| //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This class wraps target description classes used by the various code |
| // generation TableGen backends. This makes it easier to access the data and |
| // provides a single place that needs to check it for validity. All of these |
| // classes abort on error conditions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenTarget.h" |
| #include "CodeGenDAGPatterns.h" |
| #include "CodeGenIntrinsics.h" |
| #include "CodeGenSchedule.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Timer.h" |
| #include "llvm/TableGen/Error.h" |
| #include "llvm/TableGen/Record.h" |
| #include "llvm/TableGen/TableGenBackend.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| cl::OptionCategory AsmParserCat("Options for -gen-asm-parser"); |
| cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer"); |
| |
| static cl::opt<unsigned> |
| AsmParserNum("asmparsernum", cl::init(0), |
| cl::desc("Make -gen-asm-parser emit assembly parser #N"), |
| cl::cat(AsmParserCat)); |
| |
| static cl::opt<unsigned> |
| AsmWriterNum("asmwriternum", cl::init(0), |
| cl::desc("Make -gen-asm-writer emit assembly writer #N"), |
| cl::cat(AsmWriterCat)); |
| |
| /// getValueType - Return the MVT::SimpleValueType that the specified TableGen |
| /// record corresponds to. |
| MVT::SimpleValueType llvm::getValueType(Record *Rec) { |
| return (MVT::SimpleValueType)Rec->getValueAsInt("Value"); |
| } |
| |
| StringRef llvm::getName(MVT::SimpleValueType T) { |
| switch (T) { |
| case MVT::Other: return "UNKNOWN"; |
| case MVT::iPTR: return "TLI.getPointerTy()"; |
| case MVT::iPTRAny: return "TLI.getPointerTy()"; |
| default: return getEnumName(T); |
| } |
| } |
| |
| StringRef llvm::getEnumName(MVT::SimpleValueType T) { |
| switch (T) { |
| case MVT::Other: return "MVT::Other"; |
| case MVT::i1: return "MVT::i1"; |
| case MVT::i8: return "MVT::i8"; |
| case MVT::i16: return "MVT::i16"; |
| case MVT::i32: return "MVT::i32"; |
| case MVT::i64: return "MVT::i64"; |
| case MVT::i128: return "MVT::i128"; |
| case MVT::Any: return "MVT::Any"; |
| case MVT::iAny: return "MVT::iAny"; |
| case MVT::fAny: return "MVT::fAny"; |
| case MVT::vAny: return "MVT::vAny"; |
| case MVT::f16: return "MVT::f16"; |
| case MVT::bf16: return "MVT::bf16"; |
| case MVT::f32: return "MVT::f32"; |
| case MVT::f64: return "MVT::f64"; |
| case MVT::f80: return "MVT::f80"; |
| case MVT::f128: return "MVT::f128"; |
| case MVT::ppcf128: return "MVT::ppcf128"; |
| case MVT::x86mmx: return "MVT::x86mmx"; |
| case MVT::x86amx: return "MVT::x86amx"; |
| case MVT::i64x8: return "MVT::i64x8"; |
| case MVT::Glue: return "MVT::Glue"; |
| case MVT::isVoid: return "MVT::isVoid"; |
| case MVT::v1i1: return "MVT::v1i1"; |
| case MVT::v2i1: return "MVT::v2i1"; |
| case MVT::v4i1: return "MVT::v4i1"; |
| case MVT::v8i1: return "MVT::v8i1"; |
| case MVT::v16i1: return "MVT::v16i1"; |
| case MVT::v32i1: return "MVT::v32i1"; |
| case MVT::v64i1: return "MVT::v64i1"; |
| case MVT::v128i1: return "MVT::v128i1"; |
| case MVT::v256i1: return "MVT::v256i1"; |
| case MVT::v512i1: return "MVT::v512i1"; |
| case MVT::v1024i1: return "MVT::v1024i1"; |
| case MVT::v1i8: return "MVT::v1i8"; |
| case MVT::v2i8: return "MVT::v2i8"; |
| case MVT::v4i8: return "MVT::v4i8"; |
| case MVT::v8i8: return "MVT::v8i8"; |
| case MVT::v16i8: return "MVT::v16i8"; |
| case MVT::v32i8: return "MVT::v32i8"; |
| case MVT::v64i8: return "MVT::v64i8"; |
| case MVT::v128i8: return "MVT::v128i8"; |
| case MVT::v256i8: return "MVT::v256i8"; |
| case MVT::v512i8: return "MVT::v512i8"; |
| case MVT::v1024i8: return "MVT::v1024i8"; |
| case MVT::v1i16: return "MVT::v1i16"; |
