| //===-- X86DisassemblerDecoderCommon.h - Disassembler decoder ---*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is part of the X86 Disassembler. |
| // It contains common definitions used by both the disassembler and the table |
| // generator. |
| // Documentation for the disassembler can be found in X86Disassembler.h. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_SUPPORT_X86DISASSEMBLERDECODERCOMMON_H |
| #define LLVM_SUPPORT_X86DISASSEMBLERDECODERCOMMON_H |
| |
| #include "llvm/Support/DataTypes.h" |
| |
| namespace llvm { |
| namespace X86Disassembler { |
| |
| #define INSTRUCTIONS_SYM x86DisassemblerInstrSpecifiers |
| #define CONTEXTS_SYM x86DisassemblerContexts |
| #define ONEBYTE_SYM x86DisassemblerOneByteOpcodes |
| #define TWOBYTE_SYM x86DisassemblerTwoByteOpcodes |
| #define THREEBYTE38_SYM x86DisassemblerThreeByte38Opcodes |
| #define THREEBYTE3A_SYM x86DisassemblerThreeByte3AOpcodes |
| #define XOP8_MAP_SYM x86DisassemblerXOP8Opcodes |
| #define XOP9_MAP_SYM x86DisassemblerXOP9Opcodes |
| #define XOPA_MAP_SYM x86DisassemblerXOPAOpcodes |
| #define THREEDNOW_MAP_SYM x86Disassembler3DNowOpcodes |
| #define MAP5_SYM x86DisassemblerMap5Opcodes |
| #define MAP6_SYM x86DisassemblerMap6Opcodes |
| |
| #define INSTRUCTIONS_STR "x86DisassemblerInstrSpecifiers" |
| #define CONTEXTS_STR "x86DisassemblerContexts" |
| #define ONEBYTE_STR "x86DisassemblerOneByteOpcodes" |
| #define TWOBYTE_STR "x86DisassemblerTwoByteOpcodes" |
| #define THREEBYTE38_STR "x86DisassemblerThreeByte38Opcodes" |
| #define THREEBYTE3A_STR "x86DisassemblerThreeByte3AOpcodes" |
| #define XOP8_MAP_STR "x86DisassemblerXOP8Opcodes" |
| #define XOP9_MAP_STR "x86DisassemblerXOP9Opcodes" |
| #define XOPA_MAP_STR "x86DisassemblerXOPAOpcodes" |
| #define THREEDNOW_MAP_STR "x86Disassembler3DNowOpcodes" |
| #define MAP5_STR "x86DisassemblerMap5Opcodes" |
| #define MAP6_STR "x86DisassemblerMap6Opcodes" |
| |
| // Attributes of an instruction that must be known before the opcode can be |
| // processed correctly. Most of these indicate the presence of particular |
| // prefixes, but ATTR_64BIT is simply an attribute of the decoding context. |
| enum attributeBits { |
| ATTR_NONE = 0x00, |
| ATTR_64BIT = 0x1 << 0, |
| ATTR_XS = 0x1 << 1, |
| ATTR_XD = 0x1 << 2, |
| ATTR_REXW = 0x1 << 3, |
| ATTR_OPSIZE = 0x1 << 4, |
| ATTR_ADSIZE = 0x1 << 5, |
| ATTR_VEX = 0x1 << 6, |
| ATTR_VEXL = 0x1 << 7, |
| ATTR_EVEX = 0x1 << 8, |
| ATTR_EVEXL2 = 0x1 << 9, |
| ATTR_EVEXK = 0x1 << 10, |
| ATTR_EVEXKZ = 0x1 << 11, |
| ATTR_EVEXB = 0x1 << 12, |
| ATTR_max = 0x1 << 13, |
| }; |
| |
| // Combinations of the above attributes that are relevant to instruction |
| // decode. Although other combinations are possible, they can be reduced to |
| // these without affecting the ultimately decoded instruction. |
| |
| // Class name Rank Rationale for rank assignment |
| #define INSTRUCTION_CONTEXTS \ |
| ENUM_ENTRY(IC, 0, "says nothing about the instruction") \ |
| ENUM_ENTRY(IC_64BIT, 1, "says the instruction applies in " \ |
| "64-bit mode but no more") \ |
| ENUM_ENTRY(IC_OPSIZE, 3, "requires an OPSIZE prefix, so " \ |
| "operands change width") \ |
| ENUM_ENTRY(IC_ADSIZE, 3, "requires an ADSIZE prefix, so " \ |
| "operands change width") \ |
| ENUM_ENTRY(IC_OPSIZE_ADSIZE, 4, "requires ADSIZE and OPSIZE prefixes") \ |
