| //===-- sanitizer_allocator_test.cpp --------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is a part of ThreadSanitizer/AddressSanitizer runtime. |
| // Tests for sanitizer_allocator.h. |
| // |
| //===----------------------------------------------------------------------===// |
| #include "sanitizer_common/sanitizer_allocator.h" |
| #include "sanitizer_common/sanitizer_allocator_internal.h" |
| #include "sanitizer_common/sanitizer_common.h" |
| |
| #include "sanitizer_test_utils.h" |
| #include "sanitizer_pthread_wrappers.h" |
| |
| #include "gtest/gtest.h" |
| |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <algorithm> |
| #include <vector> |
| #include <random> |
| #include <set> |
| |
| using namespace __sanitizer; |
| |
| #if SANITIZER_SOLARIS && defined(__sparcv9) |
| // FIXME: These tests probably fail because Solaris/sparcv9 uses the full |
| // 64-bit address space. Needs more investigation |
| #define SKIP_ON_SOLARIS_SPARCV9(x) DISABLED_##x |
| #else |
| #define SKIP_ON_SOLARIS_SPARCV9(x) x |
| #endif |
| |
| // Too slow for debug build |
| #if !SANITIZER_DEBUG |
| |
| #if SANITIZER_CAN_USE_ALLOCATOR64 |
| #if SANITIZER_WINDOWS |
| // On Windows 64-bit there is no easy way to find a large enough fixed address |
| // space that is always available. Thus, a dynamically allocated address space |
| // is used instead (i.e. ~(uptr)0). |
| static const uptr kAllocatorSpace = ~(uptr)0; |
| static const uptr kAllocatorSize = 0x8000000000ULL; // 500G |
| static const u64 kAddressSpaceSize = 1ULL << 47; |
| typedef DefaultSizeClassMap SizeClassMap; |
| #elif SANITIZER_ANDROID && defined(__aarch64__) |
| static const uptr kAllocatorSpace = 0x3000000000ULL; |
| static const uptr kAllocatorSize = 0x2000000000ULL; |
| static const u64 kAddressSpaceSize = 1ULL << 39; |
| typedef VeryCompactSizeClassMap SizeClassMap; |
| #else |
| static const uptr kAllocatorSpace = 0x700000000000ULL; |
| static const uptr kAllocatorSize = 0x010000000000ULL; // 1T. |
| static const u64 kAddressSpaceSize = 1ULL << 47; |
| typedef DefaultSizeClassMap SizeClassMap; |
| #endif |
| |
| template <typename AddressSpaceViewTy> |
| struct AP64 { // Allocator Params. Short name for shorter demangled names.. |
| static const uptr kSpaceBeg = kAllocatorSpace; |
| static const uptr kSpaceSize = kAllocatorSize; |
| static const uptr kMetadataSize = 16; |
| typedef ::SizeClassMap SizeClassMap; |
| typedef NoOpMapUnmapCallback MapUnmapCallback; |
| static const uptr kFlags = 0; |
| using AddressSpaceView = AddressSpaceViewTy; |
| }; |
| |
| template <typename AddressSpaceViewTy> |
| struct AP64Dyn { |
| static const uptr kSpaceBeg = ~(uptr)0; |
| static const uptr kSpaceSize = kAllocatorSize; |
| static const uptr kMetadataSize = 16; |
| typedef ::SizeClassMap SizeClassMap; |
| typedef NoOpMapUnmapCallback MapUnmapCallback; |
| static const uptr kFlags = 0; |
| using AddressSpaceView = AddressSpaceViewTy; |
| }; |
| |
| template <typename AddressSpaceViewTy> |
| struct AP64Compact { |
| static const uptr kSpaceBeg = ~(uptr)0; |
| static const uptr kSpaceSize = kAllocatorSize; |
| static const uptr kMetadataSize = 16; |
| typedef CompactSizeClassMap SizeClassMap; |
| typedef NoOpMapUnmapCallback MapUnmapCallback; |
| static const uptr kFlags = 0; |
| using AddressSpaceView = AddressSpaceViewTy; |
| }; |
| |
| template <typename AddressSpaceViewTy> |
| struct AP64VeryCompact { |
| static const uptr kSpaceBeg = ~(uptr)0; |
| static const uptr kSpaceSize = 1ULL << 37; |
| static const uptr kMetadataSize = 16; |
| typedef VeryCompactSizeClassMap SizeClassMap; |
| typedef NoOpMapUnmapCallback MapUnmapCallback; |
| static const uptr kFlags = 0; |
| using AddressSpaceView = AddressSpaceViewTy; |
| }; |
| |
| template <typename AddressSpaceViewTy> |
| struct AP64Dense { |
| static const uptr kSpaceBeg = kAllocatorSpace; |
| static const uptr kSpaceSize = kAllocatorSize; |
| static const uptr kMetadataSize = 16; |
| typedef DenseSizeClassMap SizeClassMap; |
| typedef NoOpMapUnmapCallback MapUnmapCallback; |
| static const uptr kFlags = 0; |
| using AddressSpaceView = AddressSpaceViewTy; |
| }; |
| |
| template <typename AddressSpaceView> |
| using Allocator64ASVT = SizeClassAllocator64<AP64<AddressSpaceView>>; |
| using Allocator64 = Allocator64ASVT<LocalAddressSpaceView>; |
| |
| template <typename AddressSpaceView> |
| using Allocator64DynamicASVT = SizeClassAllocator64<AP64Dyn<AddressSpaceView>>; |
| using Allocator64Dynamic = Allocator64DynamicASVT<LocalAddressSpaceView>; |
| |
| template <typename AddressSpaceView> |
| using Allocator64CompactASVT = |
| SizeClassAllocator64<AP64Compact<AddressSpaceView>>; |
| using Allocator64Compact = Allocator64CompactASVT<LocalAddressSpaceView>; |
| |
| template <typename AddressSpaceView> |
| using Allocator64VeryCompactASVT = |
| SizeClassAllocator64<AP64VeryCompact<AddressSpaceView>>; |
| using Allocator64VeryCompact = |
| Allocator64VeryCompactASVT<LocalAddressSpaceView>; |
| |
| template <typename AddressSpaceView> |
| using Allocator64DenseASVT = SizeClassAllocator64<AP64Dense<AddressSpaceView>>; |
| using Allocator64Dense = Allocator64DenseASVT<LocalAddressSpaceView>; |
| |
| #elif defined(__mips64) |
| static const u64 kAddressSpaceSize = 1ULL << 40; |
| #elif defined(__aarch64__) |
| static const u64 kAddressSpaceSize = 1ULL << 39; |
| #elif defined(__s390x__) |
| static const u64 kAddressSpaceSize = 1ULL << 53; |
| #elif defined(__s390__) |
| static const u64 kAddressSpaceSize = 1ULL << 31; |
| #else |
| static const u64 kAddressSpaceSize = 1ULL << 32; |
| #endif |
| |
| static const uptr kRegionSizeLog = FIRST_32_SECOND_64(20, 24); |
| |
| template <typename AddressSpaceViewTy> |
| struct AP32Compact { |
| static const uptr kSpaceBeg = 0; |
| static const u64 kSpaceSize = kAddressSpaceSize; |
| static const uptr kMetadataSize = 16; |
| typedef CompactSizeClassMap SizeClassMap; |
| static const uptr kRegionSizeLog = ::kRegionSizeLog; |
| using AddressSpaceView = AddressSpaceViewTy; |
| typedef NoOpMapUnmapCallback MapUnmapCallback; |
| static const uptr kFlags = 0; |
| }; |
