| //===- InputSection.cpp ---------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InputSection.h" |
| #include "Config.h" |
| #include "EhFrame.h" |
| #include "InputFiles.h" |
| #include "LinkerScript.h" |
| #include "OutputSections.h" |
| #include "Relocations.h" |
| #include "SymbolTable.h" |
| #include "Symbols.h" |
| #include "SyntheticSections.h" |
| #include "Target.h" |
| #include "Thunks.h" |
| #include "lld/Common/ErrorHandler.h" |
| #include "lld/Common/Memory.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Compression.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/Threading.h" |
| #include "llvm/Support/xxhash.h" |
| #include <algorithm> |
| #include <mutex> |
| #include <set> |
| #include <unordered_set> |
| #include <vector> |
| |
| using namespace llvm; |
| using namespace llvm::ELF; |
| using namespace llvm::object; |
| using namespace llvm::support; |
| using namespace llvm::support::endian; |
| using namespace llvm::sys; |
| using namespace lld; |
| using namespace lld::elf; |
| |
| std::vector<InputSectionBase *> elf::inputSections; |
| DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax; |
| |
| // Returns a string to construct an error message. |
| std::string lld::toString(const InputSectionBase *sec) { |
| return (toString(sec->file) + ":(" + sec->name + ")").str(); |
| } |
| |
| template <class ELFT> |
| static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file, |
| const typename ELFT::Shdr &hdr) { |
| if (hdr.sh_type == SHT_NOBITS) |
| return makeArrayRef<uint8_t>(nullptr, hdr.sh_size); |
| return check(file.getObj().getSectionContents(hdr)); |
| } |
| |
| InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags, |
| uint32_t type, uint64_t entsize, |
| uint32_t link, uint32_t info, |
| uint32_t alignment, ArrayRef<uint8_t> data, |
| StringRef name, Kind sectionKind) |
| : SectionBase(sectionKind, name, flags, entsize, alignment, type, info, |
| link), |
| file(file), rawData(data) { |
| // In order to reduce memory allocation, we assume that mergeable |
| // sections are smaller than 4 GiB, which is not an unreasonable |
| // assumption as of 2017. |
| if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX) |
| error(toString(this) + ": section too large"); |
| |
| // The ELF spec states that a value of 0 means the section has |
| // no alignment constraints. |
| uint32_t v = std::max<uint32_t>(alignment, 1); |
| if (!isPowerOf2_64(v)) |
| fatal(toString(this) + ": sh_addralign is not a power of 2"); |
| this->alignment = v; |
| |
| // In ELF, each section can be compressed by zlib, and if compressed, |
| // section name may be mangled by appending "z" (e.g. ".zdebug_info"). |
| // If that's the case, demangle section name so that we can handle a |
| // section as if it weren't compressed. |
| if ((flags & SHF_COMPRESSED) || name.startswith(".zdebug")) { |
| if (!zlib::isAvailable()) |
| error(toString(file) + ": contains a compressed section, " + |
| "but zlib is not available"); |
| switch (config->ekind) { |
| case ELF32LEKind: |
| parseCompressedHeader<ELF32LE>(); |
| break; |
| case ELF32BEKind: |
| parseCompressedHeader<ELF32BE>(); |
| break; |
| case ELF64LEKind: |
| parseCompressedHeader<ELF64LE>(); |
| break; |
| case ELF64BEKind: |
| parseCompressedHeader<ELF64BE>(); |
| break; |
| default: |
| llvm_unreachable("unknown ELFT"); |
| } |
| } |
| } |
| |
| // Drop SHF_GROUP bit unless we are producing a re-linkable object file. |
| // SHF_GROUP is a marker that a section belongs to some comdat group. |
| // That flag doesn't make sense in an executable. |
| static uint64_t getFlags(uint64_t flags) { |
| flags &= ~(uint64_t)SHF_INFO_LINK; |
| if (!config->relocatable) |
| flags &= ~(uint64_t)SHF_GROUP; |
| return flags; |
| } |
| |
| template <class ELFT> |
| InputSectionBase::InputSectionBase(ObjFile<ELFT> &file, |
| const typename ELFT::Shdr &hdr, |
| StringRef name, Kind sectionKind) |
| : InputSectionBase(&file, getFlags(hdr.sh_flags), hdr.sh_type, |
| hdr.sh_entsize, hdr.sh_link, hdr.sh_info, |
| hdr.sh_addralign, getSectionContents(file, hdr), name, |
| sectionKind) { |
| // We reject object files having insanely large alignments even though |
| // they are allowed by the spec. I think 4GB is a reasonable limitation. |
| // We might want to relax this in the future. |
| if (hdr.sh_addralign > UINT32_MAX) |
| fatal(toString(&file) + ": section sh_addralign is too large"); |
| } |
| |
| size_t InputSectionBase::getSize() const { |
| if (auto *s = dyn_cast<SyntheticSection>(this)) |
| return s->getSize(); |
| if (uncompressedSize >= 0) |
| return uncompressedSize; |
| return rawData.size() - bytesDropped; |
| } |
| |
| void InputSectionBase::uncompress() const { |
| size_t size = uncompressedSize; |
| char *uncompressedBuf; |
| { |
| static std::mutex mu; |
| std::lock_guard<std::mutex> lock(mu); |
| uncompressedBuf = bAlloc.Allocate<char>(size); |
| } |
| |
| if (Error e = zlib::uncompress(toStringRef(rawData), uncompressedBuf, size)) |
| fatal(toString(this) + |
| ": uncompress failed: " + llvm::toString(std::move(e))); |
| rawData = makeArrayRef((uint8_t *)uncompressedBuf, size); |
| uncompressedSize = -1; |
| } |
| |
| uint64_t InputSectionBase::getOffsetInFile() const { |
| const uint8_t *fileStart = (const uint8_t *)file->mb.getBufferStart(); |
| const uint8_t *secStart = data().begin(); |
| return secStart - fileStart; |
| } |
| |
| template <class ELFT> RelsOrRelas<ELFT> InputSectionBase::relsOrRelas() const { |
| if (relSecIdx == 0) |
| return {}; |
| RelsOrRelas<ELFT> ret; |
| const ELFFile<ELFT> obj = cast<ELFFileBase>(file)->getObj<ELFT>(); |
| typename ELFT::Shdr shdr = cantFail(obj.sections())[relSecIdx]; |
| if (shdr.sh_type == SHT_REL) { |
| ret.rels = makeArrayRef(reinterpret_cast<const typename ELFT::Rel *>( |
| obj.base() + shdr.sh_offset), |
| shdr.sh_size / sizeof(typename ELFT::Rel)); |
| } else { |
| assert(shdr.sh_type == SHT_RELA); |
| ret.relas = makeArrayRef(reinterpret_cast<const typename ELFT::Rela *>( |
| obj.base() + shdr.sh_offset), |
| shdr.sh_size / sizeof(typename ELFT::Rela)); |
| } |
| return ret; |
| } |
| |
| uint64_t SectionBase::getOffset(uint64_t offset) const { |
| switch (kind()) { |
| case Output: { |
| auto *os = cast<OutputSection>(this); |
| // For output sections we treat offset -1 as the end of the section. |
| return offset == uint64_t(-1) ? os->size : offset; |
| } |
| case Regular: |
| case Synthetic: |
| return cast<InputSection>(this)->outSecOff + offset; |
| case EHFrame: |
| // The file crtbeginT.o has relocations pointing to the start of an empty |
| // .eh_frame that is known to be the first in the link. It does that to |
| // identify the start of the output .eh_frame. |
| return offset; |
| case Merge: |
| const MergeInputSection *ms = cast<MergeInputSection>(this); |
| if (InputSection *isec = ms->getParent()) |
| return isec->outSecOff + ms->getParentOffset(offset); |
| return ms->getParentOffset(offset); |
| } |
| llvm_unreachable("invalid section kind"); |