| ENUM_ENTRY(IC_XD, 2, "may say something about the opcode " \ |
| "but not the operands") \ |
| ENUM_ENTRY(IC_XS, 2, "may say something about the opcode " \ |
| "but not the operands") \ |
| ENUM_ENTRY(IC_XD_OPSIZE, 3, "requires an OPSIZE prefix, so " \ |
| "operands change width") \ |
| ENUM_ENTRY(IC_XS_OPSIZE, 3, "requires an OPSIZE prefix, so " \ |
| "operands change width") \ |
| ENUM_ENTRY(IC_XD_ADSIZE, 3, "requires an ADSIZE prefix, so " \ |
| "operands change width") \ |
| ENUM_ENTRY(IC_XS_ADSIZE, 3, "requires an ADSIZE prefix, so " \ |
| "operands change width") \ |
| ENUM_ENTRY(IC_64BIT_REXW, 5, "requires a REX.W prefix, so operands "\ |
| "change width; overrides IC_OPSIZE") \ |
| ENUM_ENTRY(IC_64BIT_REXW_ADSIZE, 6, "requires a REX.W prefix and 0x67 " \ |
| "prefix") \ |
| ENUM_ENTRY(IC_64BIT_OPSIZE, 3, "Just as meaningful as IC_OPSIZE") \ |
| ENUM_ENTRY(IC_64BIT_ADSIZE, 3, "Just as meaningful as IC_ADSIZE") \ |
| ENUM_ENTRY(IC_64BIT_OPSIZE_ADSIZE, 4, "Just as meaningful as IC_OPSIZE/" \ |
| "IC_ADSIZE") \ |
| ENUM_ENTRY(IC_64BIT_XD, 6, "XD instructions are SSE; REX.W is " \ |
| "secondary") \ |
| ENUM_ENTRY(IC_64BIT_XS, 6, "Just as meaningful as IC_64BIT_XD") \ |
| ENUM_ENTRY(IC_64BIT_XD_OPSIZE, 3, "Just as meaningful as IC_XD_OPSIZE") \ |
| ENUM_ENTRY(IC_64BIT_XS_OPSIZE, 3, "Just as meaningful as IC_XS_OPSIZE") \ |
| ENUM_ENTRY(IC_64BIT_XD_ADSIZE, 3, "Just as meaningful as IC_XD_ADSIZE") \ |
| ENUM_ENTRY(IC_64BIT_XS_ADSIZE, 3, "Just as meaningful as IC_XS_ADSIZE") \ |
| ENUM_ENTRY(IC_64BIT_REXW_XS, 7, "OPSIZE could mean a different " \ |
| "opcode") \ |
| ENUM_ENTRY(IC_64BIT_REXW_XD, 7, "Just as meaningful as " \ |
| "IC_64BIT_REXW_XS") \ |
| ENUM_ENTRY(IC_64BIT_REXW_OPSIZE, 8, "The Dynamic Duo! Prefer over all " \ |
| "else because this changes most " \ |
| "operands' meaning") \ |
| ENUM_ENTRY(IC_VEX, 1, "requires a VEX prefix") \ |
| ENUM_ENTRY(IC_VEX_XS, 2, "requires VEX and the XS prefix") \ |
| ENUM_ENTRY(IC_VEX_XD, 2, "requires VEX and the XD prefix") \ |
| ENUM_ENTRY(IC_VEX_OPSIZE, 2, "requires VEX and the OpSize prefix") \ |
| ENUM_ENTRY(IC_64BIT_VEX_OPSIZE, 4, "requires 64-bit mode and VEX") \ |
| ENUM_ENTRY(IC_64BIT_VEX_OPSIZE_ADSIZE, 5, "requires 64-bit mode, VEX, and AdSize")\ |
| ENUM_ENTRY(IC_VEX_W, 3, "requires VEX and the W prefix") \ |
| ENUM_ENTRY(IC_VEX_W_XS, 4, "requires VEX, W, and XS prefix") \ |
| ENUM_ENTRY(IC_VEX_W_XD, 4, "requires VEX, W, and XD prefix") \ |
| ENUM_ENTRY(IC_VEX_W_OPSIZE, 4, "requires VEX, W, and OpSize") \ |
| ENUM_ENTRY(IC_VEX_L, 3, "requires VEX and the L prefix") \ |
| ENUM_ENTRY(IC_VEX_L_XS, 4, "requires VEX and the L and XS prefix")\ |
| ENUM_ENTRY(IC_VEX_L_XD, 4, "requires VEX and the L and XD prefix")\ |
| ENUM_ENTRY(IC_VEX_L_OPSIZE, 4, "requires VEX, L, and OpSize") \ |
| ENUM_ENTRY(IC_VEX_L_W, 4, "requires VEX, L and W") \ |
| ENUM_ENTRY(IC_VEX_L_W_XS, 5, "requires VEX, L, W and XS prefix") \ |
| ENUM_ENTRY(IC_VEX_L_W_XD, 5, "requires VEX, L, W and XD prefix") \ |
| ENUM_ENTRY(IC_VEX_L_W_OPSIZE, 5, "requires VEX, L, W and OpSize") \ |
| ENUM_ENTRY(IC_EVEX, 1, "requires an EVEX prefix") \ |
| ENUM_ENTRY(IC_EVEX_XS, 2, "requires EVEX and the XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_XD, 2, "requires EVEX and the XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_OPSIZE, 2, "requires EVEX and the OpSize prefix") \ |