| template <typename AddressSpaceView> |
| using Allocator32CompactASVT = |
| SizeClassAllocator32<AP32Compact<AddressSpaceView>>; |
| using Allocator32Compact = Allocator32CompactASVT<LocalAddressSpaceView>; |
| |
| template <class SizeClassMap> |
| void TestSizeClassMap() { |
| typedef SizeClassMap SCMap; |
| SCMap::Print(); |
| SCMap::Validate(); |
| } |
| |
| TEST(SanitizerCommon, DefaultSizeClassMap) { |
| TestSizeClassMap<DefaultSizeClassMap>(); |
| } |
| |
| TEST(SanitizerCommon, CompactSizeClassMap) { |
| TestSizeClassMap<CompactSizeClassMap>(); |
| } |
| |
| TEST(SanitizerCommon, VeryCompactSizeClassMap) { |
| TestSizeClassMap<VeryCompactSizeClassMap>(); |
| } |
| |
| TEST(SanitizerCommon, InternalSizeClassMap) { |
| TestSizeClassMap<InternalSizeClassMap>(); |
| } |
| |
| TEST(SanitizerCommon, DenseSizeClassMap) { |
| TestSizeClassMap<VeryCompactSizeClassMap>(); |
| } |
| |
| template <class Allocator> |
| void TestSizeClassAllocator() { |
| Allocator *a = new Allocator; |
| a->Init(kReleaseToOSIntervalNever); |
| typename Allocator::AllocatorCache cache; |
| memset(&cache, 0, sizeof(cache)); |
| cache.Init(0); |
| |
| static const uptr sizes[] = { |
| 1, 16, 30, 40, 100, 1000, 10000, |
| 50000, 60000, 100000, 120000, 300000, 500000, 1000000, 2000000 |
| }; |
| |
| std::vector<void *> allocated; |
| |
| uptr last_total_allocated = 0; |
| for (int i = 0; i < 3; i++) { |
| // Allocate a bunch of chunks. |
| for (uptr s = 0; s < ARRAY_SIZE(sizes); s++) { |
| uptr size = sizes[s]; |
| if (!a->CanAllocate(size, 1)) continue; |
| // printf("s = %ld\n", size); |
| uptr n_iter = std::max((uptr)6, 4000000 / size); |
| // fprintf(stderr, "size: %ld iter: %ld\n", size, n_iter); |
| for (uptr i = 0; i < n_iter; i++) { |
| uptr class_id0 = Allocator::SizeClassMapT::ClassID(size); |
| char *x = (char*)cache.Allocate(a, class_id0); |
| x[0] = 0; |
| x[size - 1] = 0; |
| x[size / 2] = 0; |
| allocated.push_back(x); |
| CHECK_EQ(x, a->GetBlockBegin(x)); |
| CHECK_EQ(x, a->GetBlockBegin(x + size - 1)); |
| CHECK(a->PointerIsMine(x)); |
| CHECK(a->PointerIsMine(x + size - 1)); |
| CHECK(a->PointerIsMine(x + size / 2)); |
| CHECK_GE(a->GetActuallyAllocatedSize(x), size); |
| uptr class_id = a->GetSizeClass(x); |
| CHECK_EQ(class_id, Allocator::SizeClassMapT::ClassID(size)); |
| uptr *metadata = reinterpret_cast<uptr*>(a->GetMetaData(x)); |
| metadata[0] = reinterpret_cast<uptr>(x) + 1; |
| metadata[1] = 0xABCD; |
| } |
| } |
| // Deallocate all. |
| for (uptr i = 0; i < allocated.size(); i++) { |
| void *x = allocated[i]; |
| uptr *metadata = reinterpret_cast<uptr*>(a->GetMetaData(x)); |
| CHECK_EQ(metadata[0], reinterpret_cast<uptr>(x) + 1); |
| CHECK_EQ(metadata[1], 0xABCD); |
| cache.Deallocate(a, a->GetSizeClass(x), x); |
| } |
| allocated.clear(); |
| uptr total_allocated = a->TotalMemoryUsed(); |
| if (last_total_allocated == 0) |
| last_total_allocated = total_allocated; |
| CHECK_EQ(last_total_allocated, total_allocated); |
| } |
| |
| // Check that GetBlockBegin never crashes. |
| for (uptr x = 0, step = kAddressSpaceSize / 100000; |
| x < kAddressSpaceSize - step; x += step) |
| if (a->PointerIsMine(reinterpret_cast<void *>(x))) |
| Ident(a->GetBlockBegin(reinterpret_cast<void *>(x))); |
| |
| a->TestOnlyUnmap(); |
| delete a; |
| } |
| |
| #if SANITIZER_CAN_USE_ALLOCATOR64 |
| // These tests can fail on Windows if memory is somewhat full and lit happens |
| // to run them all at the same time. FIXME: Make them not flaky and reenable. |
| #if !SANITIZER_WINDOWS |
| TEST(SanitizerCommon, SizeClassAllocator64) { |
| TestSizeClassAllocator<Allocator64>(); |
| } |
| |
| TEST(SanitizerCommon, SizeClassAllocator64Dynamic) { |
| TestSizeClassAllocator<Allocator64Dynamic>(); |
| } |
| |
| #if !SANITIZER_ANDROID |
| //FIXME(kostyak): find values so that those work on Android as well. |
| TEST(SanitizerCommon, SizeClassAllocator64Compact) { |
| TestSizeClassAllocator<Allocator64Compact>(); |
| } |
| |
| TEST(SanitizerCommon, SizeClassAllocator64Dense) { |
| TestSizeClassAllocator<Allocator64Dense>(); |
| } |
| #endif |
| |
| TEST(SanitizerCommon, SizeClassAllocator64VeryCompact) { |
| TestSizeClassAllocator<Allocator64VeryCompact>(); |
| } |
| #endif |
| #endif |
| |
| TEST(SanitizerCommon, SizeClassAllocator32Compact) { |
| TestSizeClassAllocator<Allocator32Compact>(); |
| } |
| |
| template <typename AddressSpaceViewTy> |
| struct AP32SeparateBatches { |
| static const uptr kSpaceBeg = 0; |
| static const u64 kSpaceSize = kAddressSpaceSize; |
| static const uptr kMetadataSize = 16; |
| typedef DefaultSizeClassMap SizeClassMap; |
| static const uptr kRegionSizeLog = ::kRegionSizeLog; |
| using AddressSpaceView = AddressSpaceViewTy; |
| typedef NoOpMapUnmapCallback MapUnmapCallback; |
| static const uptr kFlags = |
| SizeClassAllocator32FlagMasks::kUseSeparateSizeClassForBatch; |
| }; |
| template <typename AddressSpaceView> |
| using Allocator32SeparateBatchesASVT = |
| SizeClassAllocator32<AP32SeparateBatches<AddressSpaceView>>; |
| using Allocator32SeparateBatches = |
| Allocator32SeparateBatchesASVT<LocalAddressSpaceView>; |
| |
| TEST(SanitizerCommon, SizeClassAllocator32SeparateBatches) { |
| TestSizeClassAllocator<Allocator32SeparateBatches>(); |
| } |
| |
| template <class Allocator> |
| void SizeClassAllocatorMetadataStress() { |
| Allocator *a = new Allocator; |
| a->Init(kReleaseToOSIntervalNever); |
| typename Allocator::AllocatorCache cache; |
| memset(&cache, 0, sizeof(cache)); |
| cache.Init(0); |
| |
| const uptr kNumAllocs = 1 << 13; |
| void *allocated[kNumAllocs]; |
| void *meta[kNumAllocs]; |
| for (uptr i = 0; i < kNumAllocs; i++) { |
| void *x = cache.Allocate(a, 1 + i % (Allocator::kNumClasses - 1)); |
| allocated[i] = x; |
| meta[i] = a->GetMetaData(x); |
| } |
| // Get Metadata kNumAllocs^2 times. |
| for (uptr i = 0; i < kNumAllocs * kNumAllocs; i++) { |
| uptr idx = i % kNumAllocs; |
| void *m = a->GetMetaData(allocated[idx]); |
| EXPECT_EQ(m, meta[idx]); |
| } |
| for (uptr i = 0; i < kNumAllocs; i++) { |
| cache.Deallocate(a, 1 + i % (Allocator::kNumClasses - 1), allocated[i]); |
