|  | //===- llvm/unittest/ADT/ArrayRefTest.cpp - ArrayRef unit tests -----------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/Support/Allocator.h" | 
|  | #include "gtest/gtest.h" | 
|  | #include <limits> | 
|  | #include <vector> | 
|  | #if __has_include(<version>) | 
|  | #include <version> | 
|  | #endif | 
|  | #ifdef __cpp_lib_span | 
|  | #include <span> | 
|  | #endif | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | // Check that the ArrayRef-of-pointer converting constructor only allows adding | 
|  | // cv qualifiers (not removing them, or otherwise changing the type) | 
|  | static_assert(std::is_convertible_v<ArrayRef<int *>, ArrayRef<const int *>>, | 
|  | "Adding const"); | 
|  | static_assert(std::is_convertible_v<ArrayRef<int *>, ArrayRef<volatile int *>>, | 
|  | "Adding volatile"); | 
|  | static_assert(!std::is_convertible_v<ArrayRef<int *>, ArrayRef<float *>>, | 
|  | "Changing pointer of one type to a pointer of another"); | 
|  | static_assert(!std::is_convertible_v<ArrayRef<const int *>, ArrayRef<int *>>, | 
|  | "Removing const"); | 
|  | static_assert(!std::is_convertible_v<ArrayRef<volatile int *>, ArrayRef<int *>>, | 
|  | "Removing volatile"); | 
|  |  | 
|  | // Check that we can't accidentally assign a temporary location to an ArrayRef. | 
|  | // (Unfortunately we can't make use of the same thing with constructors.) | 
|  | static_assert(!std::is_assignable_v<ArrayRef<int *> &, int *>, | 
|  | "Assigning from single prvalue element"); | 
|  | static_assert(!std::is_assignable_v<ArrayRef<int *> &, int *&&>, | 
|  | "Assigning from single xvalue element"); | 
|  | static_assert(std::is_assignable_v<ArrayRef<int *> &, int *&>, | 
|  | "Assigning from single lvalue element"); | 
|  | static_assert( | 
|  | !std::is_assignable_v<ArrayRef<int *> &, std::initializer_list<int *>>, | 
|  | "Assigning from an initializer list"); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | TEST(ArrayRefTest, AllocatorCopy) { | 
|  | BumpPtrAllocator Alloc; | 
|  | static const uint16_t Words1[] = { 1, 4, 200, 37 }; | 
|  | ArrayRef<uint16_t> Array1 = ArrayRef(Words1, 4); | 
|  | static const uint16_t Words2[] = { 11, 4003, 67, 64000, 13 }; | 
|  | ArrayRef<uint16_t> Array2 = ArrayRef(Words2, 5); | 
|  | ArrayRef<uint16_t> Array1c = Array1.copy(Alloc); | 
|  | ArrayRef<uint16_t> Array2c = Array2.copy(Alloc); | 
|  | EXPECT_TRUE(Array1.equals(Array1c)); | 
|  | EXPECT_NE(Array1.data(), Array1c.data()); | 
|  | EXPECT_TRUE(Array2.equals(Array2c)); | 
|  | EXPECT_NE(Array2.data(), Array2c.data()); | 
|  |  | 
|  | // Check that copy can cope with uninitialized memory. | 
|  | struct NonAssignable { | 
|  | const char *Ptr; | 
|  |  | 
|  | NonAssignable(const char *Ptr) : Ptr(Ptr) {} | 
|  | NonAssignable(const NonAssignable &RHS) = default; | 
|  | void operator=(const NonAssignable &RHS) { assert(RHS.Ptr != nullptr); } | 
