blob: 03878d5c8e4ba3376af029fd92c17d7a1b9a251f [file] [log] [blame]
//===- ScheduleOptimizer.cpp - Calculate an optimized schedule ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass generates an entirely new schedule tree from the data dependences
// and iteration domains. The new schedule tree is computed in two steps:
//
// 1) The isl scheduling optimizer is run
//
// The isl scheduling optimizer creates a new schedule tree that maximizes
// parallelism and tileability and minimizes data-dependence distances. The
// algorithm used is a modified version of the ``Pluto'' algorithm:
//
// U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
// A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.
// In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language
// Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008.
//
// 2) A set of post-scheduling transformations is applied on the schedule tree.
//
// These optimizations include:
//
// - Tiling of the innermost tilable bands
// - Prevectorization - The choice of a possible outer loop that is strip-mined
// to the innermost level to enable inner-loop
// vectorization.
// - Some optimizations for spatial locality are also planned.
//
// For a detailed description of the schedule tree itself please see section 6
// of:
//
// Polyhedral AST generation is more than scanning polyhedra
// Tobias Grosser, Sven Verdoolaege, Albert Cohen
// ACM Transactions on Programming Languages and Systems (TOPLAS),
// 37(4), July 2015
// http://www.grosser.es/#pub-polyhedral-AST-generation
//
// This publication also contains a detailed discussion of the different options
// for polyhedral loop unrolling, full/partial tile separation and other uses
// of the schedule tree.
//
//===----------------------------------------------------------------------===//
#include "polly/ScheduleOptimizer.h"
#include "polly/CodeGen/CodeGeneration.h"
#include "polly/DependenceInfo.h"
#include "polly/ManualOptimizer.h"
#include "polly/MatmulOptimizer.h"
#include "polly/Options.h"
#include "polly/ScheduleTreeTransform.h"
#include "polly/Support/ISLOStream.h"
#include "polly/Support/ISLTools.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "isl/options.h"
using namespace llvm;
using namespace polly;
namespace llvm {
class Loop;
class Module;
} // namespace llvm
#define DEBUG_TYPE "polly-opt-isl"
static cl::opt<std::string>
OptimizeDeps("polly-opt-optimize-only",
cl::desc("Only a certain kind of dependences (all/raw)"),
cl::Hidden, cl::init("all"), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<std::string>
SimplifyDeps("polly-opt-simplify-deps",
cl::desc("Dependences should be simplified (yes/no)"),
cl::Hidden, cl::init("yes"), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<int> MaxConstantTerm(
"polly-opt-max-constant-term",
cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden,
cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> MaxCoefficient(
"polly-opt-max-coefficient",
cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden,
cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<std::string>
MaximizeBandDepth("polly-opt-maximize-bands",
cl::desc("Maximize the band depth (yes/no)"), cl::Hidden,
cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<bool>
GreedyFusion("polly-loopfusion-greedy",
cl::desc("Aggressively try to fuse everything"), cl::Hidden,
cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<std::string> OuterCoincidence(
"polly-opt-outer-coincidence",
cl::desc("Try to construct schedules where the outer member of each band "
"satisfies the coincidence constraints (yes/no)"),
cl::Hidden, cl::init("no"), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> PrevectorWidth(
"polly-prevect-width",
cl::desc(
"The number of loop iterations to strip-mine for pre-vectorization"),
cl::Hidden, cl::init(4), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<bool> FirstLevelTiling("polly-tiling",
cl::desc("Enable loop tiling"),
cl::init(true), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<int> FirstLevelDefaultTileSize(
"polly-default-tile-size",
cl::desc("The default tile size (if not enough were provided by"
" --polly-tile-sizes)"),
cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::list<int>
FirstLevelTileSizes("polly-tile-sizes",
cl::desc("A tile size for each loop dimension, filled "
"with --polly-default-tile-size"),
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
cl::cat(PollyCategory));
static cl::opt<bool>
SecondLevelTiling("polly-2nd-level-tiling",
cl::desc("Enable a 2nd level loop of loop tiling"),
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> SecondLevelDefaultTileSize(
"polly-2nd-level-default-tile-size",
