
unsigned EltSize = 4;
const TargetRegisterClass *RC = getPhysRegClass(SuperReg);
ArrayRef<int16_t> SplitParts = getRegSplitParts(RC, EltSize);
unsigned NumSubRegs = SplitParts.empty() ? 1 : SplitParts.size();
Register TmpVGPR;
for (unsigned i = 0, e = NumSubRegs; i < e; ++i) {
Register SubReg =
NumSubRegs == 1 ? SuperReg : getSubReg(SuperReg, SplitParts[i]);
if (SpillToVGPR) {
SIMachineFunctionInfo::SpilledReg Spill = VGPRSpills[i];
auto MIB =
BuildMI(*MBB, MI, DL, TII->getMCOpcodeFromPseudo(AMDGPU::V_READLANE_B32),
SubReg)
.addReg(Spill.VGPR)
.addImm(Spill.Lane);
if (NumSubRegs > 1 && i == 0)
MIB.addReg(SuperReg, RegState::ImplicitDefine);
} else {
if (OnlyToVGPR)
return false;
// Restore SGPR from a stack slot.
// FIXME: We should use S_LOAD_DWORD here for VI.
if (!TmpVGPR.isValid())
TmpVGPR = RS->scavengeRegister(&AMDGPU::VGPR_32RegClass, MI, 0);
Align Alignment = FrameInfo.getObjectAlign(Index);
MachinePointerInfo PtrInfo
= MachinePointerInfo::getFixedStack(*MF, Index, EltSize * i);
MachineMemOperand *MMO =
MF->getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, EltSize,
commonAlignment(Alignment, EltSize * i));
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::SI_SPILL_V32_RESTORE), TmpVGPR)
.addFrameIndex(Index) // vaddr
.addReg(MFI->getScratchRSrcReg()) // srsrc
.addReg(MFI->getStackPtrOffsetReg()) // soffset
.addImm(i * 4) // offset
.addMemOperand(MMO);
auto MIB =
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), SubReg)
.addReg(TmpVGPR, RegState::Kill);
if (NumSubRegs > 1)
MIB.addReg(MI->getOperand(0).getReg(), RegState::ImplicitDefine);
}
}
MI->eraseFromParent();
return true;
}
/// Special case of eliminateFrameIndex. Returns true if the SGPR was spilled to
/// a VGPR and the stack slot can be safely eliminated when all other users are
/// handled.
bool SIRegisterInfo::eliminateSGPRToVGPRSpillFrameIndex(
MachineBasicBlock::iterator MI,
int FI,
RegScavenger *RS) const {
switch (MI->getOpcode()) {
case AMDGPU::SI_SPILL_S1024_SAVE:
case AMDGPU::SI_SPILL_S512_SAVE:
case AMDGPU::SI_SPILL_S256_SAVE:
case AMDGPU::SI_SPILL_S160_SAVE:
case AMDGPU::SI_SPILL_S128_SAVE:
case AMDGPU::SI_SPILL_S96_SAVE:
case AMDGPU::SI_SPILL_S64_SAVE:
case AMDGPU::SI_SPILL_S32_SAVE:
return spillSGPR(MI, FI, RS, true);
case AMDGPU::SI_SPILL_S1024_RESTORE:
case AMDGPU::SI_SPILL_S512_RESTORE:
case AMDGPU::SI_SPILL_S256_RESTORE:
case AMDGPU::SI_SPILL_S160_RESTORE:
case AMDGPU::SI_SPILL_S128_RESTORE:
case AMDGPU::SI_SPILL_S96_RESTORE:
case AMDGPU::SI_SPILL_S64_RESTORE:
case AMDGPU::SI_SPILL_S32_RESTORE:
return restoreSGPR(MI, FI, RS, true);
default:
llvm_unreachable("not an SGPR spill instruction");
}
}
void SIRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator MI,
int SPAdj, unsigned FIOperandNum,
RegScavenger *RS) const {
MachineFunction *MF = MI->getParent()->getParent();
MachineBasicBlock *MBB = MI->getParent();
SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
MachineFrameInfo &FrameInfo = MF->getFrameInfo();
const SIInstrInfo *TII = ST.getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
assert(SPAdj == 0 && "unhandled SP adjustment in call sequence?");
MachineOperand &FIOp = MI->getOperand(FIOperandNum);
int Index = MI->getOperand(FIOperandNum).getIndex();
Register FrameReg = getFrameRegister(*MF);
switch (MI->getOpcode()) {
// SGPR register spill
case AMDGPU::SI_SPILL_S1024_SAVE:
