blob: 6ca5b5e492723f62e8cf59f84c0cd0d88c48366d [file] [log] [blame]
//===-- MemoryProfileInfo.cpp - memory profile info ------------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains utilities to analyze memory profile information.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/MemoryProfileInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
using namespace llvm::memprof;
#define DEBUG_TYPE "memory-profile-info"
// Upper bound on lifetime access density (accesses per byte per lifetime sec)
// for marking an allocation cold.
cl::opt<float> MemProfLifetimeAccessDensityColdThreshold(
"memprof-lifetime-access-density-cold-threshold", cl::init(0.05),
cl::Hidden,
cl::desc("The threshold the lifetime access density (accesses per byte per "
"lifetime sec) must be under to consider an allocation cold"));
// Lower bound on lifetime to mark an allocation cold (in addition to accesses
// per byte per sec above). This is to avoid pessimizing short lived objects.
cl::opt<unsigned> MemProfAveLifetimeColdThreshold(
"memprof-ave-lifetime-cold-threshold", cl::init(200), cl::Hidden,
cl::desc("The average lifetime (s) for an allocation to be considered "
"cold"));
// Lower bound on average lifetime accesses density (total life time access
// density / alloc count) for marking an allocation hot.
cl::opt<unsigned> MemProfMinAveLifetimeAccessDensityHotThreshold(
"memprof-min-ave-lifetime-access-density-hot-threshold", cl::init(1000),
cl::Hidden,
cl::desc("The minimum TotalLifetimeAccessDensity / AllocCount for an "
"allocation to be considered hot"));
cl::opt<bool>
MemProfUseHotHints("memprof-use-hot-hints", cl::init(false), cl::Hidden,
cl::desc("Enable use of hot hints (only supported for "
"unambigously hot allocations)"));
cl::opt<bool> MemProfReportHintedSizes(
"memprof-report-hinted-sizes", cl::init(false), cl::Hidden,
cl::desc("Report total allocation sizes of hinted allocations"));
// This is useful if we have enabled reporting of hinted sizes, and want to get
// information from the indexing step for all contexts (especially for testing),
// or have specified a value less than 100% for -memprof-cloning-cold-threshold.
static cl::opt<bool> MemProfKeepAllNotColdContexts(
"memprof-keep-all-not-cold-contexts", cl::init(false), cl::Hidden,
cl::desc("Keep all non-cold contexts (increases cloning overheads)"));
AllocationType llvm::memprof::getAllocType(uint64_t TotalLifetimeAccessDensity,
uint64_t AllocCount,
uint64_t TotalLifetime) {
// The access densities are multiplied by 100 to hold 2 decimal places of
// precision, so need to divide by 100.
if (((float)TotalLifetimeAccessDensity) / AllocCount / 100 <
MemProfLifetimeAccessDensityColdThreshold
// Lifetime is expected to be in ms, so convert the threshold to ms.
&& ((float)TotalLifetime) / AllocCount >=
MemProfAveLifetimeColdThreshold * 1000)
return AllocationType::Cold;
// The access densities are multiplied by 100 to hold 2 decimal places of
// precision, so need to divide by 100.
if (MemProfUseHotHints &&
((float)TotalLifetimeAccessDensity) / AllocCount / 100 >
MemProfMinAveLifetimeAccessDensityHotThreshold)
return AllocationType::Hot;
return AllocationType::NotCold;
}
MDNode *llvm::memprof::buildCallstackMetadata(ArrayRef<uint64_t> CallStack,
LLVMContext &Ctx) {
SmallVector<Metadata *, 8> StackVals;
StackVals.reserve(CallStack.size());
for (auto Id : CallStack) {
auto *StackValMD =
ValueAsMetadata::get(ConstantInt::get(Type::getInt64Ty(Ctx), Id));
StackVals.push_back(StackValMD);
}
return MDNode::get(Ctx, StackVals);
}
MDNode *llvm::memprof::getMIBStackNode(const MDNode *MIB) {
assert(MIB->getNumOperands() >= 2);
// The stack metadata is the first operand of each memprof MIB metadata.
return cast<MDNode>(MIB->getOperand(0));
}
AllocationType llvm::memprof::getMIBAllocType(const MDNode *MIB) {
assert(MIB->getNumOperands() >= 2);
// The allocation type is currently the second operand of each memprof
// MIB metadata. This will need to change as we add additional allocation
// types that can be applied based on the allocation profile data.
