blob: 259c7c144ab7901ad89683076688854c91c5fe9a [file] [log] [blame]
//===-- memprof_allocator.cpp --------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of MemProfiler, a memory profiler.
//
// Implementation of MemProf's memory allocator, which uses the allocator
// from sanitizer_common.
//
//===----------------------------------------------------------------------===//
#include "memprof_allocator.h"
#include "memprof_mapping.h"
#include "memprof_stack.h"
#include "memprof_thread.h"
#include "sanitizer_common/sanitizer_allocator_checks.h"
#include "sanitizer_common/sanitizer_allocator_interface.h"
#include "sanitizer_common/sanitizer_allocator_report.h"
#include "sanitizer_common/sanitizer_errno.h"
#include "sanitizer_common/sanitizer_file.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "sanitizer_common/sanitizer_internal_defs.h"
#include "sanitizer_common/sanitizer_list.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include <sched.h>
#include <stdlib.h>
#include <time.h>
namespace __memprof {
static int GetCpuId(void) {
// _memprof_preinit is called via the preinit_array, which subsequently calls
// malloc. Since this is before _dl_init calls VDSO_SETUP, sched_getcpu
// will seg fault as the address of __vdso_getcpu will be null.
if (!memprof_init_done)
return -1;
return sched_getcpu();
}
// Compute the timestamp in ms.
static int GetTimestamp(void) {
// timespec_get will segfault if called from dl_init
if (!memprof_timestamp_inited) {
// By returning 0, this will be effectively treated as being
// timestamped at memprof init time (when memprof_init_timestamp_s
// is initialized).
return 0;
}
timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
return (ts.tv_sec - memprof_init_timestamp_s) * 1000 + ts.tv_nsec / 1000000;
}
static MemprofAllocator &get_allocator();
// The memory chunk allocated from the underlying allocator looks like this:
// H H U U U U U U
// H -- ChunkHeader (32 bytes)
// U -- user memory.
// If there is left padding before the ChunkHeader (due to use of memalign),
// we store a magic value in the first uptr word of the memory block and
// store the address of ChunkHeader in the next uptr.
// M B L L L L L L L L L H H U U U U U U
// | ^
// ---------------------|
// M -- magic value kAllocBegMagic
// B -- address of ChunkHeader pointing to the first 'H'
constexpr uptr kMaxAllowedMallocBits = 40;
// Should be no more than 32-bytes
struct ChunkHeader {
// 1-st 4 bytes.
u32 alloc_context_id;
// 2-nd 4 bytes
u32 cpu_id;
// 3-rd 4 bytes
u32 timestamp_ms;
// 4-th 4 bytes
// Note only 1 bit is needed for this flag if we need space in the future for
// more fields.
u32 from_memalign;
// 5-th and 6-th 4 bytes
// The max size of an allocation is 2^40 (kMaxAllowedMallocSize), so this
// could be shrunk to kMaxAllowedMallocBits if we need space in the future for
// more fields.
atomic_uint64_t user_requested_size;
// 23 bits available
// 7-th and 8-th 4 bytes
u64 data_type_id; // TODO: hash of type name
};
static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
COMPILER_CHECK(kChunkHeaderSize == 32);
struct MemprofChunk : ChunkHeader {
uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
uptr UsedSize() {
return atomic_load(&user_requested_size, memory_order_relaxed);
}
void *AllocBeg() {
if (from_memalign)
return get_allocator().GetBlockBegin(reinterpret_cast<void *>(this));
return reinterpret_cast<void *>(this);
}
};
class LargeChunkHeader {
static constexpr uptr kAllocBegMagic =
FIRST_32_SECOND_64(0xCC6E96B9, 0xCC6E96B9CC6E96B9ULL);
atomic_uintptr_t magic;
MemprofChunk *chunk_header;
public:
MemprofChunk *Get() const {
return atomic_load(&magic, memory_order_acquire) == kAllocBegMagic
? chunk_header
: nullptr;
}
void Set(MemprofChunk *p) {
if (p) {
chunk_header = p;
atomic_store(&magic, kAllocBegMagic, memory_order_release);
return;
}
uptr old = kAllocBegMagic;
if (!atomic_compare_exchange_strong(&magic, &old, 0,
memory_order_release)) {
CHECK_EQ(old, kAllocBegMagic);
}
}
};
void FlushUnneededMemProfShadowMemory(uptr p, uptr size) {
// Since memprof's mapping is compacting, the shadow chunk may be
// not page-aligned, so we only flush the page-aligned portion.