case AMDGPU::SI_SPILL_S512_SAVE:
case AMDGPU::SI_SPILL_S256_SAVE:
case AMDGPU::SI_SPILL_S160_SAVE:
case AMDGPU::SI_SPILL_S128_SAVE:
case AMDGPU::SI_SPILL_S96_SAVE:
case AMDGPU::SI_SPILL_S64_SAVE:
case AMDGPU::SI_SPILL_S32_SAVE: {
spillSGPR(MI, Index, RS);
break;
}
// SGPR register restore
case AMDGPU::SI_SPILL_S1024_RESTORE:
case AMDGPU::SI_SPILL_S512_RESTORE:
case AMDGPU::SI_SPILL_S256_RESTORE:
case AMDGPU::SI_SPILL_S160_RESTORE:
case AMDGPU::SI_SPILL_S128_RESTORE:
case AMDGPU::SI_SPILL_S96_RESTORE:
case AMDGPU::SI_SPILL_S64_RESTORE:
case AMDGPU::SI_SPILL_S32_RESTORE: {
restoreSGPR(MI, Index, RS);
break;
}
// VGPR register spill
case AMDGPU::SI_SPILL_V1024_SAVE:
case AMDGPU::SI_SPILL_V512_SAVE:
case AMDGPU::SI_SPILL_V256_SAVE:
case AMDGPU::SI_SPILL_V160_SAVE:
case AMDGPU::SI_SPILL_V128_SAVE:
case AMDGPU::SI_SPILL_V96_SAVE:
case AMDGPU::SI_SPILL_V64_SAVE:
case AMDGPU::SI_SPILL_V32_SAVE:
case AMDGPU::SI_SPILL_A1024_SAVE:
case AMDGPU::SI_SPILL_A512_SAVE:
case AMDGPU::SI_SPILL_A128_SAVE:
case AMDGPU::SI_SPILL_A64_SAVE:
case AMDGPU::SI_SPILL_A32_SAVE: {
const MachineOperand *VData = TII->getNamedOperand(*MI,
AMDGPU::OpName::vdata);
assert(TII->getNamedOperand(*MI, AMDGPU::OpName::soffset)->getReg() ==
MFI->getStackPtrOffsetReg());
buildSpillLoadStore(MI, AMDGPU::BUFFER_STORE_DWORD_OFFSET,
Index,
VData->getReg(), VData->isKill(),
TII->getNamedOperand(*MI, AMDGPU::OpName::srsrc)->getReg(),
FrameReg,
TII->getNamedOperand(*MI, AMDGPU::OpName::offset)->getImm(),
*MI->memoperands_begin(),
RS);
MFI->addToSpilledVGPRs(getNumSubRegsForSpillOp(MI->getOpcode()));
MI->eraseFromParent();
break;
}
case AMDGPU::SI_SPILL_V32_RESTORE:
case AMDGPU::SI_SPILL_V64_RESTORE:
case AMDGPU::SI_SPILL_V96_RESTORE:
case AMDGPU::SI_SPILL_V128_RESTORE:
case AMDGPU::SI_SPILL_V160_RESTORE:
case AMDGPU::SI_SPILL_V256_RESTORE:
case AMDGPU::SI_SPILL_V512_RESTORE:
case AMDGPU::SI_SPILL_V1024_RESTORE:
case AMDGPU::SI_SPILL_A32_RESTORE:
case AMDGPU::SI_SPILL_A64_RESTORE:
case AMDGPU::SI_SPILL_A128_RESTORE:
case AMDGPU::SI_SPILL_A512_RESTORE:
case AMDGPU::SI_SPILL_A1024_RESTORE: {
const MachineOperand *VData = TII->getNamedOperand(*MI,
AMDGPU::OpName::vdata);
assert(TII->getNamedOperand(*MI, AMDGPU::OpName::soffset)->getReg() ==
MFI->getStackPtrOffsetReg());
buildSpillLoadStore(MI, AMDGPU::BUFFER_LOAD_DWORD_OFFSET,
Index,
VData->getReg(), VData->isKill(),
TII->getNamedOperand(*MI, AMDGPU::OpName::srsrc)->getReg(),
FrameReg,
TII->getNamedOperand(*MI, AMDGPU::OpName::offset)->getImm(),
*MI->memoperands_begin(),
RS);
MI->eraseFromParent();
break;
}
default: {
const DebugLoc &DL = MI->getDebugLoc();
bool IsMUBUF = TII->isMUBUF(*MI);
if (!IsMUBUF && !MFI->isEntryFunction()) {
// Convert to a swizzled stack address by scaling by the wave size.
//
// In an entry function/kernel the offset is already swizzled.
bool IsCopy = MI->getOpcode() == AMDGPU::V_MOV_B32_e32;
Register ResultReg =
IsCopy ? MI->getOperand(0).getReg()
: RS->scavengeRegister(&AMDGPU::VGPR_32RegClass, MI, 0);
int64_t Offset = FrameInfo.getObjectOffset(Index);
if (Offset == 0) {
// XXX - This never happens because of emergency scavenging slot at 0?
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::V_LSHRREV_B32_e64), ResultReg)
.addImm(ST.getWavefrontSizeLog2())
.addReg(FrameReg);
} else {
if (auto MIB = TII->getAddNoCarry(*MBB, MI, DL, ResultReg, *RS)) {
// Reuse ResultReg in intermediate step.
