| //===- LinkerScript.cpp ---------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the parser/evaluator of the linker script. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "LinkerScript.h" |
| #include "Config.h" |
| #include "InputSection.h" |
| #include "OutputSections.h" |
| #include "SymbolTable.h" |
| #include "Symbols.h" |
| #include "SyntheticSections.h" |
| #include "Target.h" |
| #include "Writer.h" |
| #include "lld/Common/Memory.h" |
| #include "lld/Common/Strings.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/BinaryFormat/ELF.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/FileSystem.h" |
| #include "llvm/Support/Parallel.h" |
| #include "llvm/Support/Path.h" |
| #include "llvm/Support/TimeProfiler.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <iterator> |
| #include <limits> |
| #include <string> |
| #include <vector> |
| |
| using namespace llvm; |
| using namespace llvm::ELF; |
| using namespace llvm::object; |
| using namespace llvm::support::endian; |
| using namespace lld; |
| using namespace lld::elf; |
| |
| LinkerScript *elf::script; |
| |
| static bool isSectionPrefix(StringRef prefix, StringRef name) { |
| return name.startswith(prefix) || name == prefix.drop_back(); |
| } |
| |
| static StringRef getOutputSectionName(const InputSectionBase *s) { |
| if (config->relocatable) |
| return s->name; |
| |
| // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want |
| // to emit .rela.text.foo as .rela.text.bar for consistency (this is not |
| // technically required, but not doing it is odd). This code guarantees that. |
| if (auto *isec = dyn_cast<InputSection>(s)) { |
| if (InputSectionBase *rel = isec->getRelocatedSection()) { |
| OutputSection *out = rel->getOutputSection(); |
| if (s->type == SHT_RELA) |
| return saver.save(".rela" + out->name); |
| return saver.save(".rel" + out->name); |
| } |
| } |
| |
| // A BssSection created for a common symbol is identified as "COMMON" in |
| // linker scripts. It should go to .bss section. |
| if (s->name == "COMMON") |
| return ".bss"; |
| |
| if (script->hasSectionsCommand) |
| return s->name; |
| |
| // When no SECTIONS is specified, emulate GNU ld's internal linker scripts |
| // by grouping sections with certain prefixes. |
| |
| // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.", |
| // ".text.unlikely.", ".text.startup." or ".text.exit." before others. |
| // We provide an option -z keep-text-section-prefix to group such sections |
| // into separate output sections. This is more flexible. See also |
| // sortISDBySectionOrder(). |
| // ".text.unknown" means the hotness of the section is unknown. When |
| // SampleFDO is used, if a function doesn't have sample, it could be very |
| // cold or it could be a new function never being sampled. Those functions |
| // will be kept in the ".text.unknown" section. |
| // ".text.split." holds symbols which are split out from functions in other |
| // input sections. For example, with -fsplit-machine-functions, placing the |
| // cold parts in .text.split instead of .text.unlikely mitigates against poor |
| // profile inaccuracy. Techniques such as hugepage remapping can make |
| // conservative decisions at the section granularity. |
| if (config->zKeepTextSectionPrefix) |
| for (StringRef v : {".text.hot.", ".text.unknown.", ".text.unlikely.", |
| ".text.startup.", ".text.exit.", ".text.split."}) |
| if (isSectionPrefix(v, s->name)) |
| return v.drop_back(); |
| |
| for (StringRef v : |
| {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", |
| ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", |
| ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) |
| if (isSectionPrefix(v, s->name)) |
| return v.drop_back(); |
| |
| return s->name; |
| } |
| |
| uint64_t ExprValue::getValue() const { |
| if (sec) |
| return alignTo(sec->getOutputSection()->addr + sec->getOffset(val), |
| alignment); |
| return alignTo(val, alignment); |
| } |
| |
| uint64_t ExprValue::getSecAddr() const { |
| return sec ? sec->getOutputSection()->addr + sec->getOffset(0) : 0; |
| } |
| |
| uint64_t ExprValue::getSectionOffset() const { |
| // If the alignment is trivial, we don't have to compute the full |
| // value to know the offset. This allows this function to succeed in |
| // cases where the output section is not yet known. |
| if (alignment == 1 && !sec) |
| return val; |
| return getValue() - getSecAddr(); |
| } |
| |
| OutputSection *LinkerScript::createOutputSection(StringRef name, |
| StringRef location) { |
| OutputSection *&secRef = nameToOutputSection[name]; |
| OutputSection *sec; |
| if (secRef && secRef->location.empty()) { |
| // There was a forward reference. |
| sec = secRef; |
| } else { |
| sec = make<OutputSection>(name, SHT_PROGBITS, 0); |
| if (!secRef) |
| secRef = sec; |
| } |
| sec->location = std::string(location); |
| return sec; |
| } |
| |
| OutputSection *LinkerScript::getOrCreateOutputSection(StringRef name) { |
| OutputSection *&cmdRef = nameToOutputSection[name]; |
| if (!cmdRef) |
| cmdRef = make<OutputSection>(name, SHT_PROGBITS, 0); |
| return cmdRef; |
| } |
| |
| // Expands the memory region by the specified size. |
| static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size, |
| StringRef secName) { |
| memRegion->curPos += size; |
| uint64_t newSize = memRegion->curPos - (memRegion->origin)().getValue(); |
| uint64_t length = (memRegion->length)().getValue(); |
| if (newSize > length) |
| error("section '" + secName + "' will not fit in region '" + |
| memRegion->name + "': overflowed by " + Twine(newSize - length) + |
| " bytes"); |
| } |
| |
| void LinkerScript::expandMemoryRegions(uint64_t size) { |
| if (ctx->memRegion) |
| expandMemoryRegion(ctx->memRegion, size, ctx->outSec->name); |
| // Only expand the LMARegion if it is different from memRegion. |
| if (ctx->lmaRegion && ctx->memRegion != ctx->lmaRegion) |
| expandMemoryRegion(ctx->lmaRegion, size, ctx->outSec->name); |
| } |
| |
| void LinkerScript::expandOutputSection(uint64_t size) { |
| ctx->outSec->size += size; |
| expandMemoryRegions(size); |
| } |
| |
| void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) { |
| uint64_t val = e().getValue(); |
| if (val < dot && inSec) |
| error(loc + ": unable to move location counter backward for: " + |
| ctx->outSec->name); |
| |
| // Update to location counter means update to section size. |
| if (inSec) |
| expandOutputSection(val - dot); |
| |
| dot = val; |
| } |
| |
| // Used for handling linker symbol assignments, for both finalizing |
| // their values and doing early declarations. Returns true if symbol |
| // should be defined from linker script. |