cl::desc("The default 2nd-level tile size (if not enough were provided by"
" --polly-2nd-level-tile-sizes)"),
cl::Hidden, cl::init(16), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::list<int>
SecondLevelTileSizes("polly-2nd-level-tile-sizes",
cl::desc("A tile size for each loop dimension, filled "
"with --polly-default-tile-size"),
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
cl::cat(PollyCategory));
static cl::opt<bool> RegisterTiling("polly-register-tiling",
cl::desc("Enable register tiling"),
cl::init(false), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<int> RegisterDefaultTileSize(
"polly-register-tiling-default-tile-size",
cl::desc("The default register tile size (if not enough were provided by"
" --polly-register-tile-sizes)"),
cl::Hidden, cl::init(2), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::list<int>
RegisterTileSizes("polly-register-tile-sizes",
cl::desc("A tile size for each loop dimension, filled "
"with --polly-register-tile-size"),
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
cl::cat(PollyCategory));
static cl::opt<bool> PragmaBasedOpts(
"polly-pragma-based-opts",
cl::desc("Apply user-directed transformation from metadata"),
cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<bool> EnableReschedule("polly-reschedule",
cl::desc("Optimize SCoPs using ISL"),
cl::init(true), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<bool>
PMBasedOpts("polly-pattern-matching-based-opts",
cl::desc("Perform optimizations based on pattern matching"),
cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<bool>
EnablePostopts("polly-postopts",
cl::desc("Apply post-rescheduling optimizations such as "
"tiling (requires -polly-reschedule)"),
cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<bool> OptimizedScops(
"polly-optimized-scops",
cl::desc("Polly - Dump polyhedral description of Scops optimized with "
"the isl scheduling optimizer and the set of post-scheduling "
"transformations is applied on the schedule tree"),
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
STATISTIC(ScopsProcessed, "Number of scops processed");
STATISTIC(ScopsRescheduled, "Number of scops rescheduled");
STATISTIC(ScopsOptimized, "Number of scops optimized");
STATISTIC(NumAffineLoopsOptimized, "Number of affine loops optimized");
STATISTIC(NumBoxedLoopsOptimized, "Number of boxed loops optimized");
#define THREE_STATISTICS(VARNAME, DESC) \
static Statistic VARNAME[3] = { \
{DEBUG_TYPE, #VARNAME "0", DESC " (original)"}, \
{DEBUG_TYPE, #VARNAME "1", DESC " (after scheduler)"}, \
{DEBUG_TYPE, #VARNAME "2", DESC " (after optimizer)"}}
THREE_STATISTICS(NumBands, "Number of bands");
THREE_STATISTICS(NumBandMembers, "Number of band members");
THREE_STATISTICS(NumCoincident, "Number of coincident band members");
THREE_STATISTICS(NumPermutable, "Number of permutable bands");
THREE_STATISTICS(NumFilters, "Number of filter nodes");
THREE_STATISTICS(NumExtension, "Number of extension nodes");
STATISTIC(FirstLevelTileOpts, "Number of first level tiling applied");
STATISTIC(SecondLevelTileOpts, "Number of second level tiling applied");
STATISTIC(RegisterTileOpts, "Number of register tiling applied");
STATISTIC(PrevectOpts, "Number of strip-mining for prevectorization applied");
STATISTIC(MatMulOpts,
"Number of matrix multiplication patterns detected and optimized");
namespace {
/// Additional parameters of the schedule optimizer.
///
/// Target Transform Info and the SCoP dependencies used by the schedule
/// optimizer.
struct OptimizerAdditionalInfoTy {
const llvm::TargetTransformInfo *TTI;
const Dependences *D;
bool PatternOpts;
bool Postopts;
bool Prevect;
};
class ScheduleTreeOptimizer {
public:
/// Apply schedule tree transformations.
///
/// This function takes an (possibly already optimized) schedule tree and
/// applies a set of additional optimizations on the schedule tree. The
/// transformations applied include:
///
/// - Pattern-based optimizations
/// - Tiling
/// - Prevectorization
///
/// @param Schedule The schedule object the transformations will be applied
/// to.
/// @param OAI Target Transform Info and the SCoP dependencies.
/// @returns The transformed schedule.
static isl::schedule
optimizeSchedule(isl::schedule Schedule,
const OptimizerAdditionalInfoTy *OAI = nullptr);
/// Apply schedule tree transformations.
///
/// This function takes a node in an (possibly already optimized) schedule
/// tree and applies a set of additional optimizations on this schedule tree
/// node and its descendants. The transformations applied include:
///
/// - Pattern-based optimizations
/// - Tiling
/// - Prevectorization
///
/// @param Node The schedule object post-transformations will be applied to.