| } |
| |
| a->TestOnlyUnmap(); |
| delete a; |
| } |
| |
| #if SANITIZER_CAN_USE_ALLOCATOR64 |
| // These tests can fail on Windows if memory is somewhat full and lit happens |
| // to run them all at the same time. FIXME: Make them not flaky and reenable. |
| #if !SANITIZER_WINDOWS |
| TEST(SanitizerCommon, SizeClassAllocator64MetadataStress) { |
| SizeClassAllocatorMetadataStress<Allocator64>(); |
| } |
| |
| TEST(SanitizerCommon, SizeClassAllocator64DynamicMetadataStress) { |
| SizeClassAllocatorMetadataStress<Allocator64Dynamic>(); |
| } |
| |
| #if !SANITIZER_ANDROID |
| TEST(SanitizerCommon, SizeClassAllocator64CompactMetadataStress) { |
| SizeClassAllocatorMetadataStress<Allocator64Compact>(); |
| } |
| #endif |
| |
| #endif |
| #endif // SANITIZER_CAN_USE_ALLOCATOR64 |
| TEST(SanitizerCommon, SizeClassAllocator32CompactMetadataStress) { |
| SizeClassAllocatorMetadataStress<Allocator32Compact>(); |
| } |
| |
| template <class Allocator> |
| void SizeClassAllocatorGetBlockBeginStress(u64 TotalSize) { |
| Allocator *a = new Allocator; |
| a->Init(kReleaseToOSIntervalNever); |
| typename Allocator::AllocatorCache cache; |
| memset(&cache, 0, sizeof(cache)); |
| cache.Init(0); |
| |
| uptr max_size_class = Allocator::SizeClassMapT::kLargestClassID; |
| uptr size = Allocator::SizeClassMapT::Size(max_size_class); |
| // Make sure we correctly compute GetBlockBegin() w/o overflow. |
| for (size_t i = 0; i <= TotalSize / size; i++) { |
| void *x = cache.Allocate(a, max_size_class); |
| void *beg = a->GetBlockBegin(x); |
| // if ((i & (i - 1)) == 0) |
| // fprintf(stderr, "[%zd] %p %p\n", i, x, beg); |
| EXPECT_EQ(x, beg); |
| } |
| |
| a->TestOnlyUnmap(); |
| delete a; |
| } |
| |
| #if SANITIZER_CAN_USE_ALLOCATOR64 |
| // These tests can fail on Windows if memory is somewhat full and lit happens |
| // to run them all at the same time. FIXME: Make them not flaky and reenable. |
| #if !SANITIZER_WINDOWS |
| TEST(SanitizerCommon, SizeClassAllocator64GetBlockBegin) { |
| SizeClassAllocatorGetBlockBeginStress<Allocator64>( |
| 1ULL << (SANITIZER_ANDROID ? 31 : 33)); |
| } |
| TEST(SanitizerCommon, SizeClassAllocator64DynamicGetBlockBegin) { |
| SizeClassAllocatorGetBlockBeginStress<Allocator64Dynamic>( |
| 1ULL << (SANITIZER_ANDROID ? 31 : 33)); |
| } |
| #if !SANITIZER_ANDROID |
| TEST(SanitizerCommon, SizeClassAllocator64CompactGetBlockBegin) { |
| SizeClassAllocatorGetBlockBeginStress<Allocator64Compact>(1ULL << 33); |
| } |
| #endif |
| TEST(SanitizerCommon, SizeClassAllocator64VeryCompactGetBlockBegin) { |
| // Does not have > 4Gb for each class. |
| SizeClassAllocatorGetBlockBeginStress<Allocator64VeryCompact>(1ULL << 31); |
| } |
| TEST(SanitizerCommon, SizeClassAllocator32CompactGetBlockBegin) { |
| SizeClassAllocatorGetBlockBeginStress<Allocator32Compact>(1ULL << 33); |
| } |
| #endif |
| #endif // SANITIZER_CAN_USE_ALLOCATOR64 |
| |
| struct TestMapUnmapCallback { |
| static int map_count, unmap_count; |
| void OnMap(uptr p, uptr size) const { map_count++; } |
| void OnUnmap(uptr p, uptr size) const { unmap_count++; } |
| }; |
| int TestMapUnmapCallback::map_count; |
| int TestMapUnmapCallback::unmap_count; |
| |
| #if SANITIZER_CAN_USE_ALLOCATOR64 |
| // These tests can fail on Windows if memory is somewhat full and lit happens |
| // to run them all at the same time. FIXME: Make them not flaky and reenable. |
| #if !SANITIZER_WINDOWS |
| |
| template <typename AddressSpaceViewTy = LocalAddressSpaceView> |
| struct AP64WithCallback { |
| static const uptr kSpaceBeg = kAllocatorSpace; |
| static const uptr kSpaceSize = kAllocatorSize; |
| static const uptr kMetadataSize = 16; |
| typedef ::SizeClassMap SizeClassMap; |
| typedef TestMapUnmapCallback MapUnmapCallback; |
| static const uptr kFlags = 0; |
| using AddressSpaceView = AddressSpaceViewTy; |
| }; |
| |
| TEST(SanitizerCommon, SizeClassAllocator64MapUnmapCallback) { |
| TestMapUnmapCallback::map_count = 0; |
| TestMapUnmapCallback::unmap_count = 0; |
| typedef SizeClassAllocator64<AP64WithCallback<>> Allocator64WithCallBack; |
| Allocator64WithCallBack *a = new Allocator64WithCallBack; |
| a->Init(kReleaseToOSIntervalNever); |
| EXPECT_EQ(TestMapUnmapCallback::map_count, 1); // Allocator state. |
| typename Allocator64WithCallBack::AllocatorCache cache; |
| memset(&cache, 0, sizeof(cache)); |
| cache.Init(0); |
| AllocatorStats stats; |
| stats.Init(); |
| const size_t kNumChunks = 128; |
| uint32_t chunks[kNumChunks]; |
| a->GetFromAllocator(&stats, 30, chunks, kNumChunks); |
| // State + alloc + metadata + freearray. |
| EXPECT_EQ(TestMapUnmapCallback::map_count, 4); |
| a->TestOnlyUnmap(); |
| EXPECT_EQ(TestMapUnmapCallback::unmap_count, 1); // The whole thing. |
| delete a; |
| } |
| #endif |
| #endif |
| |
| template <typename AddressSpaceViewTy = LocalAddressSpaceView> |
| struct AP32WithCallback { |
| static const uptr kSpaceBeg = 0; |
| static const u64 kSpaceSize = kAddressSpaceSize; |
| static const uptr kMetadataSize = 16; |
| typedef CompactSizeClassMap SizeClassMap; |
| static const uptr kRegionSizeLog = ::kRegionSizeLog; |
| using AddressSpaceView = AddressSpaceViewTy; |
| typedef TestMapUnmapCallback MapUnmapCallback; |
| static const uptr kFlags = 0; |
| }; |
| |
| TEST(SanitizerCommon, SizeClassAllocator32MapUnmapCallback) { |
| TestMapUnmapCallback::map_count = 0; |
| TestMapUnmapCallback::unmap_count = 0; |
| typedef SizeClassAllocator32<AP32WithCallback<>> Allocator32WithCallBack; |
| Allocator32WithCallBack *a = new Allocator32WithCallBack; |
| a->Init(kReleaseToOSIntervalNever); |
| EXPECT_EQ(TestMapUnmapCallback::map_count, 0); |
| Allocator32WithCallBack::AllocatorCache cache; |
| memset(&cache, 0, sizeof(cache)); |
| cache.Init(0); |
| AllocatorStats stats; |
| stats.Init(); |
| a->AllocateBatch(&stats, &cache, 32); |
| EXPECT_EQ(TestMapUnmapCallback::map_count, 1); |
| a->TestOnlyUnmap(); |
| EXPECT_EQ(TestMapUnmapCallback::unmap_count, 1); |
| delete a; |
| // fprintf(stderr, "Map: %d Unmap: %d\n", |
| // TestMapUnmapCallback::map_count, |
| // TestMapUnmapCallback::unmap_count); |
| } |
| |
