| //===-- sanitizer_fuchsia.cpp ---------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is shared between AddressSanitizer and other sanitizer |
| // run-time libraries and implements Fuchsia-specific functions from |
| // sanitizer_common.h. |
| //===----------------------------------------------------------------------===// |
| |
| #include "sanitizer_fuchsia.h" |
| #if SANITIZER_FUCHSIA |
| |
| #include <limits.h> |
| #include <pthread.h> |
| #include <stdlib.h> |
| #include <unistd.h> |
| #include <zircon/errors.h> |
| #include <zircon/process.h> |
| #include <zircon/syscalls.h> |
| #include <zircon/utc.h> |
| |
| #include "sanitizer_common.h" |
| #include "sanitizer_libc.h" |
| #include "sanitizer_mutex.h" |
| |
| namespace __sanitizer { |
| |
| void NORETURN internal__exit(int exitcode) { _zx_process_exit(exitcode); } |
| |
| uptr internal_sched_yield() { |
| zx_status_t status = _zx_nanosleep(0); |
| CHECK_EQ(status, ZX_OK); |
| return 0; // Why doesn't this return void? |
| } |
| |
| static void internal_nanosleep(zx_time_t ns) { |
| zx_status_t status = _zx_nanosleep(_zx_deadline_after(ns)); |
| CHECK_EQ(status, ZX_OK); |
| } |
| |
| unsigned int internal_sleep(unsigned int seconds) { |
| internal_nanosleep(ZX_SEC(seconds)); |
| return 0; |
| } |
| |
| u64 NanoTime() { |
| zx_handle_t utc_clock = _zx_utc_reference_get(); |
| CHECK_NE(utc_clock, ZX_HANDLE_INVALID); |
| zx_time_t time; |
| zx_status_t status = _zx_clock_read(utc_clock, &time); |
| CHECK_EQ(status, ZX_OK); |
| return time; |
| } |
| |
| u64 MonotonicNanoTime() { return _zx_clock_get_monotonic(); } |
| |
| uptr internal_getpid() { |
| zx_info_handle_basic_t info; |
| zx_status_t status = |
| _zx_object_get_info(_zx_process_self(), ZX_INFO_HANDLE_BASIC, &info, |
| sizeof(info), NULL, NULL); |
| CHECK_EQ(status, ZX_OK); |
| uptr pid = static_cast<uptr>(info.koid); |
| CHECK_EQ(pid, info.koid); |
| return pid; |
| } |
| |
| int internal_dlinfo(void *handle, int request, void *p) { |
| UNIMPLEMENTED(); |
| } |
| |
| uptr GetThreadSelf() { return reinterpret_cast<uptr>(thrd_current()); } |
| |
| tid_t GetTid() { return GetThreadSelf(); } |
| |
| void Abort() { abort(); } |
| |
| int Atexit(void (*function)(void)) { return atexit(function); } |
| |
| void SleepForSeconds(int seconds) { internal_sleep(seconds); } |
| |
| void SleepForMillis(int millis) { internal_nanosleep(ZX_MSEC(millis)); } |
| |
| void GetThreadStackTopAndBottom(bool, uptr *stack_top, uptr *stack_bottom) { |
| pthread_attr_t attr; |
| CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0); |
| void *base; |
| size_t size; |
| CHECK_EQ(pthread_attr_getstack(&attr, &base, &size), 0); |
| CHECK_EQ(pthread_attr_destroy(&attr), 0); |
| |
| *stack_bottom = reinterpret_cast<uptr>(base); |
| *stack_top = *stack_bottom + size; |
| } |
| |
| void InitializePlatformEarly() {} |
| void MaybeReexec() {} |
| void CheckASLR() {} |
| void CheckMPROTECT() {} |
| void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {} |
| void DisableCoreDumperIfNecessary() {} |
| void InstallDeadlySignalHandlers(SignalHandlerType handler) {} |
| void SetAlternateSignalStack() {} |
| void UnsetAlternateSignalStack() {} |
| void InitTlsSize() {} |
| |
| bool SignalContext::IsStackOverflow() const { return false; } |
| void SignalContext::DumpAllRegisters(void *context) { UNIMPLEMENTED(); } |
| const char *SignalContext::Describe() const { UNIMPLEMENTED(); } |
| |