| case MVT::v2i16: return "MVT::v2i16"; |
| case MVT::v3i16: return "MVT::v3i16"; |
| case MVT::v4i16: return "MVT::v4i16"; |
| case MVT::v8i16: return "MVT::v8i16"; |
| case MVT::v16i16: return "MVT::v16i16"; |
| case MVT::v32i16: return "MVT::v32i16"; |
| case MVT::v64i16: return "MVT::v64i16"; |
| case MVT::v128i16: return "MVT::v128i16"; |
| case MVT::v256i16: return "MVT::v256i16"; |
| case MVT::v512i16: return "MVT::v512i16"; |
| case MVT::v1i32: return "MVT::v1i32"; |
| case MVT::v2i32: return "MVT::v2i32"; |
| case MVT::v3i32: return "MVT::v3i32"; |
| case MVT::v4i32: return "MVT::v4i32"; |
| case MVT::v5i32: return "MVT::v5i32"; |
| case MVT::v6i32: return "MVT::v6i32"; |
| case MVT::v7i32: return "MVT::v7i32"; |
| case MVT::v8i32: return "MVT::v8i32"; |
| case MVT::v16i32: return "MVT::v16i32"; |
| case MVT::v32i32: return "MVT::v32i32"; |
| case MVT::v64i32: return "MVT::v64i32"; |
| case MVT::v128i32: return "MVT::v128i32"; |
| case MVT::v256i32: return "MVT::v256i32"; |
| case MVT::v512i32: return "MVT::v512i32"; |
| case MVT::v1024i32: return "MVT::v1024i32"; |
| case MVT::v2048i32: return "MVT::v2048i32"; |
| case MVT::v1i64: return "MVT::v1i64"; |
| case MVT::v2i64: return "MVT::v2i64"; |
| case MVT::v3i64: return "MVT::v3i64"; |
| case MVT::v4i64: return "MVT::v4i64"; |
| case MVT::v8i64: return "MVT::v8i64"; |
| case MVT::v16i64: return "MVT::v16i64"; |
| case MVT::v32i64: return "MVT::v32i64"; |
| case MVT::v64i64: return "MVT::v64i64"; |
| case MVT::v128i64: return "MVT::v128i64"; |
| case MVT::v256i64: return "MVT::v256i64"; |
| case MVT::v1i128: return "MVT::v1i128"; |
| case MVT::v1f16: return "MVT::v1f16"; |
| case MVT::v2f16: return "MVT::v2f16"; |
| case MVT::v3f16: return "MVT::v3f16"; |
| case MVT::v4f16: return "MVT::v4f16"; |
| case MVT::v8f16: return "MVT::v8f16"; |
| case MVT::v16f16: return "MVT::v16f16"; |
| case MVT::v32f16: return "MVT::v32f16"; |
| case MVT::v64f16: return "MVT::v64f16"; |
| case MVT::v128f16: return "MVT::v128f16"; |
| case MVT::v256f16: return "MVT::v256f16"; |
| case MVT::v512f16: return "MVT::v512f16"; |
| case MVT::v2bf16: return "MVT::v2bf16"; |
| case MVT::v3bf16: return "MVT::v3bf16"; |
| case MVT::v4bf16: return "MVT::v4bf16"; |
| case MVT::v8bf16: return "MVT::v8bf16"; |
| case MVT::v16bf16: return "MVT::v16bf16"; |
| case MVT::v32bf16: return "MVT::v32bf16"; |
| case MVT::v64bf16: return "MVT::v64bf16"; |
| case MVT::v128bf16: return "MVT::v128bf16"; |
| case MVT::v1f32: return "MVT::v1f32"; |
| case MVT::v2f32: return "MVT::v2f32"; |
| case MVT::v3f32: return "MVT::v3f32"; |
| case MVT::v4f32: return "MVT::v4f32"; |
| case MVT::v5f32: return "MVT::v5f32"; |
| case MVT::v6f32: return "MVT::v6f32"; |
| case MVT::v7f32: return "MVT::v7f32"; |
| case MVT::v8f32: return "MVT::v8f32"; |
| case MVT::v16f32: return "MVT::v16f32"; |
| case MVT::v32f32: return "MVT::v32f32"; |
| case MVT::v64f32: return "MVT::v64f32"; |
| case MVT::v128f32: return "MVT::v128f32"; |
| case MVT::v256f32: return "MVT::v256f32"; |
| case MVT::v512f32: return "MVT::v512f32"; |
| case MVT::v1024f32: return "MVT::v1024f32"; |
| case MVT::v2048f32: return "MVT::v2048f32"; |
| case MVT::v1f64: return "MVT::v1f64"; |
| case MVT::v2f64: return "MVT::v2f64"; |
| case MVT::v3f64: return "MVT::v3f64"; |
| case MVT::v4f64: return "MVT::v4f64"; |
| case MVT::v8f64: return "MVT::v8f64"; |
| case MVT::v16f64: return "MVT::v16f64"; |
| case MVT::v32f64: return "MVT::v32f64"; |
| case MVT::v64f64: return "MVT::v64f64"; |
| case MVT::v128f64: return "MVT::v128f64"; |
| case MVT::v256f64: return "MVT::v256f64"; |
| case MVT::nxv1i1: return "MVT::nxv1i1"; |