| static bool shouldDefineSym(SymbolAssignment *cmd) { |
| if (cmd->name == ".") |
| return false; |
| |
| if (!cmd->provide) |
| return true; |
| |
| // If a symbol was in PROVIDE(), we need to define it only |
| // when it is a referenced undefined symbol. |
| Symbol *b = symtab->find(cmd->name); |
| if (b && !b->isDefined()) |
| return true; |
| return false; |
| } |
| |
| // Called by processSymbolAssignments() to assign definitions to |
| // linker-script-defined symbols. |
| void LinkerScript::addSymbol(SymbolAssignment *cmd) { |
| if (!shouldDefineSym(cmd)) |
| return; |
| |
| // Define a symbol. |
| ExprValue value = cmd->expression(); |
| SectionBase *sec = value.isAbsolute() ? nullptr : value.sec; |
| uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; |
| |
| // When this function is called, section addresses have not been |
| // fixed yet. So, we may or may not know the value of the RHS |
| // expression. |
| // |
| // For example, if an expression is `x = 42`, we know x is always 42. |
| // However, if an expression is `x = .`, there's no way to know its |
| // value at the moment. |
| // |
| // We want to set symbol values early if we can. This allows us to |
| // use symbols as variables in linker scripts. Doing so allows us to |
| // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`. |
| uint64_t symValue = value.sec ? 0 : value.getValue(); |
| |
| Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, value.type, |
| symValue, 0, sec); |
| |
| Symbol *sym = symtab->insert(cmd->name); |
| sym->mergeProperties(newSym); |
| sym->replace(newSym); |
| cmd->sym = cast<Defined>(sym); |
| } |
| |
| // This function is called from LinkerScript::declareSymbols. |
| // It creates a placeholder symbol if needed. |
| static void declareSymbol(SymbolAssignment *cmd) { |
| if (!shouldDefineSym(cmd)) |
| return; |
| |
| uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; |
| Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 0, 0, |
| nullptr); |
| |
| // We can't calculate final value right now. |
| Symbol *sym = symtab->insert(cmd->name); |
| sym->mergeProperties(newSym); |
| sym->replace(newSym); |
| |
| cmd->sym = cast<Defined>(sym); |
| cmd->provide = false; |
| sym->scriptDefined = true; |
| } |
| |
| using SymbolAssignmentMap = |
| DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>; |
| |
| // Collect section/value pairs of linker-script-defined symbols. This is used to |
| // check whether symbol values converge. |
| static SymbolAssignmentMap getSymbolAssignmentValues( |
| const std::vector<SectionCommand *> §ionCommands) { |
| SymbolAssignmentMap ret; |
| for (SectionCommand *cmd : sectionCommands) { |
| if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { |
| if (assign->sym) // sym is nullptr for dot. |
| ret.try_emplace(assign->sym, std::make_pair(assign->sym->section, |
| assign->sym->value)); |
| continue; |
| } |
| for (SectionCommand *subCmd : cast<OutputSection>(cmd)->commands) |
| if (auto *assign = dyn_cast<SymbolAssignment>(subCmd)) |
| if (assign->sym) |
| ret.try_emplace(assign->sym, std::make_pair(assign->sym->section, |
| assign->sym->value)); |
| } |
| return ret; |
| } |
| |
| // Returns the lexicographical smallest (for determinism) Defined whose |
| // section/value has changed. |
| static const Defined * |
| getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) { |
| const Defined *changed = nullptr; |
| for (auto &it : oldValues) { |
| const Defined *sym = it.first; |
| if (std::make_pair(sym->section, sym->value) != it.second && |
| (!changed || sym->getName() < changed->getName())) |
| changed = sym; |
| } |
| return changed; |
| } |
| |
| // Process INSERT [AFTER|BEFORE] commands. For each command, we move the |
| // specified output section to the designated place. |
| void LinkerScript::processInsertCommands() { |
| std::vector<OutputSection *> moves; |
| for (const InsertCommand &cmd : insertCommands) { |
| for (StringRef name : cmd.names) { |
| // If base is empty, it may have been discarded by |
| // adjustSectionsBeforeSorting(). We do not handle such output sections. |
| auto from = llvm::find_if(sectionCommands, [&](SectionCommand *subCmd) { |
| return isa<OutputSection>(subCmd) && |
| cast<OutputSection>(subCmd)->name == name; |
| }); |
| if (from == sectionCommands.end()) |
| continue; |
| moves.push_back(cast<OutputSection>(*from)); |
| sectionCommands.erase(from); |
| } |
| |
| auto insertPos = |
| llvm::find_if(sectionCommands, [&cmd](SectionCommand *subCmd) { |
| auto *to = dyn_cast<OutputSection>(subCmd); |
| return to != nullptr && to->name == cmd.where; |
| }); |
| if (insertPos == sectionCommands.end()) { |
| error("unable to insert " + cmd.names[0] + |
| (cmd.isAfter ? " after " : " before ") + cmd.where); |
| } else { |
| if (cmd.isAfter) |
| ++insertPos; |
| sectionCommands.insert(insertPos, moves.begin(), moves.end()); |
| } |
| moves.clear(); |
| } |
| } |
| |
| // Symbols defined in script should not be inlined by LTO. At the same time |
| // we don't know their final values until late stages of link. Here we scan |
| // over symbol assignment commands and create placeholder symbols if needed. |
| void LinkerScript::declareSymbols() { |
| assert(!ctx); |
| for (SectionCommand *cmd : sectionCommands) { |
| if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { |
| declareSymbol(assign); |
| continue; |
| } |
| |
| // If the output section directive has constraints, |
| // we can't say for sure if it is going to be included or not. |
| // Skip such sections for now. Improve the checks if we ever |
| // need symbols from that sections to be declared early. |
| auto *sec = cast<OutputSection>(cmd); |
| if (sec->constraint != ConstraintKind::NoConstraint) |
| continue; |
| for (SectionCommand *cmd : sec->commands) |
| if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) |
| declareSymbol(assign); |
| } |
| } |
| |
| // This function is called from assignAddresses, while we are |
| // fixing the output section addresses. This function is supposed |
| // to set the final value for a given symbol assignment. |
| void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) { |
| if (cmd->name == ".") { |
| setDot(cmd->expression, cmd->location, inSec); |
| return; |
| } |
| |
| if (!cmd->sym) |
| return; |
| |
| ExprValue v = cmd->expression(); |
| if (v.isAbsolute()) { |
| cmd->sym->section = nullptr; |
| cmd->sym->value = v.getValue(); |
| } else { |
| cmd->sym->section = v.sec; |
| cmd->sym->value = v.getSectionOffset(); |
| } |
| cmd->sym->type = v.type; |
| } |
| |
| static inline StringRef getFilename(const InputFile *file) { |
