blob: 3883ce2ed0c8b5e4ad73115ee223c05b9ef62810 [file] [log] [blame]
//====- LowerToLLVM.cpp - Lowering from Toy+Affine+Std to LLVM ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements full lowering of Toy operations to LLVM MLIR dialect.
// 'toy.print' is lowered to a loop nest that calls `printf` on each element of
// the input array. The file also sets up the ToyToLLVMLoweringPass. This pass
// lowers the combination of Affine + SCF + Standard dialects to the LLVM one:
//
// Affine --
// |
// v
// Standard --> LLVM (Dialect)
// ^
// |
// 'toy.print' --> Loop (SCF) --
//
//===----------------------------------------------------------------------===//
#include "toy/Dialect.h"
#include "toy/Passes.h"
#include "mlir/Conversion/AffineToStandard/AffineToStandard.h"
#include "mlir/Conversion/SCFToStandard/SCFToStandard.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/Sequence.h"
using namespace mlir;
//===----------------------------------------------------------------------===//
// ToyToLLVM RewritePatterns
//===----------------------------------------------------------------------===//
namespace {
/// Lowers `toy.print` to a loop nest calling `printf` on each of the individual
/// elements of the array.
class PrintOpLowering : public ConversionPattern {
public:
explicit PrintOpLowering(MLIRContext *context)
: ConversionPattern(toy::PrintOp::getOperationName(), 1, context) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto memRefType = (*op->operand_type_begin()).cast<MemRefType>();
auto memRefShape = memRefType.getShape();
auto loc = op->getLoc();
ModuleOp parentModule = op->getParentOfType<ModuleOp>();
// Get a symbol reference to the printf function, inserting it if necessary.
auto printfRef = getOrInsertPrintf(rewriter, parentModule);
Value formatSpecifierCst = getOrCreateGlobalString(
loc, rewriter, "frmt_spec", StringRef("%f \0", 4), parentModule);
Value newLineCst = getOrCreateGlobalString(
loc, rewriter, "nl", StringRef("\n\0", 2), parentModule);
// Create a loop for each of the dimensions within the shape.
SmallVector<Value, 4> loopIvs;
for (unsigned i = 0, e = memRefShape.size(); i != e; ++i) {
auto lowerBound = rewriter.create<ConstantIndexOp>(loc, 0);
auto upperBound = rewriter.create<ConstantIndexOp>(loc, memRefShape[i]);
auto step = rewriter.create<ConstantIndexOp>(loc, 1);
auto loop =
rewriter.create<scf::ForOp>(loc, lowerBound, upperBound, step);
for (Operation &nested : *loop.getBody())
rewriter.eraseOp(&nested);
loopIvs.push_back(loop.getInductionVar());
// Terminate the loop body.
rewriter.setInsertionPointToEnd(loop.getBody());
// Insert a newline after each of the inner dimensions of the shape.
if (i != e - 1)
rewriter.create<CallOp>(loc, printfRef, rewriter.getIntegerType(32),
newLineCst);
rewriter.create<scf::YieldOp>(loc);
rewriter.setInsertionPointToStart(loop.getBody());
}
// Generate a call to printf for the current element of the loop.
auto printOp = cast<toy::PrintOp>(op);
auto elementLoad = rewriter.create<LoadOp>(loc, printOp.input(), loopIvs);
rewriter.create<CallOp>(loc, printfRef, rewriter.getIntegerType(32),
ArrayRef<Value>({formatSpecifierCst, elementLoad}));
// Notify the rewriter that this operation has been removed.
rewriter.eraseOp(op);
return success();
}
private:
/// Return a symbol reference to the printf function, inserting it into the
/// module if necessary.
static FlatSymbolRefAttr getOrInsertPrintf(PatternRewriter &rewriter,
ModuleOp module) {
auto *context = module.getContext();
if (module.lookupSymbol<LLVM::LLVMFuncOp>("printf"))
return SymbolRefAttr::get("printf", context);
// Create a function declaration for printf, the signature is:
// * `i32 (i8*, ...)`
auto llvmI32Ty = IntegerType::get(context, 32);
auto llvmI8PtrTy = LLVM::LLVMPointerType::get(IntegerType::get(context, 8));
auto llvmFnType = LLVM::LLVMFunctionType::get(llvmI32Ty, llvmI8PtrTy,
/*isVarArg=*/true);
// Insert the printf function into the body of the parent module.