|  | bool operator==(const NonAssignable &RHS) const { return Ptr == RHS.Ptr; } | 
|  | } Array3Src[] = {"hello", "world"}; | 
|  | ArrayRef<NonAssignable> Array3Copy = ArrayRef(Array3Src).copy(Alloc); | 
|  | EXPECT_EQ(ArrayRef(Array3Src), Array3Copy); | 
|  | EXPECT_NE(ArrayRef(Array3Src).data(), Array3Copy.data()); | 
|  | } | 
|  |  | 
|  | // This test is pure UB given the ArrayRef<> implementation. | 
|  | // You are not allowed to produce non-null pointers given null base pointer. | 
|  | TEST(ArrayRefTest, DISABLED_SizeTSizedOperations) { | 
|  | ArrayRef<char> AR(nullptr, std::numeric_limits<ptrdiff_t>::max()); | 
|  |  | 
|  | // Check that drop_back accepts size_t-sized numbers. | 
|  | EXPECT_EQ(1U, AR.drop_back(AR.size() - 1).size()); | 
|  |  | 
|  | // Check that drop_front accepts size_t-sized numbers. | 
|  | EXPECT_EQ(1U, AR.drop_front(AR.size() - 1).size()); | 
|  |  | 
|  | // Check that slice accepts size_t-sized numbers. | 
|  | EXPECT_EQ(1U, AR.slice(AR.size() - 1).size()); | 
|  | EXPECT_EQ(AR.size() - 1, AR.slice(1, AR.size() - 1).size()); | 
|  | } | 
|  |  | 
|  | TEST(ArrayRefTest, DropBack) { | 
|  | static const int TheNumbers[] = {4, 8, 15, 16, 23, 42}; | 
|  | ArrayRef<int> AR1(TheNumbers); | 
|  | ArrayRef<int> AR2(TheNumbers, AR1.size() - 1); | 
|  | EXPECT_TRUE(AR1.drop_back().equals(AR2)); | 
|  | } | 
|  |  | 
|  | TEST(ArrayRefTest, DropFront) { | 
|  | static const int TheNumbers[] = {4, 8, 15, 16, 23, 42}; | 
|  | ArrayRef<int> AR1(TheNumbers); | 
|  | ArrayRef<int> AR2(&TheNumbers[2], AR1.size() - 2); | 
|  | EXPECT_TRUE(AR1.drop_front(2).equals(AR2)); | 
|  | } | 
|  |  | 
|  | TEST(ArrayRefTest, DropWhile) { | 
|  | static const int TheNumbers[] = {1, 3, 5, 8, 10, 11}; | 
|  | ArrayRef<int> AR1(TheNumbers); | 
|  | ArrayRef<int> Expected = AR1.drop_front(3); | 
|  | EXPECT_EQ(Expected, AR1.drop_while([](const int &N) { return N % 2 == 1; })); | 
|  |  | 
|  | EXPECT_EQ(AR1, AR1.drop_while([](const int &N) { return N < 0; })); | 
|  | EXPECT_EQ(ArrayRef<int>(), | 
|  | AR1.drop_while([](const int &N) { return N > 0; })); | 
|  | } | 
|  |  | 
|  | TEST(ArrayRefTest, DropUntil) { | 
|  | static const int TheNumbers[] = {1, 3, 5, 8, 10, 11}; | 
|  | ArrayRef<int> AR1(TheNumbers); | 
|  | ArrayRef<int> Expected = AR1.drop_front(3); | 
|  | EXPECT_EQ(Expected, AR1.drop_until([](const int &N) { return N % 2 == 0; })); | 
|  |  | 
|  | EXPECT_EQ(ArrayRef<int>(), | 
|  | AR1.drop_until([](const int &N) { return N < 0; })); | 
|  | EXPECT_EQ(AR1, AR1.drop_until([](const int &N) { return N > 0; })); | 
|  | } | 
|  |  | 
|  | TEST(ArrayRefTest, TakeBack) { | 
|  | static const int TheNumbers[] = {4, 8, 15, 16, 23, 42}; | 
|  | ArrayRef<int> AR1(TheNumbers); | 
|  | ArrayRef<int> AR2(AR1.end() - 1, 1); | 
|  | EXPECT_TRUE(AR1.take_back().equals(AR2)); | 
|  | } | 