| } |
| |
| uint64_t SectionBase::getVA(uint64_t offset) const { |
| const OutputSection *out = getOutputSection(); |
| return (out ? out->addr : 0) + getOffset(offset); |
| } |
| |
| OutputSection *SectionBase::getOutputSection() { |
| InputSection *sec; |
| if (auto *isec = dyn_cast<InputSection>(this)) |
| sec = isec; |
| else if (auto *ms = dyn_cast<MergeInputSection>(this)) |
| sec = ms->getParent(); |
| else if (auto *eh = dyn_cast<EhInputSection>(this)) |
| sec = eh->getParent(); |
| else |
| return cast<OutputSection>(this); |
| return sec ? sec->getParent() : nullptr; |
| } |
| |
| // When a section is compressed, `rawData` consists with a header followed |
| // by zlib-compressed data. This function parses a header to initialize |
| // `uncompressedSize` member and remove the header from `rawData`. |
| template <typename ELFT> void InputSectionBase::parseCompressedHeader() { |
| // Old-style header |
| if (name.startswith(".zdebug")) { |
| if (!toStringRef(rawData).startswith("ZLIB")) { |
| error(toString(this) + ": corrupted compressed section header"); |
| return; |
| } |
| rawData = rawData.slice(4); |
| |
| if (rawData.size() < 8) { |
| error(toString(this) + ": corrupted compressed section header"); |
| return; |
| } |
| |
| uncompressedSize = read64be(rawData.data()); |
| rawData = rawData.slice(8); |
| |
| // Restore the original section name. |
| // (e.g. ".zdebug_info" -> ".debug_info") |
| name = saver.save("." + name.substr(2)); |
| return; |
| } |
| |
| assert(flags & SHF_COMPRESSED); |
| flags &= ~(uint64_t)SHF_COMPRESSED; |
| |
| // New-style header |
| if (rawData.size() < sizeof(typename ELFT::Chdr)) { |
| error(toString(this) + ": corrupted compressed section"); |
| return; |
| } |
| |
| auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(rawData.data()); |
| if (hdr->ch_type != ELFCOMPRESS_ZLIB) { |
| error(toString(this) + ": unsupported compression type"); |
| return; |
| } |
| |
| uncompressedSize = hdr->ch_size; |
| alignment = std::max<uint32_t>(hdr->ch_addralign, 1); |
| rawData = rawData.slice(sizeof(*hdr)); |
| } |
| |
| InputSection *InputSectionBase::getLinkOrderDep() const { |
| assert(flags & SHF_LINK_ORDER); |
| if (!link) |
| return nullptr; |
| return cast<InputSection>(file->getSections()[link]); |
| } |
| |
| // Find a function symbol that encloses a given location. |
| template <class ELFT> |
| Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) { |
| for (Symbol *b : file->getSymbols()) |
| if (Defined *d = dyn_cast<Defined>(b)) |
| if (d->section == this && d->type == STT_FUNC && d->value <= offset && |
| offset < d->value + d->size) |
| return d; |
| return nullptr; |
| } |
| |
| // Returns an object file location string. Used to construct an error message. |
| template <class ELFT> |
| std::string InputSectionBase::getLocation(uint64_t offset) { |
| std::string secAndOffset = |
| (name + "+0x" + Twine::utohexstr(offset) + ")").str(); |
| |
| // We don't have file for synthetic sections. |
| if (getFile<ELFT>() == nullptr) |
| return (config->outputFile + ":(" + secAndOffset).str(); |
| |
| std::string file = toString(getFile<ELFT>()); |
| if (Defined *d = getEnclosingFunction<ELFT>(offset)) |
| return file + ":(function " + toString(*d) + ": " + secAndOffset; |
| |
| return file + ":(" + secAndOffset; |
| } |
| |
| // This function is intended to be used for constructing an error message. |
| // The returned message looks like this: |
| // |
| // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) |
| // |
| // Returns an empty string if there's no way to get line info. |
| std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) { |
| return file->getSrcMsg(sym, *this, offset); |
| } |
| |
| // Returns a filename string along with an optional section name. This |
| // function is intended to be used for constructing an error |
| // message. The returned message looks like this: |
| // |
| // path/to/foo.o:(function bar) |
| // |
| // or |
| // |
| // path/to/foo.o:(function bar) in archive path/to/bar.a |
| std::string InputSectionBase::getObjMsg(uint64_t off) { |
| std::string filename = std::string(file->getName()); |
| |
| std::string archive; |
| if (!file->archiveName.empty()) |
| archive = " in archive " + file->archiveName; |
| |
| // Find a symbol that encloses a given location. |
| for (Symbol *b : file->getSymbols()) |
| if (auto *d = dyn_cast<Defined>(b)) |
| if (d->section == this && d->value <= off && off < d->value + d->size) |
| return filename + ":(" + toString(*d) + ")" + archive; |
| |
| // If there's no symbol, print out the offset in the section. |
| return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive) |
| .str(); |
| } |
| |
| InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); |
| |
| InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type, |
| uint32_t alignment, ArrayRef<uint8_t> data, |
| StringRef name, Kind k) |
| : InputSectionBase(f, flags, type, |
| /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data, |
| name, k) {} |
| |
| template <class ELFT> |
| InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, |
| StringRef name) |
| : InputSectionBase(f, header, name, InputSectionBase::Regular) {} |
| |
| bool InputSection::classof(const SectionBase *s) { |
| return s->kind() == SectionBase::Regular || |
| s->kind() == SectionBase::Synthetic; |
| } |
| |
| OutputSection *InputSection::getParent() const { |
| return cast_or_null<OutputSection>(parent); |
| } |
| |
| // Copy SHT_GROUP section contents. Used only for the -r option. |
| template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) { |
| // ELFT::Word is the 32-bit integral type in the target endianness. |
| using u32 = typename ELFT::Word; |
| ArrayRef<u32> from = getDataAs<u32>(); |
| auto *to = reinterpret_cast<u32 *>(buf); |
| |
| // The first entry is not a section number but a flag. |
| *to++ = from[0]; |
| |
| // Adjust section numbers because section numbers in an input object files are |
| // different in the output. We also need to handle combined or discarded |
| // members. |
| ArrayRef<InputSectionBase *> sections = file->getSections(); |
| std::unordered_set<uint32_t> seen; |
| for (uint32_t idx : from.slice(1)) { |
| OutputSection *osec = sections[idx]->getOutputSection(); |
| if (osec && seen.insert(osec->sectionIndex).second) |
| *to++ = osec->sectionIndex; |
| } |
| } |
| |
| InputSectionBase *InputSection::getRelocatedSection() const { |
| if (!file || (type != SHT_RELA && type != SHT_REL)) |
| return nullptr; |
| ArrayRef<InputSectionBase *> sections = file->getSections(); |
| return sections[info]; |
| } |
| |
| // This is used for -r and --emit-relocs. We can't use memcpy to copy |
| // relocations because we need to update symbol table offset and section index |
| // for each relocation. So we copy relocations one by one. |
| template <class ELFT, class RelTy> |
| void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) { |
| InputSectionBase *sec = getRelocatedSection(); |
