| //===- InputFiles.cpp -----------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InputFiles.h" |
| #include "Driver.h" |
| #include "InputSection.h" |
| #include "LinkerScript.h" |
| #include "SymbolTable.h" |
| #include "Symbols.h" |
| #include "SyntheticSections.h" |
| #include "lld/Common/DWARF.h" |
| #include "lld/Common/ErrorHandler.h" |
| #include "lld/Common/Memory.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/CodeGen/Analysis.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/LTO/LTO.h" |
| #include "llvm/MC/StringTableBuilder.h" |
| #include "llvm/Object/ELFObjectFile.h" |
| #include "llvm/Support/ARMAttributeParser.h" |
| #include "llvm/Support/ARMBuildAttributes.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/Path.h" |
| #include "llvm/Support/RISCVAttributeParser.h" |
| #include "llvm/Support/TarWriter.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| using namespace llvm::ELF; |
| using namespace llvm::object; |
| using namespace llvm::sys; |
| using namespace llvm::sys::fs; |
| using namespace llvm::support::endian; |
| using namespace lld; |
| using namespace lld::elf; |
| |
| bool InputFile::isInGroup; |
| uint32_t InputFile::nextGroupId; |
| |
| std::vector<ArchiveFile *> elf::archiveFiles; |
| std::vector<BinaryFile *> elf::binaryFiles; |
| std::vector<BitcodeFile *> elf::bitcodeFiles; |
| std::vector<LazyObjFile *> elf::lazyObjFiles; |
| std::vector<InputFile *> elf::objectFiles; |
| std::vector<SharedFile *> elf::sharedFiles; |
| |
| std::unique_ptr<TarWriter> elf::tar; |
| |
| // Returns "<internal>", "foo.a(bar.o)" or "baz.o". |
| std::string lld::toString(const InputFile *f) { |
| if (!f) |
| return "<internal>"; |
| |
| if (f->toStringCache.empty()) { |
| if (f->archiveName.empty()) |
| f->toStringCache = std::string(f->getName()); |
| else |
| f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str(); |
| } |
| return f->toStringCache; |
| } |
| |
| static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) { |
| unsigned char size; |
| unsigned char endian; |
| std::tie(size, endian) = getElfArchType(mb.getBuffer()); |
| |
| auto report = [&](StringRef msg) { |
| StringRef filename = mb.getBufferIdentifier(); |
| if (archiveName.empty()) |
| fatal(filename + ": " + msg); |
| else |
| fatal(archiveName + "(" + filename + "): " + msg); |
| }; |
| |
| if (!mb.getBuffer().startswith(ElfMagic)) |
| report("not an ELF file"); |
| if (endian != ELFDATA2LSB && endian != ELFDATA2MSB) |
| report("corrupted ELF file: invalid data encoding"); |
| if (size != ELFCLASS32 && size != ELFCLASS64) |
| report("corrupted ELF file: invalid file class"); |
| |
| size_t bufSize = mb.getBuffer().size(); |
| if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) || |
| (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr))) |
| report("corrupted ELF file: file is too short"); |
| |
| if (size == ELFCLASS32) |
| return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; |
| return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; |
| } |
| |
| InputFile::InputFile(Kind k, MemoryBufferRef m) |
| : mb(m), groupId(nextGroupId), fileKind(k) { |
| // All files within the same --{start,end}-group get the same group ID. |
| // Otherwise, a new file will get a new group ID. |
| if (!isInGroup) |
| ++nextGroupId; |
| } |
| |
| Optional<MemoryBufferRef> elf::readFile(StringRef path) { |
| llvm::TimeTraceScope timeScope("Load input files", path); |
| |
| // The --chroot option changes our virtual root directory. |
| // This is useful when you are dealing with files created by --reproduce. |
| if (!config->chroot.empty() && path.startswith("/")) |
| path = saver.save(config->chroot + path); |
| |
| log(path); |
| config->dependencyFiles.insert(llvm::CachedHashString(path)); |
| |
| auto mbOrErr = MemoryBuffer::getFile(path, /*IsText=*/false, |
| /*RequiresNullTerminator=*/false); |
| if (auto ec = mbOrErr.getError()) { |
| error("cannot open " + path + ": " + ec.message()); |
| return None; |
| } |
| |
| std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; |
| MemoryBufferRef mbref = mb->getMemBufferRef(); |
| make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership |
| |
| if (tar) |
| tar->append(relativeToRoot(path), mbref.getBuffer()); |
| return mbref; |
| } |
| |
| // All input object files must be for the same architecture |
| // (e.g. it does not make sense to link x86 object files with |
| // MIPS object files.) This function checks for that error. |
| static bool isCompatible(InputFile *file) { |
| if (!file->isElf() && !isa<BitcodeFile>(file)) |
| return true; |
| |
| if (file->ekind == config->ekind && file->emachine == config->emachine) { |
| if (config->emachine != EM_MIPS) |
| return true; |
| if (isMipsN32Abi(file) == config->mipsN32Abi) |
| return true; |
| } |
| |
| StringRef target = |
| !config->bfdname.empty() ? config->bfdname : config->emulation; |
| if (!target.empty()) { |
| error(toString(file) + " is incompatible with " + target); |
| return false; |
| } |
| |
| InputFile *existing; |
| if (!objectFiles.empty()) |
| existing = objectFiles[0]; |
| else if (!sharedFiles.empty()) |
| existing = sharedFiles[0]; |
| else if (!bitcodeFiles.empty()) |
| existing = bitcodeFiles[0]; |
| else |
| llvm_unreachable("Must have -m, OUTPUT_FORMAT or existing input file to " |
| "determine target emulation"); |
| |
| error(toString(file) + " is incompatible with " + toString(existing)); |
| return false; |
| } |
| |
| template <class ELFT> static void doParseFile(InputFile *file) { |
| if (!isCompatible(file)) |
| return; |
| |
| // Binary file |
| if (auto *f = dyn_cast<BinaryFile>(file)) { |
| binaryFiles.push_back(f); |
| f->parse(); |
| return; |
| } |
| |
| // .a file |
| if (auto *f = dyn_cast<ArchiveFile>(file)) { |
| archiveFiles.push_back(f); |
| f->parse(); |
| return; |
| } |
| |
| // Lazy object file |
| if (auto *f = dyn_cast<LazyObjFile>(file)) { |
| lazyObjFiles.push_back(f); |
| f->parse<ELFT>(); |
| return; |
| } |
| |
| if (config->trace) |
| message(toString(file)); |
| |
| // .so file |
| if (auto *f = dyn_cast<SharedFile>(file)) { |
| f->parse<ELFT>(); |
| return; |
| } |
| |
| // LLVM bitcode file |
| if (auto *f = dyn_cast<BitcodeFile>(file)) { |
| bitcodeFiles.push_back(f); |
| f->parse<ELFT>(); |
| return; |
| } |
| |
| // Regular object file |
| objectFiles.push_back(file); |
| cast<ObjFile<ELFT>>(file)->parse(); |
| } |
| |
| // Add symbols in File to the symbol table. |
| void elf::parseFile(InputFile *file) { |
| switch (config->ekind) { |
| case ELF32LEKind: |
| doParseFile<ELF32LE>(file); |
| return; |
| case ELF32BEKind: |
| doParseFile<ELF32BE>(file); |
| return; |
| case ELF64LEKind: |
| doParseFile<ELF64LE>(file); |
| return; |
| case ELF64BEKind: |
| doParseFile<ELF64BE>(file); |
| return; |
| default: |
| llvm_unreachable("unknown ELFT"); |
| } |
| } |
| |
| // Concatenates arguments to construct a string representing an error location. |
| static std::string createFileLineMsg(StringRef path, unsigned line) { |
| std::string filename = std::string(path::filename(path)); |
| std::string lineno = ":" + std::to_string(line); |
| if (filename == path) |
| return filename + lineno; |
| return filename + lineno + " (" + path.str() + lineno + ")"; |
| } |
| |
| template <class ELFT> |
| static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym, |
| InputSectionBase &sec, uint64_t offset) { |
| // In DWARF, functions and variables are stored to different places. |
| // First, lookup a function for a given offset. |
| if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset)) |
| return createFileLineMsg(info->FileName, info->Line); |
| |
| // If it failed, lookup again as a variable. |
| if (Optional<std::pair<std::string, unsigned>> fileLine = |
| file.getVariableLoc(sym.getName())) |
| return createFileLineMsg(fileLine->first, fileLine->second); |
| |
| // File.sourceFile contains STT_FILE symbol, and that is a last resort. |
| return std::string(file.sourceFile); |
| } |
| |
| std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec, |
| uint64_t offset) { |
| if (kind() != ObjKind) |
| return ""; |
| switch (config->ekind) { |
| default: |
| llvm_unreachable("Invalid kind"); |
| case ELF32LEKind: |
| return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset); |
| case ELF32BEKind: |
| return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset); |
| case ELF64LEKind: |
| return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset); |
| case ELF64BEKind: |
| return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset); |
| } |
| } |
| |
| StringRef InputFile::getNameForScript() const { |
| if (archiveName.empty()) |