|  |  | 
|  | TEST(ArrayRefTest, TakeFront) { | 
|  | static const int TheNumbers[] = {4, 8, 15, 16, 23, 42}; | 
|  | ArrayRef<int> AR1(TheNumbers); | 
|  | ArrayRef<int> AR2(AR1.data(), 2); | 
|  | EXPECT_TRUE(AR1.take_front(2).equals(AR2)); | 
|  | } | 
|  |  | 
|  | TEST(ArrayRefTest, TakeWhile) { | 
|  | static const int TheNumbers[] = {1, 3, 5, 8, 10, 11}; | 
|  | ArrayRef<int> AR1(TheNumbers); | 
|  | ArrayRef<int> Expected = AR1.take_front(3); | 
|  | EXPECT_EQ(Expected, AR1.take_while([](const int &N) { return N % 2 == 1; })); | 
|  |  | 
|  | EXPECT_EQ(ArrayRef<int>(), | 
|  | AR1.take_while([](const int &N) { return N < 0; })); | 
|  | EXPECT_EQ(AR1, AR1.take_while([](const int &N) { return N > 0; })); | 
|  | } | 
|  |  | 
|  | TEST(ArrayRefTest, TakeUntil) { | 
|  | static const int TheNumbers[] = {1, 3, 5, 8, 10, 11}; | 
|  | ArrayRef<int> AR1(TheNumbers); | 
|  | ArrayRef<int> Expected = AR1.take_front(3); | 
|  | EXPECT_EQ(Expected, AR1.take_until([](const int &N) { return N % 2 == 0; })); | 
|  |  | 
|  | EXPECT_EQ(AR1, AR1.take_until([](const int &N) { return N < 0; })); | 
|  | EXPECT_EQ(ArrayRef<int>(), | 
|  | AR1.take_until([](const int &N) { return N > 0; })); | 
|  | } | 
|  |  | 
|  | TEST(ArrayRefTest, Equals) { | 
|  | static const int A1[] = {1, 2, 3, 4, 5, 6, 7, 8}; | 
|  | ArrayRef<int> AR1(A1); | 
|  | EXPECT_TRUE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 8})); | 
|  | EXPECT_FALSE(AR1.equals({8, 1, 2, 4, 5, 6, 6, 7})); | 
|  | EXPECT_FALSE(AR1.equals({2, 4, 5, 6, 6, 7, 8, 1})); | 
|  | EXPECT_FALSE(AR1.equals({0, 1, 2, 4, 5, 6, 6, 7})); | 
|  | EXPECT_FALSE(AR1.equals({1, 2, 42, 4, 5, 6, 7, 8})); | 
|  | EXPECT_FALSE(AR1.equals({42, 2, 3, 4, 5, 6, 7, 8})); | 
|  | EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 42})); | 
|  | EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7})); | 
|  | EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 8, 9})); | 
|  |  | 
|  | ArrayRef<int> AR1a = AR1.drop_back(); | 
|  | EXPECT_TRUE(AR1a.equals({1, 2, 3, 4, 5, 6, 7})); | 
|  | EXPECT_FALSE(AR1a.equals({1, 2, 3, 4, 5, 6, 7, 8})); | 
|  |  | 
|  | ArrayRef<int> AR1b = AR1a.slice(2, 4); | 
|  | EXPECT_TRUE(AR1b.equals({3, 4, 5, 6})); | 
|  | EXPECT_FALSE(AR1b.equals({2, 3, 4, 5, 6})); | 
|  | EXPECT_FALSE(AR1b.equals({3, 4, 5, 6, 7})); | 
|  | } | 
|  |  | 
|  | TEST(ArrayRefTest, EmptyEquals) { | 
|  | EXPECT_TRUE(ArrayRef<unsigned>() == ArrayRef<unsigned>()); | 
|  | } | 
|  |  | 
|  | TEST(ArrayRefTest, ConstConvert) { | 
|  | int buf[4]; | 
|  | for (int i = 0; i < 4; ++i) | 
|  | buf[i] = i; | 
|  |  | 
|  | static int *A[] = {&buf[0], &buf[1], &buf[2], &buf[3]}; | 
|  | ArrayRef<const int *> a((ArrayRef<int *>(A))); | 
|  | a = ArrayRef<int *>(A); | 
|  | } | 
|  |  | 
|  | static std::vector<int> ReturnTest12() { return {1, 2}; } | 
|  | static void ArgTest12(ArrayRef<int> A) { | 