| |
| for (const RelTy &rel : rels) { |
| RelType type = rel.getType(config->isMips64EL); |
| const ObjFile<ELFT> *file = getFile<ELFT>(); |
| Symbol &sym = file->getRelocTargetSym(rel); |
| |
| auto *p = reinterpret_cast<typename ELFT::Rela *>(buf); |
| buf += sizeof(RelTy); |
| |
| if (RelTy::IsRela) |
| p->r_addend = getAddend<ELFT>(rel); |
| |
| // Output section VA is zero for -r, so r_offset is an offset within the |
| // section, but for --emit-relocs it is a virtual address. |
| p->r_offset = sec->getVA(rel.r_offset); |
| p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type, |
| config->isMips64EL); |
| |
| if (sym.type == STT_SECTION) { |
| // We combine multiple section symbols into only one per |
| // section. This means we have to update the addend. That is |
| // trivial for Elf_Rela, but for Elf_Rel we have to write to the |
| // section data. We do that by adding to the Relocation vector. |
| |
| // .eh_frame is horribly special and can reference discarded sections. To |
| // avoid having to parse and recreate .eh_frame, we just replace any |
| // relocation in it pointing to discarded sections with R_*_NONE, which |
| // hopefully creates a frame that is ignored at runtime. Also, don't warn |
| // on .gcc_except_table and debug sections. |
| // |
| // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc |
| auto *d = dyn_cast<Defined>(&sym); |
| if (!d) { |
| if (!isDebugSection(*sec) && sec->name != ".eh_frame" && |
| sec->name != ".gcc_except_table" && sec->name != ".got2" && |
| sec->name != ".toc") { |
| uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx; |
| Elf_Shdr_Impl<ELFT> sec = |
| CHECK(file->getObj().sections(), file)[secIdx]; |
| warn("relocation refers to a discarded section: " + |
| CHECK(file->getObj().getSectionName(sec), file) + |
| "\n>>> referenced by " + getObjMsg(p->r_offset)); |
| } |
| p->setSymbolAndType(0, 0, false); |
| continue; |
| } |
| SectionBase *section = d->section->repl; |
| if (!section->isLive()) { |
| p->setSymbolAndType(0, 0, false); |
| continue; |
| } |
| |
| int64_t addend = getAddend<ELFT>(rel); |
| const uint8_t *bufLoc = sec->data().begin() + rel.r_offset; |
| if (!RelTy::IsRela) |
| addend = target->getImplicitAddend(bufLoc, type); |
| |
| if (config->emachine == EM_MIPS && |
| target->getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) { |
| // Some MIPS relocations depend on "gp" value. By default, |
| // this value has 0x7ff0 offset from a .got section. But |
| // relocatable files produced by a compiler or a linker |
| // might redefine this default value and we must use it |
| // for a calculation of the relocation result. When we |
| // generate EXE or DSO it's trivial. Generating a relocatable |
| // output is more difficult case because the linker does |
| // not calculate relocations in this mode and loses |
| // individual "gp" values used by each input object file. |
| // As a workaround we add the "gp" value to the relocation |
| // addend and save it back to the file. |
| addend += sec->getFile<ELFT>()->mipsGp0; |
| } |
| |
| if (RelTy::IsRela) |
| p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr; |
| else if (config->relocatable && type != target->noneRel) |
| sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym}); |
| } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 && |
| p->r_addend >= 0x8000) { |
| // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24 |
| // indicates that r30 is relative to the input section .got2 |
| // (r_addend>=0x8000), after linking, r30 should be relative to the output |
| // section .got2 . To compensate for the shift, adjust r_addend by |
| // ppc32Got2OutSecOff. |
| p->r_addend += sec->file->ppc32Got2OutSecOff; |
| } |
| } |
| } |
| |
| // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak |
| // references specially. The general rule is that the value of the symbol in |
| // this context is the address of the place P. A further special case is that |
| // branch relocations to an undefined weak reference resolve to the next |
| // instruction. |
| static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, |
| uint32_t p) { |
| switch (type) { |
| // Unresolved branch relocations to weak references resolve to next |
| // instruction, this will be either 2 or 4 bytes on from P. |
| case R_ARM_THM_JUMP8: |
| case R_ARM_THM_JUMP11: |
| return p + 2 + a; |
| case R_ARM_CALL: |
| case R_ARM_JUMP24: |
| case R_ARM_PC24: |
| case R_ARM_PLT32: |
| case R_ARM_PREL31: |
| case R_ARM_THM_JUMP19: |
| case R_ARM_THM_JUMP24: |
| return p + 4 + a; |
| case R_ARM_THM_CALL: |
| // We don't want an interworking BLX to ARM |
| return p + 5 + a; |
| // Unresolved non branch pc-relative relocations |
| // R_ARM_TARGET2 which can be resolved relatively is not present as it never |
| // targets a weak-reference. |
| case R_ARM_MOVW_PREL_NC: |
| case R_ARM_MOVT_PREL: |
| case R_ARM_REL32: |
| case R_ARM_THM_ALU_PREL_11_0: |
| case R_ARM_THM_MOVW_PREL_NC: |
| case R_ARM_THM_MOVT_PREL: |
| case R_ARM_THM_PC12: |
| return p + a; |
| // p + a is unrepresentable as negative immediates can't be encoded. |
| case R_ARM_THM_PC8: |
| return p; |
| } |
| llvm_unreachable("ARM pc-relative relocation expected\n"); |
| } |
| |
| // The comment above getARMUndefinedRelativeWeakVA applies to this function. |
| static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) { |
| switch (type) { |
| // Unresolved branch relocations to weak references resolve to next |
| // instruction, this is 4 bytes on from P. |
| case R_AARCH64_CALL26: |
| case R_AARCH64_CONDBR19: |
| case R_AARCH64_JUMP26: |
| case R_AARCH64_TSTBR14: |
| return p + 4; |
| // Unresolved non branch pc-relative relocations |
| case R_AARCH64_PREL16: |
| case R_AARCH64_PREL32: |
| case R_AARCH64_PREL64: |
| case R_AARCH64_ADR_PREL_LO21: |
| case R_AARCH64_LD_PREL_LO19: |
| case R_AARCH64_PLT32: |
| return p; |
| } |
| llvm_unreachable("AArch64 pc-relative relocation expected\n"); |
| } |
| |
| static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) { |
| switch (type) { |
| case R_RISCV_BRANCH: |
| case R_RISCV_JAL: |
| case R_RISCV_CALL: |
| case R_RISCV_CALL_PLT: |
| case R_RISCV_RVC_BRANCH: |
| case R_RISCV_RVC_JUMP: |
| return p; |
| default: |
| return 0; |
| } |
| } |
| |
| // ARM SBREL relocations are of the form S + A - B where B is the static base |
| // The ARM ABI defines base to be "addressing origin of the output segment |
| // defining the symbol S". We defined the "addressing origin"/static base to be |
| // the base of the PT_LOAD segment containing the Sym. |
| // The procedure call standard only defines a Read Write Position Independent |
| // RWPI variant so in practice we should expect the static base to be the base |
| // of the RW segment. |
| static uint64_t getARMStaticBase(const Symbol &sym) { |
| OutputSection *os = sym.getOutputSection(); |
| if (!os || !os->ptLoad || !os->ptLoad->firstSec) |
| fatal("SBREL relocation to " + sym.getName() + " without static base"); |