| enum MutexState : int { MtxUnlocked = 0, MtxLocked = 1, MtxSleeping = 2 }; |
| |
| BlockingMutex::BlockingMutex() { |
| // NOTE! It's important that this use internal_memset, because plain |
| // memset might be intercepted (e.g., actually be __asan_memset). |
| // Defining this so the compiler initializes each field, e.g.: |
| // BlockingMutex::BlockingMutex() : BlockingMutex(LINKER_INITIALIZED) {} |
| // might result in the compiler generating a call to memset, which would |
| // have the same problem. |
| internal_memset(this, 0, sizeof(*this)); |
| } |
| |
| void BlockingMutex::Lock() { |
| CHECK_EQ(owner_, 0); |
| atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_); |
| if (atomic_exchange(m, MtxLocked, memory_order_acquire) == MtxUnlocked) |
| return; |
| while (atomic_exchange(m, MtxSleeping, memory_order_acquire) != MtxUnlocked) { |
| zx_status_t status = |
| _zx_futex_wait(reinterpret_cast<zx_futex_t *>(m), MtxSleeping, |
| ZX_HANDLE_INVALID, ZX_TIME_INFINITE); |
| if (status != ZX_ERR_BAD_STATE) // Normal race. |
| CHECK_EQ(status, ZX_OK); |
| } |
| } |
| |
| void BlockingMutex::Unlock() { |
| atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_); |
| u32 v = atomic_exchange(m, MtxUnlocked, memory_order_release); |
| CHECK_NE(v, MtxUnlocked); |
| if (v == MtxSleeping) { |
| zx_status_t status = _zx_futex_wake(reinterpret_cast<zx_futex_t *>(m), 1); |
| CHECK_EQ(status, ZX_OK); |
| } |
| } |
| |
| void BlockingMutex::CheckLocked() { |
| atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_); |
| CHECK_NE(MtxUnlocked, atomic_load(m, memory_order_relaxed)); |
| } |
| |
| uptr GetPageSize() { return PAGE_SIZE; } |
| |
| uptr GetMmapGranularity() { return PAGE_SIZE; } |
| |
| sanitizer_shadow_bounds_t ShadowBounds; |
| |
| uptr GetMaxUserVirtualAddress() { |
| ShadowBounds = __sanitizer_shadow_bounds(); |
| return ShadowBounds.memory_limit - 1; |
| } |
| |
| uptr GetMaxVirtualAddress() { return GetMaxUserVirtualAddress(); } |
| |
| static void *DoAnonymousMmapOrDie(uptr size, const char *mem_type, |
| bool raw_report, bool die_for_nomem) { |
| size = RoundUpTo(size, PAGE_SIZE); |
| |
| zx_handle_t vmo; |
| zx_status_t status = _zx_vmo_create(size, 0, &vmo); |
| if (status != ZX_OK) { |
| if (status != ZX_ERR_NO_MEMORY || die_for_nomem) |
| ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, |
| raw_report); |
| return nullptr; |
| } |
| _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type, |
| internal_strlen(mem_type)); |
| |
| // TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that? |
| uintptr_t addr; |
| status = |
| _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0, |
| vmo, 0, size, &addr); |
| _zx_handle_close(vmo); |
| |
| if (status != ZX_OK) { |
| if (status != ZX_ERR_NO_MEMORY || die_for_nomem) |
| ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, |
| raw_report); |
| return nullptr; |
| } |
| |
| IncreaseTotalMmap(size); |
| |
| return reinterpret_cast<void *>(addr); |
| } |
| |
| void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) { |
| return DoAnonymousMmapOrDie(size, mem_type, raw_report, true); |
| } |
| |
| void *MmapNoReserveOrDie(uptr size, const char *mem_type) { |
| return MmapOrDie(size, mem_type); |
| } |
| |
| void *MmapOrDieOnFatalError(uptr size, const char *mem_type) { |
| return DoAnonymousMmapOrDie(size, mem_type, false, false); |
| } |
| |
| uptr ReservedAddressRange::Init(uptr init_size, const char *name, |