| TEST(SanitizerCommon, LargeMmapAllocatorMapUnmapCallback) { |
| TestMapUnmapCallback::map_count = 0; |
| TestMapUnmapCallback::unmap_count = 0; |
| LargeMmapAllocator<TestMapUnmapCallback> a; |
| a.Init(); |
| AllocatorStats stats; |
| stats.Init(); |
| void *x = a.Allocate(&stats, 1 << 20, 1); |
| EXPECT_EQ(TestMapUnmapCallback::map_count, 1); |
| a.Deallocate(&stats, x); |
| EXPECT_EQ(TestMapUnmapCallback::unmap_count, 1); |
| } |
| |
| // Don't test OOM conditions on Win64 because it causes other tests on the same |
| // machine to OOM. |
| #if SANITIZER_CAN_USE_ALLOCATOR64 && !SANITIZER_WINDOWS64 && !SANITIZER_ANDROID |
| TEST(SanitizerCommon, SizeClassAllocator64Overflow) { |
| Allocator64 a; |
| a.Init(kReleaseToOSIntervalNever); |
| Allocator64::AllocatorCache cache; |
| memset(&cache, 0, sizeof(cache)); |
| cache.Init(0); |
| AllocatorStats stats; |
| stats.Init(); |
| |
| const size_t kNumChunks = 128; |
| uint32_t chunks[kNumChunks]; |
| bool allocation_failed = false; |
| for (int i = 0; i < 1000000; i++) { |
| if (!a.GetFromAllocator(&stats, 52, chunks, kNumChunks)) { |
| allocation_failed = true; |
| break; |
| } |
| } |
| EXPECT_EQ(allocation_failed, true); |
| |
| a.TestOnlyUnmap(); |
| } |
| #endif |
| |
| TEST(SanitizerCommon, LargeMmapAllocator) { |
| LargeMmapAllocator<NoOpMapUnmapCallback> a; |
| a.Init(); |
| AllocatorStats stats; |
| stats.Init(); |
| |
| static const int kNumAllocs = 1000; |
| char *allocated[kNumAllocs]; |
| static const uptr size = 4000; |
| // Allocate some. |
| for (int i = 0; i < kNumAllocs; i++) { |
| allocated[i] = (char *)a.Allocate(&stats, size, 1); |
| CHECK(a.PointerIsMine(allocated[i])); |
| } |
| // Deallocate all. |
| CHECK_GT(a.TotalMemoryUsed(), size * kNumAllocs); |
| for (int i = 0; i < kNumAllocs; i++) { |
| char *p = allocated[i]; |
| CHECK(a.PointerIsMine(p)); |
| a.Deallocate(&stats, p); |
| } |
| // Check that non left. |
| CHECK_EQ(a.TotalMemoryUsed(), 0); |
| |
| // Allocate some more, also add metadata. |
| for (int i = 0; i < kNumAllocs; i++) { |
| char *x = (char *)a.Allocate(&stats, size, 1); |
| CHECK_GE(a.GetActuallyAllocatedSize(x), size); |
| uptr *meta = reinterpret_cast<uptr*>(a.GetMetaData(x)); |
| *meta = i; |
| allocated[i] = x; |
| } |
| for (int i = 0; i < kNumAllocs * kNumAllocs; i++) { |
| char *p = allocated[i % kNumAllocs]; |
| CHECK(a.PointerIsMine(p)); |
| CHECK(a.PointerIsMine(p + 2000)); |
| } |
| CHECK_GT(a.TotalMemoryUsed(), size * kNumAllocs); |
| // Deallocate all in reverse order. |
| for (int i = 0; i < kNumAllocs; i++) { |
| int idx = kNumAllocs - i - 1; |
| char *p = allocated[idx]; |
| uptr *meta = reinterpret_cast<uptr*>(a.GetMetaData(p)); |
| CHECK_EQ(*meta, idx); |
| CHECK(a.PointerIsMine(p)); |
| a.Deallocate(&stats, p); |
| } |
| CHECK_EQ(a.TotalMemoryUsed(), 0); |
| |
| // Test alignments. Test with 512MB alignment on x64 non-Windows machines. |
| // Windows doesn't overcommit, and many machines do not have 51.2GB of swap. |
| uptr max_alignment = |
| (SANITIZER_WORDSIZE == 64 && !SANITIZER_WINDOWS) ? (1 << 28) : (1 << 24); |
| for (uptr alignment = 8; alignment <= max_alignment; alignment *= 2) { |
| const uptr kNumAlignedAllocs = 100; |
| for (uptr i = 0; i < kNumAlignedAllocs; i++) { |
| uptr size = ((i % 10) + 1) * 4096; |
| char *p = allocated[i] = (char *)a.Allocate(&stats, size, alignment); |
| CHECK_EQ(p, a.GetBlockBegin(p)); |
| CHECK_EQ(p, a.GetBlockBegin(p + size - 1)); |
| CHECK_EQ(p, a.GetBlockBegin(p + size / 2)); |
| CHECK_EQ(0, (uptr)allocated[i] % alignment); |
| p[0] = p[size - 1] = 0; |
| } |
| for (uptr i = 0; i < kNumAlignedAllocs; i++) { |
| a.Deallocate(&stats, allocated[i]); |
| } |
| } |
| |
| // Regression test for boundary condition in GetBlockBegin(). |
| uptr page_size = GetPageSizeCached(); |
| char *p = (char *)a.Allocate(&stats, page_size, 1); |
| CHECK_EQ(p, a.GetBlockBegin(p)); |
| CHECK_EQ(p, (char *)a.GetBlockBegin(p + page_size - 1)); |
| CHECK_NE(p, (char *)a.GetBlockBegin(p + page_size)); |
| a.Deallocate(&stats, p); |
| } |
| |
| template <class PrimaryAllocator> |
| void TestCombinedAllocator() { |
| typedef CombinedAllocator<PrimaryAllocator> Allocator; |
| Allocator *a = new Allocator; |
| a->Init(kReleaseToOSIntervalNever); |
| std::mt19937 r; |
| |
| typename Allocator::AllocatorCache cache; |
| memset(&cache, 0, sizeof(cache)); |
| a->InitCache(&cache); |
| |
| EXPECT_EQ(a->Allocate(&cache, -1, 1), (void*)0); |
| EXPECT_EQ(a->Allocate(&cache, -1, 1024), (void*)0); |
| EXPECT_EQ(a->Allocate(&cache, (uptr)-1 - 1024, 1), (void*)0); |
| EXPECT_EQ(a->Allocate(&cache, (uptr)-1 - 1024, 1024), (void*)0); |
| EXPECT_EQ(a->Allocate(&cache, (uptr)-1 - 1023, 1024), (void*)0); |
| EXPECT_EQ(a->Allocate(&cache, -1, 1), (void*)0); |
| |
| const uptr kNumAllocs = 100000; |
| const uptr kNumIter = 10; |
| for (uptr iter = 0; iter < kNumIter; iter++) { |
| std::vector<void*> allocated; |
| for (uptr i = 0; i < kNumAllocs; i++) { |
| uptr size = (i % (1 << 14)) + 1; |
| if ((i % 1024) == 0) |
| size = 1 << (10 + (i % 14)); |
| void *x = a->Allocate(&cache, size, 1); |
| uptr *meta = reinterpret_cast<uptr*>(a->GetMetaData(x)); |
| CHECK_EQ(*meta, 0); |
| *meta = size; |
| allocated.push_back(x); |
| } |
| |
| std::shuffle(allocated.begin(), allocated.end(), r); |
| |
| // Test ForEachChunk(...) |
| { |
| std::set<void *> reported_chunks; |
| auto cb = [](uptr chunk, void *arg) { |
| auto reported_chunks_ptr = reinterpret_cast<std::set<void *> *>(arg); |
| auto pair = |
| reported_chunks_ptr->insert(reinterpret_cast<void *>(chunk)); |
| // Check chunk is never reported more than once. |
| ASSERT_TRUE(pair.second); |
| }; |
| a->ForEachChunk(cb, reinterpret_cast<void *>(&reported_chunks)); |
| for (const auto &allocated_ptr : allocated) { |
| ASSERT_NE(reported_chunks.find(allocated_ptr), reported_chunks.end()); |
| } |
| } |
| |
| for (uptr i = 0; i < kNumAllocs; i++) { |
| void *x = allocated[i]; |
| uptr *meta = reinterpret_cast<uptr*>(a->GetMetaData(x)); |
| CHECK_NE(*meta, 0); |
| CHECK(a->PointerIsMine(x)); |
| *meta = 0; |
| a->Deallocate(&cache, x); |
| } |