| return os->ptLoad->firstSec->addr; |
| } |
| |
| // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually |
| // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA |
| // is calculated using PCREL_HI20's symbol. |
| // |
| // This function returns the R_RISCV_PCREL_HI20 relocation from |
| // R_RISCV_PCREL_LO12's symbol and addend. |
| static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) { |
| const Defined *d = cast<Defined>(sym); |
| if (!d->section) { |
| error("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " + |
| sym->getName()); |
| return nullptr; |
| } |
| InputSection *isec = cast<InputSection>(d->section); |
| |
| if (addend != 0) |
| warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " + |
| isec->getObjMsg(d->value) + " is ignored"); |
| |
| // Relocations are sorted by offset, so we can use std::equal_range to do |
| // binary search. |
| Relocation r; |
| r.offset = d->value; |
| auto range = |
| std::equal_range(isec->relocations.begin(), isec->relocations.end(), r, |
| [](const Relocation &lhs, const Relocation &rhs) { |
| return lhs.offset < rhs.offset; |
| }); |
| |
| for (auto it = range.first; it != range.second; ++it) |
| if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || |
| it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) |
| return &*it; |
| |
| error("R_RISCV_PCREL_LO12 relocation points to " + isec->getObjMsg(d->value) + |
| " without an associated R_RISCV_PCREL_HI20 relocation"); |
| return nullptr; |
| } |
| |
| // A TLS symbol's virtual address is relative to the TLS segment. Add a |
| // target-specific adjustment to produce a thread-pointer-relative offset. |
| static int64_t getTlsTpOffset(const Symbol &s) { |
| // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. |
| if (&s == ElfSym::tlsModuleBase) |
| return 0; |
| |
| // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2 |
| // while most others use Variant 1. At run time TP will be aligned to p_align. |
| |
| // Variant 1. TP will be followed by an optional gap (which is the size of 2 |
| // pointers on ARM/AArch64, 0 on other targets), followed by alignment |
| // padding, then the static TLS blocks. The alignment padding is added so that |
| // (TP + gap + padding) is congruent to p_vaddr modulo p_align. |
| // |
| // Variant 2. Static TLS blocks, followed by alignment padding are placed |
| // before TP. The alignment padding is added so that (TP - padding - |
| // p_memsz) is congruent to p_vaddr modulo p_align. |
| PhdrEntry *tls = Out::tlsPhdr; |
| switch (config->emachine) { |
| // Variant 1. |
| case EM_ARM: |
| case EM_AARCH64: |
| return s.getVA(0) + config->wordsize * 2 + |
| ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1)); |
| case EM_MIPS: |
| case EM_PPC: |
| case EM_PPC64: |
| // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is |
| // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library |
| // data and 0xf000 of the program's TLS segment. |
| return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000; |
| case EM_RISCV: |
| return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)); |
| |
| // Variant 2. |
| case EM_HEXAGON: |
| case EM_SPARCV9: |
| case EM_386: |
| case EM_X86_64: |
| return s.getVA(0) - tls->p_memsz - |
| ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1)); |
| default: |
| llvm_unreachable("unhandled Config->EMachine"); |
| } |
| } |
| |
| uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type, |
| int64_t a, uint64_t p, |
| const Symbol &sym, RelExpr expr) { |
| switch (expr) { |
| case R_ABS: |
| case R_DTPREL: |
| case R_RELAX_TLS_LD_TO_LE_ABS: |
| case R_RELAX_GOT_PC_NOPIC: |
| case R_RISCV_ADD: |
| return sym.getVA(a); |
| case R_ADDEND: |
| return a; |
| case R_ARM_SBREL: |
| return sym.getVA(a) - getARMStaticBase(sym); |
| case R_GOT: |
| case R_RELAX_TLS_GD_TO_IE_ABS: |
| return sym.getGotVA() + a; |
| case R_GOTONLY_PC: |
| return in.got->getVA() + a - p; |
| case R_GOTPLTONLY_PC: |
| return in.gotPlt->getVA() + a - p; |
| case R_GOTREL: |
| case R_PPC64_RELAX_TOC: |
| return sym.getVA(a) - in.got->getVA(); |
| case R_GOTPLTREL: |
| return sym.getVA(a) - in.gotPlt->getVA(); |
| case R_GOTPLT: |
| case R_RELAX_TLS_GD_TO_IE_GOTPLT: |
| return sym.getGotVA() + a - in.gotPlt->getVA(); |
| case R_TLSLD_GOT_OFF: |
| case R_GOT_OFF: |
| case R_RELAX_TLS_GD_TO_IE_GOT_OFF: |
| return sym.getGotOffset() + a; |
| case R_AARCH64_GOT_PAGE_PC: |
| case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: |
| return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p); |
| case R_AARCH64_GOT_PAGE: |
| return sym.getGotVA() + a - getAArch64Page(in.got->getVA()); |
| case R_GOT_PC: |
| case R_RELAX_TLS_GD_TO_IE: |
| return sym.getGotVA() + a - p; |
| case R_MIPS_GOTREL: |
| return sym.getVA(a) - in.mipsGot->getGp(file); |
| case R_MIPS_GOT_GP: |
| return in.mipsGot->getGp(file) + a; |
| case R_MIPS_GOT_GP_PC: { |
| // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target |
| // is _gp_disp symbol. In that case we should use the following |
| // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| // microMIPS variants of these relocations use slightly different |
| // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() |
| // to correctly handle less-significant bit of the microMIPS symbol. |
| uint64_t v = in.mipsGot->getGp(file) + a - p; |
| if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16) |
| v += 4; |
| if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16) |
| v -= 1; |
| return v; |
| } |
| case R_MIPS_GOT_LOCAL_PAGE: |
| // If relocation against MIPS local symbol requires GOT entry, this entry |
| // should be initialized by 'page address'. This address is high 16-bits |
| // of sum the symbol's value and the addend. |
| return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) - |
| in.mipsGot->getGp(file); |
| case R_MIPS_GOT_OFF: |
| case R_MIPS_GOT_OFF32: |
| // In case of MIPS if a GOT relocation has non-zero addend this addend |
| // should be applied to the GOT entry content not to the GOT entry offset. |
| // That is why we use separate expression type. |
| return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) - |
| in.mipsGot->getGp(file); |
| case R_MIPS_TLSGD: |
| return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) - |
| in.mipsGot->getGp(file); |
| case R_MIPS_TLSLD: |
| return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) - |
| in.mipsGot->getGp(file); |
| case R_AARCH64_PAGE_PC: { |
| uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a); |
| return getAArch64Page(val) - getAArch64Page(p); |
| } |
| case R_RISCV_PC_INDIRECT: { |
| if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a)) |
| return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(), |
| *hiRel->sym, hiRel->expr); |
| return 0; |
| } |
| case R_PC: |
| case R_ARM_PCA: { |
| uint64_t dest; |
| if (expr == R_ARM_PCA) |
| // Some PC relative ARM (Thumb) relocations align down the place. |
| p = p & 0xfffffffc; |
| if (sym.isUndefWeak()) { |