| ENUM_ENTRY(IC_EVEX_W, 3, "requires EVEX and the W prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_XS, 4, "requires EVEX, W, and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_XD, 4, "requires EVEX, W, and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_OPSIZE, 4, "requires EVEX, W, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L, 3, "requires EVEX and the L prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_XS, 4, "requires EVEX and the L and XS prefix")\ |
| ENUM_ENTRY(IC_EVEX_L_XD, 4, "requires EVEX and the L and XD prefix")\ |
| ENUM_ENTRY(IC_EVEX_L_OPSIZE, 4, "requires EVEX, L, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L_W, 3, "requires EVEX, L and W") \ |
| ENUM_ENTRY(IC_EVEX_L_W_XS, 4, "requires EVEX, L, W and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_W_XD, 4, "requires EVEX, L, W and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_W_OPSIZE, 4, "requires EVEX, L, W and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L2, 3, "requires EVEX and the L2 prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_XS, 4, "requires EVEX and the L2 and XS prefix")\ |
| ENUM_ENTRY(IC_EVEX_L2_XD, 4, "requires EVEX and the L2 and XD prefix")\ |
| ENUM_ENTRY(IC_EVEX_L2_OPSIZE, 4, "requires EVEX, L2, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L2_W, 3, "requires EVEX, L2 and W") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_XS, 4, "requires EVEX, L2, W and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_XD, 4, "requires EVEX, L2, W and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE, 4, "requires EVEX, L2, W and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_K, 1, "requires an EVEX_K prefix") \ |
| ENUM_ENTRY(IC_EVEX_XS_K, 2, "requires EVEX_K and the XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_XD_K, 2, "requires EVEX_K and the XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_OPSIZE_K, 2, "requires EVEX_K and the OpSize prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_K, 3, "requires EVEX_K and the W prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_XS_K, 4, "requires EVEX_K, W, and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_XD_K, 4, "requires EVEX_K, W, and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_OPSIZE_K, 4, "requires EVEX_K, W, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L_K, 3, "requires EVEX_K and the L prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_XS_K, 4, "requires EVEX_K and the L and XS prefix")\ |
| ENUM_ENTRY(IC_EVEX_L_XD_K, 4, "requires EVEX_K and the L and XD prefix")\ |
| ENUM_ENTRY(IC_EVEX_L_OPSIZE_K, 4, "requires EVEX_K, L, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L_W_K, 3, "requires EVEX_K, L and W") \ |
| ENUM_ENTRY(IC_EVEX_L_W_XS_K, 4, "requires EVEX_K, L, W and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_W_XD_K, 4, "requires EVEX_K, L, W and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_K, 4, "requires EVEX_K, L, W and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L2_K, 3, "requires EVEX_K and the L2 prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_XS_K, 4, "requires EVEX_K and the L2 and XS prefix")\ |
| ENUM_ENTRY(IC_EVEX_L2_XD_K, 4, "requires EVEX_K and the L2 and XD prefix")\ |
