blob: 681d3ad2568f86d20b9dee1c79123bf9b86e7bc8 [file] [log] [blame]
#===----------------------------------------------------------------------===##
#
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
#
#===----------------------------------------------------------------------===##
import platform
import os
from collections import defaultdict
import re
import libcxx.util
class DotEmitter(object):
def __init__(self, name):
self.name = name
self.node_strings = {}
self.edge_strings = []
def addNode(self, node):
res = str(node.id)
if len(node.attributes):
attr_strs = []
for k,v in node.attributes.iteritems():
attr_strs += ['%s="%s"' % (k, v)]
res += ' [ %s ]' % (', '.join(attr_strs))
res += ';'
assert node.id not in self.node_strings
self.node_strings[node.id] = res
def addEdge(self, n1, n2):
res = '%s -> %s;' % (n1.id, n2.id)
self.edge_strings += [res]
def node_key(self, n):
id = n.id
assert id.startswith('\w*\d+')
def emit(self):
node_definitions_list = []
sorted_keys = self.node_strings.keys()
sorted_keys.sort()
for k in sorted_keys:
node_definitions_list += [self.node_strings[k]]
node_definitions = '\n '.join(node_definitions_list)
edge_list = '\n '.join(self.edge_strings)
return '''
digraph "{name}" {{
{node_definitions}
{edge_list}
}}
'''.format(name=self.name, node_definitions=node_definitions, edge_list=edge_list).strip()
class DotReader(object):
def __init__(self):
self.graph = DirectedGraph(None)
def abortParse(self, msg="bad input"):
raise Exception(msg)
def parse(self, data):
lines = [l.strip() for l in data.splitlines() if l.strip()]
maxIdx = len(lines)
idx = 0
if not self.parseIntroducer(lines[idx]):
self.abortParse('failed to parse introducer')
idx += 1
while idx < maxIdx:
if self.parseNodeDefinition(lines[idx]) or self.parseEdgeDefinition(lines[idx]):
idx += 1
continue
else:
break
if idx == maxIdx or not self.parseCloser(lines[idx]):
self.abortParse("no closing } found")
return self.graph
def parseEdgeDefinition(self, l):
edge_re = re.compile('^\s*(\w+)\s+->\s+(\w+);\s*$')
m = edge_re.match(l)
if not m:
return False
n1 = m.group(1)
n2 = m.group(2)
self.graph.addEdge(n1, n2)
return True
def parseAttributes(self, raw_str):
attribute_re = re.compile('^\s*(\w+)="([^"]+)"')
parts = [l.strip() for l in raw_str.split(',') if l.strip()]
attribute_dict = {}
for a in parts:
m = attribute_re.match(a)
if not m:
self.abortParse('Bad attribute "%s"' % a)
attribute_dict[m.group(1)] = m.group(2)
return attribute_dict
def parseNodeDefinition(self, l):
node_definition_re = re.compile('^\s*(\w+)\s+\[([^\]]+)\]\s*;\s*$')
m = node_definition_re.match(l)
if not m:
return False
id = m.group(1)
attributes = self.parseAttributes(m.group(2))
n = Node(id, edges=[], attributes=attributes)
self.graph.addNode(n)
return True
def parseIntroducer(self, l):
introducer_re = re.compile('^\s*digraph "([^"]+)"\s+{\s*$')
m = introducer_re.match(l)
if not m:
return False
self.graph.setName(m.group(1))
return True
def parseCloser(self, l):
closer_re = re.compile('^\s*}\s*$')
m = closer_re.match(l)
if not m:
return False
return True
class Node(object):
def __init__(self, id, edges=[], attributes={}):
self.id = id
self.edges = set(edges)
self.attributes = dict(attributes)
def addEdge(self, dest):
self.edges.add(dest)
def __eq__(self, another):
if isinstance(another, str):
return another == self.id
return hasattr(another, 'id') and self.id == another.id
def __hash__(self):
return hash(self.id)
def __str__(self):
return self.attributes["label"]
def __repr__(self):
return self.__str__()
res = self.id
if len(self.attributes):
attr = []
for k,v in self.attributes.iteritems():
attr += ['%s="%s"' % (k, v)]
res += ' [%s ]' % (', '.join(attr))
return res
class DirectedGraph(object):
def __init__(self, name=None, nodes=None):
self.name = name
self.nodes = set() if nodes is None else set(nodes)
def setName(self, n):
self.name = n
def _getNode(self, n_or_id):
if isinstance(n_or_id, Node):
return n_or_id
return self.getNode(n_or_id)
def getNode(self, str_id):
assert isinstance(str_id, str) or isinstance(str_id, Node)
for s in self.nodes:
if s == str_id:
return s
return None
def getNodeByLabel(self, l):
found = None
for s in self.nodes:
if s.attributes['label'] == l:
assert found is None
found = s
return found
def addEdge(self, n1, n2):
n1 = self._getNode(n1)
n2 = self._getNode(n2)
assert n1 in self.nodes
assert n2 in self.nodes
n1.addEdge(n2)
def addNode(self, n):
self.nodes.add(n)
def removeNode(self, n):
n = self._getNode(n)
for other_n in self.nodes:
if other_n == n:
continue
new_edges = set()
for e in other_n.edges:
if e != n:
new_edges.add(e)
other_n.edges = new_edges
self.nodes.remove(n)
def toDot(self):
dot = DotEmitter(self.name)
for n in self.nodes:
dot.addNode(n)
for ndest in n.edges:
dot.addEdge(n, ndest)
return dot.emit()
@staticmethod
def fromDot(str):
reader = DotReader()
graph = reader.parse(str)
return graph
@staticmethod
def fromDotFile(fname):
with open(fname, 'r') as f:
return DirectedGraph.fromDot(f.read())
def toDotFile(self, fname):
with open(fname, 'w') as f:
f.write(self.toDot())
def __repr__(self):
return self.toDot()
class BFS(object):
def __init__(self, start):
self.visited = set()
self.to_visit = []
self.start = start
def __nonzero__(self):
return len(self.to_visit) != 0
def empty(self):
return len(self.to_visit) == 0
def push_back(self, node):
assert node not in self.visited
self.visited.add(node)
self.to_visit += [node]
def maybe_push_back(self, node):
if node in self.visited:
return
self.push_back(node)
def pop_front(self):
assert len(self.to_visit)
elem = self.to_visit[0]
del self.to_visit[0]
return elem
def seen(self, n):
return n in self.visited
class CycleFinder(object):
def __init__(self, graph):
self.graph = graph
def findCycleForNode(self, n):
assert n in self.graph.nodes
all_paths = {}
all_cycles = []
bfs = BFS(n)
bfs.push_back(n)
all_paths[n] = [n]
while bfs:
n = bfs.pop_front()
assert n in all_paths
for e in n.edges:
en = self.graph.getNode(e)
if not bfs.seen(en):
new_path = list(all_paths[n])
new_path.extend([en])
all_paths[en] = new_path
bfs.push_back(en)
if en == bfs.start:
all_cycles += [all_paths[n]]
return all_cycles
def findCyclesInGraph(self):
all_cycles = []
for n in self.graph.nodes:
cycle = self.findCycleForNode(n)
if cycle:
all_cycles += [(n, cycle)]
return all_cycles