| case MVT::nxv2i1: return "MVT::nxv2i1"; |
| case MVT::nxv4i1: return "MVT::nxv4i1"; |
| case MVT::nxv8i1: return "MVT::nxv8i1"; |
| case MVT::nxv16i1: return "MVT::nxv16i1"; |
| case MVT::nxv32i1: return "MVT::nxv32i1"; |
| case MVT::nxv64i1: return "MVT::nxv64i1"; |
| case MVT::nxv1i8: return "MVT::nxv1i8"; |
| case MVT::nxv2i8: return "MVT::nxv2i8"; |
| case MVT::nxv4i8: return "MVT::nxv4i8"; |
| case MVT::nxv8i8: return "MVT::nxv8i8"; |
| case MVT::nxv16i8: return "MVT::nxv16i8"; |
| case MVT::nxv32i8: return "MVT::nxv32i8"; |
| case MVT::nxv64i8: return "MVT::nxv64i8"; |
| case MVT::nxv1i16: return "MVT::nxv1i16"; |
| case MVT::nxv2i16: return "MVT::nxv2i16"; |
| case MVT::nxv4i16: return "MVT::nxv4i16"; |
| case MVT::nxv8i16: return "MVT::nxv8i16"; |
| case MVT::nxv16i16: return "MVT::nxv16i16"; |
| case MVT::nxv32i16: return "MVT::nxv32i16"; |
| case MVT::nxv1i32: return "MVT::nxv1i32"; |
| case MVT::nxv2i32: return "MVT::nxv2i32"; |
| case MVT::nxv4i32: return "MVT::nxv4i32"; |
| case MVT::nxv8i32: return "MVT::nxv8i32"; |
| case MVT::nxv16i32: return "MVT::nxv16i32"; |
| case MVT::nxv32i32: return "MVT::nxv32i32"; |
| case MVT::nxv1i64: return "MVT::nxv1i64"; |
| case MVT::nxv2i64: return "MVT::nxv2i64"; |
| case MVT::nxv4i64: return "MVT::nxv4i64"; |
| case MVT::nxv8i64: return "MVT::nxv8i64"; |
| case MVT::nxv16i64: return "MVT::nxv16i64"; |
| case MVT::nxv32i64: return "MVT::nxv32i64"; |
| case MVT::nxv1f16: return "MVT::nxv1f16"; |
| case MVT::nxv2f16: return "MVT::nxv2f16"; |
| case MVT::nxv4f16: return "MVT::nxv4f16"; |
| case MVT::nxv8f16: return "MVT::nxv8f16"; |
| case MVT::nxv16f16: return "MVT::nxv16f16"; |
| case MVT::nxv32f16: return "MVT::nxv32f16"; |
| case MVT::nxv1bf16: return "MVT::nxv1bf16"; |
| case MVT::nxv2bf16: return "MVT::nxv2bf16"; |
| case MVT::nxv4bf16: return "MVT::nxv4bf16"; |
| case MVT::nxv8bf16: return "MVT::nxv8bf16"; |
| case MVT::nxv1f32: return "MVT::nxv1f32"; |
| case MVT::nxv2f32: return "MVT::nxv2f32"; |
| case MVT::nxv4f32: return "MVT::nxv4f32"; |
| case MVT::nxv8f32: return "MVT::nxv8f32"; |
| case MVT::nxv16f32: return "MVT::nxv16f32"; |
| case MVT::nxv1f64: return "MVT::nxv1f64"; |
| case MVT::nxv2f64: return "MVT::nxv2f64"; |
| case MVT::nxv4f64: return "MVT::nxv4f64"; |
| case MVT::nxv8f64: return "MVT::nxv8f64"; |
| case MVT::token: return "MVT::token"; |
| case MVT::Metadata: return "MVT::Metadata"; |
| case MVT::iPTR: return "MVT::iPTR"; |
| case MVT::iPTRAny: return "MVT::iPTRAny"; |
| case MVT::Untyped: return "MVT::Untyped"; |
| case MVT::funcref: return "MVT::funcref"; |
| case MVT::externref: return "MVT::externref"; |
| default: llvm_unreachable("ILLEGAL VALUE TYPE!"); |
| } |
| } |
| |
| /// getQualifiedName - Return the name of the specified record, with a |
| /// namespace qualifier if the record contains one. |
| /// |
| std::string llvm::getQualifiedName(const Record *R) { |
| std::string Namespace; |
| if (R->getValue("Namespace")) |
| Namespace = std::string(R->getValueAsString("Namespace")); |
| if (Namespace.empty()) |
| return std::string(R->getName()); |
| return Namespace + "::" + R->getName().str(); |
| } |
| |
| |
| /// getTarget - Return the current instance of the Target class. |
| /// |
| CodeGenTarget::CodeGenTarget(RecordKeeper &records) |
| : Records(records), CGH(records) { |
| std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target"); |
| if (Targets.size() == 0) |
| PrintFatalError("No 'Target' subclasses defined!"); |
| if (Targets.size() != 1) |
| PrintFatalError("Multiple subclasses of Target defined!"); |
| TargetRec = Targets[0]; |
| } |
| |
| CodeGenTarget::~CodeGenTarget() { |
| } |
| |