| // On ARM and AArch64 a branch to an undefined weak resolves to the next |
| // instruction, otherwise the place. On RISCV, resolve an undefined weak |
| // to the same instruction to cause an infinite loop (making the user |
| // aware of the issue) while ensuring no overflow. |
| if (config->emachine == EM_ARM) |
| dest = getARMUndefinedRelativeWeakVA(type, a, p); |
| else if (config->emachine == EM_AARCH64) |
| dest = getAArch64UndefinedRelativeWeakVA(type, p) + a; |
| else if (config->emachine == EM_PPC) |
| dest = p; |
| else if (config->emachine == EM_RISCV) |
| dest = getRISCVUndefinedRelativeWeakVA(type, p) + a; |
| else |
| dest = sym.getVA(a); |
| } else { |
| dest = sym.getVA(a); |
| } |
| return dest - p; |
| } |
| case R_PLT: |
| return sym.getPltVA() + a; |
| case R_PLT_PC: |
| case R_PPC64_CALL_PLT: |
| return sym.getPltVA() + a - p; |
| case R_PLT_GOTPLT: |
| return sym.getPltVA() + a - in.gotPlt->getVA(); |
| case R_PPC32_PLTREL: |
| // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 |
| // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for |
| // target VA computation. |
| return sym.getPltVA() - p; |
| case R_PPC64_CALL: { |
| uint64_t symVA = sym.getVA(a); |
| // If we have an undefined weak symbol, we might get here with a symbol |
| // address of zero. That could overflow, but the code must be unreachable, |
| // so don't bother doing anything at all. |
| if (!symVA) |
| return 0; |
| |
| // PPC64 V2 ABI describes two entry points to a function. The global entry |
| // point is used for calls where the caller and callee (may) have different |
| // TOC base pointers and r2 needs to be modified to hold the TOC base for |
| // the callee. For local calls the caller and callee share the same |
| // TOC base and so the TOC pointer initialization code should be skipped by |
| // branching to the local entry point. |
| return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther); |
| } |
| case R_PPC64_TOCBASE: |
| return getPPC64TocBase() + a; |
| case R_RELAX_GOT_PC: |
| case R_PPC64_RELAX_GOT_PC: |
| return sym.getVA(a) - p; |
| case R_RELAX_TLS_GD_TO_LE: |
| case R_RELAX_TLS_IE_TO_LE: |
| case R_RELAX_TLS_LD_TO_LE: |
| case R_TPREL: |
| // It is not very clear what to return if the symbol is undefined. With |
| // --noinhibit-exec, even a non-weak undefined reference may reach here. |
| // Just return A, which matches R_ABS, and the behavior of some dynamic |
| // loaders. |
| if (sym.isUndefined()) |
| return a; |
| return getTlsTpOffset(sym) + a; |
| case R_RELAX_TLS_GD_TO_LE_NEG: |
| case R_TPREL_NEG: |
| if (sym.isUndefined()) |
| return a; |
| return -getTlsTpOffset(sym) + a; |
| case R_SIZE: |
| return sym.getSize() + a; |
| case R_TLSDESC: |
| return in.got->getGlobalDynAddr(sym) + a; |
| case R_TLSDESC_PC: |
| return in.got->getGlobalDynAddr(sym) + a - p; |
| case R_TLSDESC_GOTPLT: |
| return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA(); |
| case R_AARCH64_TLSDESC_PAGE: |
| return getAArch64Page(in.got->getGlobalDynAddr(sym) + a) - |
| getAArch64Page(p); |
| case R_TLSGD_GOT: |
| return in.got->getGlobalDynOffset(sym) + a; |
| case R_TLSGD_GOTPLT: |
| return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA(); |
| case R_TLSGD_PC: |
| return in.got->getGlobalDynAddr(sym) + a - p; |
| case R_TLSLD_GOTPLT: |
| return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA(); |
| case R_TLSLD_GOT: |
| return in.got->getTlsIndexOff() + a; |
| case R_TLSLD_PC: |
| return in.got->getTlsIndexVA() + a - p; |
| default: |
| llvm_unreachable("invalid expression"); |
| } |
| } |
| |
| // This function applies relocations to sections without SHF_ALLOC bit. |
| // Such sections are never mapped to memory at runtime. Debug sections are |
| // an example. Relocations in non-alloc sections are much easier to |
| // handle than in allocated sections because it will never need complex |
| // treatment such as GOT or PLT (because at runtime no one refers them). |
| // So, we handle relocations for non-alloc sections directly in this |
| // function as a performance optimization. |
| template <class ELFT, class RelTy> |
| void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) { |
| const unsigned bits = sizeof(typename ELFT::uint) * 8; |
| const bool isDebug = isDebugSection(*this); |
| const bool isDebugLocOrRanges = |
| isDebug && (name == ".debug_loc" || name == ".debug_ranges"); |
| const bool isDebugLine = isDebug && name == ".debug_line"; |
| Optional<uint64_t> tombstone; |
| for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc)) |
| if (patAndValue.first.match(this->name)) { |
| tombstone = patAndValue.second; |
| break; |
| } |
| |
| for (const RelTy &rel : rels) { |
| RelType type = rel.getType(config->isMips64EL); |
| |
| // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations |
| // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed |
| // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we |
| // need to keep this bug-compatible code for a while. |
| if (config->emachine == EM_386 && type == R_386_GOTPC) |
| continue; |
| |
| uint64_t offset = rel.r_offset; |
| uint8_t *bufLoc = buf + offset; |
| int64_t addend = getAddend<ELFT>(rel); |
| if (!RelTy::IsRela) |
| addend += target->getImplicitAddend(bufLoc, type); |
| |
| Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel); |
| RelExpr expr = target->getRelExpr(type, sym, bufLoc); |
| if (expr == R_NONE) |
| continue; |
| |
| if (expr == R_SIZE) { |
| target->relocateNoSym(bufLoc, type, |
| SignExtend64<bits>(sym.getSize() + addend)); |
| continue; |
| } |
| |
| // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC |
| // sections. |
| if (expr != R_ABS && expr != R_DTPREL && expr != R_GOTPLTREL && |
| expr != R_RISCV_ADD) { |
| std::string msg = getLocation<ELFT>(offset) + |
| ": has non-ABS relocation " + toString(type) + |
| " against symbol '" + toString(sym) + "'"; |
| if (expr != R_PC && expr != R_ARM_PCA) { |
| error(msg); |
| return; |
| } |
| |
| // If the control reaches here, we found a PC-relative relocation in a |
| // non-ALLOC section. Since non-ALLOC section is not loaded into memory |
| // at runtime, the notion of PC-relative doesn't make sense here. So, |
| // this is a usage error. However, GNU linkers historically accept such |
| // relocations without any errors and relocate them as if they were at |
| // address 0. For bug-compatibilty, we accept them with warnings. We |
| // know Steel Bank Common Lisp as of 2018 have this bug. |
| warn(msg); |
| target->relocateNoSym( |
| bufLoc, type, |
| SignExtend64<bits>(sym.getVA(addend - offset - outSecOff))); |
| continue; |
| } |
| |
| if (tombstone || |
| (isDebug && (type == target->symbolicRel || expr == R_DTPREL))) { |
| // Resolve relocations in .debug_* referencing (discarded symbols or ICF |
| // folded section symbols) to a tombstone value. Resolving to addend is |
| // unsatisfactory because the result address range may collide with a |
| // valid range of low address, or leave multiple CUs claiming ownership of |