|  | EXPECT_EQ(2U, A.size()); | 
|  | EXPECT_EQ(1, A[0]); | 
|  | EXPECT_EQ(2, A[1]); | 
|  | } | 
|  |  | 
|  | TEST(ArrayRefTest, InitializerList) { | 
|  | std::initializer_list<int> init_list = { 0, 1, 2, 3, 4 }; | 
|  | ArrayRef<int> A = init_list; | 
|  | for (int i = 0; i < 5; ++i) | 
|  | EXPECT_EQ(i, A[i]); | 
|  |  | 
|  | std::vector<int> B = ReturnTest12(); | 
|  | A = B; | 
|  | EXPECT_EQ(1, A[0]); | 
|  | EXPECT_EQ(2, A[1]); | 
|  |  | 
|  | ArgTest12({1, 2}); | 
|  | } | 
|  |  | 
|  | TEST(ArrayRefTest, EmptyInitializerList) { | 
|  | ArrayRef<int> A = {}; | 
|  | EXPECT_TRUE(A.empty()); | 
|  |  | 
|  | A = {}; | 
|  | EXPECT_TRUE(A.empty()); | 
|  | } | 
|  |  | 
|  | TEST(ArrayRefTest, ArrayRef) { | 
|  | static const int A1[] = {1, 2, 3, 4, 5, 6, 7, 8}; | 
|  |  | 
|  | // A copy is expected for non-const ArrayRef (thin copy) | 
|  | ArrayRef<int> AR1(A1); | 
|  | const ArrayRef<int> &AR1Ref = ArrayRef(AR1); | 
|  | EXPECT_NE(&AR1, &AR1Ref); | 
|  | EXPECT_TRUE(AR1.equals(AR1Ref)); | 
|  |  | 
|  | // A copy is expected for non-const ArrayRef (thin copy) | 
|  | const ArrayRef<int> AR2(A1); | 
|  | const ArrayRef<int> &AR2Ref = ArrayRef(AR2); | 
|  | EXPECT_NE(&AR2Ref, &AR2); | 
|  | EXPECT_TRUE(AR2.equals(AR2Ref)); | 
|  | } | 
|  |  | 
|  | TEST(ArrayRefTest, OwningArrayRef) { | 
|  | static const int A1[] = {0, 1}; | 
|  | OwningArrayRef<int> A{ArrayRef(A1)}; | 
|  | OwningArrayRef<int> B(std::move(A)); | 
|  | EXPECT_EQ(A.data(), nullptr); | 
|  | } | 
|  |  | 
|  | TEST(ArrayRefTest, ArrayRefFromStdArray) { | 
|  | std::array<int, 5> A1{{42, -5, 0, 1000000, -1000000}}; | 
|  | ArrayRef<int> A2 = ArrayRef(A1); | 
|  |  | 
|  | EXPECT_EQ(A1.size(), A2.size()); | 
|  | for (std::size_t i = 0; i < A1.size(); ++i) { | 
|  | EXPECT_EQ(A1[i], A2[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct TestRandomAccessIterator { | 
|  | using iterator_category = std::random_access_iterator_tag; | 
|  | }; | 
|  |  | 
|  | static_assert(!std::is_constructible_v< | 
|  | ArrayRef<int>, iterator_range<TestRandomAccessIterator>>, | 
|  | "cannot construct from iterator range with non-pointer iterator"); | 
|  | static_assert(!std::is_constructible_v<ArrayRef<int>, iterator_range<int>>, | 
|  | "cannot construct from iterator range with non-pointer iterator"); | 
|  |  | 
|  | class TestBase {}; | 
|  |  | 
|  | class TestDerived : public TestBase {}; | 
|  |  | 
|  | static_assert( | 
|  | !std::is_constructible_v<ArrayRef<TestDerived>, iterator_range<TestBase *>>, | 
|  | "cannot construct ArrayRef with derived type"); | 
|  | static_assert( | 
|  | !std::is_constructible_v<ArrayRef<TestBase>, iterator_range<TestDerived *>>, | 
|  | "cannot construct ArrayRef base type"); | 
|  | static_assert(!std::is_constructible_v<ArrayRef<TestBase *>, | 
|  | iterator_range<TestDerived **>>, | 