/// @param OAI Target Transform Info and the SCoP dependencies.
/// @returns The transformed schedule.
static isl::schedule_node
optimizeScheduleNode(isl::schedule_node Node,
const OptimizerAdditionalInfoTy *OAI = nullptr);
/// Decide if the @p NewSchedule is profitable for @p S.
///
/// @param S The SCoP we optimize.
/// @param NewSchedule The new schedule we computed.
///
/// @return True, if we believe @p NewSchedule is an improvement for @p S.
static bool isProfitableSchedule(polly::Scop &S, isl::schedule NewSchedule);
/// Isolate a set of partial tile prefixes.
///
/// This set should ensure that it contains only partial tile prefixes that
/// have exactly VectorWidth iterations.
///
/// @param Node A schedule node band, which is a parent of a band node,
/// that contains a vector loop.
/// @return Modified isl_schedule_node.
static isl::schedule_node isolateFullPartialTiles(isl::schedule_node Node,
int VectorWidth);
private:
/// Check if this node is a band node we want to tile.
///
/// We look for innermost band nodes where individual dimensions are marked as
/// permutable.
///
/// @param Node The node to check.
static bool isTileableBandNode(isl::schedule_node Node);
/// Pre-vectorizes one scheduling dimension of a schedule band.
///
/// prevectSchedBand splits out the dimension DimToVectorize, tiles it and
/// sinks the resulting point loop.
///
/// Example (DimToVectorize=0, VectorWidth=4):
///
/// | Before transformation:
/// |
/// | A[i,j] -> [i,j]
/// |
/// | for (i = 0; i < 128; i++)
/// | for (j = 0; j < 128; j++)
/// | A(i,j);
///
/// | After transformation:
/// |
/// | for (it = 0; it < 32; it+=1)
/// | for (j = 0; j < 128; j++)
/// | for (ip = 0; ip <= 3; ip++)
/// | A(4 * it + ip,j);
///
/// The goal of this transformation is to create a trivially vectorizable
/// loop. This means a parallel loop at the innermost level that has a
/// constant number of iterations corresponding to the target vector width.
///
/// This transformation creates a loop at the innermost level. The loop has
/// a constant number of iterations, if the number of loop iterations at
/// DimToVectorize can be divided by VectorWidth. The default VectorWidth is
/// currently constant and not yet target specific. This function does not
/// reason about parallelism.
static isl::schedule_node prevectSchedBand(isl::schedule_node Node,
unsigned DimToVectorize,
int VectorWidth);
/// Apply additional optimizations on the bands in the schedule tree.
///
/// We are looking for an innermost band node and apply the following
/// transformations:
///
/// - Tile the band
/// - if the band is tileable
/// - if the band has more than one loop dimension
///
/// - Prevectorize the schedule of the band (or the point loop in case of
/// tiling).
/// - if vectorization is enabled
///
/// @param Node The schedule node to (possibly) optimize.
/// @param User A pointer to forward some use information
/// (currently unused).
static isl_schedule_node *optimizeBand(isl_schedule_node *Node, void *User);
/// Apply tiling optimizations on the bands in the schedule tree.
///
/// @param Node The schedule node to (possibly) optimize.
static isl::schedule_node applyTileBandOpt(isl::schedule_node Node);
/// Apply prevectorization on the bands in the schedule tree.
///
/// @param Node The schedule node to (possibly) prevectorize.