| StringRef CodeGenTarget::getName() const { return TargetRec->getName(); } |
| |
| /// getInstNamespace - Find and return the target machine's instruction |
| /// namespace. The namespace is cached because it is requested multiple times. |
| StringRef CodeGenTarget::getInstNamespace() const { |
| if (InstNamespace.empty()) { |
| for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) { |
| // We are not interested in the "TargetOpcode" namespace. |
| if (Inst->Namespace != "TargetOpcode") { |
| InstNamespace = Inst->Namespace; |
| break; |
| } |
| } |
| } |
| |
| return InstNamespace; |
| } |
| |
| StringRef CodeGenTarget::getRegNamespace() const { |
| auto &RegClasses = RegBank->getRegClasses(); |
| return RegClasses.size() > 0 ? RegClasses.front().Namespace : ""; |
| } |
| |
| Record *CodeGenTarget::getInstructionSet() const { |
| return TargetRec->getValueAsDef("InstructionSet"); |
| } |
| |
| bool CodeGenTarget::getAllowRegisterRenaming() const { |
| return TargetRec->getValueAsInt("AllowRegisterRenaming"); |
| } |
| |
| /// getAsmParser - Return the AssemblyParser definition for this target. |
| /// |
| Record *CodeGenTarget::getAsmParser() const { |
| std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers"); |
| if (AsmParserNum >= LI.size()) |
| PrintFatalError("Target does not have an AsmParser #" + |
| Twine(AsmParserNum) + "!"); |
| return LI[AsmParserNum]; |
| } |
| |
| /// getAsmParserVariant - Return the AssemblyParserVariant definition for |
| /// this target. |
| /// |
| Record *CodeGenTarget::getAsmParserVariant(unsigned i) const { |
| std::vector<Record*> LI = |
| TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); |
| if (i >= LI.size()) |
| PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) + |
| "!"); |
| return LI[i]; |
| } |
| |
| /// getAsmParserVariantCount - Return the AssemblyParserVariant definition |
| /// available for this target. |
| /// |
| unsigned CodeGenTarget::getAsmParserVariantCount() const { |
| std::vector<Record*> LI = |
| TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); |
| return LI.size(); |
| } |
| |
| /// getAsmWriter - Return the AssemblyWriter definition for this target. |
| /// |
| Record *CodeGenTarget::getAsmWriter() const { |
| std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); |
| if (AsmWriterNum >= LI.size()) |
| PrintFatalError("Target does not have an AsmWriter #" + |
| Twine(AsmWriterNum) + "!"); |
| return LI[AsmWriterNum]; |
| } |
| |
| CodeGenRegBank &CodeGenTarget::getRegBank() const { |
| if (!RegBank) |
| RegBank = std::make_unique<CodeGenRegBank>(Records, getHwModes()); |
| return *RegBank; |
| } |
| |
| Optional<CodeGenRegisterClass *> |
| CodeGenTarget::getSuperRegForSubReg(const ValueTypeByHwMode &ValueTy, |
| CodeGenRegBank &RegBank, |
| const CodeGenSubRegIndex *SubIdx, |
| bool MustBeAllocatable) const { |
| std::vector<CodeGenRegisterClass *> Candidates; |
| auto &RegClasses = RegBank.getRegClasses(); |
| |
| // Try to find a register class which supports ValueTy, and also contains |
| // SubIdx. |
| for (CodeGenRegisterClass &RC : RegClasses) { |
| // Is there a subclass of this class which contains this subregister index? |
| CodeGenRegisterClass *SubClassWithSubReg = RC.getSubClassWithSubReg(SubIdx); |
| if (!SubClassWithSubReg) |
| continue; |
| |
| // We have a class. Check if it supports this value type. |
| if (!llvm::is_contained(SubClassWithSubReg->VTs, ValueTy)) |
| continue; |
| |
| // If necessary, check that it is allocatable. |
| if (MustBeAllocatable && !SubClassWithSubReg->Allocatable) |
| continue; |
| |
| // We have a register class which supports both the value type and |
| // subregister index. Remember it. |