auto *MDS = dyn_cast<MDString>(MIB->getOperand(1));
assert(MDS);
if (MDS->getString() == "cold") {
return AllocationType::Cold;
} else if (MDS->getString() == "hot") {
return AllocationType::Hot;
}
return AllocationType::NotCold;
}
std::string llvm::memprof::getAllocTypeAttributeString(AllocationType Type) {
switch (Type) {
case AllocationType::NotCold:
return "notcold";
break;
case AllocationType::Cold:
return "cold";
break;
case AllocationType::Hot:
return "hot";
break;
default:
assert(false && "Unexpected alloc type");
}
llvm_unreachable("invalid alloc type");
}
static void addAllocTypeAttribute(LLVMContext &Ctx, CallBase *CI,
AllocationType AllocType) {
auto AllocTypeString = getAllocTypeAttributeString(AllocType);
auto A = llvm::Attribute::get(Ctx, "memprof", AllocTypeString);
CI->addFnAttr(A);
}
bool llvm::memprof::hasSingleAllocType(uint8_t AllocTypes) {
const unsigned NumAllocTypes = llvm::popcount(AllocTypes);
assert(NumAllocTypes != 0);
return NumAllocTypes == 1;
}
void CallStackTrie::addCallStack(
AllocationType AllocType, ArrayRef<uint64_t> StackIds,
std::vector<ContextTotalSize> ContextSizeInfo) {
bool First = true;
CallStackTrieNode *Curr = nullptr;
for (auto StackId : StackIds) {
// If this is the first stack frame, add or update alloc node.
if (First) {
First = false;
if (Alloc) {
assert(AllocStackId == StackId);
Alloc->addAllocType(AllocType);
} else {
AllocStackId = StackId;
Alloc = new CallStackTrieNode(AllocType);
}
Curr = Alloc;
continue;
}
// Update existing caller node if it exists.
CallStackTrieNode *Prev = nullptr;
auto [Next, Inserted] = Curr->Callers.try_emplace(StackId);
if (!Inserted) {
Prev = Curr;
Curr = Next->second;
Curr->addAllocType(AllocType);
// If this node has an ambiguous alloc type, its callee is not the deepest
// point where we have an ambigous allocation type.
if (!hasSingleAllocType(Curr->AllocTypes))
Prev->DeepestAmbiguousAllocType = false;
continue;
}
// Otherwise add a new caller node.
auto *New = new CallStackTrieNode(AllocType);
Next->second = New;
Curr = New;
}
assert(Curr);
llvm::append_range(Curr->ContextSizeInfo, ContextSizeInfo);
}
void CallStackTrie::addCallStack(MDNode *MIB) {
MDNode *StackMD = getMIBStackNode(MIB);
assert(StackMD);
std::vector<uint64_t> CallStack;
CallStack.reserve(StackMD->getNumOperands());
for (const auto &MIBStackIter : StackMD->operands()) {
auto *StackId = mdconst::dyn_extract<ConstantInt>(MIBStackIter);
assert(StackId);
CallStack.push_back(StackId->getZExtValue());
}
std::vector<ContextTotalSize> ContextSizeInfo;
// Collect the context size information if it exists.
if (MIB->getNumOperands() > 2) {
for (unsigned I = 2; I < MIB->getNumOperands(); I++) {
MDNode *ContextSizePair = dyn_cast<MDNode>(MIB->getOperand(I));
assert(ContextSizePair->getNumOperands() == 2);
uint64_t FullStackId =
mdconst::dyn_extract<ConstantInt>(ContextSizePair->getOperand(0))
->getZExtValue();
uint64_t TotalSize =
mdconst::dyn_extract<ConstantInt>(ContextSizePair->getOperand(1))
->getZExtValue();
ContextSizeInfo.push_back({FullStackId, TotalSize});
}
}
addCallStack(getMIBAllocType(MIB), CallStack, std::move(ContextSizeInfo));
}
static MDNode *createMIBNode(LLVMContext &Ctx, ArrayRef<uint64_t> MIBCallStack,
AllocationType AllocType,
ArrayRef<ContextTotalSize> ContextSizeInfo) {
SmallVector<Metadata *> MIBPayload(
{buildCallstackMetadata(MIBCallStack, Ctx)});
MIBPayload.push_back(
MDString::get(Ctx, getAllocTypeAttributeString(AllocType)));
if (!ContextSizeInfo.empty()) {
for (const auto &[FullStackId, TotalSize] : ContextSizeInfo) {
auto *FullStackIdMD = ValueAsMetadata::get(
ConstantInt::get(Type::getInt64Ty(Ctx), FullStackId));
auto *TotalSizeMD = ValueAsMetadata::get(
ConstantInt::get(Type::getInt64Ty(Ctx), TotalSize));
auto *ContextSizeMD = MDNode::get(Ctx, {FullStackIdMD, TotalSizeMD});
MIBPayload.push_back(ContextSizeMD);
}
}
return MDNode::get(Ctx, MIBPayload);
}
void CallStackTrie::collectContextSizeInfo(
CallStackTrieNode *Node, std::vector<ContextTotalSize> &ContextSizeInfo) {
llvm::append_range(ContextSizeInfo, Node->ContextSizeInfo);
for (auto &Caller : Node->Callers)
collectContextSizeInfo(Caller.second, ContextSizeInfo);
}
void CallStackTrie::convertHotToNotCold(CallStackTrieNode *Node) {
if (Node->hasAllocType(AllocationType::Hot)) {
Node->removeAllocType(AllocationType::Hot);
Node->addAllocType(AllocationType::NotCold);
}
for (auto &Caller : Node->Callers)
convertHotToNotCold(Caller.second);
}
// Recursive helper to trim contexts and create metadata nodes.