| ENUM_ENTRY(IC_EVEX_L2_OPSIZE_K, 4, "requires EVEX_K, L2, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_K, 3, "requires EVEX_K, L2 and W") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_XS_K, 4, "requires EVEX_K, L2, W and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_XD_K, 4, "requires EVEX_K, L2, W and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_K, 4, "requires EVEX_K, L2, W and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_B, 1, "requires an EVEX_B prefix") \ |
| ENUM_ENTRY(IC_EVEX_XS_B, 2, "requires EVEX_B and the XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_XD_B, 2, "requires EVEX_B and the XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_OPSIZE_B, 2, "requires EVEX_B and the OpSize prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_B, 3, "requires EVEX_B and the W prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_XS_B, 4, "requires EVEX_B, W, and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_XD_B, 4, "requires EVEX_B, W, and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_OPSIZE_B, 4, "requires EVEX_B, W, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L_B, 3, "requires EVEX_B and the L prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_XS_B, 4, "requires EVEX_B and the L and XS prefix")\ |
| ENUM_ENTRY(IC_EVEX_L_XD_B, 4, "requires EVEX_B and the L and XD prefix")\ |
| ENUM_ENTRY(IC_EVEX_L_OPSIZE_B, 4, "requires EVEX_B, L, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L_W_B, 3, "requires EVEX_B, L and W") \ |
| ENUM_ENTRY(IC_EVEX_L_W_XS_B, 4, "requires EVEX_B, L, W and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_W_XD_B, 4, "requires EVEX_B, L, W and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_B, 4, "requires EVEX_B, L, W and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L2_B, 3, "requires EVEX_B and the L2 prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_XS_B, 4, "requires EVEX_B and the L2 and XS prefix")\ |
| ENUM_ENTRY(IC_EVEX_L2_XD_B, 4, "requires EVEX_B and the L2 and XD prefix")\ |
| ENUM_ENTRY(IC_EVEX_L2_OPSIZE_B, 4, "requires EVEX_B, L2, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_B, 3, "requires EVEX_B, L2 and W") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_XS_B, 4, "requires EVEX_B, L2, W and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_XD_B, 4, "requires EVEX_B, L2, W and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_B, 4, "requires EVEX_B, L2, W and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_K_B, 1, "requires EVEX_B and EVEX_K prefix") \ |
| ENUM_ENTRY(IC_EVEX_XS_K_B, 2, "requires EVEX_B, EVEX_K and the XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_XD_K_B, 2, "requires EVEX_B, EVEX_K and the XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_OPSIZE_K_B, 2, "requires EVEX_B, EVEX_K and the OpSize prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_K_B, 3, "requires EVEX_B, EVEX_K and the W prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_XS_K_B, 4, "requires EVEX_B, EVEX_K, W, and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_XD_K_B, 4, "requires EVEX_B, EVEX_K, W, and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_OPSIZE_K_B, 4, "requires EVEX_B, EVEX_K, W, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L_K_B, 3, "requires EVEX_B, EVEX_K and the L prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_XS_K_B, 4, "requires EVEX_B, EVEX_K and the L and XS prefix")\ |