|  | "cannot construct ArrayRef pointer of base type"); | 
|  |  | 
|  | static_assert( | 
|  | !std::is_constructible_v<ArrayRef<int>, iterator_range<const int *>>, | 
|  | "cannot construct ArrayRef with non-const elements from const iterator " | 
|  | "range"); | 
|  | static_assert( | 
|  | std::is_constructible_v<ArrayRef<char *>, iterator_range<char **>>, | 
|  | "should be able to construct ArrayRef from iterator_range over pointers"); | 
|  | static_assert( | 
|  | !std::is_constructible_v<ArrayRef<char *>, iterator_range<char *const *>>, | 
|  | "should be able to construct ArrayRef from iterator_range over pointers"); | 
|  |  | 
|  | TEST(ArrayRefTest, ArrayRefFromIteratorRange) { | 
|  | int A1[] = {42, -5, 0, 1000000, -1000000, 0}; | 
|  | ArrayRef<int> A2 = make_range(&A1[0], &A1[5]); | 
|  |  | 
|  | EXPECT_EQ(5ull, A2.size()); | 
|  | for (std::size_t i = 0; i < A2.size(); ++i) | 
|  | EXPECT_EQ(A1[i], A2[i]); | 
|  |  | 
|  | ArrayRef<const int> A3 = make_range(&A1[0], &A1[5]); | 
|  | EXPECT_EQ(5ull, A3.size()); | 
|  | for (std::size_t i = 0; i < A3.size(); ++i) | 
|  | EXPECT_EQ(A1[i], A3[i]); | 
|  | } | 
|  |  | 
|  | TEST(ArrayRefTest, ArrayRefFromIteratorConstRange) { | 
|  | const int A1[] = {42, -5, 0, 1000000, -1000000, 0}; | 
|  | ArrayRef<const int> A2 = make_range(&A1[0], &A1[5]); | 
|  |  | 
|  | EXPECT_EQ(5ull, A2.size()); | 
|  | for (std::size_t i = 0; i < A2.size(); ++i) | 
|  | EXPECT_EQ(A1[i], A2[i]); | 
|  | } | 
|  |  | 
|  | static_assert(std::is_trivially_copyable_v<ArrayRef<int>>, | 
|  | "trivially copyable"); | 
|  |  | 
|  | TEST(ArrayRefTest, MutableArrayRefDeductionGuides) { | 
|  | // Single element | 
|  | { | 
|  | int x = 0; | 
|  | auto aref = MutableArrayRef(x); | 
|  | static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref)>); | 
|  | EXPECT_EQ(aref.data(), &x); | 
|  | EXPECT_EQ(aref.size(), 1u); | 
|  |  | 
|  | // Make sure it's mutable still | 
|  | aref[0] = 1; | 
|  | EXPECT_EQ(x, 1); | 
|  | } | 
|  |  | 
|  | // Pointer + length | 
|  | { | 
|  | int x[] = {0, 1, 2, 3}; | 
|  | auto aref = MutableArrayRef(&x[0], 4); | 
|  | static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref)>); | 
|  | EXPECT_EQ(aref.data(), &x[0]); | 
|  | EXPECT_EQ(aref.size(), 4u); | 
|  | } | 
|  |  | 
|  | // // Pointer + pointer | 
|  | { | 
|  | int x[] = {0, 1, 2, 3}; | 
|  | auto aref = MutableArrayRef(std::begin(x), std::end(x)); | 
|  | static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref)>); | 
|  | EXPECT_EQ(aref.data(), &x[0]); | 
|  | EXPECT_EQ(aref.size(), 4u); | 
|  | } | 
|  |  | 
|  | // SmallVector | 
|  | { | 
|  | SmallVector<int> sv1; | 
|  | SmallVectorImpl<int> &sv2 = sv1; | 
|  | sv1.resize(5); | 
|  | auto aref1 = MutableArrayRef(sv1); | 
|  | auto aref2 = MutableArrayRef(sv2); | 
|  | static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref1)>); | 