Register ScaledReg = ResultReg;
BuildMI(*MBB, *MIB, DL, TII->get(AMDGPU::V_LSHRREV_B32_e64),
ScaledReg)
.addImm(ST.getWavefrontSizeLog2())
.addReg(FrameReg);
const bool IsVOP2 = MIB->getOpcode() == AMDGPU::V_ADD_U32_e32;
// TODO: Fold if use instruction is another add of a constant.
if (IsVOP2 || AMDGPU::isInlinableLiteral32(Offset, ST.hasInv2PiInlineImm())) {
// FIXME: This can fail
MIB.addImm(Offset);
MIB.addReg(ScaledReg, RegState::Kill);
if (!IsVOP2)
MIB.addImm(0); // clamp bit
} else {
assert(MIB->getOpcode() == AMDGPU::V_ADD_I32_e64 &&
"Need to reuse carry out register");
// Use scavenged unused carry out as offset register.
Register ConstOffsetReg;
if (!isWave32)
ConstOffsetReg = getSubReg(MIB.getReg(1), AMDGPU::sub0);
else
ConstOffsetReg = MIB.getReg(1);
BuildMI(*MBB, *MIB, DL, TII->get(AMDGPU::S_MOV_B32), ConstOffsetReg)
.addImm(Offset);
MIB.addReg(ConstOffsetReg, RegState::Kill);
MIB.addReg(ScaledReg, RegState::Kill);
MIB.addImm(0); // clamp bit
}
} else {
// We have to produce a carry out, and there isn't a free SGPR pair
// for it. We can keep the whole computation on the SALU to avoid
// clobbering an additional register at the cost of an extra mov.
// We may have 1 free scratch SGPR even though a carry out is
// unavailable. Only one additional mov is needed.
Register TmpScaledReg =
RS->scavengeRegister(&AMDGPU::SReg_32_XM0RegClass, MI, 0, false);
Register ScaledReg = TmpScaledReg.isValid() ? TmpScaledReg : FrameReg;
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_LSHR_B32), ScaledReg)
.addReg(FrameReg)
.addImm(ST.getWavefrontSizeLog2());
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_ADD_U32), ScaledReg)
.addReg(ScaledReg, RegState::Kill)
.addImm(Offset);
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::COPY), ResultReg)
.addReg(ScaledReg, RegState::Kill);
// If there were truly no free SGPRs, we need to undo everything.
if (!TmpScaledReg.isValid()) {
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_SUB_U32), ScaledReg)
.addReg(ScaledReg, RegState::Kill)
.addImm(Offset);
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_LSHL_B32), ScaledReg)
.addReg(FrameReg)
.addImm(ST.getWavefrontSizeLog2());
}
}
}
// Don't introduce an extra copy if we're just materializing in a mov.
if (IsCopy)
MI->eraseFromParent();
else
FIOp.ChangeToRegister(ResultReg, false, false, true);
return;
}
if (IsMUBUF) {
// Disable offen so we don't need a 0 vgpr base.
assert(static_cast<int>(FIOperandNum) ==
AMDGPU::getNamedOperandIdx(MI->getOpcode(),
AMDGPU::OpName::vaddr));
auto &SOffset = *TII->getNamedOperand(*MI, AMDGPU::OpName::soffset);
assert((SOffset.isReg() &&
SOffset.getReg() == MFI->getStackPtrOffsetReg()) ||
(SOffset.isImm() && SOffset.getImm() == 0));
if (SOffset.isReg()) {
if (FrameReg == AMDGPU::NoRegister) {
SOffset.ChangeToImmediate(0);
} else {
SOffset.setReg(FrameReg);
}
}
int64_t Offset = FrameInfo.getObjectOffset(Index);
int64_t OldImm
= TII->getNamedOperand(*MI, AMDGPU::OpName::offset)->getImm();
int64_t NewOffset = OldImm + Offset;
if (isUInt<12>(NewOffset) &&
buildMUBUFOffsetLoadStore(ST, FrameInfo, MI, Index, NewOffset)) {
MI->eraseFromParent();
return;
}
}
// If the offset is simply too big, don't convert to a scratch wave offset
// relative index.
int64_t Offset = FrameInfo.getObjectOffset(Index);
FIOp.ChangeToImmediate(Offset);
if (!TII->isImmOperandLegal(*MI, FIOperandNum, FIOp)) {
Register TmpReg = RS->scavengeRegister(&AMDGPU::VGPR_32RegClass, MI, 0);
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), TmpReg)
.addImm(Offset);
FIOp.ChangeToRegister(TmpReg, false, false, true);
}
}
}
}
StringRef SIRegisterInfo::getRegAsmName(unsigned Reg) const {
return AMDGPUInstPrinter::getRegisterName(Reg);
}
// FIXME: This is very slow. It might be worth creating a map from physreg to
// register class.