| ENUM_ENTRY(IC_EVEX_L_XD_K_B, 4, "requires EVEX_B, EVEX_K and the L and XD prefix")\ |
| ENUM_ENTRY(IC_EVEX_L_OPSIZE_K_B, 4, "requires EVEX_B, EVEX_K, L, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L_W_K_B, 3, "requires EVEX_B, EVEX_K, L and W") \ |
| ENUM_ENTRY(IC_EVEX_L_W_XS_K_B, 4, "requires EVEX_B, EVEX_K, L, W and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_W_XD_K_B, 4, "requires EVEX_B, EVEX_K, L, W and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_K_B,4, "requires EVEX_B, EVEX_K, L, W and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L2_K_B, 3, "requires EVEX_B, EVEX_K and the L2 prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_XS_K_B, 4, "requires EVEX_B, EVEX_K and the L2 and XS prefix")\ |
| ENUM_ENTRY(IC_EVEX_L2_XD_K_B, 4, "requires EVEX_B, EVEX_K and the L2 and XD prefix")\ |
| ENUM_ENTRY(IC_EVEX_L2_OPSIZE_K_B, 4, "requires EVEX_B, EVEX_K, L2, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_K_B, 3, "requires EVEX_B, EVEX_K, L2 and W") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_XS_K_B, 4, "requires EVEX_B, EVEX_K, L2, W and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_XD_K_B, 4, "requires EVEX_B, EVEX_K, L2, W and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_K_B,4, "requires EVEX_B, EVEX_K, L2, W and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_KZ_B, 1, "requires EVEX_B and EVEX_KZ prefix") \ |
| ENUM_ENTRY(IC_EVEX_XS_KZ_B, 2, "requires EVEX_B, EVEX_KZ and the XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_XD_KZ_B, 2, "requires EVEX_B, EVEX_KZ and the XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_OPSIZE_KZ_B, 2, "requires EVEX_B, EVEX_KZ and the OpSize prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_KZ_B, 3, "requires EVEX_B, EVEX_KZ and the W prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ, W, and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ, W, and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, W, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L_KZ_B, 3, "requires EVEX_B, EVEX_KZ and the L prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ and the L and XS prefix")\ |
| ENUM_ENTRY(IC_EVEX_L_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ and the L and XD prefix")\ |
| ENUM_ENTRY(IC_EVEX_L_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L_W_KZ_B, 3, "requires EVEX_B, EVEX_KZ, L and W") \ |
| ENUM_ENTRY(IC_EVEX_L_W_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L, W and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_W_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L, W and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L, W and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L2_KZ_B, 3, "requires EVEX_B, EVEX_KZ and the L2 prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ and the L2 and XS prefix")\ |
| ENUM_ENTRY(IC_EVEX_L2_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ and the L2 and XD prefix")\ |
| ENUM_ENTRY(IC_EVEX_L2_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L2, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_KZ_B, 3, "requires EVEX_B, EVEX_KZ, L2 and W") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L2, W and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L2, W and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L2, W and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_KZ, 1, "requires an EVEX_KZ prefix") \ |