| Candidates.push_back(SubClassWithSubReg); |
| } |
| |
| // If we didn't find anything, we're done. |
| if (Candidates.empty()) |
| return None; |
| |
| // Find and return the largest of our candidate classes. |
| llvm::stable_sort(Candidates, [&](const CodeGenRegisterClass *A, |
| const CodeGenRegisterClass *B) { |
| if (A->getMembers().size() > B->getMembers().size()) |
| return true; |
| |
| if (A->getMembers().size() < B->getMembers().size()) |
| return false; |
| |
| // Order by name as a tie-breaker. |
| return StringRef(A->getName()) < B->getName(); |
| }); |
| |
| return Candidates[0]; |
| } |
| |
| void CodeGenTarget::ReadRegAltNameIndices() const { |
| RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex"); |
| llvm::sort(RegAltNameIndices, LessRecord()); |
| } |
| |
| /// getRegisterByName - If there is a register with the specific AsmName, |
| /// return it. |
| const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const { |
| return getRegBank().getRegistersByName().lookup(Name); |
| } |
| |
| std::vector<ValueTypeByHwMode> CodeGenTarget::getRegisterVTs(Record *R) |
| const { |
| const CodeGenRegister *Reg = getRegBank().getReg(R); |
| std::vector<ValueTypeByHwMode> Result; |
| for (const auto &RC : getRegBank().getRegClasses()) { |
| if (RC.contains(Reg)) { |
| ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes(); |
| llvm::append_range(Result, InVTs); |
| } |
| } |
| |
| // Remove duplicates. |
| llvm::sort(Result); |
| Result.erase(std::unique(Result.begin(), Result.end()), Result.end()); |
| return Result; |
| } |
| |
| |
| void CodeGenTarget::ReadLegalValueTypes() const { |
| for (const auto &RC : getRegBank().getRegClasses()) |
| llvm::append_range(LegalValueTypes, RC.VTs); |
| |
| // Remove duplicates. |
| llvm::sort(LegalValueTypes); |
| LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), |
| LegalValueTypes.end()), |
| LegalValueTypes.end()); |
| } |
| |
| CodeGenSchedModels &CodeGenTarget::getSchedModels() const { |
| if (!SchedModels) |
| SchedModels = std::make_unique<CodeGenSchedModels>(Records, *this); |
| return *SchedModels; |
| } |
| |
| void CodeGenTarget::ReadInstructions() const { |
| std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); |
| if (Insts.size() <= 2) |
| PrintFatalError("No 'Instruction' subclasses defined!"); |
| |
| // Parse the instructions defined in the .td file. |
| for (unsigned i = 0, e = Insts.size(); i != e; ++i) |
| Instructions[Insts[i]] = std::make_unique<CodeGenInstruction>(Insts[i]); |
| } |
| |
| static const CodeGenInstruction * |
| GetInstByName(const char *Name, |
| const DenseMap<const Record*, |
| std::unique_ptr<CodeGenInstruction>> &Insts, |
| RecordKeeper &Records) { |
| const Record *Rec = Records.getDef(Name); |
| |
| const auto I = Insts.find(Rec); |
| if (!Rec || I == Insts.end()) |
| PrintFatalError(Twine("Could not find '") + Name + "' instruction!"); |
| return I->second.get(); |
| } |
| |
| static const char *const FixedInstrs[] = { |
| #define HANDLE_TARGET_OPCODE(OPC) #OPC, |
| #include "llvm/Support/TargetOpcodes.def" |
| nullptr}; |
| |
| unsigned CodeGenTarget::getNumFixedInstructions() { |
| return array_lengthof(FixedInstrs) - 1; |
| } |
| |
| /// Return all of the instructions defined by the target, ordered by |
| /// their enum value. |
| void CodeGenTarget::ComputeInstrsByEnum() const { |
| const auto &Insts = getInstructions(); |
| for (const char *const *p = FixedInstrs; *p; ++p) { |
| const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records); |
| assert(Instr && "Missing target independent instruction"); |
| assert(Instr->Namespace == "TargetOpcode" && "Bad namespace"); |