const TargetRegisterClass *
SIRegisterInfo::getPhysRegClass(MCRegister Reg) const {
static const TargetRegisterClass *const BaseClasses[] = {
&AMDGPU::VGPR_32RegClass,
&AMDGPU::SReg_32RegClass,
&AMDGPU::AGPR_32RegClass,
&AMDGPU::VReg_64RegClass,
&AMDGPU::SReg_64RegClass,
&AMDGPU::AReg_64RegClass,
&AMDGPU::VReg_96RegClass,
&AMDGPU::SReg_96RegClass,
&AMDGPU::VReg_128RegClass,
&AMDGPU::SReg_128RegClass,
&AMDGPU::AReg_128RegClass,
&AMDGPU::VReg_160RegClass,
&AMDGPU::SReg_160RegClass,
&AMDGPU::VReg_256RegClass,
&AMDGPU::SReg_256RegClass,
&AMDGPU::VReg_512RegClass,
&AMDGPU::SReg_512RegClass,
&AMDGPU::AReg_512RegClass,
&AMDGPU::SReg_1024RegClass,
&AMDGPU::VReg_1024RegClass,
&AMDGPU::AReg_1024RegClass,
&AMDGPU::SCC_CLASSRegClass,
&AMDGPU::Pseudo_SReg_32RegClass,
&AMDGPU::Pseudo_SReg_128RegClass,
};
for (const TargetRegisterClass *BaseClass : BaseClasses) {
if (BaseClass->contains(Reg)) {
return BaseClass;
}
}
return nullptr;
}
// TODO: It might be helpful to have some target specific flags in
// TargetRegisterClass to mark which classes are VGPRs to make this trivial.
bool SIRegisterInfo::hasVGPRs(const TargetRegisterClass *RC) const {
unsigned Size = getRegSizeInBits(*RC);
switch (Size) {
case 32:
return getCommonSubClass(&AMDGPU::VGPR_32RegClass, RC) != nullptr;
case 64:
return getCommonSubClass(&AMDGPU::VReg_64RegClass, RC) != nullptr;
case 96:
return getCommonSubClass(&AMDGPU::VReg_96RegClass, RC) != nullptr;
case 128:
return getCommonSubClass(&AMDGPU::VReg_128RegClass, RC) != nullptr;
case 160:
return getCommonSubClass(&AMDGPU::VReg_160RegClass, RC) != nullptr;
case 256:
return getCommonSubClass(&AMDGPU::VReg_256RegClass, RC) != nullptr;
case 512:
return getCommonSubClass(&AMDGPU::VReg_512RegClass, RC) != nullptr;
case 1024:
return getCommonSubClass(&AMDGPU::VReg_1024RegClass, RC) != nullptr;
case 1:
return getCommonSubClass(&AMDGPU::VReg_1RegClass, RC) != nullptr;
default:
assert(Size < 32 && "Invalid register class size");
return false;
}
}
bool SIRegisterInfo::hasAGPRs(const TargetRegisterClass *RC) const {
unsigned Size = getRegSizeInBits(*RC);
if (Size < 32)
return false;
switch (Size) {
case 32:
return getCommonSubClass(&AMDGPU::AGPR_32RegClass, RC) != nullptr;
case 64:
return getCommonSubClass(&AMDGPU::AReg_64RegClass, RC) != nullptr;
case 96:
return false;
case 128:
return getCommonSubClass(&AMDGPU::AReg_128RegClass, RC) != nullptr;
case 160:
case 256:
return false;
case 512:
return getCommonSubClass(&AMDGPU::AReg_512RegClass, RC) != nullptr;
case 1024:
return getCommonSubClass(&AMDGPU::AReg_1024RegClass, RC) != nullptr;
default:
llvm_unreachable("Invalid register class size");
}
}
const TargetRegisterClass *SIRegisterInfo::getEquivalentVGPRClass(
const TargetRegisterClass *SRC) const {
switch (getRegSizeInBits(*SRC)) {
case 32:
return &AMDGPU::VGPR_32RegClass;
case 64:
return &AMDGPU::VReg_64RegClass;
case 96:
return &AMDGPU::VReg_96RegClass;
case 128:
return &AMDGPU::VReg_128RegClass;
case 160:
return &AMDGPU::VReg_160RegClass;
case 256:
return &AMDGPU::VReg_256RegClass;
case 512:
return &AMDGPU::VReg_512RegClass;
case 1024:
return &AMDGPU::VReg_1024RegClass;
case 1:
return &AMDGPU::VReg_1RegClass;
default:
llvm_unreachable("Invalid register class size");
}
}
const TargetRegisterClass *SIRegisterInfo::getEquivalentAGPRClass(
const TargetRegisterClass *SRC) const {
switch (getRegSizeInBits(*SRC)) {
case 32:
return &AMDGPU::AGPR_32RegClass;
case 64:
return &AMDGPU::AReg_64RegClass;
case 128:
return &AMDGPU::AReg_128RegClass;
case 512:
return &AMDGPU::AReg_512RegClass;
case 1024:
return &AMDGPU::AReg_1024RegClass;
default:
llvm_unreachable("Invalid register class size");
}
}
const TargetRegisterClass *SIRegisterInfo::getEquivalentSGPRClass(
const TargetRegisterClass *VRC) const {
switch (getRegSizeInBits(*VRC)) {
case 32:
return &AMDGPU::SGPR_32RegClass;
case 64:
return &AMDGPU::SReg_64RegClass;
case 96:
return &AMDGPU::SReg_96RegClass;
case 128:
return &AMDGPU::SGPR_128RegClass;
case 160:
return &AMDGPU::SReg_160RegClass;
case 256:
return &AMDGPU::SReg_256RegClass;
case 512:
return &AMDGPU::SReg_512RegClass;
case 1024:
return &AMDGPU::SReg_1024RegClass;
default:
llvm_unreachable("Invalid register class size");
}
}
const TargetRegisterClass *SIRegisterInfo::getSubRegClass(
const TargetRegisterClass *RC, unsigned SubIdx) const {
if (SubIdx == AMDGPU::NoSubRegister)
return RC;
// We can assume that each lane corresponds to one 32-bit register.