| return file ? file->getNameForScript() : StringRef(); |
| } |
| |
| bool InputSectionDescription::matchesFile(const InputFile *file) const { |
| if (filePat.isTrivialMatchAll()) |
| return true; |
| |
| if (!matchesFileCache || matchesFileCache->first != file) |
| matchesFileCache.emplace(file, filePat.match(getFilename(file))); |
| |
| return matchesFileCache->second; |
| } |
| |
| bool SectionPattern::excludesFile(const InputFile *file) const { |
| if (excludedFilePat.empty()) |
| return false; |
| |
| if (!excludesFileCache || excludesFileCache->first != file) |
| excludesFileCache.emplace(file, excludedFilePat.match(getFilename(file))); |
| |
| return excludesFileCache->second; |
| } |
| |
| bool LinkerScript::shouldKeep(InputSectionBase *s) { |
| for (InputSectionDescription *id : keptSections) |
| if (id->matchesFile(s->file)) |
| for (SectionPattern &p : id->sectionPatterns) |
| if (p.sectionPat.match(s->name) && |
| (s->flags & id->withFlags) == id->withFlags && |
| (s->flags & id->withoutFlags) == 0) |
| return true; |
| return false; |
| } |
| |
| // A helper function for the SORT() command. |
| static bool matchConstraints(ArrayRef<InputSectionBase *> sections, |
| ConstraintKind kind) { |
| if (kind == ConstraintKind::NoConstraint) |
| return true; |
| |
| bool isRW = llvm::any_of( |
| sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; }); |
| |
| return (isRW && kind == ConstraintKind::ReadWrite) || |
| (!isRW && kind == ConstraintKind::ReadOnly); |
| } |
| |
| static void sortSections(MutableArrayRef<InputSectionBase *> vec, |
| SortSectionPolicy k) { |
| auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) { |
| // ">" is not a mistake. Sections with larger alignments are placed |
| // before sections with smaller alignments in order to reduce the |
| // amount of padding necessary. This is compatible with GNU. |
| return a->alignment > b->alignment; |
| }; |
| auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) { |
| return a->name < b->name; |
| }; |
| auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) { |
| return getPriority(a->name) < getPriority(b->name); |
| }; |
| |
| switch (k) { |
| case SortSectionPolicy::Default: |
| case SortSectionPolicy::None: |
| return; |
| case SortSectionPolicy::Alignment: |
| return llvm::stable_sort(vec, alignmentComparator); |
| case SortSectionPolicy::Name: |
| return llvm::stable_sort(vec, nameComparator); |
| case SortSectionPolicy::Priority: |
| return llvm::stable_sort(vec, priorityComparator); |
| } |
| } |
| |
| // Sort sections as instructed by SORT-family commands and --sort-section |
| // option. Because SORT-family commands can be nested at most two depth |
| // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command |
| // line option is respected even if a SORT command is given, the exact |
| // behavior we have here is a bit complicated. Here are the rules. |
| // |
| // 1. If two SORT commands are given, --sort-section is ignored. |
| // 2. If one SORT command is given, and if it is not SORT_NONE, |
| // --sort-section is handled as an inner SORT command. |
| // 3. If one SORT command is given, and if it is SORT_NONE, don't sort. |
| // 4. If no SORT command is given, sort according to --sort-section. |
| static void sortInputSections(MutableArrayRef<InputSectionBase *> vec, |
| SortSectionPolicy outer, |
| SortSectionPolicy inner) { |
| if (outer == SortSectionPolicy::None) |
| return; |
| |
| if (inner == SortSectionPolicy::Default) |
| sortSections(vec, config->sortSection); |
| else |
| sortSections(vec, inner); |
| sortSections(vec, outer); |
| } |
| |
| // Compute and remember which sections the InputSectionDescription matches. |
| std::vector<InputSectionBase *> |
| LinkerScript::computeInputSections(const InputSectionDescription *cmd, |
| ArrayRef<InputSectionBase *> sections) { |
| std::vector<InputSectionBase *> ret; |
| std::vector<size_t> indexes; |
| DenseSet<size_t> seen; |
| auto sortByPositionThenCommandLine = [&](size_t begin, size_t end) { |
| llvm::sort(MutableArrayRef<size_t>(indexes).slice(begin, end - begin)); |
| for (size_t i = begin; i != end; ++i) |
| ret[i] = sections[indexes[i]]; |
| sortInputSections( |
| MutableArrayRef<InputSectionBase *>(ret).slice(begin, end - begin), |
| config->sortSection, SortSectionPolicy::None); |
| }; |
| |
| // Collects all sections that satisfy constraints of Cmd. |
| size_t sizeAfterPrevSort = 0; |
| for (const SectionPattern &pat : cmd->sectionPatterns) { |
| size_t sizeBeforeCurrPat = ret.size(); |
| |
| for (size_t i = 0, e = sections.size(); i != e; ++i) { |
| // Skip if the section is dead or has been matched by a previous input |
| // section description or a previous pattern. |
| InputSectionBase *sec = sections[i]; |
| if (!sec->isLive() || sec->parent || seen.contains(i)) |
| continue; |
| |
| // For --emit-relocs we have to ignore entries like |
| // .rela.dyn : { *(.rela.data) } |
| // which are common because they are in the default bfd script. |
| // We do not ignore SHT_REL[A] linker-synthesized sections here because |
| // want to support scripts that do custom layout for them. |
| if (isa<InputSection>(sec) && |
| cast<InputSection>(sec)->getRelocatedSection()) |
| continue; |
| |
| // Check the name early to improve performance in the common case. |
| if (!pat.sectionPat.match(sec->name)) |
| continue; |
| |
| if (!cmd->matchesFile(sec->file) || pat.excludesFile(sec->file) || |
| (sec->flags & cmd->withFlags) != cmd->withFlags || |
| (sec->flags & cmd->withoutFlags) != 0) |
| continue; |
| |
| ret.push_back(sec); |
| indexes.push_back(i); |
| seen.insert(i); |
| } |
| |
| if (pat.sortOuter == SortSectionPolicy::Default) |
| continue; |
| |
| // Matched sections are ordered by radix sort with the keys being (SORT*, |
| // --sort-section, input order), where SORT* (if present) is most |
| // significant. |
| // |
| // Matched sections between the previous SORT* and this SORT* are sorted by |
| // (--sort-alignment, input order). |
| sortByPositionThenCommandLine(sizeAfterPrevSort, sizeBeforeCurrPat); |
| // Matched sections by this SORT* pattern are sorted using all 3 keys. |
| // ret[sizeBeforeCurrPat,ret.size()) are already in the input order, so we |
| // just sort by sortOuter and sortInner. |
| sortInputSections( |
| MutableArrayRef<InputSectionBase *>(ret).slice(sizeBeforeCurrPat), |
| pat.sortOuter, pat.sortInner); |
| sizeAfterPrevSort = ret.size(); |
| } |
| // Matched sections after the last SORT* are sorted by (--sort-alignment, |
| // input order). |
| sortByPositionThenCommandLine(sizeAfterPrevSort, ret.size()); |
| return ret; |
| } |
| |