static isl::schedule_node applyPrevectBandOpt(isl::schedule_node Node);
};
isl::schedule_node
ScheduleTreeOptimizer::isolateFullPartialTiles(isl::schedule_node Node,
int VectorWidth) {
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
Node = Node.child(0).child(0);
isl::union_map SchedRelUMap = Node.get_prefix_schedule_relation();
isl::union_set ScheduleRangeUSet = SchedRelUMap.range();
isl::set ScheduleRange{ScheduleRangeUSet};
isl::set IsolateDomain = getPartialTilePrefixes(ScheduleRange, VectorWidth);
auto AtomicOption = getDimOptions(IsolateDomain.ctx(), "atomic");
isl::union_set IsolateOption = getIsolateOptions(IsolateDomain, 1);
Node = Node.parent().parent();
isl::union_set Options = IsolateOption.unite(AtomicOption);
isl::schedule_node_band Result =
Node.as<isl::schedule_node_band>().set_ast_build_options(Options);
return Result;
}
isl::schedule_node ScheduleTreeOptimizer::prevectSchedBand(
isl::schedule_node Node, unsigned DimToVectorize, int VectorWidth) {
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
unsigned ScheduleDimensions = unsignedFromIslSize(Space.dim(isl::dim::set));
assert(DimToVectorize < ScheduleDimensions);
if (DimToVectorize > 0) {
Node = isl::manage(
isl_schedule_node_band_split(Node.release(), DimToVectorize));
Node = Node.child(0);
}
if (DimToVectorize < ScheduleDimensions - 1)
Node = isl::manage(isl_schedule_node_band_split(Node.release(), 1));
Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
auto Sizes = isl::multi_val::zero(Space);
Sizes = Sizes.set_val(0, isl::val(Node.ctx(), VectorWidth));
Node =
isl::manage(isl_schedule_node_band_tile(Node.release(), Sizes.release()));
Node = isolateFullPartialTiles(Node, VectorWidth);
Node = Node.child(0);
// Make sure the "trivially vectorizable loop" is not unrolled. Otherwise,
// we will have troubles to match it in the backend.
isl::schedule_node_band NodeBand =
Node.as<isl::schedule_node_band>().set_ast_build_options(
isl::union_set(Node.ctx(), "{ unroll[x]: 1 = 0 }"));
Node = isl::manage(isl_schedule_node_band_sink(NodeBand.release()));
Node = Node.child(0);
if (isl_schedule_node_get_type(Node.get()) == isl_schedule_node_leaf)
Node = Node.parent();
auto LoopMarker = isl::id::alloc(Node.ctx(), "SIMD", nullptr);
PrevectOpts++;
return Node.insert_mark(LoopMarker);
}
static bool isSimpleInnermostBand(const isl::schedule_node &Node) {
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
assert(isl_schedule_node_n_children(Node.get()) == 1);
auto ChildType = isl_schedule_node_get_type(Node.child(0).get());
if (ChildType == isl_schedule_node_leaf)
return true;
if (ChildType != isl_schedule_node_sequence)
return false;
auto Sequence = Node.child(0);
for (int c = 0, nc = isl_schedule_node_n_children(Sequence.get()); c < nc;
++c) {
auto Child = Sequence.child(c);
if (isl_schedule_node_get_type(Child.get()) != isl_schedule_node_filter)
return false;
if (isl_schedule_node_get_type(Child.child(0).get()) !=
isl_schedule_node_leaf)
return false;
}
return true;
}
bool ScheduleTreeOptimizer::isTileableBandNode(isl::schedule_node Node) {
if (isl_schedule_node_get_type(Node.get()) != isl_schedule_node_band)
return false;
if (isl_schedule_node_n_children(Node.get()) != 1)
return false;
if (!isl_schedule_node_band_get_permutable(Node.get()))
return false;
auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
if (unsignedFromIslSize(Space.dim(isl::dim::set)) <= 1u)
return false;
return isSimpleInnermostBand(Node);
}
__isl_give isl::schedule_node
ScheduleTreeOptimizer::applyTileBandOpt(isl::schedule_node Node) {
if (FirstLevelTiling) {
Node = tileNode(Node, "1st level tiling", FirstLevelTileSizes,
FirstLevelDefaultTileSize);
FirstLevelTileOpts++;
}
if (SecondLevelTiling) {
Node = tileNode(Node, "2nd level tiling", SecondLevelTileSizes,
SecondLevelDefaultTileSize);
SecondLevelTileOpts++;
}
if (RegisterTiling) {
Node =
applyRegisterTiling(Node, RegisterTileSizes, RegisterDefaultTileSize);
RegisterTileOpts++;
}
return Node;
}
isl::schedule_node
ScheduleTreeOptimizer::applyPrevectBandOpt(isl::schedule_node Node) {
auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
int Dims = unsignedFromIslSize(Space.dim(isl::dim::set));
for (int i = Dims - 1; i >= 0; i--)
if (Node.as<isl::schedule_node_band>().member_get_coincident(i)) {
Node = prevectSchedBand(Node, i, PrevectorWidth);
break;
}
return Node;
}
__isl_give isl_schedule_node *
ScheduleTreeOptimizer::optimizeBand(__isl_take isl_schedule_node *NodeArg,
void *User) {
const OptimizerAdditionalInfoTy *OAI =
static_cast<const OptimizerAdditionalInfoTy *>(User);
assert(OAI && "Expecting optimization options");
isl::schedule_node Node = isl::manage(NodeArg);
if (!isTileableBandNode(Node))
return Node.release();
if (OAI->PatternOpts) {
isl::schedule_node PatternOptimizedSchedule =
tryOptimizeMatMulPattern(Node, OAI->TTI, OAI->D);
if (!PatternOptimizedSchedule.is_null()) {
MatMulOpts++;
return PatternOptimizedSchedule.release();
}
}
if (OAI->Postopts)
Node = applyTileBandOpt(Node);
if (OAI->Prevect) {
// FIXME: Prevectorization requirements are different from those checked by
// isTileableBandNode.