| uptr fixed_addr) { |
| init_size = RoundUpTo(init_size, PAGE_SIZE); |
| DCHECK_EQ(os_handle_, ZX_HANDLE_INVALID); |
| uintptr_t base; |
| zx_handle_t vmar; |
| zx_status_t status = |
| _zx_vmar_allocate( |
| _zx_vmar_root_self(), |
| ZX_VM_CAN_MAP_READ | ZX_VM_CAN_MAP_WRITE | ZX_VM_CAN_MAP_SPECIFIC, |
| 0, init_size, &vmar, &base); |
| if (status != ZX_OK) |
| ReportMmapFailureAndDie(init_size, name, "zx_vmar_allocate", status); |
| base_ = reinterpret_cast<void *>(base); |
| size_ = init_size; |
| name_ = name; |
| os_handle_ = vmar; |
| |
| return reinterpret_cast<uptr>(base_); |
| } |
| |
| static uptr DoMmapFixedOrDie(zx_handle_t vmar, uptr fixed_addr, uptr map_size, |
| void *base, const char *name, bool die_for_nomem) { |
| uptr offset = fixed_addr - reinterpret_cast<uptr>(base); |
| map_size = RoundUpTo(map_size, PAGE_SIZE); |
| zx_handle_t vmo; |
| zx_status_t status = _zx_vmo_create(map_size, 0, &vmo); |
| if (status != ZX_OK) { |
| if (status != ZX_ERR_NO_MEMORY || die_for_nomem) |
| ReportMmapFailureAndDie(map_size, name, "zx_vmo_create", status); |
| return 0; |
| } |
| _zx_object_set_property(vmo, ZX_PROP_NAME, name, internal_strlen(name)); |
| DCHECK_GE(base + size_, map_size + offset); |
| uintptr_t addr; |
| |
| status = |
| _zx_vmar_map(vmar, ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC, |
| offset, vmo, 0, map_size, &addr); |
| _zx_handle_close(vmo); |
| if (status != ZX_OK) { |
| if (status != ZX_ERR_NO_MEMORY || die_for_nomem) { |
| ReportMmapFailureAndDie(map_size, name, "zx_vmar_map", status); |
| } |
| return 0; |
| } |
| IncreaseTotalMmap(map_size); |
| return addr; |
| } |
| |
| uptr ReservedAddressRange::Map(uptr fixed_addr, uptr map_size, |
| const char *name) { |
| return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_, |
| name_, false); |
| } |
| |
| uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr map_size, |
| const char *name) { |
| return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_, |
| name_, true); |
| } |
| |
| void UnmapOrDieVmar(void *addr, uptr size, zx_handle_t target_vmar) { |
| if (!addr || !size) return; |
| size = RoundUpTo(size, PAGE_SIZE); |
| |
| zx_status_t status = |
| _zx_vmar_unmap(target_vmar, reinterpret_cast<uintptr_t>(addr), size); |
| if (status != ZX_OK) { |
| Report("ERROR: %s failed to deallocate 0x%zx (%zd) bytes at address %p\n", |
| SanitizerToolName, size, size, addr); |
| CHECK("unable to unmap" && 0); |
| } |
| |
| DecreaseTotalMmap(size); |
| } |
| |
| void ReservedAddressRange::Unmap(uptr addr, uptr size) { |
| CHECK_LE(size, size_); |
| const zx_handle_t vmar = static_cast<zx_handle_t>(os_handle_); |
| if (addr == reinterpret_cast<uptr>(base_)) { |
| if (size == size_) { |
| // Destroying the vmar effectively unmaps the whole mapping. |
| _zx_vmar_destroy(vmar); |
| _zx_handle_close(vmar); |
| os_handle_ = static_cast<uptr>(ZX_HANDLE_INVALID); |
| DecreaseTotalMmap(size); |
| return; |
| } |
| } else { |
| CHECK_EQ(addr + size, reinterpret_cast<uptr>(base_) + size_); |
| } |
| // Partial unmapping does not affect the fact that the initial range is still |
| // reserved, and the resulting unmapped memory can't be reused. |
| UnmapOrDieVmar(reinterpret_cast<void *>(addr), size, vmar); |
| } |
| |
| // This should never be called. |
| void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) { |
| UNIMPLEMENTED(); |
| } |
| |
| void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment, |