| return getName(); |
| |
| if (nameForScriptCache.empty()) |
| nameForScriptCache = (archiveName + Twine(':') + getName()).str(); |
| |
| return nameForScriptCache; |
| } |
| |
| template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() { |
| llvm::call_once(initDwarf, [this]() { |
| dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>( |
| std::make_unique<LLDDwarfObj<ELFT>>(this), "", |
| [&](Error err) { warn(getName() + ": " + toString(std::move(err))); }, |
| [&](Error warning) { |
| warn(getName() + ": " + toString(std::move(warning))); |
| })); |
| }); |
| |
| return dwarf.get(); |
| } |
| |
| // Returns the pair of file name and line number describing location of data |
| // object (variable, array, etc) definition. |
| template <class ELFT> |
| Optional<std::pair<std::string, unsigned>> |
| ObjFile<ELFT>::getVariableLoc(StringRef name) { |
| return getDwarf()->getVariableLoc(name); |
| } |
| |
| // Returns source line information for a given offset |
| // using DWARF debug info. |
| template <class ELFT> |
| Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s, |
| uint64_t offset) { |
| // Detect SectionIndex for specified section. |
| uint64_t sectionIndex = object::SectionedAddress::UndefSection; |
| ArrayRef<InputSectionBase *> sections = s->file->getSections(); |
| for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) { |
| if (s == sections[curIndex]) { |
| sectionIndex = curIndex; |
| break; |
| } |
| } |
| |
| return getDwarf()->getDILineInfo(offset, sectionIndex); |
| } |
| |
| ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) { |
| ekind = getELFKind(mb, ""); |
| |
| switch (ekind) { |
| case ELF32LEKind: |
| init<ELF32LE>(); |
| break; |
| case ELF32BEKind: |
| init<ELF32BE>(); |
| break; |
| case ELF64LEKind: |
| init<ELF64LE>(); |
| break; |
| case ELF64BEKind: |
| init<ELF64BE>(); |
| break; |
| default: |
| llvm_unreachable("getELFKind"); |
| } |
| } |
| |
| template <typename Elf_Shdr> |
| static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) { |
| for (const Elf_Shdr &sec : sections) |
| if (sec.sh_type == type) |
| return &sec; |
| return nullptr; |
| } |
| |
| template <class ELFT> void ELFFileBase::init() { |
| using Elf_Shdr = typename ELFT::Shdr; |
| using Elf_Sym = typename ELFT::Sym; |
| |
| // Initialize trivial attributes. |
| const ELFFile<ELFT> &obj = getObj<ELFT>(); |
| emachine = obj.getHeader().e_machine; |
| osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI]; |
| abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION]; |
| |
| ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); |
| |
| // Find a symbol table. |
| bool isDSO = |
| (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object); |
| const Elf_Shdr *symtabSec = |
| findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB); |
| |
| if (!symtabSec) |
| return; |
| |
| // Initialize members corresponding to a symbol table. |
| firstGlobal = symtabSec->sh_info; |
| |
| ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this); |
| if (firstGlobal == 0 || firstGlobal > eSyms.size()) |
| fatal(toString(this) + ": invalid sh_info in symbol table"); |
| |
| elfSyms = reinterpret_cast<const void *>(eSyms.data()); |
| numELFSyms = eSyms.size(); |
| stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this); |
| } |
| |
| template <class ELFT> |
| uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const { |
| return CHECK( |
| this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable), |
| this); |
| } |
| |
| template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) { |
| // Read a section table. justSymbols is usually false. |
| if (this->justSymbols) |
| initializeJustSymbols(); |
| else |
| initializeSections(ignoreComdats); |
| |
| // Read a symbol table. |
| initializeSymbols(); |
| } |
| |
| // Sections with SHT_GROUP and comdat bits define comdat section groups. |
| // They are identified and deduplicated by group name. This function |
| // returns a group name. |
| template <class ELFT> |
| StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections, |
| const Elf_Shdr &sec) { |
| typename ELFT::SymRange symbols = this->getELFSyms<ELFT>(); |
| if (sec.sh_info >= symbols.size()) |
| fatal(toString(this) + ": invalid symbol index"); |
| const typename ELFT::Sym &sym = symbols[sec.sh_info]; |
| return CHECK(sym.getName(this->stringTable), this); |
| } |
| |
| template <class ELFT> |
| bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) { |
| if (!(sec.sh_flags & SHF_MERGE)) |
| return false; |
| |
| // On a regular link we don't merge sections if -O0 (default is -O1). This |
| // sometimes makes the linker significantly faster, although the output will |
| // be bigger. |
| // |
| // Doing the same for -r would create a problem as it would combine sections |
| // with different sh_entsize. One option would be to just copy every SHF_MERGE |
| // section as is to the output. While this would produce a valid ELF file with |
| // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when |
| // they see two .debug_str. We could have separate logic for combining |
| // SHF_MERGE sections based both on their name and sh_entsize, but that seems |
| // to be more trouble than it is worth. Instead, we just use the regular (-O1) |
| // logic for -r. |
| if (config->optimize == 0 && !config->relocatable) |
| return false; |
| |
| // A mergeable section with size 0 is useless because they don't have |
| // any data to merge. A mergeable string section with size 0 can be |
| // argued as invalid because it doesn't end with a null character. |
| // We'll avoid a mess by handling them as if they were non-mergeable. |
| if (sec.sh_size == 0) |
| return false; |
| |
| // Check for sh_entsize. The ELF spec is not clear about the zero |
| // sh_entsize. It says that "the member [sh_entsize] contains 0 if |
| // the section does not hold a table of fixed-size entries". We know |
| // that Rust 1.13 produces a string mergeable section with a zero |
| // sh_entsize. Here we just accept it rather than being picky about it. |
| uint64_t entSize = sec.sh_entsize; |
| if (entSize == 0) |
| return false; |
| if (sec.sh_size % entSize) |
| fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" + |
| Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" + |
| Twine(entSize) + ")"); |
| |
| if (sec.sh_flags & SHF_WRITE) |
| fatal(toString(this) + ":(" + name + |
| "): writable SHF_MERGE section is not supported"); |
| |
| return true; |
| } |
| |
| // This is for --just-symbols. |
| // |
| // --just-symbols is a very minor feature that allows you to link your |
| // output against other existing program, so that if you load both your |
| // program and the other program into memory, your output can refer the |
| // other program's symbols. |
| // |
| // When the option is given, we link "just symbols". The section table is |
| // initialized with null pointers. |
| template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { |
| ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this); |
| this->sections.resize(sections.size()); |
| } |
| |
| // An ELF object file may contain a `.deplibs` section. If it exists, the |
| // section contains a list of library specifiers such as `m` for libm. This |
| // function resolves a given name by finding the first matching library checking |
| // the various ways that a library can be specified to LLD. This ELF extension |
| // is a form of autolinking and is called `dependent libraries`. It is currently |
| // unique to LLVM and lld. |
| static void addDependentLibrary(StringRef specifier, const InputFile *f) { |
| if (!config->dependentLibraries) |
| return; |
| if (fs::exists(specifier)) |
| driver->addFile(specifier, /*withLOption=*/false); |
| else if (Optional<std::string> s = findFromSearchPaths(specifier)) |
| driver->addFile(*s, /*withLOption=*/true); |
| else if (Optional<std::string> s = searchLibraryBaseName(specifier)) |
| driver->addFile(*s, /*withLOption=*/true); |
| else |
| error(toString(f) + |
| ": unable to find library from dependent library specifier: " + |
| specifier); |
| } |
| |
| // Record the membership of a section group so that in the garbage collection |
| // pass, section group members are kept or discarded as a unit. |
| template <class ELFT> |
| static void handleSectionGroup(ArrayRef<InputSectionBase *> sections, |
| ArrayRef<typename ELFT::Word> entries) { |
| bool hasAlloc = false; |
| for (uint32_t index : entries.slice(1)) { |
| if (index >= sections.size()) |
| return; |
| if (InputSectionBase *s = sections[index]) |
| if (s != &InputSection::discarded && s->flags & SHF_ALLOC) |