| ENUM_ENTRY(IC_EVEX_XS_KZ, 2, "requires EVEX_KZ and the XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_XD_KZ, 2, "requires EVEX_KZ and the XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_OPSIZE_KZ, 2, "requires EVEX_KZ and the OpSize prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_KZ, 3, "requires EVEX_KZ and the W prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_XS_KZ, 4, "requires EVEX_KZ, W, and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_XD_KZ, 4, "requires EVEX_KZ, W, and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_W_OPSIZE_KZ, 4, "requires EVEX_KZ, W, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L_KZ, 3, "requires EVEX_KZ and the L prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_XS_KZ, 4, "requires EVEX_KZ and the L and XS prefix")\ |
| ENUM_ENTRY(IC_EVEX_L_XD_KZ, 4, "requires EVEX_KZ and the L and XD prefix")\ |
| ENUM_ENTRY(IC_EVEX_L_OPSIZE_KZ, 4, "requires EVEX_KZ, L, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L_W_KZ, 3, "requires EVEX_KZ, L and W") \ |
| ENUM_ENTRY(IC_EVEX_L_W_XS_KZ, 4, "requires EVEX_KZ, L, W and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_W_XD_KZ, 4, "requires EVEX_KZ, L, W and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_KZ, 4, "requires EVEX_KZ, L, W and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L2_KZ, 3, "requires EVEX_KZ and the L2 prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_XS_KZ, 4, "requires EVEX_KZ and the L2 and XS prefix")\ |
| ENUM_ENTRY(IC_EVEX_L2_XD_KZ, 4, "requires EVEX_KZ and the L2 and XD prefix")\ |
| ENUM_ENTRY(IC_EVEX_L2_OPSIZE_KZ, 4, "requires EVEX_KZ, L2, and OpSize") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_KZ, 3, "requires EVEX_KZ, L2 and W") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_XS_KZ, 4, "requires EVEX_KZ, L2, W and XS prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_XD_KZ, 4, "requires EVEX_KZ, L2, W and XD prefix") \ |
| ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_KZ, 4, "requires EVEX_KZ, L2, W and OpSize") |
| |
| #define ENUM_ENTRY(n, r, d) n, |
| enum InstructionContext { |
| INSTRUCTION_CONTEXTS |
| IC_max |
| }; |
| #undef ENUM_ENTRY |
| |
| // Opcode types, which determine which decode table to use, both in the Intel |
| // manual and also for the decoder. |
| enum OpcodeType { |
| ONEBYTE = 0, |
| TWOBYTE = 1, |
| THREEBYTE_38 = 2, |
| THREEBYTE_3A = 3, |
| XOP8_MAP = 4, |
| XOP9_MAP = 5, |
| XOPA_MAP = 6, |
| THREEDNOW_MAP = 7, |
| MAP5 = 8, |
| MAP6 = 9 |
| }; |
| |
| // The following structs are used for the hierarchical decode table. After |
| // determining the instruction's class (i.e., which IC_* constant applies to |
| // it), the decoder reads the opcode. Some instructions require specific |
| // values of the ModR/M byte, so the ModR/M byte indexes into the final table. |
| // |
| // If a ModR/M byte is not required, "required" is left unset, and the values |
| // for each instructionID are identical. |
| typedef uint16_t InstrUID; |
| |
| // ModRMDecisionType - describes the type of ModR/M decision, allowing the |
| // consumer to determine the number of entries in it. |
| // |
| // MODRM_ONEENTRY - No matter what the value of the ModR/M byte is, the decoded |