| InstrsByEnum.push_back(Instr); |
| } |
| unsigned EndOfPredefines = InstrsByEnum.size(); |
| assert(EndOfPredefines == getNumFixedInstructions() && |
| "Missing generic opcode"); |
| |
| for (const auto &I : Insts) { |
| const CodeGenInstruction *CGI = I.second.get(); |
| if (CGI->Namespace != "TargetOpcode") { |
| InstrsByEnum.push_back(CGI); |
| if (CGI->TheDef->getValueAsBit("isPseudo")) |
| ++NumPseudoInstructions; |
| } |
| } |
| |
| assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr"); |
| |
| // All of the instructions are now in random order based on the map iteration. |
| llvm::sort( |
| InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(), |
| [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) { |
| const auto &D1 = *Rec1->TheDef; |
| const auto &D2 = *Rec2->TheDef; |
| return std::make_tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) < |
| std::make_tuple(!D2.getValueAsBit("isPseudo"), D2.getName()); |
| }); |
| } |
| |
| |
| /// isLittleEndianEncoding - Return whether this target encodes its instruction |
| /// in little-endian format, i.e. bits laid out in the order [0..n] |
| /// |
| bool CodeGenTarget::isLittleEndianEncoding() const { |
| return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); |
| } |
| |
| /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit |
| /// encodings, reverse the bit order of all instructions. |
| void CodeGenTarget::reverseBitsForLittleEndianEncoding() { |
| if (!isLittleEndianEncoding()) |
| return; |
| |
| std::vector<Record *> Insts = |
| Records.getAllDerivedDefinitions("InstructionEncoding"); |
| for (Record *R : Insts) { |
| if (R->getValueAsString("Namespace") == "TargetOpcode" || |
| R->getValueAsBit("isPseudo")) |
| continue; |
| |
| BitsInit *BI = R->getValueAsBitsInit("Inst"); |
| |
| unsigned numBits = BI->getNumBits(); |
| |
| SmallVector<Init *, 16> NewBits(numBits); |
| |
| for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) { |
| unsigned bitSwapIdx = numBits - bit - 1; |
| Init *OrigBit = BI->getBit(bit); |
| Init *BitSwap = BI->getBit(bitSwapIdx); |
| NewBits[bit] = BitSwap; |
| NewBits[bitSwapIdx] = OrigBit; |
| } |
| if (numBits % 2) { |
| unsigned middle = (numBits + 1) / 2; |
| NewBits[middle] = BI->getBit(middle); |
| } |
| |
| BitsInit *NewBI = BitsInit::get(NewBits); |
| |
| // Update the bits in reversed order so that emitInstrOpBits will get the |
| // correct endianness. |
| R->getValue("Inst")->setValue(NewBI); |
| } |
| } |
| |
| /// guessInstructionProperties - Return true if it's OK to guess instruction |
| /// properties instead of raising an error. |
| /// |
| /// This is configurable as a temporary migration aid. It will eventually be |
| /// permanently false. |
| bool CodeGenTarget::guessInstructionProperties() const { |
| return getInstructionSet()->getValueAsBit("guessInstructionProperties"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ComplexPattern implementation |
| // |
| ComplexPattern::ComplexPattern(Record *R) { |
| Ty = ::getValueType(R->getValueAsDef("Ty")); |
| NumOperands = R->getValueAsInt("NumOperands"); |
| SelectFunc = std::string(R->getValueAsString("SelectFunc")); |
| RootNodes = R->getValueAsListOfDefs("RootNodes"); |
| |
| // FIXME: This is a hack to statically increase the priority of patterns which |
| // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best |
| // possible pattern match we'll need to dynamically calculate the complexity |
| // of all patterns a dag can potentially map to. |
| int64_t RawComplexity = R->getValueAsInt("Complexity"); |
| if (RawComplexity == -1) |
| Complexity = NumOperands * 3; |
| else |
| Complexity = RawComplexity; |
| |