| hasAlloc = true; |
| } |
| |
| // If any member has the SHF_ALLOC flag, the whole group is subject to garbage |
| // collection. See the comment in markLive(). This rule retains .debug_types |
| // and .rela.debug_types. |
| if (!hasAlloc) |
| return; |
| |
| // Connect the members in a circular doubly-linked list via |
| // nextInSectionGroup. |
| InputSectionBase *head; |
| InputSectionBase *prev = nullptr; |
| for (uint32_t index : entries.slice(1)) { |
| InputSectionBase *s = sections[index]; |
| if (!s || s == &InputSection::discarded) |
| continue; |
| if (prev) |
| prev->nextInSectionGroup = s; |
| else |
| head = s; |
| prev = s; |
| } |
| if (prev) |
| prev->nextInSectionGroup = head; |
| } |
| |
| template <class ELFT> |
| void ObjFile<ELFT>::initializeSections(bool ignoreComdats) { |
| const ELFFile<ELFT> &obj = this->getObj(); |
| |
| ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this); |
| StringRef shstrtab = CHECK(obj.getSectionStringTable(objSections), this); |
| uint64_t size = objSections.size(); |
| this->sections.resize(size); |
| |
| std::vector<ArrayRef<Elf_Word>> selectedGroups; |
| |
| for (size_t i = 0, e = objSections.size(); i < e; ++i) { |
| if (this->sections[i] == &InputSection::discarded) |
| continue; |
| const Elf_Shdr &sec = objSections[i]; |
| |
| if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE) |
| cgProfileSectionIndex = i; |
| |
| // SHF_EXCLUDE'ed sections are discarded by the linker. However, |
| // if -r is given, we'll let the final link discard such sections. |
| // This is compatible with GNU. |
| if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) { |
| if (sec.sh_type == SHT_LLVM_ADDRSIG) { |
| // We ignore the address-significance table if we know that the object |
| // file was created by objcopy or ld -r. This is because these tools |
| // will reorder the symbols in the symbol table, invalidating the data |
| // in the address-significance table, which refers to symbols by index. |
| if (sec.sh_link != 0) |
| this->addrsigSec = &sec; |
| else if (config->icf == ICFLevel::Safe) |
| warn(toString(this) + |
| ": --icf=safe conservatively ignores " |
| "SHT_LLVM_ADDRSIG [index " + |
| Twine(i) + |
| "] with sh_link=0 " |
| "(likely created using objcopy or ld -r)"); |
| } |
| this->sections[i] = &InputSection::discarded; |
| continue; |
| } |
| |
| switch (sec.sh_type) { |
| case SHT_GROUP: { |
| // De-duplicate section groups by their signatures. |
| StringRef signature = getShtGroupSignature(objSections, sec); |
| this->sections[i] = &InputSection::discarded; |
| |
| ArrayRef<Elf_Word> entries = |
| CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this); |
| if (entries.empty()) |
| fatal(toString(this) + ": empty SHT_GROUP"); |
| |
| Elf_Word flag = entries[0]; |
| if (flag && flag != GRP_COMDAT) |
| fatal(toString(this) + ": unsupported SHT_GROUP format"); |
| |
| bool keepGroup = |
| (flag & GRP_COMDAT) == 0 || ignoreComdats || |
| symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this) |
| .second; |
| if (keepGroup) { |
| if (config->relocatable) |
| this->sections[i] = createInputSection(i, sec, shstrtab); |
| selectedGroups.push_back(entries); |
| continue; |
| } |
| |
| // Otherwise, discard group members. |
| for (uint32_t secIndex : entries.slice(1)) { |
| if (secIndex >= size) |
| fatal(toString(this) + |
| ": invalid section index in group: " + Twine(secIndex)); |
| this->sections[secIndex] = &InputSection::discarded; |
| } |
| break; |
| } |
| case SHT_SYMTAB_SHNDX: |
| shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this); |
| break; |
| case SHT_SYMTAB: |
| case SHT_STRTAB: |
| case SHT_REL: |
| case SHT_RELA: |
| case SHT_NULL: |
| break; |
| default: |
| this->sections[i] = createInputSection(i, sec, shstrtab); |
| } |
| } |
| |
| // We have a second loop. It is used to: |
| // 1) handle SHF_LINK_ORDER sections. |
| // 2) create SHT_REL[A] sections. In some cases the section header index of a |
| // relocation section may be smaller than that of the relocated section. In |
| // such cases, the relocation section would attempt to reference a target |
| // section that has not yet been created. For simplicity, delay creation of |
| // relocation sections until now. |
| for (size_t i = 0, e = objSections.size(); i < e; ++i) { |
| if (this->sections[i] == &InputSection::discarded) |
| continue; |
| const Elf_Shdr &sec = objSections[i]; |
| |
| if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA) |
| this->sections[i] = createInputSection(i, sec, shstrtab); |
| |
| // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have |
| // the flag. |
| if (!(sec.sh_flags & SHF_LINK_ORDER) || !sec.sh_link) |
| continue; |
| |
| InputSectionBase *linkSec = nullptr; |
| if (sec.sh_link < this->sections.size()) |
| linkSec = this->sections[sec.sh_link]; |
| if (!linkSec) |
| fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link)); |
| |
| // A SHF_LINK_ORDER section is discarded if its linked-to section is |
| // discarded. |
| InputSection *isec = cast<InputSection>(this->sections[i]); |
| linkSec->dependentSections.push_back(isec); |
| if (!isa<InputSection>(linkSec)) |
| error("a section " + isec->name + |
| " with SHF_LINK_ORDER should not refer a non-regular section: " + |
| toString(linkSec)); |
| } |
| |
| for (ArrayRef<Elf_Word> entries : selectedGroups) |
| handleSectionGroup<ELFT>(this->sections, entries); |
| } |
| |
| // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD |
| // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how |
| // the input objects have been compiled. |
| static void updateARMVFPArgs(const ARMAttributeParser &attributes, |
| const InputFile *f) { |
| Optional<unsigned> attr = |
| attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); |
| if (!attr.hasValue()) |
| // If an ABI tag isn't present then it is implicitly given the value of 0 |
| // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, |
| // including some in glibc that don't use FP args (and should have value 3) |
| // don't have the attribute so we do not consider an implicit value of 0 |
| // as a clash. |
| return; |
| |
| unsigned vfpArgs = attr.getValue(); |
| ARMVFPArgKind arg; |
| switch (vfpArgs) { |
| case ARMBuildAttrs::BaseAAPCS: |
| arg = ARMVFPArgKind::Base; |
| break; |
| case ARMBuildAttrs::HardFPAAPCS: |
| arg = ARMVFPArgKind::VFP; |
| break; |
| case ARMBuildAttrs::ToolChainFPPCS: |
| // Tool chain specific convention that conforms to neither AAPCS variant. |
| arg = ARMVFPArgKind::ToolChain; |
| break; |
| case ARMBuildAttrs::CompatibleFPAAPCS: |
| // Object compatible with all conventions. |
| return; |
| default: |
| error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs)); |
| return; |
| } |
| // Follow ld.bfd and error if there is a mix of calling conventions. |
| if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default) |
| error(toString(f) + ": incompatible Tag_ABI_VFP_args"); |
| else |
| config->armVFPArgs = arg; |
| } |
| |
| // The ARM support in lld makes some use of instructions that are not available |
| // on all ARM architectures. Namely: |
| // - Use of BLX instruction for interworking between ARM and Thumb state. |
| // - Use of the extended Thumb branch encoding in relocation. |
| // - Use of the MOVT/MOVW instructions in Thumb Thunks. |
| // The ARM Attributes section contains information about the architecture chosen |
| // at compile time. We follow the convention that if at least one input object |
| // is compiled with an architecture that supports these features then lld is |
| // permitted to use them. |
| static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) { |
| Optional<unsigned> attr = |
| attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); |
| if (!attr.hasValue()) |
| return; |
| auto arch = attr.getValue(); |
| switch (arch) { |
| case ARMBuildAttrs::Pre_v4: |
| case ARMBuildAttrs::v4: |
| case ARMBuildAttrs::v4T: |
| // Architectures prior to v5 do not support BLX instruction |
| break; |
| case ARMBuildAttrs::v5T: |
| case ARMBuildAttrs::v5TE: |
| case ARMBuildAttrs::v5TEJ: |
| case ARMBuildAttrs::v6: |
| case ARMBuildAttrs::v6KZ: |
| case ARMBuildAttrs::v6K: |
| config->armHasBlx = true; |
| // Architectures used in pre-Cortex processors do not support |
| // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception |
| // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. |
| break; |
| default: |
| // All other Architectures have BLX and extended branch encoding |
| config->armHasBlx = true; |
| config->armJ1J2BranchEncoding = true; |
| if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M) |