| void LinkerScript::discard(InputSectionBase *s) { |
| if (s == in.shStrTab || s == mainPart->relrDyn) |
| error("discarding " + s->name + " section is not allowed"); |
| |
| // You can discard .hash and .gnu.hash sections by linker scripts. Since |
| // they are synthesized sections, we need to handle them differently than |
| // other regular sections. |
| if (s == mainPart->gnuHashTab) |
| mainPart->gnuHashTab = nullptr; |
| if (s == mainPart->hashTab) |
| mainPart->hashTab = nullptr; |
| |
| s->markDead(); |
| s->parent = nullptr; |
| for (InputSection *ds : s->dependentSections) |
| discard(ds); |
| } |
| |
| void LinkerScript::discardSynthetic(OutputSection &outCmd) { |
| for (Partition &part : partitions) { |
| if (!part.armExidx || !part.armExidx->isLive()) |
| continue; |
| std::vector<InputSectionBase *> secs(part.armExidx->exidxSections.begin(), |
| part.armExidx->exidxSections.end()); |
| for (SectionCommand *cmd : outCmd.commands) |
| if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) { |
| std::vector<InputSectionBase *> matches = |
| computeInputSections(isd, secs); |
| for (InputSectionBase *s : matches) |
| discard(s); |
| } |
| } |
| } |
| |
| std::vector<InputSectionBase *> |
| LinkerScript::createInputSectionList(OutputSection &outCmd) { |
| std::vector<InputSectionBase *> ret; |
| |
| for (SectionCommand *cmd : outCmd.commands) { |
| if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) { |
| isd->sectionBases = computeInputSections(isd, inputSections); |
| for (InputSectionBase *s : isd->sectionBases) |
| s->parent = &outCmd; |
| ret.insert(ret.end(), isd->sectionBases.begin(), isd->sectionBases.end()); |
| } |
| } |
| return ret; |
| } |
| |
| // Create output sections described by SECTIONS commands. |
| void LinkerScript::processSectionCommands() { |
| auto process = [this](OutputSection *osec) { |
| std::vector<InputSectionBase *> v = createInputSectionList(*osec); |
| |
| // The output section name `/DISCARD/' is special. |
| // Any input section assigned to it is discarded. |
| if (osec->name == "/DISCARD/") { |
| for (InputSectionBase *s : v) |
| discard(s); |
| discardSynthetic(*osec); |
| osec->commands.clear(); |
| return false; |
| } |
| |
| // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive |
| // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input |
| // sections satisfy a given constraint. If not, a directive is handled |
| // as if it wasn't present from the beginning. |
| // |
| // Because we'll iterate over SectionCommands many more times, the easy |
| // way to "make it as if it wasn't present" is to make it empty. |
| if (!matchConstraints(v, osec->constraint)) { |
| for (InputSectionBase *s : v) |
| s->parent = nullptr; |
| osec->commands.clear(); |
| return false; |
| } |
| |
| // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign |
| // is given, input sections are aligned to that value, whether the |
| // given value is larger or smaller than the original section alignment. |
| if (osec->subalignExpr) { |
| uint32_t subalign = osec->subalignExpr().getValue(); |
| for (InputSectionBase *s : v) |
| s->alignment = subalign; |
| } |
| |
| // Set the partition field the same way OutputSection::recordSection() |
| // does. Partitions cannot be used with the SECTIONS command, so this is |
| // always 1. |
| osec->partition = 1; |
| return true; |
| }; |
| |
| // Process OVERWRITE_SECTIONS first so that it can overwrite the main script |
| // or orphans. |
| DenseMap<StringRef, OutputSection *> map; |
| size_t i = 0; |
| for (OutputSection *osec : overwriteSections) |
| if (process(osec) && !map.try_emplace(osec->name, osec).second) |
| warn("OVERWRITE_SECTIONS specifies duplicate " + osec->name); |
| for (SectionCommand *&base : sectionCommands) |
| if (auto *osec = dyn_cast<OutputSection>(base)) { |
| if (OutputSection *overwrite = map.lookup(osec->name)) { |
| log(overwrite->location + " overwrites " + osec->name); |
| overwrite->sectionIndex = i++; |
| base = overwrite; |
| } else if (process(osec)) { |
| osec->sectionIndex = i++; |
| } |
| } |
| |
| // If an OVERWRITE_SECTIONS specified output section is not in |
| // sectionCommands, append it to the end. The section will be inserted by |
| // orphan placement. |
| for (OutputSection *osec : overwriteSections) |
| if (osec->partition == 1 && osec->sectionIndex == UINT32_MAX) |
| sectionCommands.push_back(osec); |
| } |
| |
| void LinkerScript::processSymbolAssignments() { |
| // Dot outside an output section still represents a relative address, whose |
| // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section |
| // that fills the void outside a section. It has an index of one, which is |
| // indistinguishable from any other regular section index. |
| aether = make<OutputSection>("", 0, SHF_ALLOC); |
| aether->sectionIndex = 1; |
| |
| // ctx captures the local AddressState and makes it accessible deliberately. |
| // This is needed as there are some cases where we cannot just thread the |
| // current state through to a lambda function created by the script parser. |
| AddressState state; |
| ctx = &state; |
| ctx->outSec = aether; |
| |
| for (SectionCommand *cmd : sectionCommands) { |
| if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) |
| addSymbol(assign); |
| else |
| for (SectionCommand *subCmd : cast<OutputSection>(cmd)->commands) |
| if (auto *assign = dyn_cast<SymbolAssignment>(subCmd)) |
| addSymbol(assign); |
| } |
| |
| ctx = nullptr; |
| } |
| |
| static OutputSection *findByName(ArrayRef<SectionCommand *> vec, |
| StringRef name) { |
| for (SectionCommand *cmd : vec) |
| if (auto *sec = dyn_cast<OutputSection>(cmd)) |
| if (sec->name == name) |
| return sec; |
| return nullptr; |
| } |
| |
| static OutputSection *createSection(InputSectionBase *isec, |
| StringRef outsecName) { |
| OutputSection *sec = script->createOutputSection(outsecName, "<internal>"); |
| sec->recordSection(isec); |
| return sec; |
| } |
| |
| static OutputSection * |
| addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map, |
| InputSectionBase *isec, StringRef outsecName) { |
| // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r |
| // option is given. A section with SHT_GROUP defines a "section group", and |
| // its members have SHF_GROUP attribute. Usually these flags have already been |
| // stripped by InputFiles.cpp as section groups are processed and uniquified. |
| // However, for the -r option, we want to pass through all section groups |
| // as-is because adding/removing members or merging them with other groups |
| // change their semantics. |
| if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP)) |