| allocated.clear(); |
| a->SwallowCache(&cache); |
| } |
| a->DestroyCache(&cache); |
| a->TestOnlyUnmap(); |
| } |
| |
| #if SANITIZER_CAN_USE_ALLOCATOR64 |
| TEST(SanitizerCommon, CombinedAllocator64) { |
| TestCombinedAllocator<Allocator64>(); |
| } |
| |
| TEST(SanitizerCommon, CombinedAllocator64Dynamic) { |
| TestCombinedAllocator<Allocator64Dynamic>(); |
| } |
| |
| #if !SANITIZER_ANDROID |
| TEST(SanitizerCommon, CombinedAllocator64Compact) { |
| TestCombinedAllocator<Allocator64Compact>(); |
| } |
| #endif |
| |
| TEST(SanitizerCommon, CombinedAllocator64VeryCompact) { |
| TestCombinedAllocator<Allocator64VeryCompact>(); |
| } |
| #endif |
| |
| TEST(SanitizerCommon, SKIP_ON_SOLARIS_SPARCV9(CombinedAllocator32Compact)) { |
| TestCombinedAllocator<Allocator32Compact>(); |
| } |
| |
| template <class Allocator> |
| void TestSizeClassAllocatorLocalCache() { |
| using AllocatorCache = typename Allocator::AllocatorCache; |
| AllocatorCache cache; |
| Allocator *a = new Allocator(); |
| |
| a->Init(kReleaseToOSIntervalNever); |
| memset(&cache, 0, sizeof(cache)); |
| cache.Init(0); |
| |
| const uptr kNumAllocs = 10000; |
| const int kNumIter = 100; |
| uptr saved_total = 0; |
| for (int class_id = 1; class_id <= 5; class_id++) { |
| for (int it = 0; it < kNumIter; it++) { |
| void *allocated[kNumAllocs]; |
| for (uptr i = 0; i < kNumAllocs; i++) { |
| allocated[i] = cache.Allocate(a, class_id); |
| } |
| for (uptr i = 0; i < kNumAllocs; i++) { |
| cache.Deallocate(a, class_id, allocated[i]); |
| } |
| cache.Drain(a); |
| uptr total_allocated = a->TotalMemoryUsed(); |
| if (it) |
| CHECK_EQ(saved_total, total_allocated); |
| saved_total = total_allocated; |
| } |
| } |
| |
| a->TestOnlyUnmap(); |
| delete a; |
| } |
| |
| #if SANITIZER_CAN_USE_ALLOCATOR64 |
| // These tests can fail on Windows if memory is somewhat full and lit happens |
| // to run them all at the same time. FIXME: Make them not flaky and reenable. |
| #if !SANITIZER_WINDOWS |
| TEST(SanitizerCommon, SizeClassAllocator64LocalCache) { |
| TestSizeClassAllocatorLocalCache<Allocator64>(); |
| } |
| |
| TEST(SanitizerCommon, SizeClassAllocator64DynamicLocalCache) { |
| TestSizeClassAllocatorLocalCache<Allocator64Dynamic>(); |
| } |
| |
| #if !SANITIZER_ANDROID |
| TEST(SanitizerCommon, SizeClassAllocator64CompactLocalCache) { |
| TestSizeClassAllocatorLocalCache<Allocator64Compact>(); |
| } |
| #endif |
| TEST(SanitizerCommon, SizeClassAllocator64VeryCompactLocalCache) { |
| TestSizeClassAllocatorLocalCache<Allocator64VeryCompact>(); |
| } |
| #endif |
| #endif |
| |
| TEST(SanitizerCommon, SizeClassAllocator32CompactLocalCache) { |
| TestSizeClassAllocatorLocalCache<Allocator32Compact>(); |
| } |
| |
| #if SANITIZER_CAN_USE_ALLOCATOR64 |
| typedef Allocator64::AllocatorCache AllocatorCache; |
| static AllocatorCache static_allocator_cache; |
| |
| void *AllocatorLeakTestWorker(void *arg) { |
| typedef AllocatorCache::Allocator Allocator; |
| Allocator *a = (Allocator*)(arg); |
| static_allocator_cache.Allocate(a, 10); |
| static_allocator_cache.Drain(a); |
| return 0; |
| } |
| |
| TEST(SanitizerCommon, AllocatorLeakTest) { |
| typedef AllocatorCache::Allocator Allocator; |
| Allocator a; |
| a.Init(kReleaseToOSIntervalNever); |
| uptr total_used_memory = 0; |
| for (int i = 0; i < 100; i++) { |
| pthread_t t; |
| PTHREAD_CREATE(&t, 0, AllocatorLeakTestWorker, &a); |
| PTHREAD_JOIN(t, 0); |
| if (i == 0) |
| total_used_memory = a.TotalMemoryUsed(); |
| EXPECT_EQ(a.TotalMemoryUsed(), total_used_memory); |
| } |
| |
| a.TestOnlyUnmap(); |
| } |
| |
| // Struct which is allocated to pass info to new threads. The new thread frees |
| // it. |
| struct NewThreadParams { |
| AllocatorCache *thread_cache; |
| AllocatorCache::Allocator *allocator; |
| uptr class_id; |
| }; |
| |
| // Called in a new thread. Just frees its argument. |
| static void *DeallocNewThreadWorker(void *arg) { |
| NewThreadParams *params = reinterpret_cast<NewThreadParams*>(arg); |
| params->thread_cache->Deallocate(params->allocator, params->class_id, params); |
| return NULL; |
| } |
| |
| // The allocator cache is supposed to be POD and zero initialized. We should be |
| // able to call Deallocate on a zeroed cache, and it will self-initialize. |
| TEST(Allocator, AllocatorCacheDeallocNewThread) { |
| AllocatorCache::Allocator allocator; |
| allocator.Init(kReleaseToOSIntervalNever); |
| AllocatorCache main_cache; |
| AllocatorCache child_cache; |
| memset(&main_cache, 0, sizeof(main_cache)); |
| memset(&child_cache, 0, sizeof(child_cache)); |
| |
| uptr class_id = DefaultSizeClassMap::ClassID(sizeof(NewThreadParams)); |
| NewThreadParams *params = reinterpret_cast<NewThreadParams*>( |
| main_cache.Allocate(&allocator, class_id)); |
| params->thread_cache = &child_cache; |
| params->allocator = &allocator; |
| params->class_id = class_id; |
| pthread_t t; |
| PTHREAD_CREATE(&t, 0, DeallocNewThreadWorker, params); |
| PTHREAD_JOIN(t, 0); |
| |
| allocator.TestOnlyUnmap(); |
| } |
| #endif |
| |
| TEST(Allocator, Basic) { |
| char *p = (char*)InternalAlloc(10); |
| EXPECT_NE(p, (char*)0); |
| char *p2 = (char*)InternalAlloc(20); |
| EXPECT_NE(p2, (char*)0); |
| EXPECT_NE(p2, p); |
| InternalFree(p); |
| InternalFree(p2); |
| } |
| |
| TEST(Allocator, Stress) { |
| const int kCount = 1000; |
| char *ptrs[kCount]; |
| unsigned rnd = 42; |
| for (int i = 0; i < kCount; i++) { |
| uptr sz = my_rand_r(&rnd) % 1000; |
| char *p = (char*)InternalAlloc(sz); |
| EXPECT_NE(p, (char*)0); |
| ptrs[i] = p; |
| } |
| for (int i = 0; i < kCount; i++) { |
| InternalFree(ptrs[i]); |
| } |
| } |
| |
| TEST(Allocator, LargeAlloc) { |
| void *p = InternalAlloc(10 << 20); |
| InternalFree(p); |
| } |
| |
| TEST(Allocator, ScopedBuffer) { |
| const int kSize = 512; |
| { |
| InternalMmapVector<int> int_buf(kSize); |
| EXPECT_EQ((uptr)kSize, int_buf.size()); |
| } |
| InternalMmapVector<char> char_buf(kSize); |
| EXPECT_EQ((uptr)kSize, char_buf.size()); |
| internal_memset(char_buf.data(), 'c', kSize); |
| for (int i = 0; i < kSize; i++) { |
| EXPECT_EQ('c', char_buf[i]); |
| } |
| } |
| |