unsigned Count = getNumChannelsFromSubReg(SubIdx);
if (isSGPRClass(RC)) {
switch (Count) {
case 1:
return &AMDGPU::SGPR_32RegClass;
case 2:
return &AMDGPU::SReg_64RegClass;
case 3:
return &AMDGPU::SReg_96RegClass;
case 4:
return &AMDGPU::SGPR_128RegClass;
case 5:
return &AMDGPU::SReg_160RegClass;
case 8:
return &AMDGPU::SReg_256RegClass;
case 16:
return &AMDGPU::SReg_512RegClass;
case 32: /* fall-through */
default:
llvm_unreachable("Invalid sub-register class size");
}
} else if (hasAGPRs(RC)) {
switch (Count) {
case 1:
return &AMDGPU::AGPR_32RegClass;
case 2:
return &AMDGPU::AReg_64RegClass;
case 4:
return &AMDGPU::AReg_128RegClass;
case 16:
return &AMDGPU::AReg_512RegClass;
case 32: /* fall-through */
default:
llvm_unreachable("Invalid sub-register class size");
}
} else {
switch (Count) {
case 1:
return &AMDGPU::VGPR_32RegClass;
case 2:
return &AMDGPU::VReg_64RegClass;
case 3:
return &AMDGPU::VReg_96RegClass;
case 4:
return &AMDGPU::VReg_128RegClass;
case 5:
return &AMDGPU::VReg_160RegClass;
case 8:
return &AMDGPU::VReg_256RegClass;
case 16:
return &AMDGPU::VReg_512RegClass;
case 32: /* fall-through */
default:
llvm_unreachable("Invalid sub-register class size");
}
}
}
bool SIRegisterInfo::opCanUseInlineConstant(unsigned OpType) const {
if (OpType >= AMDGPU::OPERAND_REG_INLINE_AC_FIRST &&
OpType <= AMDGPU::OPERAND_REG_INLINE_AC_LAST)
return !ST.hasMFMAInlineLiteralBug();
return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
OpType <= AMDGPU::OPERAND_SRC_LAST;
}
bool SIRegisterInfo::shouldRewriteCopySrc(
const TargetRegisterClass *DefRC,
unsigned DefSubReg,
const TargetRegisterClass *SrcRC,
unsigned SrcSubReg) const {
// We want to prefer the smallest register class possible, so we don't want to
// stop and rewrite on anything that looks like a subregister
// extract. Operations mostly don't care about the super register class, so we
// only want to stop on the most basic of copies between the same register
// class.
//
// e.g. if we have something like
// %0 = ...
// %1 = ...
// %2 = REG_SEQUENCE %0, sub0, %1, sub1, %2, sub2
// %3 = COPY %2, sub0
//
// We want to look through the COPY to find:
// => %3 = COPY %0
// Plain copy.
return getCommonSubClass(DefRC, SrcRC) != nullptr;
}
/// Returns a register that is not used at any point in the function.
/// If all registers are used, then this function will return
// AMDGPU::NoRegister.