Node = applyPrevectBandOpt(Node);
}
return Node.release();
}
isl::schedule
ScheduleTreeOptimizer::optimizeSchedule(isl::schedule Schedule,
const OptimizerAdditionalInfoTy *OAI) {
auto Root = Schedule.get_root();
Root = optimizeScheduleNode(Root, OAI);
return Root.get_schedule();
}
isl::schedule_node ScheduleTreeOptimizer::optimizeScheduleNode(
isl::schedule_node Node, const OptimizerAdditionalInfoTy *OAI) {
Node = isl::manage(isl_schedule_node_map_descendant_bottom_up(
Node.release(), optimizeBand,
const_cast<void *>(static_cast<const void *>(OAI))));
return Node;
}
bool ScheduleTreeOptimizer::isProfitableSchedule(Scop &S,
isl::schedule NewSchedule) {
// To understand if the schedule has been optimized we check if the schedule
// has changed at all.
// TODO: We can improve this by tracking if any necessarily beneficial
// transformations have been performed. This can e.g. be tiling, loop
// interchange, or ...) We can track this either at the place where the
// transformation has been performed or, in case of automatic ILP based
// optimizations, by comparing (yet to be defined) performance metrics
// before/after the scheduling optimizer
// (e.g., #stride-one accesses)
// FIXME: A schedule tree whose union_map-conversion is identical to the
// original schedule map may still allow for parallelization, i.e. can still
// be profitable.
auto NewScheduleMap = NewSchedule.get_map();
auto OldSchedule = S.getSchedule();
assert(!OldSchedule.is_null() &&
"Only IslScheduleOptimizer can insert extension nodes "
"that make Scop::getSchedule() return nullptr.");
bool changed = !OldSchedule.is_equal(NewScheduleMap);
return changed;
}
class IslScheduleOptimizerWrapperPass : public ScopPass {
public:
static char ID;
explicit IslScheduleOptimizerWrapperPass() : ScopPass(ID) {}
/// Optimize the schedule of the SCoP @p S.
bool runOnScop(Scop &S) override;
/// Print the new schedule for the SCoP @p S.
void printScop(raw_ostream &OS, Scop &S) const override;
/// Register all analyses and transformation required.
void getAnalysisUsage(AnalysisUsage &AU) const override;
/// Release the internal memory.
void releaseMemory() override {
LastSchedule = {};
IslCtx.reset();
}
private:
std::shared_ptr<isl_ctx> IslCtx;
isl::schedule LastSchedule;
};
char IslScheduleOptimizerWrapperPass::ID = 0;
#ifndef NDEBUG
static void printSchedule(llvm::raw_ostream &OS, const isl::schedule &Schedule,
StringRef Desc) {
isl::ctx Ctx = Schedule.ctx();
isl_printer *P = isl_printer_to_str(Ctx.get());
P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
P = isl_printer_print_schedule(P, Schedule.get());
char *Str = isl_printer_get_str(P);
OS << Desc << ": \n" << Str << "\n";
free(Str);
isl_printer_free(P);
}
#endif
/// Collect statistics for the schedule tree.
///
/// @param Schedule The schedule tree to analyze. If not a schedule tree it is
/// ignored.
/// @param Version The version of the schedule tree that is analyzed.
/// 0 for the original schedule tree before any transformation.
/// 1 for the schedule tree after isl's rescheduling.