| void IterationTestCallback(uptr chunk, void *arg) { |
| reinterpret_cast<std::set<uptr> *>(arg)->insert(chunk); |
| } |
| |
| template <class Allocator> |
| void TestSizeClassAllocatorIteration() { |
| Allocator *a = new Allocator; |
| a->Init(kReleaseToOSIntervalNever); |
| typename Allocator::AllocatorCache cache; |
| memset(&cache, 0, sizeof(cache)); |
| cache.Init(0); |
| |
| static const uptr sizes[] = {1, 16, 30, 40, 100, 1000, 10000, |
| 50000, 60000, 100000, 120000, 300000, 500000, 1000000, 2000000}; |
| |
| std::vector<void *> allocated; |
| |
| // Allocate a bunch of chunks. |
| for (uptr s = 0; s < ARRAY_SIZE(sizes); s++) { |
| uptr size = sizes[s]; |
| if (!a->CanAllocate(size, 1)) continue; |
| // printf("s = %ld\n", size); |
| uptr n_iter = std::max((uptr)6, 80000 / size); |
| // fprintf(stderr, "size: %ld iter: %ld\n", size, n_iter); |
| for (uptr j = 0; j < n_iter; j++) { |
| uptr class_id0 = Allocator::SizeClassMapT::ClassID(size); |
| void *x = cache.Allocate(a, class_id0); |
| allocated.push_back(x); |
| } |
| } |
| |
| std::set<uptr> reported_chunks; |
| a->ForceLock(); |
| a->ForEachChunk(IterationTestCallback, &reported_chunks); |
| a->ForceUnlock(); |
| |
| for (uptr i = 0; i < allocated.size(); i++) { |
| // Don't use EXPECT_NE. Reporting the first mismatch is enough. |
| ASSERT_NE(reported_chunks.find(reinterpret_cast<uptr>(allocated[i])), |
| reported_chunks.end()); |
| } |
| |
| a->TestOnlyUnmap(); |
| delete a; |
| } |
| |
| #if SANITIZER_CAN_USE_ALLOCATOR64 |
| // These tests can fail on Windows if memory is somewhat full and lit happens |
| // to run them all at the same time. FIXME: Make them not flaky and reenable. |
| #if !SANITIZER_WINDOWS |
| TEST(SanitizerCommon, SizeClassAllocator64Iteration) { |
| TestSizeClassAllocatorIteration<Allocator64>(); |
| } |
| TEST(SanitizerCommon, SizeClassAllocator64DynamicIteration) { |
| TestSizeClassAllocatorIteration<Allocator64Dynamic>(); |
| } |
| #endif |
| #endif |
| |
| TEST(SanitizerCommon, SKIP_ON_SOLARIS_SPARCV9(SizeClassAllocator32Iteration)) { |
| TestSizeClassAllocatorIteration<Allocator32Compact>(); |
| } |
| |
| TEST(SanitizerCommon, LargeMmapAllocatorIteration) { |
| LargeMmapAllocator<NoOpMapUnmapCallback> a; |
| a.Init(); |
| AllocatorStats stats; |
| stats.Init(); |
| |
| static const uptr kNumAllocs = 1000; |
| char *allocated[kNumAllocs]; |
| static const uptr size = 40; |
| // Allocate some. |
| for (uptr i = 0; i < kNumAllocs; i++) |
| allocated[i] = (char *)a.Allocate(&stats, size, 1); |
| |
| std::set<uptr> reported_chunks; |
| a.ForceLock(); |
| a.ForEachChunk(IterationTestCallback, &reported_chunks); |
| a.ForceUnlock(); |
| |
| for (uptr i = 0; i < kNumAllocs; i++) { |
| // Don't use EXPECT_NE. Reporting the first mismatch is enough. |
| ASSERT_NE(reported_chunks.find(reinterpret_cast<uptr>(allocated[i])), |
| reported_chunks.end()); |
| } |
| for (uptr i = 0; i < kNumAllocs; i++) |
| a.Deallocate(&stats, allocated[i]); |
| } |
| |
| TEST(SanitizerCommon, LargeMmapAllocatorBlockBegin) { |
| LargeMmapAllocator<NoOpMapUnmapCallback> a; |
| a.Init(); |
| AllocatorStats stats; |
| stats.Init(); |
| |
| static const uptr kNumAllocs = 1024; |
| static const uptr kNumExpectedFalseLookups = 10000000; |
| char *allocated[kNumAllocs]; |
| static const uptr size = 4096; |
| // Allocate some. |
| for (uptr i = 0; i < kNumAllocs; i++) { |
| allocated[i] = (char *)a.Allocate(&stats, size, 1); |
| } |
| |
| a.ForceLock(); |
| for (uptr i = 0; i < kNumAllocs * kNumAllocs; i++) { |
| // if ((i & (i - 1)) == 0) fprintf(stderr, "[%zd]\n", i); |
| char *p1 = allocated[i % kNumAllocs]; |
| EXPECT_EQ(p1, a.GetBlockBeginFastLocked(p1)); |
| EXPECT_EQ(p1, a.GetBlockBeginFastLocked(p1 + size / 2)); |
| EXPECT_EQ(p1, a.GetBlockBeginFastLocked(p1 + size - 1)); |
| EXPECT_EQ(p1, a.GetBlockBeginFastLocked(p1 - 100)); |
| } |
| |
| for (uptr i = 0; i < kNumExpectedFalseLookups; i++) { |
| void *p = reinterpret_cast<void *>(i % 1024); |
| EXPECT_EQ((void *)0, a.GetBlockBeginFastLocked(p)); |
| p = reinterpret_cast<void *>(~0L - (i % 1024)); |
| EXPECT_EQ((void *)0, a.GetBlockBeginFastLocked(p)); |
| } |
| a.ForceUnlock(); |
| |
| for (uptr i = 0; i < kNumAllocs; i++) |
| a.Deallocate(&stats, allocated[i]); |
| } |
| |
| |
| // Don't test OOM conditions on Win64 because it causes other tests on the same |
| // machine to OOM. |
| #if SANITIZER_CAN_USE_ALLOCATOR64 && !SANITIZER_WINDOWS64 && !SANITIZER_ANDROID |
| typedef __sanitizer::SizeClassMap<3, 4, 8, 38, 128, 16> SpecialSizeClassMap; |
| template <typename AddressSpaceViewTy = LocalAddressSpaceView> |
| struct AP64_SpecialSizeClassMap { |
| static const uptr kSpaceBeg = kAllocatorSpace; |
| static const uptr kSpaceSize = kAllocatorSize; |
| static const uptr kMetadataSize = 0; |
| typedef SpecialSizeClassMap SizeClassMap; |
| typedef NoOpMapUnmapCallback MapUnmapCallback; |
| static const uptr kFlags = 0; |
| using AddressSpaceView = AddressSpaceViewTy; |
| }; |
| |
| // Regression test for out-of-memory condition in PopulateFreeList(). |
| TEST(SanitizerCommon, SizeClassAllocator64PopulateFreeListOOM) { |
| // In a world where regions are small and chunks are huge... |
| typedef SizeClassAllocator64<AP64_SpecialSizeClassMap<>> SpecialAllocator64; |
| const uptr kRegionSize = |
| kAllocatorSize / SpecialSizeClassMap::kNumClassesRounded; |
| SpecialAllocator64 *a = new SpecialAllocator64; |
| a->Init(kReleaseToOSIntervalNever); |
| SpecialAllocator64::AllocatorCache cache; |
| memset(&cache, 0, sizeof(cache)); |
| cache.Init(0); |
| |
| // ...one man is on a mission to overflow a region with a series of |
| // successive allocations. |
| |
| const uptr kClassID = 107; |
| const uptr kAllocationSize = SpecialSizeClassMap::Size(kClassID); |
| ASSERT_LT(2 * kAllocationSize, kRegionSize); |
| ASSERT_GT(3 * kAllocationSize, kRegionSize); |
| EXPECT_NE(cache.Allocate(a, kClassID), nullptr); |
| EXPECT_NE(cache.Allocate(a, kClassID), nullptr); |
| EXPECT_EQ(cache.Allocate(a, kClassID), nullptr); |
| |
| const uptr Class2 = 100; |
| const uptr Size2 = SpecialSizeClassMap::Size(Class2); |