MCRegister
SIRegisterInfo::findUnusedRegister(const MachineRegisterInfo &MRI,
const TargetRegisterClass *RC,
const MachineFunction &MF) const {
for (MCRegister Reg : *RC)
if (MRI.isAllocatable(Reg) && !MRI.isPhysRegUsed(Reg))
return Reg;
return MCRegister();
}
ArrayRef<int16_t> SIRegisterInfo::getRegSplitParts(const TargetRegisterClass *RC,
unsigned EltSize) const {
if (EltSize == 4) {
static const int16_t Sub0_31[] = {
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7,
AMDGPU::sub8, AMDGPU::sub9, AMDGPU::sub10, AMDGPU::sub11,
AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14, AMDGPU::sub15,
AMDGPU::sub16, AMDGPU::sub17, AMDGPU::sub18, AMDGPU::sub19,
AMDGPU::sub20, AMDGPU::sub21, AMDGPU::sub22, AMDGPU::sub23,
AMDGPU::sub24, AMDGPU::sub25, AMDGPU::sub26, AMDGPU::sub27,
AMDGPU::sub28, AMDGPU::sub29, AMDGPU::sub30, AMDGPU::sub31,
};
static const int16_t Sub0_15[] = {
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7,
AMDGPU::sub8, AMDGPU::sub9, AMDGPU::sub10, AMDGPU::sub11,
AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14, AMDGPU::sub15,
};
static const int16_t Sub0_7[] = {
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7,
};
static const int16_t Sub0_4[] = {
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3, AMDGPU::sub4,
};
static const int16_t Sub0_3[] = {
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
};
static const int16_t Sub0_2[] = {
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2,
};
static const int16_t Sub0_1[] = {
AMDGPU::sub0, AMDGPU::sub1,
};
switch (AMDGPU::getRegBitWidth(*RC->MC)) {
case 32:
return {};
case 64:
return makeArrayRef(Sub0_1);
case 96:
return makeArrayRef(Sub0_2);
case 128:
return makeArrayRef(Sub0_3);
case 160:
return makeArrayRef(Sub0_4);
case 256:
return makeArrayRef(Sub0_7);
case 512:
return makeArrayRef(Sub0_15);
case 1024:
return makeArrayRef(Sub0_31);
default:
llvm_unreachable("unhandled register size");
}
}
if (EltSize == 8) {
static const int16_t Sub0_31_64[] = {
AMDGPU::sub0_sub1, AMDGPU::sub2_sub3,
AMDGPU::sub4_sub5, AMDGPU::sub6_sub7,
AMDGPU::sub8_sub9, AMDGPU::sub10_sub11,
AMDGPU::sub12_sub13, AMDGPU::sub14_sub15,
AMDGPU::sub16_sub17, AMDGPU::sub18_sub19,
AMDGPU::sub20_sub21, AMDGPU::sub22_sub23,
AMDGPU::sub24_sub25, AMDGPU::sub26_sub27,
AMDGPU::sub28_sub29, AMDGPU::sub30_sub31
};
static const int16_t Sub0_15_64[] = {
AMDGPU::sub0_sub1, AMDGPU::sub2_sub3,
AMDGPU::sub4_sub5, AMDGPU::sub6_sub7,
AMDGPU::sub8_sub9, AMDGPU::sub10_sub11,
AMDGPU::sub12_sub13, AMDGPU::sub14_sub15
};
static const int16_t Sub0_7_64[] = {
AMDGPU::sub0_sub1, AMDGPU::sub2_sub3,
AMDGPU::sub4_sub5, AMDGPU::sub6_sub7
};
static const int16_t Sub0_3_64[] = {
AMDGPU::sub0_sub1, AMDGPU::sub2_sub3
};
switch (AMDGPU::getRegBitWidth(*RC->MC)) {
case 64:
return {};
case 128:
return makeArrayRef(Sub0_3_64);
case 256:
return makeArrayRef(Sub0_7_64);
case 512:
return makeArrayRef(Sub0_15_64);
case 1024:
return makeArrayRef(Sub0_31_64);
default:
llvm_unreachable("unhandled register size");
}
}
if (EltSize == 16) {
static const int16_t Sub0_31_128[] = {
AMDGPU::sub0_sub1_sub2_sub3,
AMDGPU::sub4_sub5_sub6_sub7,
AMDGPU::sub8_sub9_sub10_sub11,
AMDGPU::sub12_sub13_sub14_sub15,
AMDGPU::sub16_sub17_sub18_sub19,
AMDGPU::sub20_sub21_sub22_sub23,
AMDGPU::sub24_sub25_sub26_sub27,
AMDGPU::sub28_sub29_sub30_sub31
};
static const int16_t Sub0_15_128[] = {
AMDGPU::sub0_sub1_sub2_sub3,
AMDGPU::sub4_sub5_sub6_sub7,
AMDGPU::sub8_sub9_sub10_sub11,
AMDGPU::sub12_sub13_sub14_sub15
};
static const int16_t Sub0_7_128[] = {
AMDGPU::sub0_sub1_sub2_sub3,
AMDGPU::sub4_sub5_sub6_sub7
};
switch (AMDGPU::getRegBitWidth(*RC->MC)) {
case 128:
return {};
case 256:
return makeArrayRef(Sub0_7_128);
case 512:
return makeArrayRef(Sub0_15_128);
case 1024:
return makeArrayRef(Sub0_31_128);
default:
llvm_unreachable("unhandled register size");
}
}
if (EltSize == 32) {
static const int16_t Sub0_31_256[] = {
AMDGPU::sub0_sub1_sub2_sub3_sub4_sub5_sub6_sub7,
AMDGPU::sub8_sub9_sub10_sub11_sub12_sub13_sub14_sub15,