|  | static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref2)>); | 
|  | EXPECT_EQ(aref1.data(), sv1.data()); | 
|  | EXPECT_EQ(aref1.size(), sv1.size()); | 
|  | EXPECT_EQ(aref2.data(), sv2.data()); | 
|  | EXPECT_EQ(aref2.size(), sv2.size()); | 
|  | } | 
|  |  | 
|  | // std::vector | 
|  | { | 
|  | std::vector<int> x(5); | 
|  | auto aref = MutableArrayRef(x); | 
|  | static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref)>); | 
|  | EXPECT_EQ(aref.data(), x.data()); | 
|  | EXPECT_EQ(aref.size(), x.size()); | 
|  | } | 
|  |  | 
|  | // std::array | 
|  | { | 
|  | std::array<int, 5> x{}; | 
|  | auto aref = MutableArrayRef(x); | 
|  | static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref)>); | 
|  | EXPECT_EQ(aref.data(), x.data()); | 
|  | EXPECT_EQ(aref.size(), x.size()); | 
|  | } | 
|  |  | 
|  | // MutableArrayRef | 
|  | { | 
|  | MutableArrayRef<int> x{}; | 
|  | auto aref = MutableArrayRef(x); | 
|  | static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref)>); | 
|  | EXPECT_EQ(aref.data(), x.data()); | 
|  | EXPECT_EQ(aref.size(), x.size()); | 
|  |  | 
|  | const MutableArrayRef<int> y{}; | 
|  | auto aref2 = MutableArrayRef(y); | 
|  | static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref2)>); | 
|  | EXPECT_EQ(aref2.data(), y.data()); | 
|  | EXPECT_EQ(aref2.size(), y.size()); | 
|  | } | 
|  |  | 
|  | // C-style array | 
|  | { | 
|  | int x[] = {0, 1, 2, 3}; | 
|  | auto aref = MutableArrayRef(x); | 
|  | static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref)>); | 
|  | EXPECT_EQ(aref.data(), &x[0]); | 
|  | EXPECT_EQ(aref.size(), 4u); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef __cpp_lib_span | 
|  | static_assert(std::is_constructible_v<ArrayRef<int>, std::span<const int>>, | 
|  | "should be able to construct ArrayRef from const std::span"); | 
|  | static_assert(std::is_constructible_v<std::span<const int>, ArrayRef<int>>, | 
|  | "should be able to construct const std::span from ArrayRef"); | 
|  | static_assert(std::is_constructible_v<ArrayRef<int>, std::span<int>>, | 
|  | "should be able to construct ArrayRef from mutable std::span"); | 
|  | static_assert(!std::is_constructible_v<std::span<int>, ArrayRef<int>>, | 
|  | "cannot construct mutable std::span from ArrayRef"); | 
|  |  | 
|  | static_assert( | 
|  | !std::is_constructible_v<MutableArrayRef<int>, std::span<const int>>, | 
|  | "cannot construct MutableArrayRef from const std::span"); | 
|  | static_assert( | 
|  | std::is_constructible_v<std::span<const int>, MutableArrayRef<int>>, | 
|  | "should be able to construct const std::span from MutableArrayRef"); | 
|  | static_assert( | 
|  | std::is_constructible_v<MutableArrayRef<int>, std::span<int>>, | 
|  | "should be able to construct MutableArrayRef from mutable std::span"); | 
|  | #endif | 
|  |  | 
|  | } // end anonymous namespace |