// Caller should have pushed Node's loc to MIBCallStack. Doing this in the
// caller makes it simpler to handle the many early returns in this method.
bool CallStackTrie::buildMIBNodes(CallStackTrieNode *Node, LLVMContext &Ctx,
std::vector<uint64_t> &MIBCallStack,
std::vector<Metadata *> &MIBNodes,
bool CalleeHasAmbiguousCallerContext,
bool &CalleeDeepestAmbiguousAllocType) {
// Trim context below the first node in a prefix with a single alloc type.
// Add an MIB record for the current call stack prefix.
if (hasSingleAllocType(Node->AllocTypes)) {
// Because we only clone cold contexts (we don't clone for exposing NotCold
// contexts as that is the default allocation behavior), we create MIB
// metadata for this context if any of the following are true:
// 1) It is cold.
// 2) The immediate callee is the deepest point where we have an ambiguous
// allocation type (i.e. the other callers that are cold need to know
// that we have a not cold context overlapping to this point so that we
// know how deep to clone).
// 3) MemProfKeepAllNotColdContexts is enabled, which is useful if we are
// reporting hinted sizes, and want to get information from the indexing
// step for all contexts, or have specified a value less than 100% for
// -memprof-cloning-cold-threshold.
if (Node->hasAllocType(AllocationType::Cold) ||
CalleeDeepestAmbiguousAllocType || MemProfKeepAllNotColdContexts) {
std::vector<ContextTotalSize> ContextSizeInfo;
collectContextSizeInfo(Node, ContextSizeInfo);
MIBNodes.push_back(createMIBNode(Ctx, MIBCallStack,
(AllocationType)Node->AllocTypes,
ContextSizeInfo));
// If we just emitted an MIB for a not cold caller, don't need to emit
// another one for the callee to correctly disambiguate its cold callers.
if (!Node->hasAllocType(AllocationType::Cold))
CalleeDeepestAmbiguousAllocType = false;
}
return true;
}
// We don't have a single allocation for all the contexts sharing this prefix,
// so recursively descend into callers in trie.
if (!Node->Callers.empty()) {
bool NodeHasAmbiguousCallerContext = Node->Callers.size() > 1;
bool AddedMIBNodesForAllCallerContexts = true;
for (auto &Caller : Node->Callers) {
MIBCallStack.push_back(Caller.first);
AddedMIBNodesForAllCallerContexts &= buildMIBNodes(
Caller.second, Ctx, MIBCallStack, MIBNodes,
NodeHasAmbiguousCallerContext, Node->DeepestAmbiguousAllocType);
// Remove Caller.
MIBCallStack.pop_back();
}
if (AddedMIBNodesForAllCallerContexts)
return true;
// We expect that the callers should be forced to add MIBs to disambiguate
// the context in this case (see below).
assert(!NodeHasAmbiguousCallerContext);
}
// If we reached here, then this node does not have a single allocation type,
// and we didn't add metadata for a longer call stack prefix including any of
// Node's callers. That means we never hit a single allocation type along all
// call stacks with this prefix. This can happen due to recursion collapsing
// or the stack being deeper than tracked by the profiler runtime, leading to
// contexts with different allocation types being merged. In that case, we
// trim the context just below the deepest context split, which is this
// node if the callee has an ambiguous caller context (multiple callers),
// since the recursive calls above returned false. Conservatively give it
// non-cold allocation type.