/// 2 for the schedule tree after optimizations are applied
/// (tiling, pattern matching)
static void walkScheduleTreeForStatistics(isl::schedule Schedule, int Version) {
auto Root = Schedule.get_root();
if (Root.is_null())
return;
isl_schedule_node_foreach_descendant_top_down(
Root.get(),
[](__isl_keep isl_schedule_node *nodeptr, void *user) -> isl_bool {
isl::schedule_node Node = isl::manage_copy(nodeptr);
int Version = *static_cast<int *>(user);
switch (isl_schedule_node_get_type(Node.get())) {
case isl_schedule_node_band: {
NumBands[Version]++;
if (isl_schedule_node_band_get_permutable(Node.get()) ==
isl_bool_true)
NumPermutable[Version]++;
int CountMembers = isl_schedule_node_band_n_member(Node.get());
NumBandMembers[Version] += CountMembers;
for (int i = 0; i < CountMembers; i += 1) {
if (Node.as<isl::schedule_node_band>().member_get_coincident(i))
NumCoincident[Version]++;
}
break;
}
case isl_schedule_node_filter:
NumFilters[Version]++;
break;
case isl_schedule_node_extension:
NumExtension[Version]++;
break;
default:
break;
}
return isl_bool_true;
},
&Version);
}
static bool runIslScheduleOptimizer(
Scop &S,
function_ref<const Dependences &(Dependences::AnalysisLevel)> GetDeps,
TargetTransformInfo *TTI, OptimizationRemarkEmitter *ORE,
isl::schedule &LastSchedule) {
// Skip SCoPs in case they're already optimised by PPCGCodeGeneration
if (S.isToBeSkipped())
return false;
// Skip empty SCoPs but still allow code generation as it will delete the
// loops present but not needed.
if (S.getSize() == 0) {
S.markAsOptimized();
return false;
}
ScopsProcessed++;
// Schedule without optimizations.
isl::schedule Schedule = S.getScheduleTree();
walkScheduleTreeForStatistics(S.getScheduleTree(), 0);
LLVM_DEBUG(printSchedule(dbgs(), Schedule, "Original schedule tree"));
bool HasUserTransformation = false;
if (PragmaBasedOpts) {
isl::schedule ManuallyTransformed = applyManualTransformations(
&S, Schedule, GetDeps(Dependences::AL_Statement), ORE);
if (ManuallyTransformed.is_null()) {
LLVM_DEBUG(dbgs() << "Error during manual optimization\n");
return false;
}
if (ManuallyTransformed.get() != Schedule.get()) {
// User transformations have precedence over other transformations.
HasUserTransformation = true;
Schedule = std::move(ManuallyTransformed);
LLVM_DEBUG(
printSchedule(dbgs(), Schedule, "After manual transformations"));
}
}
// Only continue if either manual transformations have been applied or we are
// allowed to apply heuristics.
// TODO: Detect disabled heuristics and no user-directed transformation
// metadata earlier in ScopDetection.
if (!HasUserTransformation && S.hasDisableHeuristicsHint()) {
LLVM_DEBUG(dbgs() << "Heuristic optimizations disabled by metadata\n");
return false;
}
// Get dependency analysis.
const Dependences &D = GetDeps(Dependences::AL_Statement);
if (D.getSharedIslCtx() != S.getSharedIslCtx()) {
LLVM_DEBUG(dbgs() << "DependenceInfo for another SCoP/isl_ctx\n");
return false;
}
if (!D.hasValidDependences()) {
LLVM_DEBUG(dbgs() << "Dependency information not available\n");
return false;
}
// Apply ISL's algorithm only if not overriden by the user. Note that
// post-rescheduling optimizations (tiling, pattern-based, prevectorization)
// rely on the coincidence/permutable annotations on schedule tree bands that
// are added by the rescheduling analyzer. Therefore, disabling the
// rescheduler implicitly also disables these optimizations.
if (!EnableReschedule) {
LLVM_DEBUG(dbgs() << "Skipping rescheduling due to command line option\n");
} else if (HasUserTransformation) {
LLVM_DEBUG(
dbgs() << "Skipping rescheduling due to manual transformation\n");
} else {
// Build input data.
int ValidityKinds =
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
int ProximityKinds;
if (OptimizeDeps == "all")
ProximityKinds =
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
else if (OptimizeDeps == "raw")
ProximityKinds = Dependences::TYPE_RAW;
else {
errs() << "Do not know how to optimize for '" << OptimizeDeps << "'"
<< " Falling back to optimizing all dependences.\n";
ProximityKinds =
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
}
isl::union_set Domain = S.getDomains();
if (Domain.is_null())
return false;
isl::union_map Validity = D.getDependences(ValidityKinds);
isl::union_map Proximity = D.getDependences(ProximityKinds);
// Simplify the dependences by removing the constraints introduced by the
// domains. This can speed up the scheduling time significantly, as large
// constant coefficients will be removed from the dependences. The
// introduction of some additional dependences reduces the possible
// transformations, but in most cases, such transformation do not seem to be
// interesting anyway. In some cases this option may stop the scheduler to
// find any schedule.