| ASSERT_EQ(Size2 * 8, kRegionSize); |
| char *p[7]; |
| for (int i = 0; i < 7; i++) { |
| p[i] = (char*)cache.Allocate(a, Class2); |
| EXPECT_NE(p[i], nullptr); |
| fprintf(stderr, "p[%d] %p s = %lx\n", i, (void*)p[i], Size2); |
| p[i][Size2 - 1] = 42; |
| if (i) ASSERT_LT(p[i - 1], p[i]); |
| } |
| EXPECT_EQ(cache.Allocate(a, Class2), nullptr); |
| cache.Deallocate(a, Class2, p[0]); |
| cache.Drain(a); |
| ASSERT_EQ(p[6][Size2 - 1], 42); |
| a->TestOnlyUnmap(); |
| delete a; |
| } |
| |
| #endif |
| |
| #if SANITIZER_CAN_USE_ALLOCATOR64 |
| |
| class NoMemoryMapper { |
| public: |
| uptr last_request_buffer_size; |
| |
| NoMemoryMapper() : last_request_buffer_size(0) {} |
| |
| uptr MapPackedCounterArrayBuffer(uptr buffer_size) { |
| last_request_buffer_size = buffer_size; |
| return 0; |
| } |
| void UnmapPackedCounterArrayBuffer(uptr buffer, uptr buffer_size) {} |
| }; |
| |
| class RedZoneMemoryMapper { |
| public: |
| RedZoneMemoryMapper() { |
| const auto page_size = GetPageSize(); |
| buffer = MmapOrDie(3ULL * page_size, ""); |
| MprotectNoAccess(reinterpret_cast<uptr>(buffer), page_size); |
| MprotectNoAccess(reinterpret_cast<uptr>(buffer) + page_size * 2, page_size); |
| } |
| ~RedZoneMemoryMapper() { |
| UnmapOrDie(buffer, 3 * GetPageSize()); |
| } |
| |
| uptr MapPackedCounterArrayBuffer(uptr buffer_size) { |
| const auto page_size = GetPageSize(); |
| CHECK_EQ(buffer_size, page_size); |
| memset(reinterpret_cast<void*>(reinterpret_cast<uptr>(buffer) + page_size), |
| 0, page_size); |
| return reinterpret_cast<uptr>(buffer) + page_size; |
| } |
| void UnmapPackedCounterArrayBuffer(uptr buffer, uptr buffer_size) {} |
| |
| private: |
| void *buffer; |
| }; |
| |
| TEST(SanitizerCommon, SizeClassAllocator64PackedCounterArray) { |
| NoMemoryMapper no_memory_mapper; |
| typedef Allocator64::PackedCounterArray<NoMemoryMapper> |
| NoMemoryPackedCounterArray; |
| |
| for (int i = 0; i < 64; i++) { |
| // Various valid counter's max values packed into one word. |
| NoMemoryPackedCounterArray counters_2n(1, 1ULL << i, &no_memory_mapper); |
| EXPECT_EQ(8ULL, no_memory_mapper.last_request_buffer_size); |
| |
| // Check the "all bit set" values too. |
| NoMemoryPackedCounterArray counters_2n1_1(1, ~0ULL >> i, &no_memory_mapper); |
| EXPECT_EQ(8ULL, no_memory_mapper.last_request_buffer_size); |
| |
| // Verify the packing ratio, the counter is expected to be packed into the |
| // closest power of 2 bits. |
| NoMemoryPackedCounterArray counters(64, 1ULL << i, &no_memory_mapper); |
| EXPECT_EQ(8ULL * RoundUpToPowerOfTwo(i + 1), |
| no_memory_mapper.last_request_buffer_size); |
| } |
| |
| RedZoneMemoryMapper memory_mapper; |
| typedef Allocator64::PackedCounterArray<RedZoneMemoryMapper> |
| RedZonePackedCounterArray; |
| // Go through 1, 2, 4, 8, .. 64 bits per counter. |
| for (int i = 0; i < 7; i++) { |
| // Make sure counters request one memory page for the buffer. |
| const u64 kNumCounters = (GetPageSize() / 8) * (64 >> i); |
| RedZonePackedCounterArray counters(kNumCounters, |
| 1ULL << ((1 << i) - 1), |
| &memory_mapper); |
| counters.Inc(0); |
| for (u64 c = 1; c < kNumCounters - 1; c++) { |
| ASSERT_EQ(0ULL, counters.Get(c)); |
| counters.Inc(c); |
| ASSERT_EQ(1ULL, counters.Get(c - 1)); |
| } |
| ASSERT_EQ(0ULL, counters.Get(kNumCounters - 1)); |
| counters.Inc(kNumCounters - 1); |
| |
| if (i > 0) { |
| counters.IncRange(0, kNumCounters - 1); |
| for (u64 c = 0; c < kNumCounters; c++) |
| ASSERT_EQ(2ULL, counters.Get(c)); |
| } |
| } |
| } |
| |
| class RangeRecorder { |
| public: |
| std::string reported_pages; |
| |
| RangeRecorder() |
| : page_size_scaled_log( |
| Log2(GetPageSizeCached() >> Allocator64::kCompactPtrScale)), |
| last_page_reported(0) {} |
| |
| void ReleasePageRangeToOS(u32 from, u32 to) { |
| from >>= page_size_scaled_log; |
| to >>= page_size_scaled_log; |
| ASSERT_LT(from, to); |
| if (!reported_pages.empty()) |
| ASSERT_LT(last_page_reported, from); |
| reported_pages.append(from - last_page_reported, '.'); |
| reported_pages.append(to - from, 'x'); |
| last_page_reported = to; |
| } |
| private: |
| const uptr page_size_scaled_log; |
| u32 last_page_reported; |
| }; |
| |
| TEST(SanitizerCommon, SizeClassAllocator64FreePagesRangeTracker) { |
| typedef Allocator64::FreePagesRangeTracker<RangeRecorder> RangeTracker; |
| |
| // 'x' denotes a page to be released, '.' denotes a page to be kept around. |
| const char* test_cases[] = { |
| "", |
| ".", |
| "x", |
| "........", |
| "xxxxxxxxxxx", |
| "..............xxxxx", |
| "xxxxxxxxxxxxxxxxxx.....", |
| "......xxxxxxxx........", |
| "xxx..........xxxxxxxxxxxxxxx", |
| "......xxxx....xxxx........", |
| "xxx..........xxxxxxxx....xxxxxxx", |
| "x.x.x.x.x.x.x.x.x.x.x.x.", |
| ".x.x.x.x.x.x.x.x.x.x.x.x", |
| ".x.x.x.x.x.x.x.x.x.x.x.x.", |
| "x.x.x.x.x.x.x.x.x.x.x.x.x", |
| }; |
| |
| for (auto test_case : test_cases) { |
| RangeRecorder range_recorder; |
| RangeTracker tracker(&range_recorder); |
| for (int i = 0; test_case[i] != 0; i++) |
| tracker.NextPage(test_case[i] == 'x'); |
| tracker.Done(); |
| // Strip trailing '.'-pages before comparing the results as they are not |
| // going to be reported to range_recorder anyway. |
| const char* last_x = strrchr(test_case, 'x'); |
| std::string expected( |
| test_case, |
| last_x == nullptr ? 0 : (last_x - test_case + 1)); |
| EXPECT_STREQ(expected.c_str(), range_recorder.reported_pages.c_str()); |
| } |
| } |
| |
| class ReleasedPagesTrackingMemoryMapper { |
| public: |
| std::set<u32> reported_pages; |
| |
| uptr MapPackedCounterArrayBuffer(uptr buffer_size) { |
| reported_pages.clear(); |
| return reinterpret_cast<uptr>(calloc(1, buffer_size)); |
| } |
| void UnmapPackedCounterArrayBuffer(uptr buffer, uptr buffer_size) { |
| free(reinterpret_cast<void*>(buffer)); |
| } |
| |
| void ReleasePageRangeToOS(u32 from, u32 to) { |
| uptr page_size_scaled = |
| GetPageSizeCached() >> Allocator64::kCompactPtrScale; |
| for (u32 i = from; i < to; i += page_size_scaled) |
| reported_pages.insert(i); |
| } |
| }; |
| |
| template <class Allocator> |
| void TestReleaseFreeMemoryToOS() { |