if (!CalleeHasAmbiguousCallerContext)
return false;
std::vector<ContextTotalSize> ContextSizeInfo;
collectContextSizeInfo(Node, ContextSizeInfo);
MIBNodes.push_back(createMIBNode(Ctx, MIBCallStack, AllocationType::NotCold,
ContextSizeInfo));
return true;
}
void CallStackTrie::addSingleAllocTypeAttribute(CallBase *CI, AllocationType AT,
StringRef Descriptor) {
addAllocTypeAttribute(CI->getContext(), CI, AT);
if (MemProfReportHintedSizes) {
std::vector<ContextTotalSize> ContextSizeInfo;
collectContextSizeInfo(Alloc, ContextSizeInfo);
for (const auto &[FullStackId, TotalSize] : ContextSizeInfo) {
errs() << "MemProf hinting: Total size for full allocation context hash "
<< FullStackId << " and " << Descriptor << " alloc type "
<< getAllocTypeAttributeString(AT) << ": " << TotalSize << "\n";
}
}
}
// Build and attach the minimal necessary MIB metadata. If the alloc has a
// single allocation type, add a function attribute instead. Returns true if
// memprof metadata attached, false if not (attribute added).
bool CallStackTrie::buildAndAttachMIBMetadata(CallBase *CI) {
if (hasSingleAllocType(Alloc->AllocTypes)) {
addSingleAllocTypeAttribute(CI, (AllocationType)Alloc->AllocTypes,
"single");
return false;
}
// If there were any hot allocation contexts, the Alloc trie node would have
// the Hot type set. If so, because we don't currently support cloning for hot
// contexts, they should be converted to NotCold. This happens in the cloning
// support anyway, however, doing this now enables more aggressive context
// trimming when building the MIB metadata (and possibly may make the
// allocation have a single NotCold allocation type), greatly reducing
// overheads in bitcode, cloning memory and cloning time.
if (Alloc->hasAllocType(AllocationType::Hot)) {
convertHotToNotCold(Alloc);
// Check whether we now have a single alloc type.
if (hasSingleAllocType(Alloc->AllocTypes)) {
addSingleAllocTypeAttribute(CI, (AllocationType)Alloc->AllocTypes,
"single");
return false;
}
}
auto &Ctx = CI->getContext();
std::vector<uint64_t> MIBCallStack;
MIBCallStack.push_back(AllocStackId);
std::vector<Metadata *> MIBNodes;
assert(!Alloc->Callers.empty() && "addCallStack has not been called yet");
// The CalleeHasAmbiguousCallerContext flag is meant to say whether the
// callee of the given node has more than one caller. Here the node being
// passed in is the alloc and it has no callees. So it's false.
// Similarly, the last parameter is meant to say whether the callee of the
// given node is the deepest point where we have ambiguous alloc types, which
// is also false as the alloc has no callees.
bool DeepestAmbiguousAllocType = true;
if (buildMIBNodes(Alloc, Ctx, MIBCallStack, MIBNodes,
/*CalleeHasAmbiguousCallerContext=*/false,
DeepestAmbiguousAllocType)) {
assert(MIBCallStack.size() == 1 &&
"Should only be left with Alloc's location in stack");
CI->setMetadata(LLVMContext::MD_memprof, MDNode::get(Ctx, MIBNodes));
return true;
}
// If there exists corner case that CallStackTrie has one chain to leaf
// and all node in the chain have multi alloc type, conservatively give
// it non-cold allocation type.
// FIXME: Avoid this case before memory profile created. Alternatively, select
// hint based on fraction cold.
addSingleAllocTypeAttribute(CI, AllocationType::NotCold, "indistinguishable");
return false;
}
template <>
CallStack<MDNode, MDNode::op_iterator>::CallStackIterator::CallStackIterator(
const MDNode *N, bool End)
: N(N) {
if (!N)
return;
Iter = End ? N->op_end() : N->op_begin();
}
template <>
uint64_t
CallStack<MDNode, MDNode::op_iterator>::CallStackIterator::operator*() {
assert(Iter != N->op_end());
ConstantInt *StackIdCInt = mdconst::dyn_extract<ConstantInt>(*Iter);
assert(StackIdCInt);
return StackIdCInt->getZExtValue();
}
template <> uint64_t CallStack<MDNode, MDNode::op_iterator>::back() const {
assert(N);
return mdconst::dyn_extract<ConstantInt>(N->operands().back())
->getZExtValue();
}
MDNode *MDNode::getMergedMemProfMetadata(MDNode *A, MDNode *B) {
// TODO: Support more sophisticated merging, such as selecting the one with
// more bytes allocated, or implement support for carrying multiple allocation
// leaf contexts. For now, keep the first one.
if (A)
return A;
return B;
}
MDNode *MDNode::getMergedCallsiteMetadata(MDNode *A, MDNode *B) {
// TODO: Support more sophisticated merging, which will require support for
// carrying multiple contexts. For now, keep the first one.
if (A)
return A;
return B;
}