ReleaseMemoryPagesToOS(MemToShadow(p), MemToShadow(p + size));
}
void MemprofMapUnmapCallback::OnMap(uptr p, uptr size) const {
// Statistics.
MemprofStats &thread_stats = GetCurrentThreadStats();
thread_stats.mmaps++;
thread_stats.mmaped += size;
}
void MemprofMapUnmapCallback::OnUnmap(uptr p, uptr size) const {
// We are about to unmap a chunk of user memory.
// Mark the corresponding shadow memory as not needed.
FlushUnneededMemProfShadowMemory(p, size);
// Statistics.
MemprofStats &thread_stats = GetCurrentThreadStats();
thread_stats.munmaps++;
thread_stats.munmaped += size;
}
AllocatorCache *GetAllocatorCache(MemprofThreadLocalMallocStorage *ms) {
CHECK(ms);
return &ms->allocator_cache;
}
struct MemInfoBlock {
u32 alloc_count;
u64 total_access_count, min_access_count, max_access_count;
u64 total_size;
u32 min_size, max_size;
u32 alloc_timestamp, dealloc_timestamp;
u64 total_lifetime;
u32 min_lifetime, max_lifetime;
u32 alloc_cpu_id, dealloc_cpu_id;
u32 num_migrated_cpu;
// Only compared to prior deallocated object currently.
u32 num_lifetime_overlaps;
u32 num_same_alloc_cpu;
u32 num_same_dealloc_cpu;
u64 data_type_id; // TODO: hash of type name
MemInfoBlock() : alloc_count(0) {}
MemInfoBlock(u32 size, u64 access_count, u32 alloc_timestamp,
u32 dealloc_timestamp, u32 alloc_cpu, u32 dealloc_cpu)
: alloc_count(1), total_access_count(access_count),
min_access_count(access_count), max_access_count(access_count),
total_size(size), min_size(size), max_size(size),
alloc_timestamp(alloc_timestamp), dealloc_timestamp(dealloc_timestamp),
total_lifetime(dealloc_timestamp - alloc_timestamp),
min_lifetime(total_lifetime), max_lifetime(total_lifetime),
alloc_cpu_id(alloc_cpu), dealloc_cpu_id(dealloc_cpu),
num_lifetime_overlaps(0), num_same_alloc_cpu(0),
num_same_dealloc_cpu(0) {
num_migrated_cpu = alloc_cpu_id != dealloc_cpu_id;
}
void Print(u64 id) {
u64 p;
if (flags()->print_terse) {
p = total_size * 100 / alloc_count;
Printf("MIB:%llu/%u/%d.%02d/%u/%u/", id, alloc_count, p / 100, p % 100,
min_size, max_size);
p = total_access_count * 100 / alloc_count;
Printf("%d.%02d/%u/%u/", p / 100, p % 100, min_access_count,
max_access_count);
p = total_lifetime * 100 / alloc_count;
Printf("%d.%02d/%u/%u/", p / 100, p % 100, min_lifetime, max_lifetime);
Printf("%u/%u/%u/%u\n", num_migrated_cpu, num_lifetime_overlaps,
num_same_alloc_cpu, num_same_dealloc_cpu);
} else {
p = total_size * 100 / alloc_count;
Printf("Memory allocation stack id = %llu\n", id);
Printf("\talloc_count %u, size (ave/min/max) %d.%02d / %u / %u\n",
alloc_count, p / 100, p % 100, min_size, max_size);
p = total_access_count * 100 / alloc_count;
Printf("\taccess_count (ave/min/max): %d.%02d / %u / %u\n", p / 100,
p % 100, min_access_count, max_access_count);
p = total_lifetime * 100 / alloc_count;
Printf("\tlifetime (ave/min/max): %d.%02d / %u / %u\n", p / 100, p % 100,
min_lifetime, max_lifetime);
Printf("\tnum migrated: %u, num lifetime overlaps: %u, num same alloc "
"cpu: %u, num same dealloc_cpu: %u\n",
num_migrated_cpu, num_lifetime_overlaps, num_same_alloc_cpu,
num_same_dealloc_cpu);
}
}
static void printHeader() {
CHECK(flags()->print_terse);
Printf("MIB:StackID/AllocCount/AveSize/MinSize/MaxSize/AveAccessCount/"
"MinAccessCount/MaxAccessCount/AveLifetime/MinLifetime/MaxLifetime/"
"NumMigratedCpu/NumLifetimeOverlaps/NumSameAllocCpu/"
"NumSameDeallocCpu\n");
}
void Merge(MemInfoBlock &newMIB) {
alloc_count += newMIB.alloc_count;
total_access_count += newMIB.total_access_count;
min_access_count = Min(min_access_count, newMIB.min_access_count);
max_access_count = Max(max_access_count, newMIB.max_access_count);
total_size += newMIB.total_size;
min_size = Min(min_size, newMIB.min_size);
max_size = Max(max_size, newMIB.max_size);
total_lifetime += newMIB.total_lifetime;
min_lifetime = Min(min_lifetime, newMIB.min_lifetime);
max_lifetime = Max(max_lifetime, newMIB.max_lifetime);
// We know newMIB was deallocated later, so just need to check if it was
// allocated before last one deallocated.