| return createSection(isec, outsecName); |
| |
| // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have |
| // relocation sections .rela.foo and .rela.bar for example. Most tools do |
| // not allow multiple REL[A] sections for output section. Hence we |
| // should combine these relocation sections into single output. |
| // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any |
| // other REL[A] sections created by linker itself. |
| if (!isa<SyntheticSection>(isec) && |
| (isec->type == SHT_REL || isec->type == SHT_RELA)) { |
| auto *sec = cast<InputSection>(isec); |
| OutputSection *out = sec->getRelocatedSection()->getOutputSection(); |
| |
| if (out->relocationSection) { |
| out->relocationSection->recordSection(sec); |
| return nullptr; |
| } |
| |
| out->relocationSection = createSection(isec, outsecName); |
| return out->relocationSection; |
| } |
| |
| // The ELF spec just says |
| // ---------------------------------------------------------------- |
| // In the first phase, input sections that match in name, type and |
| // attribute flags should be concatenated into single sections. |
| // ---------------------------------------------------------------- |
| // |
| // However, it is clear that at least some flags have to be ignored for |
| // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be |
| // ignored. We should not have two output .text sections just because one was |
| // in a group and another was not for example. |
| // |
| // It also seems that wording was a late addition and didn't get the |
| // necessary scrutiny. |
| // |
| // Merging sections with different flags is expected by some users. One |
| // reason is that if one file has |
| // |
| // int *const bar __attribute__((section(".foo"))) = (int *)0; |
| // |
| // gcc with -fPIC will produce a read only .foo section. But if another |
| // file has |
| // |
| // int zed; |
| // int *const bar __attribute__((section(".foo"))) = (int *)&zed; |
| // |
| // gcc with -fPIC will produce a read write section. |
| // |
| // Last but not least, when using linker script the merge rules are forced by |
| // the script. Unfortunately, linker scripts are name based. This means that |
| // expressions like *(.foo*) can refer to multiple input sections with |
| // different flags. We cannot put them in different output sections or we |
| // would produce wrong results for |
| // |
| // start = .; *(.foo.*) end = .; *(.bar) |
| // |
| // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to |
| // another. The problem is that there is no way to layout those output |
| // sections such that the .foo sections are the only thing between the start |
| // and end symbols. |
| // |
| // Given the above issues, we instead merge sections by name and error on |
| // incompatible types and flags. |
| TinyPtrVector<OutputSection *> &v = map[outsecName]; |
| for (OutputSection *sec : v) { |
| if (sec->partition != isec->partition) |
| continue; |
| |
| if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) { |
| // Merging two SHF_LINK_ORDER sections with different sh_link fields will |
| // change their semantics, so we only merge them in -r links if they will |
| // end up being linked to the same output section. The casts are fine |
| // because everything in the map was created by the orphan placement code. |
| auto *firstIsec = cast<InputSectionBase>( |
| cast<InputSectionDescription>(sec->commands[0])->sectionBases[0]); |
| OutputSection *firstIsecOut = |
| firstIsec->flags & SHF_LINK_ORDER |
| ? firstIsec->getLinkOrderDep()->getOutputSection() |
| : nullptr; |
| if (firstIsecOut != isec->getLinkOrderDep()->getOutputSection()) |
| continue; |
| } |
| |
| sec->recordSection(isec); |
| return nullptr; |
| } |
| |
| OutputSection *sec = createSection(isec, outsecName); |
| v.push_back(sec); |
| return sec; |
| } |
| |
| // Add sections that didn't match any sections command. |
| void LinkerScript::addOrphanSections() { |
| StringMap<TinyPtrVector<OutputSection *>> map; |
| std::vector<OutputSection *> v; |
| |
| std::function<void(InputSectionBase *)> add; |
| add = [&](InputSectionBase *s) { |
| if (s->isLive() && !s->parent) { |
| orphanSections.push_back(s); |
| |
| StringRef name = getOutputSectionName(s); |
| if (config->unique) { |
| v.push_back(createSection(s, name)); |
| } else if (OutputSection *sec = findByName(sectionCommands, name)) { |
| sec->recordSection(s); |
| } else { |
| if (OutputSection *os = addInputSec(map, s, name)) |
| v.push_back(os); |
| assert(isa<MergeInputSection>(s) || |
| s->getOutputSection()->sectionIndex == UINT32_MAX); |
| } |
| } |
| |
| if (config->relocatable) |
| for (InputSectionBase *depSec : s->dependentSections) |
| if (depSec->flags & SHF_LINK_ORDER) |
| add(depSec); |
| }; |
| |
| // For further --emit-reloc handling code we need target output section |
| // to be created before we create relocation output section, so we want |
| // to create target sections first. We do not want priority handling |
| // for synthetic sections because them are special. |
| for (InputSectionBase *isec : inputSections) { |
| // In -r links, SHF_LINK_ORDER sections are added while adding their parent |
| // sections because we need to know the parent's output section before we |
| // can select an output section for the SHF_LINK_ORDER section. |
| if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) |
| continue; |
| |
| if (auto *sec = dyn_cast<InputSection>(isec)) |
| if (InputSectionBase *rel = sec->getRelocatedSection()) |
| if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent)) |
| add(relIS); |
| add(isec); |
| } |
| |
| // If no SECTIONS command was given, we should insert sections commands |
| // before others, so that we can handle scripts which refers them, |
| // for example: "foo = ABSOLUTE(ADDR(.text)));". |
| // When SECTIONS command is present we just add all orphans to the end. |
| if (hasSectionsCommand) |
| sectionCommands.insert(sectionCommands.end(), v.begin(), v.end()); |
| else |
| sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end()); |
| } |
| |
| void LinkerScript::diagnoseOrphanHandling() const { |
| llvm::TimeTraceScope timeScope("Diagnose orphan sections"); |
| if (config->orphanHandling == OrphanHandlingPolicy::Place) |
| return; |
| for (const InputSectionBase *sec : orphanSections) { |
| // Input SHT_REL[A] retained by --emit-relocs are ignored by |
| // computeInputSections(). Don't warn/error. |
| if (isa<InputSection>(sec) && |
| cast<InputSection>(sec)->getRelocatedSection()) |
| continue; |
| |
| StringRef name = getOutputSectionName(sec); |
| if (config->orphanHandling == OrphanHandlingPolicy::Error) |