| // All Architectures used in Cortex processors with the exception |
| // of v6-M and v6S-M have the MOVT and MOVW instructions. |
| config->armHasMovtMovw = true; |
| break; |
| } |
| } |
| |
| // If a source file is compiled with x86 hardware-assisted call flow control |
| // enabled, the generated object file contains feature flags indicating that |
| // fact. This function reads the feature flags and returns it. |
| // |
| // Essentially we want to read a single 32-bit value in this function, but this |
| // function is rather complicated because the value is buried deep inside a |
| // .note.gnu.property section. |
| // |
| // The section consists of one or more NOTE records. Each NOTE record consists |
| // of zero or more type-length-value fields. We want to find a field of a |
| // certain type. It seems a bit too much to just store a 32-bit value, perhaps |
| // the ABI is unnecessarily complicated. |
| template <class ELFT> static uint32_t readAndFeatures(const InputSection &sec) { |
| using Elf_Nhdr = typename ELFT::Nhdr; |
| using Elf_Note = typename ELFT::Note; |
| |
| uint32_t featuresSet = 0; |
| ArrayRef<uint8_t> data = sec.data(); |
| auto reportFatal = [&](const uint8_t *place, const char *msg) { |
| fatal(toString(sec.file) + ":(" + sec.name + "+0x" + |
| Twine::utohexstr(place - sec.data().data()) + "): " + msg); |
| }; |
| while (!data.empty()) { |
| // Read one NOTE record. |
| auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data()); |
| if (data.size() < sizeof(Elf_Nhdr) || data.size() < nhdr->getSize()) |
| reportFatal(data.data(), "data is too short"); |
| |
| Elf_Note note(*nhdr); |
| if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") { |
| data = data.slice(nhdr->getSize()); |
| continue; |
| } |
| |
| uint32_t featureAndType = config->emachine == EM_AARCH64 |
| ? GNU_PROPERTY_AARCH64_FEATURE_1_AND |
| : GNU_PROPERTY_X86_FEATURE_1_AND; |
| |
| // Read a body of a NOTE record, which consists of type-length-value fields. |
| ArrayRef<uint8_t> desc = note.getDesc(); |
| while (!desc.empty()) { |
| const uint8_t *place = desc.data(); |
| if (desc.size() < 8) |
| reportFatal(place, "program property is too short"); |
| uint32_t type = read32<ELFT::TargetEndianness>(desc.data()); |
| uint32_t size = read32<ELFT::TargetEndianness>(desc.data() + 4); |
| desc = desc.slice(8); |
| if (desc.size() < size) |
| reportFatal(place, "program property is too short"); |
| |
| if (type == featureAndType) { |
| // We found a FEATURE_1_AND field. There may be more than one of these |
| // in a .note.gnu.property section, for a relocatable object we |
| // accumulate the bits set. |
| if (size < 4) |
| reportFatal(place, "FEATURE_1_AND entry is too short"); |
| featuresSet |= read32<ELFT::TargetEndianness>(desc.data()); |
| } |
| |
| // Padding is present in the note descriptor, if necessary. |
| desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size)); |
| } |
| |
| // Go to next NOTE record to look for more FEATURE_1_AND descriptions. |
| data = data.slice(nhdr->getSize()); |
| } |
| |
| return featuresSet; |
| } |
| |
| template <class ELFT> |
| InputSectionBase *ObjFile<ELFT>::getRelocTarget(uint32_t idx, StringRef name, |
| const Elf_Shdr &sec) { |
| uint32_t info = sec.sh_info; |
| if (info < this->sections.size()) { |
| InputSectionBase *target = this->sections[info]; |
| |
| // Strictly speaking, a relocation section must be included in the |
| // group of the section it relocates. However, LLVM 3.3 and earlier |
| // would fail to do so, so we gracefully handle that case. |
| if (target == &InputSection::discarded) |
| return nullptr; |
| |
| if (target != nullptr) |
| return target; |
| } |
| |
| error(toString(this) + Twine(": relocation section ") + name + " (index " + |
| Twine(idx) + ") has invalid sh_info (" + Twine(info) + ")"); |
| return nullptr; |
| } |
| |
| // Create a regular InputSection class that has the same contents |
| // as a given section. |
| static InputSection *toRegularSection(MergeInputSection *sec) { |
| return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment, |
| sec->data(), sec->name); |
| } |
| |
| template <class ELFT> |
| InputSectionBase *ObjFile<ELFT>::createInputSection(uint32_t idx, |
| const Elf_Shdr &sec, |
| StringRef shstrtab) { |
| StringRef name = CHECK(getObj().getSectionName(sec, shstrtab), this); |
| |
| if (config->emachine == EM_ARM && sec.sh_type == SHT_ARM_ATTRIBUTES) { |
| ARMAttributeParser attributes; |
| ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec)); |
| if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind |
| ? support::little |
| : support::big)) { |
| auto *isec = make<InputSection>(*this, sec, name); |
| warn(toString(isec) + ": " + llvm::toString(std::move(e))); |
| } else { |
| updateSupportedARMFeatures(attributes); |
| updateARMVFPArgs(attributes, this); |
| |
| // FIXME: Retain the first attribute section we see. The eglibc ARM |
| // dynamic loaders require the presence of an attribute section for dlopen |
| // to work. In a full implementation we would merge all attribute |
| // sections. |
| if (in.attributes == nullptr) { |
| in.attributes = make<InputSection>(*this, sec, name); |
| return in.attributes; |
| } |
| return &InputSection::discarded; |
| } |
| } |
| |
| if (config->emachine == EM_RISCV && sec.sh_type == SHT_RISCV_ATTRIBUTES) { |
| RISCVAttributeParser attributes; |
| ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec)); |
| if (Error e = attributes.parse(contents, support::little)) { |
| auto *isec = make<InputSection>(*this, sec, name); |
| warn(toString(isec) + ": " + llvm::toString(std::move(e))); |
| } else { |
| // FIXME: Validate arch tag contains C if and only if EF_RISCV_RVC is |
| // present. |
| |
| // FIXME: Retain the first attribute section we see. Tools such as |
| // llvm-objdump make use of the attribute section to determine which |
| // standard extensions to enable. In a full implementation we would merge |
| // all attribute sections. |
| if (in.attributes == nullptr) { |
| in.attributes = make<InputSection>(*this, sec, name); |
| return in.attributes; |
| } |
| return &InputSection::discarded; |
| } |
| } |
| |
| switch (sec.sh_type) { |
| case SHT_LLVM_DEPENDENT_LIBRARIES: { |
| if (config->relocatable) |
| break; |
| ArrayRef<char> data = |
| CHECK(this->getObj().template getSectionContentsAsArray<char>(sec), this); |
| if (!data.empty() && data.back() != '\0') { |
| error(toString(this) + |
| ": corrupted dependent libraries section (unterminated string): " + |
| name); |
| return &InputSection::discarded; |
| } |
| for (const char *d = data.begin(), *e = data.end(); d < e;) { |
| StringRef s(d); |
| addDependentLibrary(s, this); |
| d += s.size() + 1; |
| } |
| return &InputSection::discarded; |
| } |
| case SHT_RELA: |
| case SHT_REL: { |
| // Find a relocation target section and associate this section with that. |
| // Target may have been discarded if it is in a different section group |
| // and the group is discarded, even though it's a violation of the |
| // spec. We handle that situation gracefully by discarding dangling |
| // relocation sections. |
| InputSectionBase *target = getRelocTarget(idx, name, sec); |
| if (!target) |
| return nullptr; |
| |
| // ELF spec allows mergeable sections with relocations, but they are |
| // rare, and it is in practice hard to merge such sections by contents, |
| // because applying relocations at end of linking changes section |
| // contents. So, we simply handle such sections as non-mergeable ones. |
| // Degrading like this is acceptable because section merging is optional. |
| if (auto *ms = dyn_cast<MergeInputSection>(target)) { |
| target = toRegularSection(ms); |
| this->sections[sec.sh_info] = target; |
| } |
| |
| if (target->relSecIdx != 0) |
| fatal(toString(this) + |
| ": multiple relocation sections to one section are not supported"); |
| target->relSecIdx = idx; |
| |
| // Relocation sections are usually removed from the output, so return |
| // `nullptr` for the normal case. However, if -r or --emit-relocs is |
| // specified, we need to copy them to the output. (Some post link analysis |
| // tools specify --emit-relocs to obtain the information.) |
| if (!config->copyRelocs) |
| return nullptr; |
| InputSection *relocSec = make<InputSection>(*this, sec, name); |
| // If the relocated section is discarded (due to /DISCARD/ or |
| // --gc-sections), the relocation section should be discarded as well. |
| target->dependentSections.push_back(relocSec); |
| return relocSec; |
| } |
| } |
| |
| // The GNU linker uses .note.GNU-stack section as a marker indicating |
| // that the code in the object file does not expect that the stack is |