| // instruction is the same. |
| // MODRM_SPLITRM - If the ModR/M byte is between 0x00 and 0xbf, the opcode |
| // corresponds to one instruction; otherwise, it corresponds to |
| // a different instruction. |
| // MODRM_SPLITMISC- If the ModR/M byte is between 0x00 and 0xbf, ModR/M byte |
| // divided by 8 is used to select instruction; otherwise, each |
| // value of the ModR/M byte could correspond to a different |
| // instruction. |
| // MODRM_SPLITREG - ModR/M byte divided by 8 is used to select instruction. This |
| // corresponds to instructions that use reg field as opcode |
| // MODRM_FULL - Potentially, each value of the ModR/M byte could correspond |
| // to a different instruction. |
| #define MODRMTYPES \ |
| ENUM_ENTRY(MODRM_ONEENTRY) \ |
| ENUM_ENTRY(MODRM_SPLITRM) \ |
| ENUM_ENTRY(MODRM_SPLITMISC) \ |
| ENUM_ENTRY(MODRM_SPLITREG) \ |
| ENUM_ENTRY(MODRM_FULL) |
| |
| #define ENUM_ENTRY(n) n, |
| enum ModRMDecisionType { |
| MODRMTYPES |
| MODRM_max |
| }; |
| #undef ENUM_ENTRY |
| |
| #define CASE_ENCODING_RM \ |
| case ENCODING_RM: \ |
| case ENCODING_RM_CD2: \ |
| case ENCODING_RM_CD4: \ |
| case ENCODING_RM_CD8: \ |
| case ENCODING_RM_CD16: \ |
| case ENCODING_RM_CD32: \ |
| case ENCODING_RM_CD64 |
| |
| #define CASE_ENCODING_VSIB \ |
| case ENCODING_VSIB: \ |
| case ENCODING_VSIB_CD2: \ |
| case ENCODING_VSIB_CD4: \ |
| case ENCODING_VSIB_CD8: \ |
| case ENCODING_VSIB_CD16: \ |
| case ENCODING_VSIB_CD32: \ |
| case ENCODING_VSIB_CD64 |
| |
| // Physical encodings of instruction operands. |
| #define ENCODINGS \ |
| ENUM_ENTRY(ENCODING_NONE, "") \ |
| ENUM_ENTRY(ENCODING_REG, "Register operand in ModR/M byte.") \ |
| ENUM_ENTRY(ENCODING_RM, "R/M operand in ModR/M byte.") \ |
| ENUM_ENTRY(ENCODING_RM_CD2, "R/M operand with CDisp scaling of 2") \ |
| ENUM_ENTRY(ENCODING_RM_CD4, "R/M operand with CDisp scaling of 4") \ |
| ENUM_ENTRY(ENCODING_RM_CD8, "R/M operand with CDisp scaling of 8") \ |
| ENUM_ENTRY(ENCODING_RM_CD16,"R/M operand with CDisp scaling of 16") \ |
| ENUM_ENTRY(ENCODING_RM_CD32,"R/M operand with CDisp scaling of 32") \ |
| ENUM_ENTRY(ENCODING_RM_CD64,"R/M operand with CDisp scaling of 64") \ |
| ENUM_ENTRY(ENCODING_SIB, "Force SIB operand in ModR/M byte.") \ |
| ENUM_ENTRY(ENCODING_VSIB, "VSIB operand in ModR/M byte.") \ |
| ENUM_ENTRY(ENCODING_VSIB_CD2, "VSIB operand with CDisp scaling of 2") \ |
| ENUM_ENTRY(ENCODING_VSIB_CD4, "VSIB operand with CDisp scaling of 4") \ |
| ENUM_ENTRY(ENCODING_VSIB_CD8, "VSIB operand with CDisp scaling of 8") \ |
| ENUM_ENTRY(ENCODING_VSIB_CD16,"VSIB operand with CDisp scaling of 16") \ |
| ENUM_ENTRY(ENCODING_VSIB_CD32,"VSIB operand with CDisp scaling of 32") \ |
| ENUM_ENTRY(ENCODING_VSIB_CD64,"VSIB operand with CDisp scaling of 64") \ |
| ENUM_ENTRY(ENCODING_VVVV, "Register operand in VEX.vvvv byte.") \ |
| ENUM_ENTRY(ENCODING_WRITEMASK, "Register operand in EVEX.aaa byte.") \ |
| ENUM_ENTRY(ENCODING_IB, "1-byte immediate") \ |
| ENUM_ENTRY(ENCODING_IW, "2-byte") \ |
| ENUM_ENTRY(ENCODING_ID, "4-byte") \ |
| ENUM_ENTRY(ENCODING_IO, "8-byte") \ |
| ENUM_ENTRY(ENCODING_RB, "(AL..DIL, R8B..R15B) Register code added to " \ |
| "the opcode byte") \ |
| ENUM_ENTRY(ENCODING_RW, "(AX..DI, R8W..R15W)") \ |
| ENUM_ENTRY(ENCODING_RD, "(EAX..EDI, R8D..R15D)") \ |
| ENUM_ENTRY(ENCODING_RO, "(RAX..RDI, R8..R15)") \ |