| const char *mem_type) { |
| CHECK_GE(size, PAGE_SIZE); |
| CHECK(IsPowerOfTwo(size)); |
| CHECK(IsPowerOfTwo(alignment)); |
| |
| zx_handle_t vmo; |
| zx_status_t status = _zx_vmo_create(size, 0, &vmo); |
| if (status != ZX_OK) { |
| if (status != ZX_ERR_NO_MEMORY) |
| ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, false); |
| return nullptr; |
| } |
| _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type, |
| internal_strlen(mem_type)); |
| |
| // TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that? |
| |
| // Map a larger size to get a chunk of address space big enough that |
| // it surely contains an aligned region of the requested size. Then |
| // overwrite the aligned middle portion with a mapping from the |
| // beginning of the VMO, and unmap the excess before and after. |
| size_t map_size = size + alignment; |
| uintptr_t addr; |
| status = |
| _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0, |
| vmo, 0, map_size, &addr); |
| if (status == ZX_OK) { |
| uintptr_t map_addr = addr; |
| uintptr_t map_end = map_addr + map_size; |
| addr = RoundUpTo(map_addr, alignment); |
| uintptr_t end = addr + size; |
| if (addr != map_addr) { |
| zx_info_vmar_t info; |
| status = _zx_object_get_info(_zx_vmar_root_self(), ZX_INFO_VMAR, &info, |
| sizeof(info), NULL, NULL); |
| if (status == ZX_OK) { |
| uintptr_t new_addr; |
| status = _zx_vmar_map( |
| _zx_vmar_root_self(), |
| ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC_OVERWRITE, |
| addr - info.base, vmo, 0, size, &new_addr); |
| if (status == ZX_OK) CHECK_EQ(new_addr, addr); |
| } |
| } |
| if (status == ZX_OK && addr != map_addr) |
| status = _zx_vmar_unmap(_zx_vmar_root_self(), map_addr, addr - map_addr); |
| if (status == ZX_OK && end != map_end) |
| status = _zx_vmar_unmap(_zx_vmar_root_self(), end, map_end - end); |
| } |
| _zx_handle_close(vmo); |
| |
| if (status != ZX_OK) { |
| if (status != ZX_ERR_NO_MEMORY) |
| ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, false); |
| return nullptr; |
| } |
| |
| IncreaseTotalMmap(size); |
| |
| return reinterpret_cast<void *>(addr); |
| } |
| |
| void UnmapOrDie(void *addr, uptr size) { |
| UnmapOrDieVmar(addr, size, _zx_vmar_root_self()); |
| } |
| |
| // This is used on the shadow mapping, which cannot be changed. |
| // Zircon doesn't have anything like MADV_DONTNEED. |
| void ReleaseMemoryPagesToOS(uptr beg, uptr end) {} |
| |
| void DumpProcessMap() { |
| // TODO(mcgrathr): write it |
| return; |
| } |
| |
| bool IsAccessibleMemoryRange(uptr beg, uptr size) { |
| // TODO(mcgrathr): Figure out a better way. |
| zx_handle_t vmo; |
| zx_status_t status = _zx_vmo_create(size, 0, &vmo); |
| if (status == ZX_OK) { |
| status = _zx_vmo_write(vmo, reinterpret_cast<const void *>(beg), 0, size); |
| _zx_handle_close(vmo); |
| } |
| return status == ZX_OK; |
| } |
| |
| // FIXME implement on this platform. |
| void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) {} |
| |
| bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size, |
| uptr *read_len, uptr max_len, error_t *errno_p) { |
| zx_handle_t vmo; |
| zx_status_t status = __sanitizer_get_configuration(file_name, &vmo); |
| if (status == ZX_OK) { |
| uint64_t vmo_size; |
| status = _zx_vmo_get_size(vmo, &vmo_size); |
| if (status == ZX_OK) { |
| if (vmo_size < max_len) max_len = vmo_size; |
| size_t map_size = RoundUpTo(max_len, PAGE_SIZE); |
| uintptr_t addr; |