num_lifetime_overlaps += newMIB.alloc_timestamp < dealloc_timestamp;
alloc_timestamp = newMIB.alloc_timestamp;
dealloc_timestamp = newMIB.dealloc_timestamp;
num_same_alloc_cpu += alloc_cpu_id == newMIB.alloc_cpu_id;
num_same_dealloc_cpu += dealloc_cpu_id == newMIB.dealloc_cpu_id;
alloc_cpu_id = newMIB.alloc_cpu_id;
dealloc_cpu_id = newMIB.dealloc_cpu_id;
}
};
static u32 AccessCount = 0;
static u32 MissCount = 0;
struct SetEntry {
SetEntry() : id(0), MIB() {}
bool Empty() { return id == 0; }
void Print() {
CHECK(!Empty());
MIB.Print(id);
}
// The stack id
u64 id;
MemInfoBlock MIB;
};
struct CacheSet {
enum { kSetSize = 4 };
void PrintAll() {
for (int i = 0; i < kSetSize; i++) {
if (Entries[i].Empty())
continue;
Entries[i].Print();
}
}
void insertOrMerge(u64 new_id, MemInfoBlock &newMIB) {
AccessCount++;
SetAccessCount++;
for (int i = 0; i < kSetSize; i++) {
auto id = Entries[i].id;
// Check if this is a hit or an empty entry. Since we always move any
// filled locations to the front of the array (see below), we don't need
// to look after finding the first empty entry.
if (id == new_id || !id) {
if (id == 0) {
Entries[i].id = new_id;
Entries[i].MIB = newMIB;
} else {
Entries[i].MIB.Merge(newMIB);
}
// Assuming some id locality, we try to swap the matching entry
// into the first set position.
if (i != 0) {
auto tmp = Entries[0];
Entries[0] = Entries[i];
Entries[i] = tmp;
}
return;
}
}
// Miss
MissCount++;
SetMissCount++;
// We try to find the entries with the lowest alloc count to be evicted:
int min_idx = 0;
u64 min_count = Entries[0].MIB.alloc_count;
for (int i = 1; i < kSetSize; i++) {
CHECK(!Entries[i].Empty());
if (Entries[i].MIB.alloc_count < min_count) {
min_idx = i;
min_count = Entries[i].MIB.alloc_count;
}
}
// Print the evicted entry profile information
if (!flags()->print_terse)
Printf("Evicted:\n");
Entries[min_idx].Print();
// Similar to the hit case, put new MIB in first set position.
if (min_idx != 0)
Entries[min_idx] = Entries[0];
Entries[0].id = new_id;
Entries[0].MIB = newMIB;
}
void PrintMissRate(int i) {
u64 p = SetAccessCount ? SetMissCount * 10000ULL / SetAccessCount : 0;
Printf("Set %d miss rate: %d / %d = %5d.%02d%%\n", i, SetMissCount,
SetAccessCount, p / 100, p % 100);
}
SetEntry Entries[kSetSize];
u32 SetAccessCount = 0;
u32 SetMissCount = 0;
};
struct MemInfoBlockCache {
MemInfoBlockCache() {
if (common_flags()->print_module_map)
DumpProcessMap();
if (flags()->print_terse)
MemInfoBlock::printHeader();
Sets =
(CacheSet *)malloc(sizeof(CacheSet) * flags()->mem_info_cache_entries);
Constructed = true;
}
~MemInfoBlockCache() { free(Sets); }
void insertOrMerge(u64 new_id, MemInfoBlock &newMIB) {
u64 hv = new_id;
// Use mod method where number of entries should be a prime close to power
// of 2.