| // executable (in terms of NX bit). If all input files have the marker, |
| // the GNU linker adds a PT_GNU_STACK segment to tells the loader to |
| // make the stack non-executable. Most object files have this section as |
| // of 2017. |
| // |
| // But making the stack non-executable is a norm today for security |
| // reasons. Failure to do so may result in a serious security issue. |
| // Therefore, we make LLD always add PT_GNU_STACK unless it is |
| // explicitly told to do otherwise (by -z execstack). Because the stack |
| // executable-ness is controlled solely by command line options, |
| // .note.GNU-stack sections are simply ignored. |
| if (name == ".note.GNU-stack") |
| return &InputSection::discarded; |
| |
| // Object files that use processor features such as Intel Control-Flow |
| // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a |
| // .note.gnu.property section containing a bitfield of feature bits like the |
| // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag. |
| // |
| // Since we merge bitmaps from multiple object files to create a new |
| // .note.gnu.property containing a single AND'ed bitmap, we discard an input |
| // file's .note.gnu.property section. |
| if (name == ".note.gnu.property") { |
| this->andFeatures = readAndFeatures<ELFT>(InputSection(*this, sec, name)); |
| return &InputSection::discarded; |
| } |
| |
| // Split stacks is a feature to support a discontiguous stack, |
| // commonly used in the programming language Go. For the details, |
| // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled |
| // for split stack will include a .note.GNU-split-stack section. |
| if (name == ".note.GNU-split-stack") { |
| if (config->relocatable) { |
| error("cannot mix split-stack and non-split-stack in a relocatable link"); |
| return &InputSection::discarded; |
| } |
| this->splitStack = true; |
| return &InputSection::discarded; |
| } |
| |
| // An object file cmpiled for split stack, but where some of the |
| // functions were compiled with the no_split_stack_attribute will |
| // include a .note.GNU-no-split-stack section. |
| if (name == ".note.GNU-no-split-stack") { |
| this->someNoSplitStack = true; |
| return &InputSection::discarded; |
| } |
| |
| // The linkonce feature is a sort of proto-comdat. Some glibc i386 object |
| // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce |
| // sections. Drop those sections to avoid duplicate symbol errors. |
| // FIXME: This is glibc PR20543, we should remove this hack once that has been |
| // fixed for a while. |
| if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || |
| name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") |
| return &InputSection::discarded; |
| |
| // If we are creating a new .build-id section, strip existing .build-id |
| // sections so that the output won't have more than one .build-id. |
| // This is not usually a problem because input object files normally don't |
| // have .build-id sections, but you can create such files by |
| // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it. |
| if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None) |
| return &InputSection::discarded; |
| |
| // The linker merges EH (exception handling) frames and creates a |
| // .eh_frame_hdr section for runtime. So we handle them with a special |
| // class. For relocatable outputs, they are just passed through. |
| if (name == ".eh_frame" && !config->relocatable) |
| return make<EhInputSection>(*this, sec, name); |
| |
| if (shouldMerge(sec, name)) |
| return make<MergeInputSection>(*this, sec, name); |
| return make<InputSection>(*this, sec, name); |
| } |
| |
| // Initialize this->Symbols. this->Symbols is a parallel array as |
| // its corresponding ELF symbol table. |
| template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { |
| ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); |
| this->symbols.resize(eSyms.size()); |
| |
| // Fill in InputFile::symbols. Some entries have been initialized |
| // because of LazyObjFile. |
| for (size_t i = 0, end = eSyms.size(); i != end; ++i) { |
| if (this->symbols[i]) |
| continue; |
| const Elf_Sym &eSym = eSyms[i]; |
| uint32_t secIdx = getSectionIndex(eSym); |
| if (secIdx >= this->sections.size()) |
| fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); |
| if (eSym.getBinding() != STB_LOCAL) { |
| if (i < firstGlobal) |
| error(toString(this) + ": non-local symbol (" + Twine(i) + |
| ") found at index < .symtab's sh_info (" + Twine(firstGlobal) + |
| ")"); |
| this->symbols[i] = |
| symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this)); |
| continue; |
| } |
| |
| // Handle local symbols. Local symbols are not added to the symbol |
| // table because they are not visible from other object files. We |
| // allocate symbol instances and add their pointers to symbols. |
| if (i >= firstGlobal) |
| errorOrWarn(toString(this) + ": STB_LOCAL symbol (" + Twine(i) + |
| ") found at index >= .symtab's sh_info (" + |
| Twine(firstGlobal) + ")"); |
| |
| InputSectionBase *sec = this->sections[secIdx]; |
| uint8_t type = eSym.getType(); |
| if (type == STT_FILE) |
| sourceFile = CHECK(eSym.getName(this->stringTable), this); |
| if (this->stringTable.size() <= eSym.st_name) |
| fatal(toString(this) + ": invalid symbol name offset"); |
| StringRefZ name = this->stringTable.data() + eSym.st_name; |
| |
| if (eSym.st_shndx == SHN_UNDEF) |
| this->symbols[i] = |
| make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type); |
| else if (sec == &InputSection::discarded) |
| this->symbols[i] = |
| make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type, |
| /*discardedSecIdx=*/secIdx); |
| else |
| this->symbols[i] = make<Defined>(this, name, STB_LOCAL, eSym.st_other, |
| type, eSym.st_value, eSym.st_size, sec); |
| } |
| |
| // Symbol resolution of non-local symbols. |
| SmallVector<unsigned, 32> undefineds; |
| for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) { |
| const Elf_Sym &eSym = eSyms[i]; |
| uint8_t binding = eSym.getBinding(); |
| if (binding == STB_LOCAL) |
| continue; // Errored above. |
| |
| uint32_t secIdx = getSectionIndex(eSym); |
| InputSectionBase *sec = this->sections[secIdx]; |
| uint8_t stOther = eSym.st_other; |
| uint8_t type = eSym.getType(); |
| uint64_t value = eSym.st_value; |
| uint64_t size = eSym.st_size; |
| StringRefZ name = this->stringTable.data() + eSym.st_name; |
| |
| // Handle global undefined symbols. |
| if (eSym.st_shndx == SHN_UNDEF) { |
| undefineds.push_back(i); |
| continue; |
| } |
| |
| // Handle global common symbols. |
| if (eSym.st_shndx == SHN_COMMON) { |
| if (value == 0 || value >= UINT32_MAX) |
| fatal(toString(this) + ": common symbol '" + StringRef(name.data) + |
| "' has invalid alignment: " + Twine(value)); |
| this->symbols[i]->resolve( |
| CommonSymbol{this, name, binding, stOther, type, value, size}); |
| continue; |
| } |
| |
| // If a defined symbol is in a discarded section, handle it as if it |
| // were an undefined symbol. Such symbol doesn't comply with the |
| // standard, but in practice, a .eh_frame often directly refer |
| // COMDAT member sections, and if a comdat group is discarded, some |
| // defined symbol in a .eh_frame becomes dangling symbols. |
| if (sec == &InputSection::discarded) { |
| Undefined und{this, name, binding, stOther, type, secIdx}; |
| Symbol *sym = this->symbols[i]; |
| // !ArchiveFile::parsed or LazyObjFile::extracted means that the file |
| // containing this object has not finished processing, i.e. this symbol is |
| // a result of a lazy symbol extract. We should demote the lazy symbol to |
| // an Undefined so that any relocations outside of the group to it will |
| // trigger a discarded section error. |
| if ((sym->symbolKind == Symbol::LazyArchiveKind && |
| !cast<ArchiveFile>(sym->file)->parsed) || |
| (sym->symbolKind == Symbol::LazyObjectKind && |
| cast<LazyObjFile>(sym->file)->extracted)) |
| sym->replace(und); |
| else |
| sym->resolve(und); |
| continue; |
| } |
| |
| // Handle global defined symbols. |
| if (binding == STB_GLOBAL || binding == STB_WEAK || |
| binding == STB_GNU_UNIQUE) { |
| this->symbols[i]->resolve( |
| Defined{this, name, binding, stOther, type, value, size, sec}); |
| continue; |
| } |
| |
| fatal(toString(this) + ": unexpected binding: " + Twine((int)binding)); |
| } |
| |
| // Undefined symbols (excluding those defined relative to non-prevailing |
| // sections) can trigger recursive extract. Process defined symbols first so |
| // that the relative order between a defined symbol and an undefined symbol |
| // does not change the symbol resolution behavior. In addition, a set of |