PatternRewriter::InsertionGuard insertGuard(rewriter);
rewriter.setInsertionPointToStart(module.getBody());
rewriter.create<LLVM::LLVMFuncOp>(module.getLoc(), "printf", llvmFnType);
return SymbolRefAttr::get("printf", context);
}
/// Return a value representing an access into a global string with the given
/// name, creating the string if necessary.
static Value getOrCreateGlobalString(Location loc, OpBuilder &builder,
StringRef name, StringRef value,
ModuleOp module) {
// Create the global at the entry of the module.
LLVM::GlobalOp global;
if (!(global = module.lookupSymbol<LLVM::GlobalOp>(name))) {
OpBuilder::InsertionGuard insertGuard(builder);
builder.setInsertionPointToStart(module.getBody());
auto type = LLVM::LLVMArrayType::get(
IntegerType::get(builder.getContext(), 8), value.size());
global = builder.create<LLVM::GlobalOp>(loc, type, /*isConstant=*/true,
LLVM::Linkage::Internal, name,
builder.getStringAttr(value));
}
// Get the pointer to the first character in the global string.
Value globalPtr = builder.create<LLVM::AddressOfOp>(loc, global);
Value cst0 = builder.create<LLVM::ConstantOp>(
loc, IntegerType::get(builder.getContext(), 64),
builder.getIntegerAttr(builder.getIndexType(), 0));
return builder.create<LLVM::GEPOp>(
loc,
LLVM::LLVMPointerType::get(IntegerType::get(builder.getContext(), 8)),
globalPtr, ArrayRef<Value>({cst0, cst0}));
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// ToyToLLVMLoweringPass
//===----------------------------------------------------------------------===//
namespace {
struct ToyToLLVMLoweringPass
: public PassWrapper<ToyToLLVMLoweringPass, OperationPass<ModuleOp>> {
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<LLVM::LLVMDialect, scf::SCFDialect>();
}
void runOnOperation() final;
};
} // end anonymous namespace
void ToyToLLVMLoweringPass::runOnOperation() {
// The first thing to define is the conversion target. This will define the
// final target for this lowering. For this lowering, we are only targeting
// the LLVM dialect.
LLVMConversionTarget target(getContext());
target.addLegalOp<ModuleOp, ModuleTerminatorOp>();
// During this lowering, we will also be lowering the MemRef types, that are
// currently being operated on, to a representation in LLVM. To perform this
// conversion we use a TypeConverter as part of the lowering. This converter
// details how one type maps to another. This is necessary now that we will be
// doing more complicated lowerings, involving loop region arguments.
LLVMTypeConverter typeConverter(&getContext());
// Now that the conversion target has been defined, we need to provide the
// patterns used for lowering. At this point of the compilation process, we
// have a combination of `toy`, `affine`, and `std` operations. Luckily, there
// are already exists a set of patterns to transform `affine` and `std`
// dialects. These patterns lowering in multiple stages, relying on transitive
// lowerings. Transitive lowering, or A->B->C lowering, is when multiple
// patterns must be applied to fully transform an illegal operation into a
// set of legal ones.
OwningRewritePatternList patterns;
populateAffineToStdConversionPatterns(patterns, &getContext());
populateLoopToStdConversionPatterns(patterns, &getContext());
populateStdToLLVMConversionPatterns(typeConverter, patterns);
// The only remaining operation to lower from the `toy` dialect, is the
// PrintOp.
patterns.insert<PrintOpLowering>(&getContext());
// We want to completely lower to LLVM, so we use a `FullConversion`. This
// ensures that only legal operations will remain after the conversion.
auto module = getOperation();
if (failed(applyFullConversion(module, target, std::move(patterns))))
signalPassFailure();
}
/// Create a pass for lowering operations the remaining `Toy` operations, as
/// well as `Affine` and `Std`, to the LLVM dialect for codegen.
std::unique_ptr<mlir::Pass> mlir::toy::createLowerToLLVMPass() {
return std::make_unique<ToyToLLVMLoweringPass>();
}