| // the same range of code, which may confuse consumers. |
| // |
| // To address the problems, we use -1 as a tombstone value for most |
| // .debug_* sections. We have to ignore the addend because we don't want |
| // to resolve an address attribute (which may have a non-zero addend) to |
| // -1+addend (wrap around to a low address). |
| // |
| // R_DTPREL type relocations represent an offset into the dynamic thread |
| // vector. The computed value is st_value plus a non-negative offset. |
| // Negative values are invalid, so -1 can be used as the tombstone value. |
| // |
| // If the referenced symbol is discarded (made Undefined), or the |
| // section defining the referenced symbol is garbage collected, |
| // sym.getOutputSection() is nullptr. `ds->section->repl != ds->section` |
| // catches the ICF folded case. However, resolving a relocation in |
| // .debug_line to -1 would stop debugger users from setting breakpoints on |
| // the folded-in function, so exclude .debug_line. |
| // |
| // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value |
| // (base address selection entry), use 1 (which is used by GNU ld for |
| // .debug_ranges). |
| // |
| // TODO To reduce disruption, we use 0 instead of -1 as the tombstone |
| // value. Enable -1 in a future release. |
| auto *ds = dyn_cast<Defined>(&sym); |
| if (!sym.getOutputSection() || |
| (ds && ds->section->repl != ds->section && !isDebugLine)) { |
| // If -z dead-reloc-in-nonalloc= is specified, respect it. |
| const uint64_t value = tombstone ? SignExtend64<bits>(*tombstone) |
| : (isDebugLocOrRanges ? 1 : 0); |
| target->relocateNoSym(bufLoc, type, value); |
| continue; |
| } |
| } |
| target->relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend))); |
| } |
| } |
| |
| // This is used when '-r' is given. |
| // For REL targets, InputSection::copyRelocations() may store artificial |
| // relocations aimed to update addends. They are handled in relocateAlloc() |
| // for allocatable sections, and this function does the same for |
| // non-allocatable sections, such as sections with debug information. |
| static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) { |
| const unsigned bits = config->is64 ? 64 : 32; |
| |
| for (const Relocation &rel : sec->relocations) { |
| // InputSection::copyRelocations() adds only R_ABS relocations. |
| assert(rel.expr == R_ABS); |
| uint8_t *bufLoc = buf + rel.offset; |
| uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits); |
| target->relocate(bufLoc, rel, targetVA); |
| } |
| } |
| |
| template <class ELFT> |
| void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) { |
| if (flags & SHF_EXECINSTR) |
| adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd); |
| |
| if (flags & SHF_ALLOC) { |
| relocateAlloc(buf, bufEnd); |
| return; |
| } |
| |
| auto *sec = cast<InputSection>(this); |
| if (config->relocatable) { |
| relocateNonAllocForRelocatable(sec, buf); |
| } else { |
| const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); |
| if (rels.areRelocsRel()) |
| sec->relocateNonAlloc<ELFT>(buf, rels.rels); |
| else |
| sec->relocateNonAlloc<ELFT>(buf, rels.relas); |
| } |
| } |
| |
| void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) { |
| assert(flags & SHF_ALLOC); |
| const unsigned bits = config->wordsize * 8; |
| uint64_t lastPPCRelaxedRelocOff = UINT64_C(-1); |
| |
| for (const Relocation &rel : relocations) { |
| if (rel.expr == R_NONE) |
| continue; |
| uint64_t offset = rel.offset; |
| uint8_t *bufLoc = buf + offset; |
| RelType type = rel.type; |
| |
| uint64_t addrLoc = getOutputSection()->addr + offset; |
| if (auto *sec = dyn_cast<InputSection>(this)) |
| addrLoc += sec->outSecOff; |
| RelExpr expr = rel.expr; |
| uint64_t targetVA = SignExtend64( |
| getRelocTargetVA(file, type, rel.addend, addrLoc, *rel.sym, expr), |
| bits); |
| |
| switch (expr) { |
| case R_RELAX_GOT_PC: |
| case R_RELAX_GOT_PC_NOPIC: |
| target->relaxGot(bufLoc, rel, targetVA); |
| break; |
| case R_PPC64_RELAX_GOT_PC: { |
| // The R_PPC64_PCREL_OPT relocation must appear immediately after |
| // R_PPC64_GOT_PCREL34 in the relocations table at the same offset. |
| // We can only relax R_PPC64_PCREL_OPT if we have also relaxed |
| // the associated R_PPC64_GOT_PCREL34 since only the latter has an |
| // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34 |
| // and only relax the other if the saved offset matches. |
| if (type == R_PPC64_GOT_PCREL34) |
| lastPPCRelaxedRelocOff = offset; |
| if (type == R_PPC64_PCREL_OPT && offset != lastPPCRelaxedRelocOff) |
| break; |
| target->relaxGot(bufLoc, rel, targetVA); |
| break; |
| } |
| case R_PPC64_RELAX_TOC: |
| // rel.sym refers to the STT_SECTION symbol associated to the .toc input |
| // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC |
| // entry, there may be R_PPC64_TOC16_HA not paired with |
| // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation |
| // opportunities but is safe. |
| if (ppc64noTocRelax.count({rel.sym, rel.addend}) || |
| !tryRelaxPPC64TocIndirection(rel, bufLoc)) |
| target->relocate(bufLoc, rel, targetVA); |
| break; |
| case R_RELAX_TLS_IE_TO_LE: |
| target->relaxTlsIeToLe(bufLoc, rel, targetVA); |
| break; |
| case R_RELAX_TLS_LD_TO_LE: |
| case R_RELAX_TLS_LD_TO_LE_ABS: |
| target->relaxTlsLdToLe(bufLoc, rel, targetVA); |
| break; |
| case R_RELAX_TLS_GD_TO_LE: |
| case R_RELAX_TLS_GD_TO_LE_NEG: |
| target->relaxTlsGdToLe(bufLoc, rel, targetVA); |
| break; |
| case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: |
| case R_RELAX_TLS_GD_TO_IE: |
| case R_RELAX_TLS_GD_TO_IE_ABS: |
| case R_RELAX_TLS_GD_TO_IE_GOT_OFF: |
| case R_RELAX_TLS_GD_TO_IE_GOTPLT: |
| target->relaxTlsGdToIe(bufLoc, rel, targetVA); |
| break; |
| case R_PPC64_CALL: |
| // If this is a call to __tls_get_addr, it may be part of a TLS |
| // sequence that has been relaxed and turned into a nop. In this |
| // case, we don't want to handle it as a call. |
| if (read32(bufLoc) == 0x60000000) // nop |
| break; |
| |
| // Patch a nop (0x60000000) to a ld. |
| if (rel.sym->needsTocRestore) { |
| // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for |
| // recursive calls even if the function is preemptible. This is not |
| // wrong in the common case where the function is not preempted at |
| // runtime. Just ignore. |
| if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) && |
| rel.sym->file != file) { |
| // Use substr(6) to remove the "__plt_" prefix. |
| errorOrWarn(getErrorLocation(bufLoc) + "call to " + |
| lld::toString(*rel.sym).substr(6) + |
| " lacks nop, can't restore toc"); |
| break; |
| } |
| write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1) |
| } |
| target->relocate(bufLoc, rel, targetVA); |
| break; |
| default: |
| target->relocate(bufLoc, rel, targetVA); |
| break; |
| } |
| } |
| |
| // Apply jumpInstrMods. jumpInstrMods are created when the opcode of |
| // a jmp insn must be modified to shrink the jmp insn or to flip the jmp |