| // FIXME: Why is this different from parseSDPatternOperatorProperties? |
| // Parse the properties. |
| Properties = 0; |
| std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); |
| for (unsigned i = 0, e = PropList.size(); i != e; ++i) |
| if (PropList[i]->getName() == "SDNPHasChain") { |
| Properties |= 1 << SDNPHasChain; |
| } else if (PropList[i]->getName() == "SDNPOptInGlue") { |
| Properties |= 1 << SDNPOptInGlue; |
| } else if (PropList[i]->getName() == "SDNPMayStore") { |
| Properties |= 1 << SDNPMayStore; |
| } else if (PropList[i]->getName() == "SDNPMayLoad") { |
| Properties |= 1 << SDNPMayLoad; |
| } else if (PropList[i]->getName() == "SDNPSideEffect") { |
| Properties |= 1 << SDNPSideEffect; |
| } else if (PropList[i]->getName() == "SDNPMemOperand") { |
| Properties |= 1 << SDNPMemOperand; |
| } else if (PropList[i]->getName() == "SDNPVariadic") { |
| Properties |= 1 << SDNPVariadic; |
| } else if (PropList[i]->getName() == "SDNPWantRoot") { |
| Properties |= 1 << SDNPWantRoot; |
| } else if (PropList[i]->getName() == "SDNPWantParent") { |
| Properties |= 1 << SDNPWantParent; |
| } else { |
| PrintFatalError(R->getLoc(), "Unsupported SD Node property '" + |
| PropList[i]->getName() + |
| "' on ComplexPattern '" + R->getName() + |
| "'!"); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CodeGenIntrinsic Implementation |
| //===----------------------------------------------------------------------===// |
| |
| CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC) { |
| std::vector<Record *> IntrProperties = |
| RC.getAllDerivedDefinitions("IntrinsicProperty"); |
| |
| std::vector<Record *> DefaultProperties; |
| for (Record *Rec : IntrProperties) |
| if (Rec->getValueAsBit("IsDefault")) |
| DefaultProperties.push_back(Rec); |
| |
| std::vector<Record *> Defs = RC.getAllDerivedDefinitions("Intrinsic"); |
| Intrinsics.reserve(Defs.size()); |
| |
| for (unsigned I = 0, e = Defs.size(); I != e; ++I) |
| Intrinsics.push_back(CodeGenIntrinsic(Defs[I], DefaultProperties)); |
| |
| llvm::sort(Intrinsics, |
| [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) { |
| return std::tie(LHS.TargetPrefix, LHS.Name) < |
| std::tie(RHS.TargetPrefix, RHS.Name); |
| }); |
| Targets.push_back({"", 0, 0}); |
| for (size_t I = 0, E = Intrinsics.size(); I < E; ++I) |
| if (Intrinsics[I].TargetPrefix != Targets.back().Name) { |
| Targets.back().Count = I - Targets.back().Offset; |
| Targets.push_back({Intrinsics[I].TargetPrefix, I, 0}); |
| } |
| Targets.back().Count = Intrinsics.size() - Targets.back().Offset; |
| } |
| |
| CodeGenIntrinsic::CodeGenIntrinsic(Record *R, |
| std::vector<Record *> DefaultProperties) { |
| TheDef = R; |
| std::string DefName = std::string(R->getName()); |
| ArrayRef<SMLoc> DefLoc = R->getLoc(); |
| ModRef = ReadWriteMem; |
| Properties = 0; |
| isOverloaded = false; |
| isCommutative = false; |
| canThrow = false; |
| isNoReturn = false; |
| isNoSync = false; |
| isNoFree = false; |
| isWillReturn = false; |
| isCold = false; |
| isNoDuplicate = false; |
| isNoMerge = false; |
| isConvergent = false; |
| isSpeculatable = false; |
| hasSideEffects = false; |
| |
| if (DefName.size() <= 4 || DefName.substr(0, 4) != "int_") |
| PrintFatalError(DefLoc, |
| "Intrinsic '" + DefName + "' does not start with 'int_'!"); |
| |
| EnumName = DefName.substr(4); |
| |
| if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. |
| GCCBuiltinName = std::string(R->getValueAsString("GCCBuiltinName")); |
| if (R->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field. |
| MSBuiltinName = std::string(R->getValueAsString("MSBuiltinName")); |
| |
| TargetPrefix = std::string(R->getValueAsString("TargetPrefix")); |