| ENUM_ENTRY(ENCODING_FP, "Position on floating-point stack in ModR/M " \ |
| "byte.") \ |
| \ |
| ENUM_ENTRY(ENCODING_Iv, "Immediate of operand size") \ |
| ENUM_ENTRY(ENCODING_Ia, "Immediate of address size") \ |
| ENUM_ENTRY(ENCODING_IRC, "Immediate for static rounding control") \ |
| ENUM_ENTRY(ENCODING_Rv, "Register code of operand size added to the " \ |
| "opcode byte") \ |
| ENUM_ENTRY(ENCODING_CC, "Condition code encoded in opcode") \ |
| ENUM_ENTRY(ENCODING_DUP, "Duplicate of another operand; ID is encoded " \ |
| "in type") \ |
| ENUM_ENTRY(ENCODING_SI, "Source index; encoded in OpSize/Adsize prefix") \ |
| ENUM_ENTRY(ENCODING_DI, "Destination index; encoded in prefixes") |
| |
| #define ENUM_ENTRY(n, d) n, |
| enum OperandEncoding { |
| ENCODINGS |
| ENCODING_max |
| }; |
| #undef ENUM_ENTRY |
| |
| // Semantic interpretations of instruction operands. |
| #define TYPES \ |
| ENUM_ENTRY(TYPE_NONE, "") \ |
| ENUM_ENTRY(TYPE_REL, "immediate address") \ |
| ENUM_ENTRY(TYPE_R8, "1-byte register operand") \ |
| ENUM_ENTRY(TYPE_R16, "2-byte") \ |
| ENUM_ENTRY(TYPE_R32, "4-byte") \ |
| ENUM_ENTRY(TYPE_R64, "8-byte") \ |
| ENUM_ENTRY(TYPE_IMM, "immediate operand") \ |
| ENUM_ENTRY(TYPE_UIMM8, "1-byte unsigned immediate operand") \ |
| ENUM_ENTRY(TYPE_M, "Memory operand") \ |
| ENUM_ENTRY(TYPE_MSIB, "Memory operand force sib encoding") \ |
| ENUM_ENTRY(TYPE_MVSIBX, "Memory operand using XMM index") \ |
| ENUM_ENTRY(TYPE_MVSIBY, "Memory operand using YMM index") \ |
| ENUM_ENTRY(TYPE_MVSIBZ, "Memory operand using ZMM index") \ |
| ENUM_ENTRY(TYPE_SRCIDX, "memory at source index") \ |
| ENUM_ENTRY(TYPE_DSTIDX, "memory at destination index") \ |
| ENUM_ENTRY(TYPE_MOFFS, "memory offset (relative to segment base)") \ |
| ENUM_ENTRY(TYPE_ST, "Position on the floating-point stack") \ |
| ENUM_ENTRY(TYPE_MM64, "8-byte MMX register") \ |
| ENUM_ENTRY(TYPE_XMM, "16-byte") \ |
| ENUM_ENTRY(TYPE_YMM, "32-byte") \ |
| ENUM_ENTRY(TYPE_ZMM, "64-byte") \ |
| ENUM_ENTRY(TYPE_VK, "mask register") \ |
| ENUM_ENTRY(TYPE_VK_PAIR, "mask register pair") \ |
| ENUM_ENTRY(TYPE_TMM, "tile") \ |
| ENUM_ENTRY(TYPE_SEGMENTREG, "Segment register operand") \ |
| ENUM_ENTRY(TYPE_DEBUGREG, "Debug register operand") \ |
| ENUM_ENTRY(TYPE_CONTROLREG, "Control register operand") \ |
| ENUM_ENTRY(TYPE_BNDR, "MPX bounds register") \ |
| \ |
| ENUM_ENTRY(TYPE_Rv, "Register operand of operand size") \ |
| ENUM_ENTRY(TYPE_RELv, "Immediate address of operand size") \ |
| ENUM_ENTRY(TYPE_DUP0, "Duplicate of operand 0") \ |
| ENUM_ENTRY(TYPE_DUP1, "operand 1") \ |
| ENUM_ENTRY(TYPE_DUP2, "operand 2") \ |
| ENUM_ENTRY(TYPE_DUP3, "operand 3") \ |
| ENUM_ENTRY(TYPE_DUP4, "operand 4") \ |
| |
| #define ENUM_ENTRY(n, d) n, |
| enum OperandType { |
| TYPES |
| TYPE_max |
| }; |
| #undef ENUM_ENTRY |
| |
| /// The specification for how to extract and interpret one operand. |
| struct OperandSpecifier { |
| uint8_t encoding; |
| uint8_t type; |
| }; |
| |
| static const unsigned X86_MAX_OPERANDS = 6; |
| |
| /// Decoding mode for the Intel disassembler. 16-bit, 32-bit, and 64-bit mode |
| /// are supported, and represent real mode, IA-32e, and IA-32e in 64-bit mode, |
| /// respectively. |
| enum DisassemblerMode { |
| MODE_16BIT, |
| MODE_32BIT, |
| MODE_64BIT |
| }; |
| |
| } // namespace X86Disassembler |
| } // namespace llvm |
| |
| #endif |