AMDGPU::sub16_sub17_sub18_sub19_sub20_sub21_sub22_sub23,
AMDGPU::sub24_sub25_sub26_sub27_sub28_sub29_sub30_sub31
};
static const int16_t Sub0_15_256[] = {
AMDGPU::sub0_sub1_sub2_sub3_sub4_sub5_sub6_sub7,
AMDGPU::sub8_sub9_sub10_sub11_sub12_sub13_sub14_sub15
};
switch (AMDGPU::getRegBitWidth(*RC->MC)) {
case 256:
return {};
case 512:
return makeArrayRef(Sub0_15_256);
case 1024:
return makeArrayRef(Sub0_31_256);
default:
llvm_unreachable("unhandled register size");
}
}
assert(EltSize == 64 && "unhandled elt size");
static const int16_t Sub0_31_512[] = {
AMDGPU::sub0_sub1_sub2_sub3_sub4_sub5_sub6_sub7_sub8_sub9_sub10_sub11_sub12_sub13_sub14_sub15,
AMDGPU::sub16_sub17_sub18_sub19_sub20_sub21_sub22_sub23_sub24_sub25_sub26_sub27_sub28_sub29_sub30_sub31
};
switch (AMDGPU::getRegBitWidth(*RC->MC)) {
case 512:
return {};
case 1024:
return makeArrayRef(Sub0_31_512);
default:
llvm_unreachable("unhandled register size");
}
}
const TargetRegisterClass*
SIRegisterInfo::getRegClassForReg(const MachineRegisterInfo &MRI,
Register Reg) const {
return Reg.isVirtual() ? MRI.getRegClass(Reg) : getPhysRegClass(Reg);
}
bool SIRegisterInfo::isVGPR(const MachineRegisterInfo &MRI,
Register Reg) const {
const TargetRegisterClass *RC = getRegClassForReg(MRI, Reg);
assert(RC && "Register class for the reg not found");
return hasVGPRs(RC);
}
bool SIRegisterInfo::isAGPR(const MachineRegisterInfo &MRI,
Register Reg) const {
const TargetRegisterClass *RC = getRegClassForReg(MRI, Reg);
assert(RC && "Register class for the reg not found");
return hasAGPRs(RC);
}
bool SIRegisterInfo::shouldCoalesce(MachineInstr *MI,
const TargetRegisterClass *SrcRC,
unsigned SubReg,
const TargetRegisterClass *DstRC,
unsigned DstSubReg,
const TargetRegisterClass *NewRC,
LiveIntervals &LIS) const {
unsigned SrcSize = getRegSizeInBits(*SrcRC);
unsigned DstSize = getRegSizeInBits(*DstRC);
unsigned NewSize = getRegSizeInBits(*NewRC);
// Do not increase size of registers beyond dword, we would need to allocate
// adjacent registers and constraint regalloc more than needed.
// Always allow dword coalescing.
if (SrcSize <= 32 || DstSize <= 32)
return true;
return NewSize <= DstSize || NewSize <= SrcSize;
}
unsigned SIRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
MachineFunction &MF) const {
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
unsigned Occupancy = ST.getOccupancyWithLocalMemSize(MFI->getLDSSize(),
MF.getFunction());
switch (RC->getID()) {
default:
return AMDGPUGenRegisterInfo::getRegPressureLimit(RC, MF);
case AMDGPU::VGPR_32RegClassID:
case AMDGPU::VGPR_LO16RegClassID:
case AMDGPU::VGPR_HI16RegClassID:
return std::min(ST.getMaxNumVGPRs(Occupancy), ST.getMaxNumVGPRs(MF));
case AMDGPU::SGPR_32RegClassID:
return std::min(ST.getMaxNumSGPRs(Occupancy, true), ST.getMaxNumSGPRs(MF));
}
}
unsigned SIRegisterInfo::getRegPressureSetLimit(const MachineFunction &MF,
unsigned Idx) const {
if (Idx == AMDGPU::RegisterPressureSets::VGPR_32 ||
Idx == AMDGPU::RegisterPressureSets::AGPR_32)
return getRegPressureLimit(&AMDGPU::VGPR_32RegClass,
const_cast<MachineFunction &>(MF));
if (Idx == AMDGPU::RegisterPressureSets::SReg_32)
return getRegPressureLimit(&AMDGPU::SGPR_32RegClass,
const_cast<MachineFunction &>(MF));
llvm_unreachable("Unexpected register pressure set!");
}
const int *SIRegisterInfo::getRegUnitPressureSets(unsigned RegUnit) const {
static const int Empty[] = { -1 };
if (RegPressureIgnoredUnits[RegUnit])
return Empty;
return AMDGPUGenRegisterInfo::getRegUnitPressureSets(RegUnit);
}
MCRegister SIRegisterInfo::getReturnAddressReg(const MachineFunction &MF) const {
// Not a callee saved register.
return AMDGPU::SGPR30_SGPR31;
}
const TargetRegisterClass *
SIRegisterInfo::getRegClassForSizeOnBank(unsigned Size,
const RegisterBank &RB,
const MachineRegisterInfo &MRI) const {
switch (Size) {
case 1: {
switch (RB.getID()) {
case AMDGPU::VGPRRegBankID:
return &AMDGPU::VGPR_32RegClass;
case AMDGPU::VCCRegBankID:
return isWave32 ?