| // interconnected symbols will all be resolved to the same file, instead of |
| // being resolved to different files. |
| for (unsigned i : undefineds) { |
| const Elf_Sym &eSym = eSyms[i]; |
| StringRefZ name = this->stringTable.data() + eSym.st_name; |
| this->symbols[i]->resolve(Undefined{this, name, eSym.getBinding(), |
| eSym.st_other, eSym.getType()}); |
| this->symbols[i]->referenced = true; |
| } |
| } |
| |
| ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file) |
| : InputFile(ArchiveKind, file->getMemoryBufferRef()), |
| file(std::move(file)) {} |
| |
| void ArchiveFile::parse() { |
| for (const Archive::Symbol &sym : file->symbols()) |
| symtab->addSymbol(LazyArchive{*this, sym}); |
| |
| // Inform a future invocation of ObjFile<ELFT>::initializeSymbols() that this |
| // archive has been processed. |
| parsed = true; |
| } |
| |
| // Returns a buffer pointing to a member file containing a given symbol. |
| void ArchiveFile::extract(const Archive::Symbol &sym) { |
| Archive::Child c = |
| CHECK(sym.getMember(), toString(this) + |
| ": could not get the member for symbol " + |
| toELFString(sym)); |
| |
| if (!seen.insert(c.getChildOffset()).second) |
| return; |
| |
| MemoryBufferRef mb = |
| CHECK(c.getMemoryBufferRef(), |
| toString(this) + |
| ": could not get the buffer for the member defining symbol " + |
| toELFString(sym)); |
| |
| if (tar && c.getParent()->isThin()) |
| tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); |
| |
| InputFile *file = createObjectFile(mb, getName(), c.getChildOffset()); |
| file->groupId = groupId; |
| parseFile(file); |
| } |
| |
| // The handling of tentative definitions (COMMON symbols) in archives is murky. |
| // A tentative definition will be promoted to a global definition if there are |
| // no non-tentative definitions to dominate it. When we hold a tentative |
| // definition to a symbol and are inspecting archive members for inclusion |
| // there are 2 ways we can proceed: |
| // |
| // 1) Consider the tentative definition a 'real' definition (ie promotion from |
| // tentative to real definition has already happened) and not inspect |
| // archive members for Global/Weak definitions to replace the tentative |
| // definition. An archive member would only be included if it satisfies some |
| // other undefined symbol. This is the behavior Gold uses. |
| // |
| // 2) Consider the tentative definition as still undefined (ie the promotion to |
| // a real definition happens only after all symbol resolution is done). |
| // The linker searches archive members for STB_GLOBAL definitions to |
| // replace the tentative definition with. This is the behavior used by |
| // GNU ld. |
| // |
| // The second behavior is inherited from SysVR4, which based it on the FORTRAN |
| // COMMON BLOCK model. This behavior is needed for proper initialization in old |
| // (pre F90) FORTRAN code that is packaged into an archive. |
| // |
| // The following functions search archive members for definitions to replace |
| // tentative definitions (implementing behavior 2). |
| static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName, |
| StringRef archiveName) { |
| IRSymtabFile symtabFile = check(readIRSymtab(mb)); |
| for (const irsymtab::Reader::SymbolRef &sym : |
| symtabFile.TheReader.symbols()) { |
| if (sym.isGlobal() && sym.getName() == symName) |
| return !sym.isUndefined() && !sym.isWeak() && !sym.isCommon(); |
| } |
| return false; |
| } |
| |
| template <class ELFT> |
| static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName, |
| StringRef archiveName) { |
| ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(mb, archiveName); |
| StringRef stringtable = obj->getStringTable(); |
| |
| for (auto sym : obj->template getGlobalELFSyms<ELFT>()) { |
| Expected<StringRef> name = sym.getName(stringtable); |
| if (name && name.get() == symName) |
| return sym.isDefined() && sym.getBinding() == STB_GLOBAL && |
| !sym.isCommon(); |
| } |
| return false; |
| } |
| |
| static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName, |
| StringRef archiveName) { |
| switch (getELFKind(mb, archiveName)) { |
| case ELF32LEKind: |
| return isNonCommonDef<ELF32LE>(mb, symName, archiveName); |
| case ELF32BEKind: |
| return isNonCommonDef<ELF32BE>(mb, symName, archiveName); |
| case ELF64LEKind: |
| return isNonCommonDef<ELF64LE>(mb, symName, archiveName); |
| case ELF64BEKind: |
| return isNonCommonDef<ELF64BE>(mb, symName, archiveName); |
| default: |
| llvm_unreachable("getELFKind"); |
| } |
| } |
| |
| bool ArchiveFile::shouldExtractForCommon(const Archive::Symbol &sym) { |
| Archive::Child c = |
| CHECK(sym.getMember(), toString(this) + |
| ": could not get the member for symbol " + |
| toELFString(sym)); |
| MemoryBufferRef mb = |
| CHECK(c.getMemoryBufferRef(), |
| toString(this) + |
| ": could not get the buffer for the member defining symbol " + |
| toELFString(sym)); |
| |
| if (isBitcode(mb)) |
| return isBitcodeNonCommonDef(mb, sym.getName(), getName()); |
| |
| return isNonCommonDef(mb, sym.getName(), getName()); |
| } |
| |
| size_t ArchiveFile::getMemberCount() const { |
| size_t count = 0; |
| Error err = Error::success(); |
| for (const Archive::Child &c : file->children(err)) { |
| (void)c; |
| ++count; |
| } |
| // This function is used by --print-archive-stats=, where an error does not |
| // really matter. |
| consumeError(std::move(err)); |
| return count; |
| } |
| |
| unsigned SharedFile::vernauxNum; |
| |
| // Parse the version definitions in the object file if present, and return a |
| // vector whose nth element contains a pointer to the Elf_Verdef for version |
| // identifier n. Version identifiers that are not definitions map to nullptr. |
| template <typename ELFT> |
| static std::vector<const void *> parseVerdefs(const uint8_t *base, |
| const typename ELFT::Shdr *sec) { |
| if (!sec) |
| return {}; |
| |
| // We cannot determine the largest verdef identifier without inspecting |
| // every Elf_Verdef, but both bfd and gold assign verdef identifiers |
| // sequentially starting from 1, so we predict that the largest identifier |
| // will be verdefCount. |
| unsigned verdefCount = sec->sh_info; |
| std::vector<const void *> verdefs(verdefCount + 1); |
| |
| // Build the Verdefs array by following the chain of Elf_Verdef objects |
| // from the start of the .gnu.version_d section. |
| const uint8_t *verdef = base + sec->sh_offset; |
| for (unsigned i = 0; i != verdefCount; ++i) { |
| auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef); |
| verdef += curVerdef->vd_next; |
| unsigned verdefIndex = curVerdef->vd_ndx; |
| verdefs.resize(verdefIndex + 1); |
| verdefs[verdefIndex] = curVerdef; |
| } |
| return verdefs; |
| } |
| |
| // Parse SHT_GNU_verneed to properly set the name of a versioned undefined |
| // symbol. We detect fatal issues which would cause vulnerabilities, but do not |
| // implement sophisticated error checking like in llvm-readobj because the value |
| // of such diagnostics is low. |
| template <typename ELFT> |
| std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj, |
| const typename ELFT::Shdr *sec) { |
| if (!sec) |
| return {}; |
| std::vector<uint32_t> verneeds; |
| ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this); |
| const uint8_t *verneedBuf = data.begin(); |
| for (unsigned i = 0; i != sec->sh_info; ++i) { |
| if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end()) |
| fatal(toString(this) + " has an invalid Verneed"); |
| auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf); |
| const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux; |
| for (unsigned j = 0; j != vn->vn_cnt; ++j) { |
| if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end()) |
| fatal(toString(this) + " has an invalid Vernaux"); |
| auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf); |
| if (aux->vna_name >= this->stringTable.size()) |
| fatal(toString(this) + " has a Vernaux with an invalid vna_name"); |
| uint16_t version = aux->vna_other & VERSYM_VERSION; |
| if (version >= verneeds.size()) |
| verneeds.resize(version + 1); |
| verneeds[version] = aux->vna_name; |
| vernauxBuf += aux->vna_next; |
| } |
| verneedBuf += vn->vn_next; |
| } |
| return verneeds; |
| } |
| |
| // We do not usually care about alignments of data in shared object |
| // files because the loader takes care of it. However, if we promote a |
| // DSO symbol to point to .bss due to copy relocation, we need to keep |
| // the original alignment requirements. We infer it in this function. |
| template <typename ELFT> |
| static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections, |
