blob: e4391e3b6fa9098c38e06a787f6bc091780fd22e [file] [log] [blame]
//===- Dialect.cpp - Toy IR Dialect registration in MLIR ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the dialect for the Toy IR: custom type parsing and
// operation verification.
//
//===----------------------------------------------------------------------===//
#include "toy/Dialect.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/OpImplementation.h"
using namespace mlir;
using namespace mlir::toy;
//===----------------------------------------------------------------------===//
// ToyDialect
//===----------------------------------------------------------------------===//
/// Dialect creation, the instance will be owned by the context. This is the
/// point of registration of custom types and operations for the dialect.
ToyDialect::ToyDialect(mlir::MLIRContext *ctx)
: mlir::Dialect(getDialectNamespace(), ctx, TypeID::get<ToyDialect>()) {
addOperations<
#define GET_OP_LIST
#include "toy/Ops.cpp.inc"
>();
}
//===----------------------------------------------------------------------===//
// Toy Operations
//===----------------------------------------------------------------------===//
/// A generalized parser for binary operations. This parses the different forms
/// of 'printBinaryOp' below.
static mlir::ParseResult parseBinaryOp(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
SmallVector<mlir::OpAsmParser::OperandType, 2> operands;
llvm::SMLoc operandsLoc = parser.getCurrentLocation();
Type type;
if (parser.parseOperandList(operands, /*requiredOperandCount=*/2) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(type))
return mlir::failure();
// If the type is a function type, it contains the input and result types of
// this operation.
if (FunctionType funcType = type.dyn_cast<FunctionType>()) {
if (parser.resolveOperands(operands, funcType.getInputs(), operandsLoc,
result.operands))
return mlir::failure();
result.addTypes(funcType.getResults());
return mlir::success();
}
// Otherwise, the parsed type is the type of both operands and results.
if (parser.resolveOperands(operands, type, result.operands))
return mlir::failure();
result.addTypes(type);
return mlir::success();
}
/// A generalized printer for binary operations. It prints in two different
/// forms depending on if all of the types match.
static void printBinaryOp(mlir::OpAsmPrinter &printer, mlir::Operation *op) {
printer << op->getName() << " " << op->getOperands();
printer.printOptionalAttrDict(op->getAttrs());
printer << " : ";
// If all of the types are the same, print the type directly.
Type resultType = *op->result_type_begin();
if (llvm::all_of(op->getOperandTypes(),
[=](Type type) { return type == resultType; })) {
printer << resultType;
return;
}
// Otherwise, print a functional type.
printer.printFunctionalType(op->getOperandTypes(), op->getResultTypes());
}
//===----------------------------------------------------------------------===//
// ConstantOp
/// Build a constant operation.
/// The builder is passed as an argument, so is the state that this method is
/// expected to fill in order to build the operation.
void ConstantOp::build(mlir::OpBuilder &builder, mlir::OperationState &state,
double value) {
auto dataType = RankedTensorType::get({}, builder.getF64Type());
auto dataAttribute = DenseElementsAttr::get(dataType, value);
ConstantOp::build(builder, state, dataType, dataAttribute);
}
/// The 'OpAsmParser' class provides a collection of methods for parsing
/// various punctuation, as well as attributes, operands, types, etc. Each of
/// these methods returns a `ParseResult`. This class is a wrapper around
/// `LogicalResult` that can be converted to a boolean `true` value on failure,
/// or `false` on success. This allows for easily chaining together a set of
/// parser rules. These rules are used to populate an `mlir::OperationState`
/// similarly to the `build` methods described above.
static mlir::ParseResult parseConstantOp(mlir::OpAsmParser &parser,
mlir::OperationState &result) {
mlir::DenseElementsAttr value;
if (parser.parseOptionalAttrDict(result.attributes) ||
parser.parseAttribute(value, "value", result.attributes))
return failure();
result.addTypes(value.getType());
return success();
}
/// The 'OpAsmPrinter' class is a stream that allows for formatting
/// strings, attributes, operands, types, etc.
static void print(mlir::OpAsmPrinter &printer, ConstantOp op) {
printer << "toy.constant ";
printer.printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"value"});
printer << op.value();
}
/// Verifier for the constant operation. This corresponds to the `::verify(...)`
/// in the op definition.