| // insn. This is primarily used to relax and optimize jumps created with |
| // basic block sections. |
| if (isa<InputSection>(this)) { |
| for (const JumpInstrMod &jumpMod : jumpInstrMods) { |
| uint64_t offset = jumpMod.offset; |
| uint8_t *bufLoc = buf + offset; |
| target->applyJumpInstrMod(bufLoc, jumpMod.original, jumpMod.size); |
| } |
| } |
| } |
| |
| // For each function-defining prologue, find any calls to __morestack, |
| // and replace them with calls to __morestack_non_split. |
| static void switchMorestackCallsToMorestackNonSplit( |
| DenseSet<Defined *> &prologues, std::vector<Relocation *> &morestackCalls) { |
| |
| // If the target adjusted a function's prologue, all calls to |
| // __morestack inside that function should be switched to |
| // __morestack_non_split. |
| Symbol *moreStackNonSplit = symtab->find("__morestack_non_split"); |
| if (!moreStackNonSplit) { |
| error("Mixing split-stack objects requires a definition of " |
| "__morestack_non_split"); |
| return; |
| } |
| |
| // Sort both collections to compare addresses efficiently. |
| llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) { |
| return l->offset < r->offset; |
| }); |
| std::vector<Defined *> functions(prologues.begin(), prologues.end()); |
| llvm::sort(functions, [](const Defined *l, const Defined *r) { |
| return l->value < r->value; |
| }); |
| |
| auto it = morestackCalls.begin(); |
| for (Defined *f : functions) { |
| // Find the first call to __morestack within the function. |
| while (it != morestackCalls.end() && (*it)->offset < f->value) |
| ++it; |
| // Adjust all calls inside the function. |
| while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { |
| (*it)->sym = moreStackNonSplit; |
| ++it; |
| } |
| } |
| } |
| |
| static bool enclosingPrologueAttempted(uint64_t offset, |
| const DenseSet<Defined *> &prologues) { |
| for (Defined *f : prologues) |
| if (f->value <= offset && offset < f->value + f->size) |
| return true; |
| return false; |
| } |
| |
| // If a function compiled for split stack calls a function not |
| // compiled for split stack, then the caller needs its prologue |
| // adjusted to ensure that the called function will have enough stack |
| // available. Find those functions, and adjust their prologues. |
| template <class ELFT> |
| void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf, |
| uint8_t *end) { |
| if (!getFile<ELFT>()->splitStack) |
| return; |
| DenseSet<Defined *> prologues; |
| std::vector<Relocation *> morestackCalls; |
| |
| for (Relocation &rel : relocations) { |
| // Local symbols can't possibly be cross-calls, and should have been |
| // resolved long before this line. |
| if (rel.sym->isLocal()) |
| continue; |
| |
| // Ignore calls into the split-stack api. |
| if (rel.sym->getName().startswith("__morestack")) { |
| if (rel.sym->getName().equals("__morestack")) |
| morestackCalls.push_back(&rel); |
| continue; |
| } |
| |
| // A relocation to non-function isn't relevant. Sometimes |
| // __morestack is not marked as a function, so this check comes |
| // after the name check. |
| if (rel.sym->type != STT_FUNC) |
| continue; |
| |
| // If the callee's-file was compiled with split stack, nothing to do. In |
| // this context, a "Defined" symbol is one "defined by the binary currently |
| // being produced". So an "undefined" symbol might be provided by a shared |
| // library. It is not possible to tell how such symbols were compiled, so be |
| // conservative. |
| if (Defined *d = dyn_cast<Defined>(rel.sym)) |
| if (InputSection *isec = cast_or_null<InputSection>(d->section)) |
| if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack) |
| continue; |
| |
| if (enclosingPrologueAttempted(rel.offset, prologues)) |
| continue; |
| |
| if (Defined *f = getEnclosingFunction<ELFT>(rel.offset)) { |
| prologues.insert(f); |
| if (target->adjustPrologueForCrossSplitStack(buf + f->value, end, |
| f->stOther)) |
| continue; |
| if (!getFile<ELFT>()->someNoSplitStack) |
| error(lld::toString(this) + ": " + f->getName() + |
| " (with -fsplit-stack) calls " + rel.sym->getName() + |
| " (without -fsplit-stack), but couldn't adjust its prologue"); |
| } |
| } |
| |
| if (target->needsMoreStackNonSplit) |
| switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls); |
| } |
| |
| template <class ELFT> void InputSection::writeTo(uint8_t *buf) { |
| if (type == SHT_NOBITS) |
| return; |
| |
| if (auto *s = dyn_cast<SyntheticSection>(this)) { |
| s->writeTo(buf + outSecOff); |
| return; |
| } |
| |
| // If -r or --emit-relocs is given, then an InputSection |
| // may be a relocation section. |
| if (type == SHT_RELA) { |
| copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rela>()); |
| return; |
| } |
| if (type == SHT_REL) { |
| copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rel>()); |
| return; |
| } |
| |
| // If -r is given, we may have a SHT_GROUP section. |
| if (type == SHT_GROUP) { |
| copyShtGroup<ELFT>(buf + outSecOff); |
| return; |
| } |
| |
| // If this is a compressed section, uncompress section contents directly |
| // to the buffer. |
| if (uncompressedSize >= 0) { |
| size_t size = uncompressedSize; |
| if (Error e = zlib::uncompress(toStringRef(rawData), |
| (char *)(buf + outSecOff), size)) |
| fatal(toString(this) + |
| ": uncompress failed: " + llvm::toString(std::move(e))); |
| uint8_t *bufEnd = buf + outSecOff + size; |
| relocate<ELFT>(buf + outSecOff, bufEnd); |
| return; |
| } |
| |
| // Copy section contents from source object file to output file |
| // and then apply relocations. |
| memcpy(buf + outSecOff, data().data(), data().size()); |
| uint8_t *bufEnd = buf + outSecOff + data().size(); |
| relocate<ELFT>(buf + outSecOff, bufEnd); |
| } |
| |
| void InputSection::replace(InputSection *other) { |
| alignment = std::max(alignment, other->alignment); |
| |
| // When a section is replaced with another section that was allocated to |
| // another partition, the replacement section (and its associated sections) |
| // need to be placed in the main partition so that both partitions will be |
| // able to access it. |
| if (partition != other->partition) { |
| partition = 1; |
| for (InputSection *isec : dependentSections) |
| isec->partition = 1; |
| } |
| |
| other->repl = repl; |
| other->markDead(); |
| } |
| |
| template <class ELFT> |
| EhInputSection::EhInputSection(ObjFile<ELFT> &f, |
| const typename ELFT::Shdr &header, |
| StringRef name) |
| : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} |
| |
| SyntheticSection *EhInputSection::getParent() const { |
| return cast_or_null<SyntheticSection>(parent); |
| } |
| |
| // Returns the index of the first relocation that points to a region between |
| // Begin and Begin+Size. |
| template <class IntTy, class RelTy> |
| static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels, |
| unsigned &relocI) { |
| // Start search from RelocI for fast access. That works because the |
| // relocations are sorted in .eh_frame. |