hv %= flags()->mem_info_cache_entries;
return Sets[hv].insertOrMerge(new_id, newMIB);
}
void PrintAll() {
for (int i = 0; i < flags()->mem_info_cache_entries; i++) {
Sets[i].PrintAll();
}
}
void PrintMissRate() {
if (!flags()->print_mem_info_cache_miss_rate)
return;
u64 p = AccessCount ? MissCount * 10000ULL / AccessCount : 0;
Printf("Overall miss rate: %d / %d = %5d.%02d%%\n", MissCount, AccessCount,
p / 100, p % 100);
if (flags()->print_mem_info_cache_miss_rate_details)
for (int i = 0; i < flags()->mem_info_cache_entries; i++)
Sets[i].PrintMissRate(i);
}
CacheSet *Sets;
// Flag when the Sets have been allocated, in case a deallocation is called
// very early before the static init of the Allocator and therefore this table
// have completed.
bool Constructed = false;
};
// Accumulates the access count from the shadow for the given pointer and size.
u64 GetShadowCount(uptr p, u32 size) {
u64 *shadow = (u64 *)MEM_TO_SHADOW(p);
u64 *shadow_end = (u64 *)MEM_TO_SHADOW(p + size);
u64 count = 0;
for (; shadow <= shadow_end; shadow++)
count += *shadow;
return count;
}
// Clears the shadow counters (when memory is allocated).
void ClearShadow(uptr addr, uptr size) {
CHECK(AddrIsAlignedByGranularity(addr));
CHECK(AddrIsInMem(addr));
CHECK(AddrIsAlignedByGranularity(addr + size));
CHECK(AddrIsInMem(addr + size - SHADOW_GRANULARITY));
CHECK(REAL(memset));
uptr shadow_beg = MEM_TO_SHADOW(addr);
uptr shadow_end = MEM_TO_SHADOW(addr + size - SHADOW_GRANULARITY) + 1;
if (shadow_end - shadow_beg < common_flags()->clear_shadow_mmap_threshold) {
REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg);
} else {
uptr page_size = GetPageSizeCached();
uptr page_beg = RoundUpTo(shadow_beg, page_size);
uptr page_end = RoundDownTo(shadow_end, page_size);
if (page_beg >= page_end) {
REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg);
} else {
if (page_beg != shadow_beg) {
REAL(memset)((void *)shadow_beg, 0, page_beg - shadow_beg);
}
if (page_end != shadow_end) {
REAL(memset)((void *)page_end, 0, shadow_end - page_end);
}
ReserveShadowMemoryRange(page_beg, page_end - 1, nullptr);
}
}
}
struct Allocator {
static const uptr kMaxAllowedMallocSize = 1ULL << kMaxAllowedMallocBits;
MemprofAllocator allocator;
StaticSpinMutex fallback_mutex;
AllocatorCache fallback_allocator_cache;
uptr max_user_defined_malloc_size;
atomic_uint8_t rss_limit_exceeded;
MemInfoBlockCache MemInfoBlockTable;
bool destructing;
// ------------------- Initialization ------------------------
explicit Allocator(LinkerInitialized) : destructing(false) {}
~Allocator() { FinishAndPrint(); }
void FinishAndPrint() {
if (!flags()->print_terse)
Printf("Live on exit:\n");
allocator.ForceLock();
allocator.ForEachChunk(
[](uptr chunk, void *alloc) {
u64 user_requested_size;
MemprofChunk *m =
((Allocator *)alloc)
->GetMemprofChunk((void *)chunk, user_requested_size);
if (!m)
return;
uptr user_beg = ((uptr)m) + kChunkHeaderSize;
u64 c = GetShadowCount(user_beg, user_requested_size);
long curtime = GetTimestamp();
MemInfoBlock newMIB(user_requested_size, c, m->timestamp_ms, curtime,
m->cpu_id, GetCpuId());
((Allocator *)alloc)
->MemInfoBlockTable.insertOrMerge(m->alloc_context_id, newMIB);
},
this);
allocator.ForceUnlock();
destructing = true;
MemInfoBlockTable.PrintMissRate();
MemInfoBlockTable.PrintAll();
StackDepotPrintAll();
}
void InitLinkerInitialized() {
SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
allocator.InitLinkerInitialized(
common_flags()->allocator_release_to_os_interval_ms);
max_user_defined_malloc_size = common_flags()->max_allocation_size_mb
? common_flags()->max_allocation_size_mb
<< 20
: kMaxAllowedMallocSize;
}
bool RssLimitExceeded() {
return atomic_load(&rss_limit_exceeded, memory_order_relaxed);
}
void SetRssLimitExceeded(bool limit_exceeded) {
atomic_store(&rss_limit_exceeded, limit_exceeded, memory_order_relaxed);
}
// -------------------- Allocation/Deallocation routines ---------------
void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack,
AllocType alloc_type) {
if (UNLIKELY(!memprof_inited))
MemprofInitFromRtl();
if (RssLimitExceeded()) {