| status = _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ, 0, vmo, 0, |
| map_size, &addr); |
| if (status == ZX_OK) { |
| *buff = reinterpret_cast<char *>(addr); |
| *buff_size = map_size; |
| *read_len = max_len; |
| } |
| } |
| _zx_handle_close(vmo); |
| } |
| if (status != ZX_OK && errno_p) *errno_p = status; |
| return status == ZX_OK; |
| } |
| |
| void RawWrite(const char *buffer) { |
| constexpr size_t size = 128; |
| static _Thread_local char line[size]; |
| static _Thread_local size_t lastLineEnd = 0; |
| static _Thread_local size_t cur = 0; |
| |
| while (*buffer) { |
| if (cur >= size) { |
| if (lastLineEnd == 0) |
| lastLineEnd = size; |
| __sanitizer_log_write(line, lastLineEnd); |
| internal_memmove(line, line + lastLineEnd, cur - lastLineEnd); |
| cur = cur - lastLineEnd; |
| lastLineEnd = 0; |
| } |
| if (*buffer == '\n') |
| lastLineEnd = cur + 1; |
| line[cur++] = *buffer++; |
| } |
| // Flush all complete lines before returning. |
| if (lastLineEnd != 0) { |
| __sanitizer_log_write(line, lastLineEnd); |
| internal_memmove(line, line + lastLineEnd, cur - lastLineEnd); |
| cur = cur - lastLineEnd; |
| lastLineEnd = 0; |
| } |
| } |
| |
| void CatastrophicErrorWrite(const char *buffer, uptr length) { |
| __sanitizer_log_write(buffer, length); |
| } |
| |
| char **StoredArgv; |
| char **StoredEnviron; |
| |
| char **GetArgv() { return StoredArgv; } |
| char **GetEnviron() { return StoredEnviron; } |
| |
| const char *GetEnv(const char *name) { |
| if (StoredEnviron) { |
| uptr NameLen = internal_strlen(name); |
| for (char **Env = StoredEnviron; *Env != 0; Env++) { |
| if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=') |
| return (*Env) + NameLen + 1; |
| } |
| } |
| return nullptr; |
| } |
| |
| uptr ReadBinaryName(/*out*/ char *buf, uptr buf_len) { |
| const char *argv0 = "<UNKNOWN>"; |
| if (StoredArgv && StoredArgv[0]) { |
| argv0 = StoredArgv[0]; |
| } |
| internal_strncpy(buf, argv0, buf_len); |
| return internal_strlen(buf); |
| } |
| |
| uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) { |
| return ReadBinaryName(buf, buf_len); |
| } |
| |
| uptr MainThreadStackBase, MainThreadStackSize; |
| |
| bool GetRandom(void *buffer, uptr length, bool blocking) { |
| CHECK_LE(length, ZX_CPRNG_DRAW_MAX_LEN); |
| _zx_cprng_draw(buffer, length); |
| return true; |
| } |
| |
| u32 GetNumberOfCPUs() { |
| return zx_system_get_num_cpus(); |
| } |
| |
| uptr GetRSS() { UNIMPLEMENTED(); } |
| |
| void InitializePlatformCommonFlags(CommonFlags *cf) {} |
| |
| } // namespace __sanitizer |
| |
| using namespace __sanitizer; |
| |
| extern "C" { |
| void __sanitizer_startup_hook(int argc, char **argv, char **envp, |
| void *stack_base, size_t stack_size) { |
| __sanitizer::StoredArgv = argv; |
| __sanitizer::StoredEnviron = envp; |
| __sanitizer::MainThreadStackBase = reinterpret_cast<uintptr_t>(stack_base); |
| __sanitizer::MainThreadStackSize = stack_size; |
| } |
| |
| void __sanitizer_set_report_path(const char *path) { |
| // Handle the initialization code in each sanitizer, but no other calls. |
| // This setting is never consulted on Fuchsia. |
| DCHECK_EQ(path, common_flags()->log_path); |
| } |
| |
| void __sanitizer_set_report_fd(void *fd) { |
| UNREACHABLE("not available on Fuchsia"); |
| } |
| |
| const char *__sanitizer_get_report_path() { |
| UNREACHABLE("not available on Fuchsia"); |
| } |
| } // extern "C" |
| |
| #endif // SANITIZER_FUCHSIA |