| error(toString(sec) + " is being placed in '" + name + "'"); |
| else |
| warn(toString(sec) + " is being placed in '" + name + "'"); |
| } |
| } |
| |
| // This function searches for a memory region to place the given output |
| // section in. If found, a pointer to the appropriate memory region is |
| // returned in the first member of the pair. Otherwise, a nullptr is returned. |
| // The second member of the pair is a hint that should be passed to the |
| // subsequent call of this method. |
| std::pair<MemoryRegion *, MemoryRegion *> |
| LinkerScript::findMemoryRegion(OutputSection *sec, MemoryRegion *hint) { |
| // Non-allocatable sections are not part of the process image. |
| if (!(sec->flags & SHF_ALLOC)) { |
| if (!sec->memoryRegionName.empty()) |
| warn("ignoring memory region assignment for non-allocatable section '" + |
| sec->name + "'"); |
| return {nullptr, nullptr}; |
| } |
| |
| // If a memory region name was specified in the output section command, |
| // then try to find that region first. |
| if (!sec->memoryRegionName.empty()) { |
| if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName)) |
| return {m, m}; |
| error("memory region '" + sec->memoryRegionName + "' not declared"); |
| return {nullptr, nullptr}; |
| } |
| |
| // If at least one memory region is defined, all sections must |
| // belong to some memory region. Otherwise, we don't need to do |
| // anything for memory regions. |
| if (memoryRegions.empty()) |
| return {nullptr, nullptr}; |
| |
| // An orphan section should continue the previous memory region. |
| if (sec->sectionIndex == UINT32_MAX && hint) |
| return {hint, hint}; |
| |
| // See if a region can be found by matching section flags. |
| for (auto &pair : memoryRegions) { |
| MemoryRegion *m = pair.second; |
| if (m->compatibleWith(sec->flags)) |
| return {m, nullptr}; |
| } |
| |
| // Otherwise, no suitable region was found. |
| error("no memory region specified for section '" + sec->name + "'"); |
| return {nullptr, nullptr}; |
| } |
| |
| static OutputSection *findFirstSection(PhdrEntry *load) { |
| for (OutputSection *sec : outputSections) |
| if (sec->ptLoad == load) |
| return sec; |
| return nullptr; |
| } |
| |
| // This function assigns offsets to input sections and an output section |
| // for a single sections command (e.g. ".text { *(.text); }"). |
| void LinkerScript::assignOffsets(OutputSection *sec) { |
| const bool isTbss = (sec->flags & SHF_TLS) && sec->type == SHT_NOBITS; |
| const bool sameMemRegion = ctx->memRegion == sec->memRegion; |
| const bool prevLMARegionIsDefault = ctx->lmaRegion == nullptr; |
| const uint64_t savedDot = dot; |
| ctx->memRegion = sec->memRegion; |
| ctx->lmaRegion = sec->lmaRegion; |
| |
| if (!(sec->flags & SHF_ALLOC)) { |
| // Non-SHF_ALLOC sections have zero addresses. |
| dot = 0; |
| } else if (isTbss) { |
| // Allow consecutive SHF_TLS SHT_NOBITS output sections. The address range |
| // starts from the end address of the previous tbss section. |
| if (ctx->tbssAddr == 0) |
| ctx->tbssAddr = dot; |
| else |
| dot = ctx->tbssAddr; |
| } else { |
| if (ctx->memRegion) |
| dot = ctx->memRegion->curPos; |
| if (sec->addrExpr) |
| setDot(sec->addrExpr, sec->location, false); |
| |
| // If the address of the section has been moved forward by an explicit |
| // expression so that it now starts past the current curPos of the enclosing |
| // region, we need to expand the current region to account for the space |
| // between the previous section, if any, and the start of this section. |
| if (ctx->memRegion && ctx->memRegion->curPos < dot) |
| expandMemoryRegion(ctx->memRegion, dot - ctx->memRegion->curPos, |
| sec->name); |
| } |
| |
| ctx->outSec = sec; |
| if (sec->addrExpr && script->hasSectionsCommand) { |
| // The alignment is ignored. |
| sec->addr = dot; |
| } else { |
| // sec->alignment is the max of ALIGN and the maximum of input |
| // section alignments. |
| const uint64_t pos = dot; |
| dot = alignTo(dot, sec->alignment); |
| sec->addr = dot; |
| expandMemoryRegions(dot - pos); |
| } |
| |
| // ctx->lmaOffset is LMA minus VMA. If LMA is explicitly specified via AT() or |
| // AT>, recompute ctx->lmaOffset; otherwise, if both previous/current LMA |
| // region is the default, and the two sections are in the same memory region, |
| // reuse previous lmaOffset; otherwise, reset lmaOffset to 0. This emulates |
| // heuristics described in |
| // https://sourceware.org/binutils/docs/ld/Output-Section-LMA.html |
| if (sec->lmaExpr) { |
| ctx->lmaOffset = sec->lmaExpr().getValue() - dot; |
| } else if (MemoryRegion *mr = sec->lmaRegion) { |
| uint64_t lmaStart = alignTo(mr->curPos, sec->alignment); |
| if (mr->curPos < lmaStart) |
| expandMemoryRegion(mr, lmaStart - mr->curPos, sec->name); |
| ctx->lmaOffset = lmaStart - dot; |
| } else if (!sameMemRegion || !prevLMARegionIsDefault) { |
| ctx->lmaOffset = 0; |
| } |
| |
| // Propagate ctx->lmaOffset to the first "non-header" section. |
| if (PhdrEntry *l = sec->ptLoad) |
| if (sec == findFirstSection(l)) |
| l->lmaOffset = ctx->lmaOffset; |
| |
| // We can call this method multiple times during the creation of |
| // thunks and want to start over calculation each time. |
| sec->size = 0; |
| |
| // We visited SectionsCommands from processSectionCommands to |
| // layout sections. Now, we visit SectionsCommands again to fix |
| // section offsets. |
| for (SectionCommand *cmd : sec->commands) { |
| // This handles the assignments to symbol or to the dot. |
| if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { |
| assign->addr = dot; |
| assignSymbol(assign, true); |
| assign->size = dot - assign->addr; |
| continue; |
| } |
| |
| // Handle BYTE(), SHORT(), LONG(), or QUAD(). |
| if (auto *data = dyn_cast<ByteCommand>(cmd)) { |
| data->offset = dot - sec->addr; |
| dot += data->size; |
| expandOutputSection(data->size); |
| continue; |
| } |
| |
| // Handle a single input section description command. |
| // It calculates and assigns the offsets for each section and also |
| // updates the output section size. |
| for (InputSection *isec : cast<InputSectionDescription>(cmd)->sections) { |
| assert(isec->getParent() == sec); |
| const uint64_t pos = dot; |
| dot = alignTo(dot, isec->alignment); |
| isec->outSecOff = dot - sec->addr; |
| dot += isec->getSize(); |
| |
| // Update output section size after adding each section. This is so that |
| // SIZEOF works correctly in the case below: |
| // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) } |
| expandOutputSection(dot - pos); |
| } |
| } |
| |
| // Non-SHF_ALLOC sections do not affect the addresses of other OutputSections |