| ReleasedPagesTrackingMemoryMapper memory_mapper; |
| const uptr kAllocatedPagesCount = 1024; |
| const uptr page_size = GetPageSizeCached(); |
| const uptr page_size_scaled = page_size >> Allocator::kCompactPtrScale; |
| std::mt19937 r; |
| uint32_t rnd_state = 42; |
| |
| for (uptr class_id = 1; class_id <= Allocator::SizeClassMapT::kLargestClassID; |
| class_id++) { |
| const uptr chunk_size = Allocator::SizeClassMapT::Size(class_id); |
| const uptr chunk_size_scaled = chunk_size >> Allocator::kCompactPtrScale; |
| const uptr max_chunks = |
| kAllocatedPagesCount * GetPageSizeCached() / chunk_size; |
| |
| // Generate the random free list. |
| std::vector<u32> free_array; |
| bool in_free_range = false; |
| uptr current_range_end = 0; |
| for (uptr i = 0; i < max_chunks; i++) { |
| if (i == current_range_end) { |
| in_free_range = (my_rand_r(&rnd_state) & 1U) == 1; |
| current_range_end += my_rand_r(&rnd_state) % 100 + 1; |
| } |
| if (in_free_range) |
| free_array.push_back(i * chunk_size_scaled); |
| } |
| if (free_array.empty()) |
| continue; |
| // Shuffle free_list to verify that ReleaseFreeMemoryToOS does not depend on |
| // the list ordering. |
| std::shuffle(free_array.begin(), free_array.end(), r); |
| |
| Allocator::ReleaseFreeMemoryToOS(&free_array[0], free_array.size(), |
| chunk_size, kAllocatedPagesCount, |
| &memory_mapper); |
| |
| // Verify that there are no released pages touched by used chunks and all |
| // ranges of free chunks big enough to contain the entire memory pages had |
| // these pages released. |
| uptr verified_released_pages = 0; |
| std::set<u32> free_chunks(free_array.begin(), free_array.end()); |
| |
| u32 current_chunk = 0; |
| in_free_range = false; |
| u32 current_free_range_start = 0; |
| for (uptr i = 0; i <= max_chunks; i++) { |
| bool is_free_chunk = free_chunks.find(current_chunk) != free_chunks.end(); |
| |
| if (is_free_chunk) { |
| if (!in_free_range) { |
| in_free_range = true; |
| current_free_range_start = current_chunk; |
| } |
| } else { |
| // Verify that this used chunk does not touch any released page. |
| for (uptr i_page = current_chunk / page_size_scaled; |
| i_page <= (current_chunk + chunk_size_scaled - 1) / |
| page_size_scaled; |
| i_page++) { |
| bool page_released = |
| memory_mapper.reported_pages.find(i_page * page_size_scaled) != |
| memory_mapper.reported_pages.end(); |
| ASSERT_EQ(false, page_released); |
| } |
| |
| if (in_free_range) { |
| in_free_range = false; |
| // Verify that all entire memory pages covered by this range of free |
| // chunks were released. |
| u32 page = RoundUpTo(current_free_range_start, page_size_scaled); |
| while (page + page_size_scaled <= current_chunk) { |
| bool page_released = |
| memory_mapper.reported_pages.find(page) != |
| memory_mapper.reported_pages.end(); |
| ASSERT_EQ(true, page_released); |
| verified_released_pages++; |
| page += page_size_scaled; |
| } |
| } |
| } |
| |
| current_chunk += chunk_size_scaled; |
| } |
| |
| ASSERT_EQ(memory_mapper.reported_pages.size(), verified_released_pages); |
| } |
| } |
| |
| TEST(SanitizerCommon, SizeClassAllocator64ReleaseFreeMemoryToOS) { |
| TestReleaseFreeMemoryToOS<Allocator64>(); |
| } |
| |
| #if !SANITIZER_ANDROID |
| TEST(SanitizerCommon, SizeClassAllocator64CompactReleaseFreeMemoryToOS) { |
| TestReleaseFreeMemoryToOS<Allocator64Compact>(); |
| } |
| |
| TEST(SanitizerCommon, SizeClassAllocator64VeryCompactReleaseFreeMemoryToOS) { |
| TestReleaseFreeMemoryToOS<Allocator64VeryCompact>(); |
| } |
| #endif // !SANITIZER_ANDROID |
| |
| #endif // SANITIZER_CAN_USE_ALLOCATOR64 |
| |
| TEST(SanitizerCommon, TwoLevelByteMap) { |
| const u64 kSize1 = 1 << 6, kSize2 = 1 << 12; |
| const u64 n = kSize1 * kSize2; |
| TwoLevelByteMap<kSize1, kSize2> m; |
| m.Init(); |
| for (u64 i = 0; i < n; i += 7) { |
| m.set(i, (i % 100) + 1); |
| } |
| for (u64 j = 0; j < n; j++) { |
| if (j % 7) |
| EXPECT_EQ(m[j], 0); |
| else |
| EXPECT_EQ(m[j], (j % 100) + 1); |
| } |
| |
| m.TestOnlyUnmap(); |
| } |
| |
| template <typename AddressSpaceView> |
| using TestByteMapASVT = |
| TwoLevelByteMap<1 << 12, 1 << 13, AddressSpaceView, TestMapUnmapCallback>; |
| using TestByteMap = TestByteMapASVT<LocalAddressSpaceView>; |
| |
| struct TestByteMapParam { |
| TestByteMap *m; |
| size_t shard; |
| size_t num_shards; |
| }; |
| |
| void *TwoLevelByteMapUserThread(void *param) { |
| TestByteMapParam *p = (TestByteMapParam*)param; |
| for (size_t i = p->shard; i < p->m->size(); i += p->num_shards) { |
| size_t val = (i % 100) + 1; |
| p->m->set(i, val); |
| EXPECT_EQ((*p->m)[i], val); |
| } |
| return 0; |
| } |
| |
| TEST(SanitizerCommon, ThreadedTwoLevelByteMap) { |
| TestByteMap m; |
| m.Init(); |
| TestMapUnmapCallback::map_count = 0; |
| TestMapUnmapCallback::unmap_count = 0; |
| static const int kNumThreads = 4; |
| pthread_t t[kNumThreads]; |
| TestByteMapParam p[kNumThreads]; |
| for (int i = 0; i < kNumThreads; i++) { |
| p[i].m = &m; |
| p[i].shard = i; |
| p[i].num_shards = kNumThreads; |
| PTHREAD_CREATE(&t[i], 0, TwoLevelByteMapUserThread, &p[i]); |
| } |
| for (int i = 0; i < kNumThreads; i++) { |
| PTHREAD_JOIN(t[i], 0); |
| } |
| EXPECT_EQ((uptr)TestMapUnmapCallback::map_count, m.size1()); |
| EXPECT_EQ((uptr)TestMapUnmapCallback::unmap_count, 0UL); |
| m.TestOnlyUnmap(); |
| EXPECT_EQ((uptr)TestMapUnmapCallback::map_count, m.size1()); |
| EXPECT_EQ((uptr)TestMapUnmapCallback::unmap_count, m.size1()); |
| } |
| |
| TEST(SanitizerCommon, LowLevelAllocatorShouldRoundUpSizeOnAlloc) { |
| // When allocating a memory block slightly bigger than a memory page and |
| // LowLevelAllocator calls MmapOrDie for the internal buffer, it should round |
| // the size up to the page size, so that subsequent calls to the allocator |
| // can use the remaining space in the last allocated page. |
| static LowLevelAllocator allocator; |
| char *ptr1 = (char *)allocator.Allocate(GetPageSizeCached() + 16); |
| char *ptr2 = (char *)allocator.Allocate(16); |
| EXPECT_EQ(ptr2, ptr1 + GetPageSizeCached() + 16); |
| } |
| |
| #endif // #if !SANITIZER_DEBUG |