if (AllocatorMayReturnNull())
return nullptr;
ReportRssLimitExceeded(stack);
}
CHECK(stack);
const uptr min_alignment = MEMPROF_ALIGNMENT;
if (alignment < min_alignment)
alignment = min_alignment;
if (size == 0) {
// We'd be happy to avoid allocating memory for zero-size requests, but
// some programs/tests depend on this behavior and assume that malloc
// would not return NULL even for zero-size allocations. Moreover, it
// looks like operator new should never return NULL, and results of
// consecutive "new" calls must be different even if the allocated size
// is zero.
size = 1;
}
CHECK(IsPowerOfTwo(alignment));
uptr rounded_size = RoundUpTo(size, alignment);
uptr needed_size = rounded_size + kChunkHeaderSize;
if (alignment > min_alignment)
needed_size += alignment;
CHECK(IsAligned(needed_size, min_alignment));
if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize ||
size > max_user_defined_malloc_size) {
if (AllocatorMayReturnNull()) {
Report("WARNING: MemProfiler failed to allocate 0x%zx bytes\n",
(void *)size);
return nullptr;
}
uptr malloc_limit =
Min(kMaxAllowedMallocSize, max_user_defined_malloc_size);
ReportAllocationSizeTooBig(size, malloc_limit, stack);
}
MemprofThread *t = GetCurrentThread();
void *allocated;
if (t) {
AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
allocated = allocator.Allocate(cache, needed_size, 8);
} else {
SpinMutexLock l(&fallback_mutex);
AllocatorCache *cache = &fallback_allocator_cache;
allocated = allocator.Allocate(cache, needed_size, 8);
}
if (UNLIKELY(!allocated)) {
SetAllocatorOutOfMemory();
if (AllocatorMayReturnNull())
return nullptr;
ReportOutOfMemory(size, stack);
}
uptr alloc_beg = reinterpret_cast<uptr>(allocated);
uptr alloc_end = alloc_beg + needed_size;
uptr beg_plus_header = alloc_beg + kChunkHeaderSize;
uptr user_beg = beg_plus_header;
if (!IsAligned(user_beg, alignment))
user_beg = RoundUpTo(user_beg, alignment);
uptr user_end = user_beg + size;
CHECK_LE(user_end, alloc_end);
uptr chunk_beg = user_beg - kChunkHeaderSize;
MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg);
m->from_memalign = alloc_beg != chunk_beg;
CHECK(size);
m->cpu_id = GetCpuId();
m->timestamp_ms = GetTimestamp();
m->alloc_context_id = StackDepotPut(*stack);
uptr size_rounded_down_to_granularity =
RoundDownTo(size, SHADOW_GRANULARITY);
if (size_rounded_down_to_granularity)
ClearShadow(user_beg, size_rounded_down_to_granularity);
MemprofStats &thread_stats = GetCurrentThreadStats();
thread_stats.mallocs++;
thread_stats.malloced += size;
thread_stats.malloced_overhead += needed_size - size;
if (needed_size > SizeClassMap::kMaxSize)
thread_stats.malloc_large++;
else
thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++;
void *res = reinterpret_cast<void *>(user_beg);
atomic_store(&m->user_requested_size, size, memory_order_release);
if (alloc_beg != chunk_beg) {
CHECK_LE(alloc_beg + sizeof(LargeChunkHeader), chunk_beg);
reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(m);
}
MEMPROF_MALLOC_HOOK(res, size);
return res;
}
void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment,
BufferedStackTrace *stack, AllocType alloc_type) {
uptr p = reinterpret_cast<uptr>(ptr);
if (p == 0)
return;
MEMPROF_FREE_HOOK(ptr);
uptr chunk_beg = p - kChunkHeaderSize;
MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg);
u64 user_requested_size =
atomic_exchange(&m->user_requested_size, 0, memory_order_acquire);
if (memprof_inited && memprof_init_done && !destructing &&
MemInfoBlockTable.Constructed) {
u64 c = GetShadowCount(p, user_requested_size);
long curtime = GetTimestamp();
MemInfoBlock newMIB(user_requested_size, c, m->timestamp_ms, curtime,
m->cpu_id, GetCpuId());
{
SpinMutexLock l(&fallback_mutex);
MemInfoBlockTable.insertOrMerge(m->alloc_context_id, newMIB);
}
}
MemprofStats &thread_stats = GetCurrentThreadStats();
thread_stats.frees++;
thread_stats.freed += user_requested_size;
void *alloc_beg = m->AllocBeg();
if (alloc_beg != m) {
// Clear the magic value, as allocator internals may overwrite the
// contents of deallocated chunk, confusing GetMemprofChunk lookup.
reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(nullptr);
}
MemprofThread *t = GetCurrentThread();
if (t) {
AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
allocator.Deallocate(cache, alloc_beg);
} else {
SpinMutexLock l(&fallback_mutex);
AllocatorCache *cache = &fallback_allocator_cache;
allocator.Deallocate(cache, alloc_beg);
}
}
void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) {
CHECK(old_ptr && new_size);
uptr p = reinterpret_cast<uptr>(old_ptr);
uptr chunk_beg = p - kChunkHeaderSize;
MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg);
MemprofStats &thread_stats = GetCurrentThreadStats();
thread_stats.reallocs++;
thread_stats.realloced += new_size;
void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC);
if (new_ptr) {
CHECK_NE(REAL(memcpy), nullptr);
uptr memcpy_size = Min(new_size, m->UsedSize());
REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC);
}
return new_ptr;
}
void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
if (AllocatorMayReturnNull())
return nullptr;
ReportCallocOverflow(nmemb, size, stack);
}
void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC);
// If the memory comes from the secondary allocator no need to clear it
// as it comes directly from mmap.
if (ptr && allocator.FromPrimary(ptr))
REAL(memset)(ptr, 0, nmemb * size);
return ptr;
}
void CommitBack(MemprofThreadLocalMallocStorage *ms,
BufferedStackTrace *stack) {
AllocatorCache *ac = GetAllocatorCache(ms);
allocator.SwallowCache(ac);
}
// -------------------------- Chunk lookup ----------------------
// Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg).
MemprofChunk *GetMemprofChunk(void *alloc_beg, u64 &user_requested_size) {
if (!alloc_beg)
return nullptr;
MemprofChunk *p = reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Get();
if (!p) {
if (!allocator.FromPrimary(alloc_beg))
return nullptr;
p = reinterpret_cast<MemprofChunk *>(alloc_beg);
}
// The size is reset to 0 on deallocation (and a min of 1 on
// allocation).
user_requested_size =
atomic_load(&p->user_requested_size, memory_order_acquire);
if (user_requested_size)
return p;
return nullptr;
}
MemprofChunk *GetMemprofChunkByAddr(uptr p, u64 &user_requested_size) {
void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p));
return GetMemprofChunk(alloc_beg, user_requested_size);
}
uptr AllocationSize(uptr p) {
u64 user_requested_size;
MemprofChunk *m = GetMemprofChunkByAddr(p, user_requested_size);
if (!m)
return 0;
if (m->Beg() != p)
return 0;
return user_requested_size;
}
void Purge(BufferedStackTrace *stack) { allocator.ForceReleaseToOS(); }
void PrintStats() { allocator.PrintStats(); }
void ForceLock() {
allocator.ForceLock();
fallback_mutex.Lock();
}
void ForceUnlock() {
fallback_mutex.Unlock();
allocator.ForceUnlock();
}
};
static Allocator instance(LINKER_INITIALIZED);
static MemprofAllocator &get_allocator() { return instance.allocator; }
void InitializeAllocator() { instance.InitLinkerInitialized(); }
void MemprofThreadLocalMallocStorage::CommitBack() {
GET_STACK_TRACE_MALLOC;
instance.CommitBack(this, &stack);
}
void PrintInternalAllocatorStats() { instance.PrintStats(); }
void memprof_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) {
instance.Deallocate(ptr, 0, 0, stack, alloc_type);
}
void memprof_delete(void *ptr, uptr size, uptr alignment,
BufferedStackTrace *stack, AllocType alloc_type) {
instance.Deallocate(ptr, size, alignment, stack, alloc_type);
}
void *memprof_malloc(uptr size, BufferedStackTrace *stack) {
return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC));
}
void *memprof_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
return SetErrnoOnNull(instance.Calloc(nmemb, size, stack));