| const typename ELFT::Sym &sym) { |
| uint64_t ret = UINT64_MAX; |
| if (sym.st_value) |
| ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value); |
| if (0 < sym.st_shndx && sym.st_shndx < sections.size()) |
| ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign); |
| return (ret > UINT32_MAX) ? 0 : ret; |
| } |
| |
| // Fully parse the shared object file. |
| // |
| // This function parses symbol versions. If a DSO has version information, |
| // the file has a ".gnu.version_d" section which contains symbol version |
| // definitions. Each symbol is associated to one version through a table in |
| // ".gnu.version" section. That table is a parallel array for the symbol |
| // table, and each table entry contains an index in ".gnu.version_d". |
| // |
| // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for |
| // VER_NDX_GLOBAL. There's no table entry for these special versions in |
| // ".gnu.version_d". |
| // |
| // The file format for symbol versioning is perhaps a bit more complicated |
| // than necessary, but you can easily understand the code if you wrap your |
| // head around the data structure described above. |
| template <class ELFT> void SharedFile::parse() { |
| using Elf_Dyn = typename ELFT::Dyn; |
| using Elf_Shdr = typename ELFT::Shdr; |
| using Elf_Sym = typename ELFT::Sym; |
| using Elf_Verdef = typename ELFT::Verdef; |
| using Elf_Versym = typename ELFT::Versym; |
| |
| ArrayRef<Elf_Dyn> dynamicTags; |
| const ELFFile<ELFT> obj = this->getObj<ELFT>(); |
| ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); |
| |
| const Elf_Shdr *versymSec = nullptr; |
| const Elf_Shdr *verdefSec = nullptr; |
| const Elf_Shdr *verneedSec = nullptr; |
| |
| // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. |
| for (const Elf_Shdr &sec : sections) { |
| switch (sec.sh_type) { |
| default: |
| continue; |
| case SHT_DYNAMIC: |
| dynamicTags = |
| CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this); |
| break; |
| case SHT_GNU_versym: |
| versymSec = &sec; |
| break; |
| case SHT_GNU_verdef: |
| verdefSec = &sec; |
| break; |
| case SHT_GNU_verneed: |
| verneedSec = &sec; |
| break; |
| } |
| } |
| |
| if (versymSec && numELFSyms == 0) { |
| error("SHT_GNU_versym should be associated with symbol table"); |
| return; |
| } |
| |
| // Search for a DT_SONAME tag to initialize this->soName. |
| for (const Elf_Dyn &dyn : dynamicTags) { |
| if (dyn.d_tag == DT_NEEDED) { |
| uint64_t val = dyn.getVal(); |
| if (val >= this->stringTable.size()) |
| fatal(toString(this) + ": invalid DT_NEEDED entry"); |
| dtNeeded.push_back(this->stringTable.data() + val); |
| } else if (dyn.d_tag == DT_SONAME) { |
| uint64_t val = dyn.getVal(); |
| if (val >= this->stringTable.size()) |
| fatal(toString(this) + ": invalid DT_SONAME entry"); |
| soName = this->stringTable.data() + val; |
| } |
| } |
| |
| // DSOs are uniquified not by filename but by soname. |
| DenseMap<StringRef, SharedFile *>::iterator it; |
| bool wasInserted; |
| std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this); |
| |
| // If a DSO appears more than once on the command line with and without |
| // --as-needed, --no-as-needed takes precedence over --as-needed because a |
| // user can add an extra DSO with --no-as-needed to force it to be added to |
| // the dependency list. |
| it->second->isNeeded |= isNeeded; |
| if (!wasInserted) |
| return; |
| |
| sharedFiles.push_back(this); |
| |
| verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec); |
| std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec); |
| |
| // Parse ".gnu.version" section which is a parallel array for the symbol |
| // table. If a given file doesn't have a ".gnu.version" section, we use |
| // VER_NDX_GLOBAL. |
| size_t size = numELFSyms - firstGlobal; |
| std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL); |
| if (versymSec) { |
| ArrayRef<Elf_Versym> versym = |
| CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec), |
| this) |
| .slice(firstGlobal); |
| for (size_t i = 0; i < size; ++i) |
| versyms[i] = versym[i].vs_index; |
| } |
| |
| // System libraries can have a lot of symbols with versions. Using a |
| // fixed buffer for computing the versions name (foo@ver) can save a |
| // lot of allocations. |
| SmallString<0> versionedNameBuffer; |
| |
| // Add symbols to the symbol table. |
| ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>(); |
| for (size_t i = 0; i < syms.size(); ++i) { |
| const Elf_Sym &sym = syms[i]; |
| |
| // ELF spec requires that all local symbols precede weak or global |
| // symbols in each symbol table, and the index of first non-local symbol |
| // is stored to sh_info. If a local symbol appears after some non-local |
| // symbol, that's a violation of the spec. |
| StringRef name = CHECK(sym.getName(this->stringTable), this); |
| if (sym.getBinding() == STB_LOCAL) { |
| warn("found local symbol '" + name + |
| "' in global part of symbol table in file " + toString(this)); |
| continue; |
| } |
| |
| uint16_t idx = versyms[i] & ~VERSYM_HIDDEN; |
| if (sym.isUndefined()) { |
| // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but |
| // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL. |
| if (idx != VER_NDX_LOCAL && idx != VER_NDX_GLOBAL) { |
| if (idx >= verneeds.size()) { |
| error("corrupt input file: version need index " + Twine(idx) + |
| " for symbol " + name + " is out of bounds\n>>> defined in " + |
| toString(this)); |
| continue; |
| } |
| StringRef verName = this->stringTable.data() + verneeds[idx]; |
| versionedNameBuffer.clear(); |
| name = |
| saver.save((name + "@" + verName).toStringRef(versionedNameBuffer)); |
| } |
| Symbol *s = symtab->addSymbol( |
| Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()}); |
| s->exportDynamic = true; |
| if (s->isUndefined() && !s->isWeak() && |
| config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) |
| requiredSymbols.push_back(s); |
| continue; |
| } |
| |
| // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly |
| // assigns VER_NDX_LOCAL to this section global symbol. Here is a |
| // workaround for this bug. |
| if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL && |
| name == "_gp_disp") |
| continue; |
| |
| uint32_t alignment = getAlignment<ELFT>(sections, sym); |
| if (!(versyms[i] & VERSYM_HIDDEN)) { |
| symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(), |
| sym.st_other, sym.getType(), sym.st_value, |
| sym.st_size, alignment, idx}); |
| } |
| |
| // Also add the symbol with the versioned name to handle undefined symbols |
| // with explicit versions. |
| if (idx == VER_NDX_GLOBAL) |
| continue; |
| |
| if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) { |
| error("corrupt input file: version definition index " + Twine(idx) + |
| " for symbol " + name + " is out of bounds\n>>> defined in " + |
| toString(this)); |
| continue; |
| } |
| |
| StringRef verName = |
| this->stringTable.data() + |
| reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name; |
| versionedNameBuffer.clear(); |
| name = (name + "@" + verName).toStringRef(versionedNameBuffer); |
| symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(), |
| sym.st_other, sym.getType(), sym.st_value, |
| sym.st_size, alignment, idx}); |
| } |
| } |
| |
| static ELFKind getBitcodeELFKind(const Triple &t) { |
| if (t.isLittleEndian()) |
| return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind; |
| return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind; |
| } |
| |
| static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) { |
| switch (t.getArch()) { |
| case Triple::aarch64: |
| case Triple::aarch64_be: |
| return EM_AARCH64; |
| case Triple::amdgcn: |
| case Triple::r600: |
| return EM_AMDGPU; |
| case Triple::arm: |
| case Triple::thumb: |
| return EM_ARM; |
| case Triple::avr: |
| return EM_AVR; |
| case Triple::hexagon: |
| return EM_HEXAGON; |
| case Triple::mips: |
| case Triple::mipsel: |
| case Triple::mips64: |
| case Triple::mips64el: |
| return EM_MIPS; |
| case Triple::msp430: |
| return EM_MSP430; |
| case Triple::ppc: |
| case Triple::ppcle: |
| return EM_PPC; |
| case Triple::ppc64: |
| case Triple::ppc64le: |
| return EM_PPC64; |
| case Triple::riscv32: |
| case Triple::riscv64: |
| return EM_RISCV; |
| case Triple::x86: |
| return t.isOSIAMCU() ? EM_IAMCU : EM_386; |
| case Triple::x86_64: |
| return EM_X86_64; |
| default: |
| error(path + ": could not infer e_machine from bitcode target triple " + |
| t.str()); |
| return EM_NONE; |
| } |
| } |
| |
| static uint8_t getOsAbi(const Triple &t) { |
| switch (t.getOS()) { |
| case Triple::AMDHSA: |
| return ELF::ELFOSABI_AMDGPU_HSA; |