static mlir::LogicalResult verify(ConstantOp op) {
// If the return type of the constant is not an unranked tensor, the shape
// must match the shape of the attribute holding the data.
auto resultType = op.getResult().getType().dyn_cast<mlir::RankedTensorType>();
if (!resultType)
return success();
// Check that the rank of the attribute type matches the rank of the constant
// result type.
auto attrType = op.value().getType().cast<mlir::TensorType>();
if (attrType.getRank() != resultType.getRank()) {
return op.emitOpError(
"return type must match the one of the attached value "
"attribute: ")
<< attrType.getRank() << " != " << resultType.getRank();
}
// Check that each of the dimensions match between the two types.
for (int dim = 0, dimE = attrType.getRank(); dim < dimE; ++dim) {
if (attrType.getShape()[dim] != resultType.getShape()[dim]) {
return op.emitOpError(
"return type shape mismatches its attribute at dimension ")
<< dim << ": " << attrType.getShape()[dim]
<< " != " << resultType.getShape()[dim];
}
}
return mlir::success();
}
//===----------------------------------------------------------------------===//
// AddOp
void AddOp::build(mlir::OpBuilder &builder, mlir::OperationState &state,
mlir::Value lhs, mlir::Value rhs) {
state.addTypes(UnrankedTensorType::get(builder.getF64Type()));
state.addOperands({lhs, rhs});
}
//===----------------------------------------------------------------------===//
// GenericCallOp
void GenericCallOp::build(mlir::OpBuilder &builder, mlir::OperationState &state,
StringRef callee, ArrayRef<mlir::Value> arguments) {
// Generic call always returns an unranked Tensor initially.
state.addTypes(UnrankedTensorType::get(builder.getF64Type()));
state.addOperands(arguments);
state.addAttribute("callee", builder.getSymbolRefAttr(callee));
}
//===----------------------------------------------------------------------===//
// MulOp
void MulOp::build(mlir::OpBuilder &builder, mlir::OperationState &state,
mlir::Value lhs, mlir::Value rhs) {
state.addTypes(UnrankedTensorType::get(builder.getF64Type()));
state.addOperands({lhs, rhs});
}
//===----------------------------------------------------------------------===//
// ReturnOp
static mlir::LogicalResult verify(ReturnOp op) {
// We know that the parent operation is a function, because of the 'HasParent'
// trait attached to the operation definition.
auto function = cast<FuncOp>(op->getParentOp());
/// ReturnOps can only have a single optional operand.
if (op.getNumOperands() > 1)
return op.emitOpError() << "expects at most 1 return operand";
// The operand number and types must match the function signature.
const auto &results = function.getType().getResults();
if (op.getNumOperands() != results.size())
return op.emitOpError()
<< "does not return the same number of values ("
<< op.getNumOperands() << ") as the enclosing function ("
<< results.size() << ")";
// If the operation does not have an input, we are done.
if (!op.hasOperand())
return mlir::success();
auto inputType = *op.operand_type_begin();
auto resultType = results.front();
// Check that the result type of the function matches the operand type.
if (inputType == resultType || inputType.isa<mlir::UnrankedTensorType>() ||
resultType.isa<mlir::UnrankedTensorType>())
return mlir::success();
return op.emitError() << "type of return operand (" << inputType
<< ") doesn't match function result type ("
<< resultType << ")";
}
//===----------------------------------------------------------------------===//
// TransposeOp
void TransposeOp::build(mlir::OpBuilder &builder, mlir::OperationState &state,
mlir::Value value) {
state.addTypes(UnrankedTensorType::get(builder.getF64Type()));
state.addOperands(value);
}
static mlir::LogicalResult verify(TransposeOp op) {
auto inputType = op.getOperand().getType().dyn_cast<RankedTensorType>();
auto resultType = op.getType().dyn_cast<RankedTensorType>();
if (!inputType || !resultType)
return mlir::success();
auto inputShape = inputType.getShape();
if (!std::equal(inputShape.begin(), inputShape.end(),
resultType.getShape().rbegin())) {
return op.emitError()
<< "expected result shape to be a transpose of the input";
}
return mlir::success();
}
//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//
#define GET_OP_CLASSES
#include "toy/Ops.cpp.inc"