| // as they are not part of the process image. |
| if (!(sec->flags & SHF_ALLOC)) { |
| dot = savedDot; |
| } else if (isTbss) { |
| // NOBITS TLS sections are similar. Additionally save the end address. |
| ctx->tbssAddr = dot; |
| dot = savedDot; |
| } |
| } |
| |
| static bool isDiscardable(const OutputSection &sec) { |
| if (sec.name == "/DISCARD/") |
| return true; |
| |
| // We do not want to remove OutputSections with expressions that reference |
| // symbols even if the OutputSection is empty. We want to ensure that the |
| // expressions can be evaluated and report an error if they cannot. |
| if (sec.expressionsUseSymbols) |
| return false; |
| |
| // OutputSections may be referenced by name in ADDR and LOADADDR expressions, |
| // as an empty Section can has a valid VMA and LMA we keep the OutputSection |
| // to maintain the integrity of the other Expression. |
| if (sec.usedInExpression) |
| return false; |
| |
| for (SectionCommand *cmd : sec.commands) { |
| if (auto assign = dyn_cast<SymbolAssignment>(cmd)) |
| // Don't create empty output sections just for unreferenced PROVIDE |
| // symbols. |
| if (assign->name != "." && !assign->sym) |
| continue; |
| |
| if (!isa<InputSectionDescription>(*cmd)) |
| return false; |
| } |
| return true; |
| } |
| |
| bool LinkerScript::isDiscarded(const OutputSection *sec) const { |
| return hasSectionsCommand && (getFirstInputSection(sec) == nullptr) && |
| isDiscardable(*sec); |
| } |
| |
| static void maybePropagatePhdrs(OutputSection &sec, |
| std::vector<StringRef> &phdrs) { |
| if (sec.phdrs.empty()) { |
| // To match the bfd linker script behaviour, only propagate program |
| // headers to sections that are allocated. |
| if (sec.flags & SHF_ALLOC) |
| sec.phdrs = phdrs; |
| } else { |
| phdrs = sec.phdrs; |
| } |
| } |
| |
| void LinkerScript::adjustSectionsBeforeSorting() { |
| // If the output section contains only symbol assignments, create a |
| // corresponding output section. The issue is what to do with linker script |
| // like ".foo : { symbol = 42; }". One option would be to convert it to |
| // "symbol = 42;". That is, move the symbol out of the empty section |
| // description. That seems to be what bfd does for this simple case. The |
| // problem is that this is not completely general. bfd will give up and |
| // create a dummy section too if there is a ". = . + 1" inside the section |
| // for example. |
| // Given that we want to create the section, we have to worry what impact |
| // it will have on the link. For example, if we just create a section with |
| // 0 for flags, it would change which PT_LOADs are created. |
| // We could remember that particular section is dummy and ignore it in |
| // other parts of the linker, but unfortunately there are quite a few places |
| // that would need to change: |
| // * The program header creation. |
| // * The orphan section placement. |
| // * The address assignment. |
| // The other option is to pick flags that minimize the impact the section |
| // will have on the rest of the linker. That is why we copy the flags from |
| // the previous sections. Only a few flags are needed to keep the impact low. |
| uint64_t flags = SHF_ALLOC; |
| |
| std::vector<StringRef> defPhdrs; |
| for (SectionCommand *&cmd : sectionCommands) { |
| auto *sec = dyn_cast<OutputSection>(cmd); |
| if (!sec) |
| continue; |
| |
| // Handle align (e.g. ".foo : ALIGN(16) { ... }"). |
| if (sec->alignExpr) |
| sec->alignment = |
| std::max<uint32_t>(sec->alignment, sec->alignExpr().getValue()); |
| |
| // The input section might have been removed (if it was an empty synthetic |
| // section), but we at least know the flags. |
| if (sec->hasInputSections) |
| flags = sec->flags; |
| |
| // We do not want to keep any special flags for output section |
| // in case it is empty. |
| bool isEmpty = (getFirstInputSection(sec) == nullptr); |
| if (isEmpty) |
| sec->flags = flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) | |
| SHF_WRITE | SHF_EXECINSTR); |
| |
| // The code below may remove empty output sections. We should save the |
| // specified program headers (if exist) and propagate them to subsequent |
| // sections which do not specify program headers. |
| // An example of such a linker script is: |
| // SECTIONS { .empty : { *(.empty) } :rw |
| // .foo : { *(.foo) } } |
| // Note: at this point the order of output sections has not been finalized, |
| // because orphans have not been inserted into their expected positions. We |
| // will handle them in adjustSectionsAfterSorting(). |
| if (sec->sectionIndex != UINT32_MAX) |
| maybePropagatePhdrs(*sec, defPhdrs); |
| |
| if (isEmpty && isDiscardable(*sec)) { |
| sec->markDead(); |
| cmd = nullptr; |
| } |
| } |
| |
| // It is common practice to use very generic linker scripts. So for any |
| // given run some of the output sections in the script will be empty. |
| // We could create corresponding empty output sections, but that would |
| // clutter the output. |
| // We instead remove trivially empty sections. The bfd linker seems even |
| // more aggressive at removing them. |
| llvm::erase_if(sectionCommands, [&](SectionCommand *cmd) { return !cmd; }); |
| } |
| |
| void LinkerScript::adjustSectionsAfterSorting() { |
| // Try and find an appropriate memory region to assign offsets in. |
| MemoryRegion *hint = nullptr; |
| for (SectionCommand *cmd : sectionCommands) { |
| if (auto *sec = dyn_cast<OutputSection>(cmd)) { |
| if (!sec->lmaRegionName.empty()) { |
| if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName)) |
| sec->lmaRegion = m; |
| else |
| error("memory region '" + sec->lmaRegionName + "' not declared"); |
| } |
| std::tie(sec->memRegion, hint) = findMemoryRegion(sec, hint); |
| } |
| } |
| |
| // If output section command doesn't specify any segments, |
| // and we haven't previously assigned any section to segment, |
| // then we simply assign section to the very first load segment. |
| // Below is an example of such linker script: |
| // PHDRS { seg PT_LOAD; } |
| // SECTIONS { .aaa : { *(.aaa) } } |
| std::vector<StringRef> defPhdrs; |
| auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) { |
| return cmd.type == PT_LOAD; |
| }); |
| if (firstPtLoad != phdrsCommands.end()) |
| defPhdrs.push_back(firstPtLoad->name); |
| |
| // Walk the commands and propagate the program headers to commands that don't |
| // explicitly specify them. |
| for (SectionCommand *cmd : sectionCommands) |
| if (auto *sec = dyn_cast<OutputSection>(cmd)) |
| maybePropagatePhdrs(*sec, defPhdrs); |
| } |
| |
| static uint64_t computeBase(uint64_t min, bool allocateHeaders) { |