&AMDGPU::SReg_32_XM0_XEXECRegClass : &AMDGPU::SReg_64_XEXECRegClass;
case AMDGPU::SGPRRegBankID:
return &AMDGPU::SReg_32RegClass;
default:
llvm_unreachable("unknown register bank");
}
}
case 32:
return RB.getID() == AMDGPU::VGPRRegBankID ? &AMDGPU::VGPR_32RegClass :
&AMDGPU::SReg_32RegClass;
case 64:
return RB.getID() == AMDGPU::VGPRRegBankID ? &AMDGPU::VReg_64RegClass :
&AMDGPU::SReg_64RegClass;
case 96:
return RB.getID() == AMDGPU::VGPRRegBankID ? &AMDGPU::VReg_96RegClass :
&AMDGPU::SReg_96RegClass;
case 128:
return RB.getID() == AMDGPU::VGPRRegBankID ? &AMDGPU::VReg_128RegClass :
&AMDGPU::SGPR_128RegClass;
case 160:
return RB.getID() == AMDGPU::VGPRRegBankID ? &AMDGPU::VReg_160RegClass :
&AMDGPU::SReg_160RegClass;
case 256:
return RB.getID() == AMDGPU::VGPRRegBankID ? &AMDGPU::VReg_256RegClass :
&AMDGPU::SReg_256RegClass;
case 512:
return RB.getID() == AMDGPU::VGPRRegBankID ? &AMDGPU::VReg_512RegClass :
&AMDGPU::SReg_512RegClass;
case 1024:
return RB.getID() == AMDGPU::VGPRRegBankID ? &AMDGPU::VReg_1024RegClass :
&AMDGPU::SReg_1024RegClass;
default:
if (Size < 32)
return RB.getID() == AMDGPU::VGPRRegBankID ? &AMDGPU::VGPR_32RegClass :
&AMDGPU::SReg_32RegClass;
return nullptr;
}
}
const TargetRegisterClass *
SIRegisterInfo::getConstrainedRegClassForOperand(const MachineOperand &MO,
const MachineRegisterInfo &MRI) const {
const RegClassOrRegBank &RCOrRB = MRI.getRegClassOrRegBank(MO.getReg());
if (const RegisterBank *RB = RCOrRB.dyn_cast<const RegisterBank*>())
return getRegClassForTypeOnBank(MRI.getType(MO.getReg()), *RB, MRI);
const TargetRegisterClass *RC = RCOrRB.get<const TargetRegisterClass*>();
return getAllocatableClass(RC);
}
MCRegister SIRegisterInfo::getVCC() const {
return isWave32 ? AMDGPU::VCC_LO : AMDGPU::VCC;
}
const TargetRegisterClass *
SIRegisterInfo::getRegClass(unsigned RCID) const {
switch ((int)RCID) {
case AMDGPU::SReg_1RegClassID:
return getBoolRC();
case AMDGPU::SReg_1_XEXECRegClassID:
return isWave32 ? &AMDGPU::SReg_32_XM0_XEXECRegClass
: &AMDGPU::SReg_64_XEXECRegClass;
case -1:
return nullptr;
default:
return AMDGPUGenRegisterInfo::getRegClass(RCID);
}
}
// Find reaching register definition
MachineInstr *SIRegisterInfo::findReachingDef(Register Reg, unsigned SubReg,
MachineInstr &Use,
MachineRegisterInfo &MRI,
LiveIntervals *LIS) const {
auto &MDT = LIS->getAnalysis<MachineDominatorTree>();
SlotIndex UseIdx = LIS->getInstructionIndex(Use);
SlotIndex DefIdx;
if (Reg.isVirtual()) {
if (!LIS->hasInterval(Reg))
return nullptr;
LiveInterval &LI = LIS->getInterval(Reg);
LaneBitmask SubLanes = SubReg ? getSubRegIndexLaneMask(SubReg)
: MRI.getMaxLaneMaskForVReg(Reg);
VNInfo *V = nullptr;
if (LI.hasSubRanges()) {
for (auto &S : LI.subranges()) {
if ((S.LaneMask & SubLanes) == SubLanes) {
V = S.getVNInfoAt(UseIdx);
break;
}
}
} else {
V = LI.getVNInfoAt(UseIdx);
}
if (!V)
return nullptr;
DefIdx = V->def;
} else {
// Find last def.
for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units) {
LiveRange &LR = LIS->getRegUnit(*Units);
if (VNInfo *V = LR.getVNInfoAt(UseIdx)) {
if (!DefIdx.isValid() ||
MDT.dominates(LIS->getInstructionFromIndex(DefIdx),
LIS->getInstructionFromIndex(V->def)))
DefIdx = V->def;
} else {
return nullptr;
}
}
}
MachineInstr *Def = LIS->getInstructionFromIndex(DefIdx);
if (!Def || !MDT.dominates(Def, &Use))
return nullptr;
assert(Def->modifiesRegister(Reg, this));
return Def;
}