| case Triple::AMDPAL: |
| return ELF::ELFOSABI_AMDGPU_PAL; |
| case Triple::Mesa3D: |
| return ELF::ELFOSABI_AMDGPU_MESA3D; |
| default: |
| return ELF::ELFOSABI_NONE; |
| } |
| } |
| |
| BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, |
| uint64_t offsetInArchive) |
| : InputFile(BitcodeKind, mb) { |
| this->archiveName = std::string(archiveName); |
| |
| std::string path = mb.getBufferIdentifier().str(); |
| if (config->thinLTOIndexOnly) |
| path = replaceThinLTOSuffix(mb.getBufferIdentifier()); |
| |
| // ThinLTO assumes that all MemoryBufferRefs given to it have a unique |
| // name. If two archives define two members with the same name, this |
| // causes a collision which result in only one of the objects being taken |
| // into consideration at LTO time (which very likely causes undefined |
| // symbols later in the link stage). So we append file offset to make |
| // filename unique. |
| StringRef name = |
| archiveName.empty() |
| ? saver.save(path) |
| : saver.save(archiveName + "(" + path::filename(path) + " at " + |
| utostr(offsetInArchive) + ")"); |
| MemoryBufferRef mbref(mb.getBuffer(), name); |
| |
| obj = CHECK(lto::InputFile::create(mbref), this); |
| |
| Triple t(obj->getTargetTriple()); |
| ekind = getBitcodeELFKind(t); |
| emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t); |
| osabi = getOsAbi(t); |
| } |
| |
| static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { |
| switch (gvVisibility) { |
| case GlobalValue::DefaultVisibility: |
| return STV_DEFAULT; |
| case GlobalValue::HiddenVisibility: |
| return STV_HIDDEN; |
| case GlobalValue::ProtectedVisibility: |
| return STV_PROTECTED; |
| } |
| llvm_unreachable("unknown visibility"); |
| } |
| |
| template <class ELFT> |
| static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats, |
| const lto::InputFile::Symbol &objSym, |
| BitcodeFile &f) { |
| StringRef name = saver.save(objSym.getName()); |
| uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL; |
| uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE; |
| uint8_t visibility = mapVisibility(objSym.getVisibility()); |
| bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable(); |
| |
| int c = objSym.getComdatIndex(); |
| if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) { |
| Undefined newSym(&f, name, binding, visibility, type); |
| if (canOmitFromDynSym) |
| newSym.exportDynamic = false; |
| Symbol *ret = symtab->addSymbol(newSym); |
| ret->referenced = true; |
| return ret; |
| } |
| |
| if (objSym.isCommon()) |
| return symtab->addSymbol( |
| CommonSymbol{&f, name, binding, visibility, STT_OBJECT, |
| objSym.getCommonAlignment(), objSym.getCommonSize()}); |
| |
| Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr); |
| if (canOmitFromDynSym) |
| newSym.exportDynamic = false; |
| return symtab->addSymbol(newSym); |
| } |
| |
| template <class ELFT> void BitcodeFile::parse() { |
| std::vector<bool> keptComdats; |
| for (std::pair<StringRef, Comdat::SelectionKind> s : obj->getComdatTable()) { |
| keptComdats.push_back( |
| s.second == Comdat::NoDeduplicate || |
| symtab->comdatGroups.try_emplace(CachedHashStringRef(s.first), this) |
| .second); |
| } |
| |
| for (const lto::InputFile::Symbol &objSym : obj->symbols()) |
| symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this)); |
| |
| for (auto l : obj->getDependentLibraries()) |
| addDependentLibrary(l, this); |
| } |
| |
| void BinaryFile::parse() { |
| ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer()); |
| auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, |
| 8, data, ".data"); |
| sections.push_back(section); |
| |
| // For each input file foo that is embedded to a result as a binary |
| // blob, we define _binary_foo_{start,end,size} symbols, so that |
| // user programs can access blobs by name. Non-alphanumeric |
| // characters in a filename are replaced with underscore. |
| std::string s = "_binary_" + mb.getBufferIdentifier().str(); |
| for (size_t i = 0; i < s.size(); ++i) |
| if (!isAlnum(s[i])) |
| s[i] = '_'; |
| |
| symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL, |
| STV_DEFAULT, STT_OBJECT, 0, 0, section}); |
| symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL, |
| STV_DEFAULT, STT_OBJECT, data.size(), 0, section}); |
| symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL, |
| STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr}); |
| } |
| |
| InputFile *elf::createObjectFile(MemoryBufferRef mb, StringRef archiveName, |
| uint64_t offsetInArchive) { |
| if (isBitcode(mb)) |
| return make<BitcodeFile>(mb, archiveName, offsetInArchive); |
| |
| switch (getELFKind(mb, archiveName)) { |
| case ELF32LEKind: |
| return make<ObjFile<ELF32LE>>(mb, archiveName); |
| case ELF32BEKind: |
| return make<ObjFile<ELF32BE>>(mb, archiveName); |
| case ELF64LEKind: |
| return make<ObjFile<ELF64LE>>(mb, archiveName); |
| case ELF64BEKind: |
| return make<ObjFile<ELF64BE>>(mb, archiveName); |
| default: |
| llvm_unreachable("getELFKind"); |
| } |
| } |
| |
| void LazyObjFile::extract() { |
| if (extracted) |
| return; |
| extracted = true; |
| |
| InputFile *file = createObjectFile(mb, archiveName, offsetInArchive); |
| file->groupId = groupId; |
| |
| // Copy symbol vector so that the new InputFile doesn't have to |
| // insert the same defined symbols to the symbol table again. |
| file->symbols = std::move(symbols); |
| |
| parseFile(file); |
| } |
| |
| template <class ELFT> void LazyObjFile::parse() { |
| using Elf_Sym = typename ELFT::Sym; |
| |
| // A lazy object file wraps either a bitcode file or an ELF file. |
| if (isBitcode(this->mb)) { |
| std::unique_ptr<lto::InputFile> obj = |
| CHECK(lto::InputFile::create(this->mb), this); |
| for (const lto::InputFile::Symbol &sym : obj->symbols()) { |
| if (sym.isUndefined()) |
| continue; |
| symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())}); |
| } |
| return; |
| } |
| |
| if (getELFKind(this->mb, archiveName) != config->ekind) { |
| error("incompatible file: " + this->mb.getBufferIdentifier()); |
| return; |
| } |
| |
| // Find a symbol table. |
| ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer())); |
| ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this); |
| |
| for (const typename ELFT::Shdr &sec : sections) { |
| if (sec.sh_type != SHT_SYMTAB) |
| continue; |
| |
| // A symbol table is found. |
| ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this); |
| uint32_t firstGlobal = sec.sh_info; |
| StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this); |
| this->symbols.resize(eSyms.size()); |
| |
| // Get existing symbols or insert placeholder symbols. |
| for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) |
| if (eSyms[i].st_shndx != SHN_UNDEF) |
| this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this)); |
| |
| // Replace existing symbols with LazyObject symbols. |
| // |
| // resolve() may trigger this->extract() if an existing symbol is an |
| // undefined symbol. If that happens, this LazyObjFile has served |
| // its purpose, and we can exit from the loop early. |
| for (Symbol *sym : this->symbols) { |
| if (!sym) |
| continue; |
| sym->resolve(LazyObject{*this, sym->getName()}); |
| |
| // If extracted, stop iterating because this->symbols has been transferred |
| // to the instantiated ObjFile. |
| if (extracted) |
| return; |
| } |
| return; |
| } |
| } |
| |
| bool LazyObjFile::shouldExtractForCommon(const StringRef &name) { |
| if (isBitcode(mb)) |
| return isBitcodeNonCommonDef(mb, name, archiveName); |
| |
| return isNonCommonDef(mb, name, archiveName); |
| } |
| |
| std::string elf::replaceThinLTOSuffix(StringRef path) { |
| StringRef suffix = config->thinLTOObjectSuffixReplace.first; |
| StringRef repl = config->thinLTOObjectSuffixReplace.second; |
| |
| if (path.consume_back(suffix)) |
| return (path + repl).str(); |
| return std::string(path); |
| } |
| |
| template void BitcodeFile::parse<ELF32LE>(); |
| template void BitcodeFile::parse<ELF32BE>(); |
| template void BitcodeFile::parse<ELF64LE>(); |
| template void BitcodeFile::parse<ELF64BE>(); |
| |
| template void LazyObjFile::parse<ELF32LE>(); |
| template void LazyObjFile::parse<ELF32BE>(); |
| template void LazyObjFile::parse<ELF64LE>(); |
| template void LazyObjFile::parse<ELF64BE>(); |
| |
| template class elf::ObjFile<ELF32LE>; |
| template class elf::ObjFile<ELF32BE>; |
| template class elf::ObjFile<ELF64LE>; |
| template class elf::ObjFile<ELF64BE>; |
| |
| template void SharedFile::parse<ELF32LE>(); |
| template void SharedFile::parse<ELF32BE>(); |
| template void SharedFile::parse<ELF64LE>(); |
| template void SharedFile::parse<ELF64BE>(); |