| // If there is no SECTIONS or if the linkerscript is explicit about program |
| // headers, do our best to allocate them. |
| if (!script->hasSectionsCommand || allocateHeaders) |
| return 0; |
| // Otherwise only allocate program headers if that would not add a page. |
| return alignDown(min, config->maxPageSize); |
| } |
| |
| // When the SECTIONS command is used, try to find an address for the file and |
| // program headers output sections, which can be added to the first PT_LOAD |
| // segment when program headers are created. |
| // |
| // We check if the headers fit below the first allocated section. If there isn't |
| // enough space for these sections, we'll remove them from the PT_LOAD segment, |
| // and we'll also remove the PT_PHDR segment. |
| void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &phdrs) { |
| uint64_t min = std::numeric_limits<uint64_t>::max(); |
| for (OutputSection *sec : outputSections) |
| if (sec->flags & SHF_ALLOC) |
| min = std::min<uint64_t>(min, sec->addr); |
| |
| auto it = llvm::find_if( |
| phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; }); |
| if (it == phdrs.end()) |
| return; |
| PhdrEntry *firstPTLoad = *it; |
| |
| bool hasExplicitHeaders = |
| llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) { |
| return cmd.hasPhdrs || cmd.hasFilehdr; |
| }); |
| bool paged = !config->omagic && !config->nmagic; |
| uint64_t headerSize = getHeaderSize(); |
| if ((paged || hasExplicitHeaders) && |
| headerSize <= min - computeBase(min, hasExplicitHeaders)) { |
| min = alignDown(min - headerSize, config->maxPageSize); |
| Out::elfHeader->addr = min; |
| Out::programHeaders->addr = min + Out::elfHeader->size; |
| return; |
| } |
| |
| // Error if we were explicitly asked to allocate headers. |
| if (hasExplicitHeaders) |
| error("could not allocate headers"); |
| |
| Out::elfHeader->ptLoad = nullptr; |
| Out::programHeaders->ptLoad = nullptr; |
| firstPTLoad->firstSec = findFirstSection(firstPTLoad); |
| |
| llvm::erase_if(phdrs, |
| [](const PhdrEntry *e) { return e->p_type == PT_PHDR; }); |
| } |
| |
| LinkerScript::AddressState::AddressState() { |
| for (auto &mri : script->memoryRegions) { |
| MemoryRegion *mr = mri.second; |
| mr->curPos = (mr->origin)().getValue(); |
| } |
| } |
| |
| // Here we assign addresses as instructed by linker script SECTIONS |
| // sub-commands. Doing that allows us to use final VA values, so here |
| // we also handle rest commands like symbol assignments and ASSERTs. |
| // Returns a symbol that has changed its section or value, or nullptr if no |
| // symbol has changed. |
| const Defined *LinkerScript::assignAddresses() { |
| if (script->hasSectionsCommand) { |
| // With a linker script, assignment of addresses to headers is covered by |
| // allocateHeaders(). |
| dot = config->imageBase.getValueOr(0); |
| } else { |
| // Assign addresses to headers right now. |
| dot = target->getImageBase(); |
| Out::elfHeader->addr = dot; |
| Out::programHeaders->addr = dot + Out::elfHeader->size; |
| dot += getHeaderSize(); |
| } |
| |
| AddressState state; |
| ctx = &state; |
| errorOnMissingSection = true; |
| ctx->outSec = aether; |
| |
| SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands); |
| for (SectionCommand *cmd : sectionCommands) { |
| if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { |
| assign->addr = dot; |
| assignSymbol(assign, false); |
| assign->size = dot - assign->addr; |
| continue; |
| } |
| assignOffsets(cast<OutputSection>(cmd)); |
| } |
| |
| ctx = nullptr; |
| return getChangedSymbolAssignment(oldValues); |
| } |
| |
| // Creates program headers as instructed by PHDRS linker script command. |
| std::vector<PhdrEntry *> LinkerScript::createPhdrs() { |
| std::vector<PhdrEntry *> ret; |
| |
| // Process PHDRS and FILEHDR keywords because they are not |
| // real output sections and cannot be added in the following loop. |
| for (const PhdrsCommand &cmd : phdrsCommands) { |
| PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags ? *cmd.flags : PF_R); |
| |
| if (cmd.hasFilehdr) |
| phdr->add(Out::elfHeader); |
| if (cmd.hasPhdrs) |
| phdr->add(Out::programHeaders); |
| |
| if (cmd.lmaExpr) { |
| phdr->p_paddr = cmd.lmaExpr().getValue(); |
| phdr->hasLMA = true; |
| } |
| ret.push_back(phdr); |
| } |
| |
| // Add output sections to program headers. |
| for (OutputSection *sec : outputSections) { |
| // Assign headers specified by linker script |
| for (size_t id : getPhdrIndices(sec)) { |
| ret[id]->add(sec); |
| if (!phdrsCommands[id].flags.hasValue()) |
| ret[id]->p_flags |= sec->getPhdrFlags(); |
| } |
| } |
| return ret; |
| } |
| |
| // Returns true if we should emit an .interp section. |
| // |
| // We usually do. But if PHDRS commands are given, and |
| // no PT_INTERP is there, there's no place to emit an |
| // .interp, so we don't do that in that case. |
| bool LinkerScript::needsInterpSection() { |
| if (phdrsCommands.empty()) |
| return true; |
| for (PhdrsCommand &cmd : phdrsCommands) |
| if (cmd.type == PT_INTERP) |
| return true; |
| return false; |
| } |
| |
| ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) { |
| if (name == ".") { |
| if (ctx) |
| return {ctx->outSec, false, dot - ctx->outSec->addr, loc}; |
| error(loc + ": unable to get location counter value"); |
| return 0; |
| } |
| |
| if (Symbol *sym = symtab->find(name)) { |
| if (auto *ds = dyn_cast<Defined>(sym)) { |
| ExprValue v{ds->section, false, ds->value, loc}; |
| // Retain the original st_type, so that the alias will get the same |
| // behavior in relocation processing. Any operation will reset st_type to |
| // STT_NOTYPE. |
| v.type = ds->type; |
| return v; |
| } |
| if (isa<SharedSymbol>(sym)) |
| if (!errorOnMissingSection) |
| return {nullptr, false, 0, loc}; |
| } |
| |
| error(loc + ": symbol not found: " + name); |
| return 0; |
| } |
| |
| // Returns the index of the segment named Name. |
| static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec, |
| StringRef name) { |
| for (size_t i = 0; i < vec.size(); ++i) |
| if (vec[i].name == name) |
| return i; |
| return None; |
| } |
| |
| // Returns indices of ELF headers containing specific section. Each index is a |
| // zero based number of ELF header listed within PHDRS {} script block. |
| std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *cmd) { |
| std::vector<size_t> ret; |
| |
| for (StringRef s : cmd->phdrs) { |
| if (Optional<size_t> idx = getPhdrIndex(phdrsCommands, s)) |
| ret.push_back(*idx); |
| else if (s != "NONE") |
| error(cmd->location + ": program header '" + s + |
| "' is not listed in PHDRS"); |
| } |
| return ret; |
| } |