if (SimplifyDeps == "yes") {
Validity = Validity.gist_domain(Domain);
Validity = Validity.gist_range(Domain);
Proximity = Proximity.gist_domain(Domain);
Proximity = Proximity.gist_range(Domain);
} else if (SimplifyDeps != "no") {
errs()
<< "warning: Option -polly-opt-simplify-deps should either be 'yes' "
"or 'no'. Falling back to default: 'yes'\n";
}
LLVM_DEBUG(dbgs() << "\n\nCompute schedule from: ");
LLVM_DEBUG(dbgs() << "Domain := " << Domain << ";\n");
LLVM_DEBUG(dbgs() << "Proximity := " << Proximity << ";\n");
LLVM_DEBUG(dbgs() << "Validity := " << Validity << ";\n");
int IslMaximizeBands;
if (MaximizeBandDepth == "yes") {
IslMaximizeBands = 1;
} else if (MaximizeBandDepth == "no") {
IslMaximizeBands = 0;
} else {
errs()
<< "warning: Option -polly-opt-maximize-bands should either be 'yes'"
" or 'no'. Falling back to default: 'yes'\n";
IslMaximizeBands = 1;
}
int IslOuterCoincidence;
if (OuterCoincidence == "yes") {
IslOuterCoincidence = 1;
} else if (OuterCoincidence == "no") {
IslOuterCoincidence = 0;
} else {
errs() << "warning: Option -polly-opt-outer-coincidence should either be "
"'yes' or 'no'. Falling back to default: 'no'\n";
IslOuterCoincidence = 0;
}
isl_ctx *Ctx = S.getIslCtx().get();
isl_options_set_schedule_outer_coincidence(Ctx, IslOuterCoincidence);
isl_options_set_schedule_maximize_band_depth(Ctx, IslMaximizeBands);
isl_options_set_schedule_max_constant_term(Ctx, MaxConstantTerm);
isl_options_set_schedule_max_coefficient(Ctx, MaxCoefficient);
isl_options_set_tile_scale_tile_loops(Ctx, 0);
auto OnErrorStatus = isl_options_get_on_error(Ctx);
isl_options_set_on_error(Ctx, ISL_ON_ERROR_CONTINUE);
auto SC = isl::schedule_constraints::on_domain(Domain);
SC = SC.set_proximity(Proximity);
SC = SC.set_validity(Validity);
SC = SC.set_coincidence(Validity);
Schedule = SC.compute_schedule();
isl_options_set_on_error(Ctx, OnErrorStatus);
ScopsRescheduled++;
LLVM_DEBUG(printSchedule(dbgs(), Schedule, "After rescheduling"));
}
walkScheduleTreeForStatistics(Schedule, 1);
// In cases the scheduler is not able to optimize the code, we just do not
// touch the schedule.
if (Schedule.is_null())
return false;
if (GreedyFusion) {
isl::union_map Validity = D.getDependences(
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW);
Schedule = applyGreedyFusion(Schedule, Validity);
assert(!Schedule.is_null());
}
// Apply post-rescheduling optimizations (if enabled) and/or prevectorization.
const OptimizerAdditionalInfoTy OAI = {
TTI, const_cast<Dependences *>(&D),
/*PatternOpts=*/!HasUserTransformation && PMBasedOpts,
/*Postopts=*/!HasUserTransformation && EnablePostopts,
/*Prevect=*/PollyVectorizerChoice != VECTORIZER_NONE};
if (OAI.PatternOpts || OAI.Postopts || OAI.Prevect) {
Schedule = ScheduleTreeOptimizer::optimizeSchedule(Schedule, &OAI);
Schedule = hoistExtensionNodes(Schedule);
LLVM_DEBUG(printSchedule(dbgs(), Schedule, "After post-optimizations"));
walkScheduleTreeForStatistics(Schedule, 2);
}
// Skip profitability check if user transformation(s) have been applied.