| for (unsigned n = rels.size(); relocI < n; ++relocI) { |
| const RelTy &rel = rels[relocI]; |
| if (rel.r_offset < begin) |
| continue; |
| |
| if (rel.r_offset < begin + size) |
| return relocI; |
| return -1; |
| } |
| return -1; |
| } |
| |
| // .eh_frame is a sequence of CIE or FDE records. |
| // This function splits an input section into records and returns them. |
| template <class ELFT> void EhInputSection::split() { |
| const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>(); |
| if (rels.areRelocsRel()) |
| split<ELFT>(rels.rels); |
| else |
| split<ELFT>(rels.relas); |
| } |
| |
| template <class ELFT, class RelTy> |
| void EhInputSection::split(ArrayRef<RelTy> rels) { |
| // getReloc expects the relocations to be sorted by r_offset. See the comment |
| // in scanRelocs. |
| SmallVector<RelTy, 0> storage; |
| rels = sortRels(rels, storage); |
| |
| unsigned relI = 0; |
| for (size_t off = 0, end = data().size(); off != end;) { |
| size_t size = readEhRecordSize(this, off); |
| pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI)); |
| // The empty record is the end marker. |
| if (size == 4) |
| break; |
| off += size; |
| } |
| } |
| |
| static size_t findNull(StringRef s, size_t entSize) { |
| // Optimize the common case. |
| if (entSize == 1) |
| return s.find(0); |
| |
| for (unsigned i = 0, n = s.size(); i != n; i += entSize) { |
| const char *b = s.begin() + i; |
| if (std::all_of(b, b + entSize, [](char c) { return c == 0; })) |
| return i; |
| } |
| return StringRef::npos; |
| } |
| |
| SyntheticSection *MergeInputSection::getParent() const { |
| return cast_or_null<SyntheticSection>(parent); |
| } |
| |
| // Split SHF_STRINGS section. Such section is a sequence of |
| // null-terminated strings. |
| void MergeInputSection::splitStrings(ArrayRef<uint8_t> data, size_t entSize) { |
| size_t off = 0; |
| bool isAlloc = flags & SHF_ALLOC; |
| StringRef s = toStringRef(data); |
| |
| while (!s.empty()) { |
| size_t end = findNull(s, entSize); |
| if (end == StringRef::npos) |
| fatal(toString(this) + ": string is not null terminated"); |
| size_t size = end + entSize; |
| |
| pieces.emplace_back(off, xxHash64(s.substr(0, size)), !isAlloc); |
| s = s.substr(size); |
| off += size; |
| } |
| } |
| |
| // Split non-SHF_STRINGS section. Such section is a sequence of |
| // fixed size records. |
| void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data, |
| size_t entSize) { |
| size_t size = data.size(); |
| assert((size % entSize) == 0); |
| bool isAlloc = flags & SHF_ALLOC; |
| |
| for (size_t i = 0; i != size; i += entSize) |
| pieces.emplace_back(i, xxHash64(data.slice(i, entSize)), !isAlloc); |
| } |
| |
| template <class ELFT> |
| MergeInputSection::MergeInputSection(ObjFile<ELFT> &f, |
| const typename ELFT::Shdr &header, |
| StringRef name) |
| : InputSectionBase(f, header, name, InputSectionBase::Merge) {} |
| |
| MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type, |
| uint64_t entsize, ArrayRef<uint8_t> data, |
| StringRef name) |
| : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0, |
| /*Alignment*/ entsize, data, name, SectionBase::Merge) {} |
| |
| // This function is called after we obtain a complete list of input sections |
| // that need to be linked. This is responsible to split section contents |
| // into small chunks for further processing. |
| // |
| // Note that this function is called from parallelForEach. This must be |
| // thread-safe (i.e. no memory allocation from the pools). |
| void MergeInputSection::splitIntoPieces() { |
| assert(pieces.empty()); |
| |
| if (flags & SHF_STRINGS) |
| splitStrings(data(), entsize); |
| else |
| splitNonStrings(data(), entsize); |
| } |
| |
| SectionPiece *MergeInputSection::getSectionPiece(uint64_t offset) { |
| if (this->data().size() <= offset) |
| fatal(toString(this) + ": offset is outside the section"); |
| |
| // If Offset is not at beginning of a section piece, it is not in the map. |
| // In that case we need to do a binary search of the original section piece vector. |
| auto it = partition_point( |
| pieces, [=](SectionPiece p) { return p.inputOff <= offset; }); |
| return &it[-1]; |
| } |
| |
| // Returns the offset in an output section for a given input offset. |
| // Because contents of a mergeable section is not contiguous in output, |
| // it is not just an addition to a base output offset. |
| uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { |
| // If Offset is not at beginning of a section piece, it is not in the map. |
| // In that case we need to search from the original section piece vector. |
| const SectionPiece &piece = *getSectionPiece(offset); |
| uint64_t addend = offset - piece.inputOff; |
| return piece.outputOff + addend; |
| } |
| |
| template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, |
| StringRef); |
| template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, |
| StringRef); |
| template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, |
| StringRef); |
| template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, |
| StringRef); |
| |
| template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t); |
| template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t); |
| template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t); |
| template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t); |
| |
| template void InputSection::writeTo<ELF32LE>(uint8_t *); |
| template void InputSection::writeTo<ELF32BE>(uint8_t *); |
| template void InputSection::writeTo<ELF64LE>(uint8_t *); |
| template void InputSection::writeTo<ELF64BE>(uint8_t *); |
| |
| template RelsOrRelas<ELF32LE> InputSectionBase::relsOrRelas<ELF32LE>() const; |
| template RelsOrRelas<ELF32BE> InputSectionBase::relsOrRelas<ELF32BE>() const; |
| template RelsOrRelas<ELF64LE> InputSectionBase::relsOrRelas<ELF64LE>() const; |
| template RelsOrRelas<ELF64BE> InputSectionBase::relsOrRelas<ELF64BE>() const; |
| |
| template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, |
| const ELF32LE::Shdr &, StringRef); |
| template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, |
| const ELF32BE::Shdr &, StringRef); |
| template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, |
| const ELF64LE::Shdr &, StringRef); |
| template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, |
| const ELF64BE::Shdr &, StringRef); |
| |
| template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, |
| const ELF32LE::Shdr &, StringRef); |
| template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, |
| const ELF32BE::Shdr &, StringRef); |
| template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, |
| const ELF64LE::Shdr &, StringRef); |
| template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, |
| const ELF64BE::Shdr &, StringRef); |
| |
| template void EhInputSection::split<ELF32LE>(); |
| template void EhInputSection::split<ELF32BE>(); |
| template void EhInputSection::split<ELF64LE>(); |
| template void EhInputSection::split<ELF64BE>(); |