}
void *memprof_reallocarray(void *p, uptr nmemb, uptr size,
BufferedStackTrace *stack) {
if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
errno = errno_ENOMEM;
if (AllocatorMayReturnNull())
return nullptr;
ReportReallocArrayOverflow(nmemb, size, stack);
}
return memprof_realloc(p, nmemb * size, stack);
}
void *memprof_realloc(void *p, uptr size, BufferedStackTrace *stack) {
if (!p)
return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC));
if (size == 0) {
if (flags()->allocator_frees_and_returns_null_on_realloc_zero) {
instance.Deallocate(p, 0, 0, stack, FROM_MALLOC);
return nullptr;
}
// Allocate a size of 1 if we shouldn't free() on Realloc to 0
size = 1;
}
return SetErrnoOnNull(instance.Reallocate(p, size, stack));
}
void *memprof_valloc(uptr size, BufferedStackTrace *stack) {
return SetErrnoOnNull(
instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC));
}
void *memprof_pvalloc(uptr size, BufferedStackTrace *stack) {
uptr PageSize = GetPageSizeCached();
if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
errno = errno_ENOMEM;
if (AllocatorMayReturnNull())
return nullptr;
ReportPvallocOverflow(size, stack);
}
// pvalloc(0) should allocate one page.
size = size ? RoundUpTo(size, PageSize) : PageSize;
return SetErrnoOnNull(instance.Allocate(size, PageSize, stack, FROM_MALLOC));
}
void *memprof_memalign(uptr alignment, uptr size, BufferedStackTrace *stack,
AllocType alloc_type) {
if (UNLIKELY(!IsPowerOfTwo(alignment))) {
errno = errno_EINVAL;
if (AllocatorMayReturnNull())
return nullptr;
ReportInvalidAllocationAlignment(alignment, stack);
}
return SetErrnoOnNull(instance.Allocate(size, alignment, stack, alloc_type));
}
void *memprof_aligned_alloc(uptr alignment, uptr size,
BufferedStackTrace *stack) {
if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
errno = errno_EINVAL;
if (AllocatorMayReturnNull())
return nullptr;
ReportInvalidAlignedAllocAlignment(size, alignment, stack);
}
return SetErrnoOnNull(instance.Allocate(size, alignment, stack, FROM_MALLOC));
}
int memprof_posix_memalign(void **memptr, uptr alignment, uptr size,
BufferedStackTrace *stack) {
if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
if (AllocatorMayReturnNull())
return errno_EINVAL;
ReportInvalidPosixMemalignAlignment(alignment, stack);
}
void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC);
if (UNLIKELY(!ptr))
// OOM error is already taken care of by Allocate.
return errno_ENOMEM;
CHECK(IsAligned((uptr)ptr, alignment));
*memptr = ptr;
return 0;
}
uptr memprof_malloc_usable_size(const void *ptr, uptr pc, uptr bp) {
if (!ptr)
return 0;
uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr));
return usable_size;
}
void MemprofSoftRssLimitExceededCallback(bool limit_exceeded) {
instance.SetRssLimitExceeded(limit_exceeded);
}
} // namespace __memprof
// ---------------------- Interface ---------------- {{{1
using namespace __memprof;
#if !SANITIZER_SUPPORTS_WEAK_HOOKS
// Provide default (no-op) implementation of malloc hooks.
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_malloc_hook, void *ptr,
uptr size) {
(void)ptr;
(void)size;
}
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_free_hook, void *ptr) {
(void)ptr;
}
#endif
uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
int __sanitizer_get_ownership(const void *p) {
return memprof_malloc_usable_size(p, 0, 0) != 0;
}
uptr __sanitizer_get_allocated_size(const void *p) {
return memprof_malloc_usable_size(p, 0, 0);
}
int __memprof_profile_dump() {
instance.FinishAndPrint();
// In the future we may want to return non-zero if there are any errors
// detected during the dumping process.
return 0;
}