if (!HasUserTransformation &&
!ScheduleTreeOptimizer::isProfitableSchedule(S, Schedule))
return false;
auto ScopStats = S.getStatistics();
ScopsOptimized++;
NumAffineLoopsOptimized += ScopStats.NumAffineLoops;
NumBoxedLoopsOptimized += ScopStats.NumBoxedLoops;
LastSchedule = Schedule;
S.setScheduleTree(Schedule);
S.markAsOptimized();
if (OptimizedScops)
errs() << S;
return false;
}
bool IslScheduleOptimizerWrapperPass::runOnScop(Scop &S) {
releaseMemory();
Function &F = S.getFunction();
IslCtx = S.getSharedIslCtx();
auto getDependences =
[this](Dependences::AnalysisLevel) -> const Dependences & {
return getAnalysis<DependenceInfo>().getDependences(
Dependences::AL_Statement);
};
OptimizationRemarkEmitter &ORE =
getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
TargetTransformInfo *TTI =
&getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
return runIslScheduleOptimizer(S, getDependences, TTI, &ORE, LastSchedule);
}
static void runScheduleOptimizerPrinter(raw_ostream &OS,
isl::schedule LastSchedule) {
isl_printer *p;
char *ScheduleStr;
OS << "Calculated schedule:\n";
if (LastSchedule.is_null()) {
OS << "n/a\n";
return;
}
p = isl_printer_to_str(LastSchedule.ctx().get());
p = isl_printer_set_yaml_style(p, ISL_YAML_STYLE_BLOCK);
p = isl_printer_print_schedule(p, LastSchedule.get());
ScheduleStr = isl_printer_get_str(p);
isl_printer_free(p);
OS << ScheduleStr << "\n";
free(ScheduleStr);
}
void IslScheduleOptimizerWrapperPass::printScop(raw_ostream &OS, Scop &) const {
runScheduleOptimizerPrinter(OS, LastSchedule);
}
void IslScheduleOptimizerWrapperPass::getAnalysisUsage(
AnalysisUsage &AU) const {
ScopPass::getAnalysisUsage(AU);
AU.addRequired<DependenceInfo>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
AU.addPreserved<DependenceInfo>();
AU.addPreserved<OptimizationRemarkEmitterWrapperPass>();
}
} // namespace
Pass *polly::createIslScheduleOptimizerWrapperPass() {
return new IslScheduleOptimizerWrapperPass();
}
INITIALIZE_PASS_BEGIN(IslScheduleOptimizerWrapperPass, "polly-opt-isl",
"Polly - Optimize schedule of SCoP", false, false);
INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass);
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass);
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass);
INITIALIZE_PASS_END(IslScheduleOptimizerWrapperPass, "polly-opt-isl",
"Polly - Optimize schedule of SCoP", false, false)
static llvm::PreservedAnalyses
runIslScheduleOptimizerUsingNPM(Scop &S, ScopAnalysisManager &SAM,
ScopStandardAnalysisResults &SAR, SPMUpdater &U,
raw_ostream *OS) {
DependenceAnalysis::Result &Deps = SAM.getResult<DependenceAnalysis>(S, SAR);
auto GetDeps = [&Deps](Dependences::AnalysisLevel) -> const Dependences & {
return Deps.getDependences(Dependences::AL_Statement);
};
OptimizationRemarkEmitter ORE(&S.getFunction());
TargetTransformInfo *TTI = &SAR.TTI;
isl::schedule LastSchedule;
bool Modified = runIslScheduleOptimizer(S, GetDeps, TTI, &ORE, LastSchedule);
if (OS) {
*OS << "Printing analysis 'Polly - Optimize schedule of SCoP' for region: '"
<< S.getName() << "' in function '" << S.getFunction().getName()
<< "':\n";
runScheduleOptimizerPrinter(*OS, LastSchedule);
}
if (!Modified)
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserveSet<AllAnalysesOn<Module>>();
PA.preserveSet<AllAnalysesOn<Function>>();
PA.preserveSet<AllAnalysesOn<Loop>>();
return PA;
}
llvm::PreservedAnalyses
IslScheduleOptimizerPass::run(Scop &S, ScopAnalysisManager &SAM,
ScopStandardAnalysisResults &SAR, SPMUpdater &U) {
return runIslScheduleOptimizerUsingNPM(S, SAM, SAR, U, nullptr);
}
llvm::PreservedAnalyses
IslScheduleOptimizerPrinterPass::run(Scop &S, ScopAnalysisManager &SAM,
ScopStandardAnalysisResults &SAR,
SPMUpdater &U) {
return runIslScheduleOptimizerUsingNPM(S, SAM, SAR, U, &OS);
}