| Name = std::string(R->getValueAsString("LLVMName")); |
| |
| if (Name == "") { |
| // If an explicit name isn't specified, derive one from the DefName. |
| Name = "llvm."; |
| |
| for (unsigned i = 0, e = EnumName.size(); i != e; ++i) |
| Name += (EnumName[i] == '_') ? '.' : EnumName[i]; |
| } else { |
| // Verify it starts with "llvm.". |
| if (Name.size() <= 5 || Name.substr(0, 5) != "llvm.") |
| PrintFatalError(DefLoc, "Intrinsic '" + DefName + |
| "'s name does not start with 'llvm.'!"); |
| } |
| |
| // If TargetPrefix is specified, make sure that Name starts with |
| // "llvm.<targetprefix>.". |
| if (!TargetPrefix.empty()) { |
| if (Name.size() < 6+TargetPrefix.size() || |
| Name.substr(5, 1 + TargetPrefix.size()) != (TargetPrefix + ".")) |
| PrintFatalError(DefLoc, "Intrinsic '" + DefName + |
| "' does not start with 'llvm." + |
| TargetPrefix + ".'!"); |
| } |
| |
| ListInit *RetTypes = R->getValueAsListInit("RetTypes"); |
| ListInit *ParamTypes = R->getValueAsListInit("ParamTypes"); |
| |
| // First collate a list of overloaded types. |
| std::vector<MVT::SimpleValueType> OverloadedVTs; |
| for (ListInit *TypeList : {RetTypes, ParamTypes}) { |
| for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { |
| Record *TyEl = TypeList->getElementAsRecord(i); |
| assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); |
| |
| if (TyEl->isSubClassOf("LLVMMatchType")) |
| continue; |
| |
| MVT::SimpleValueType VT = getValueType(TyEl->getValueAsDef("VT")); |
| if (MVT(VT).isOverloaded()) { |
| OverloadedVTs.push_back(VT); |
| isOverloaded = true; |
| } |
| } |
| } |
| |
| // Parse the list of return types. |
| ListInit *TypeList = RetTypes; |
| for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { |
| Record *TyEl = TypeList->getElementAsRecord(i); |
| assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); |
| MVT::SimpleValueType VT; |
| if (TyEl->isSubClassOf("LLVMMatchType")) { |
| unsigned MatchTy = TyEl->getValueAsInt("Number"); |
| assert(MatchTy < OverloadedVTs.size() && |
| "Invalid matching number!"); |
| VT = OverloadedVTs[MatchTy]; |
| // It only makes sense to use the extended and truncated vector element |
| // variants with iAny types; otherwise, if the intrinsic is not |
| // overloaded, all the types can be specified directly. |
| assert(((!TyEl->isSubClassOf("LLVMExtendedType") && |
| !TyEl->isSubClassOf("LLVMTruncatedType")) || |
| VT == MVT::iAny || VT == MVT::vAny) && |
| "Expected iAny or vAny type"); |
| } else { |
| VT = getValueType(TyEl->getValueAsDef("VT")); |
| } |
| |
| // Reject invalid types. |
| if (VT == MVT::isVoid) |
| PrintFatalError(DefLoc, "Intrinsic '" + DefName + |
| " has void in result type list!"); |
| |
| IS.RetVTs.push_back(VT); |
| IS.RetTypeDefs.push_back(TyEl); |
| } |
| |
| // Parse the list of parameter types. |
| TypeList = ParamTypes; |
| for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { |
| Record *TyEl = TypeList->getElementAsRecord(i); |
| assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); |
| MVT::SimpleValueType VT; |
| if (TyEl->isSubClassOf("LLVMMatchType")) { |
| unsigned MatchTy = TyEl->getValueAsInt("Number"); |
| if (MatchTy >= OverloadedVTs.size()) { |
| PrintError(R->getLoc(), |
| "Parameter #" + Twine(i) + " has out of bounds matching " |
| "number " + Twine(MatchTy)); |
| PrintFatalError(DefLoc, |
| Twine("ParamTypes is ") + TypeList->getAsString()); |
| } |
| VT = OverloadedVTs[MatchTy]; |
| // It only makes sense to use the extended and truncated vector element |
| // variants with iAny types; otherwise, if the intrinsic is not |
| // overloaded, all the types can be specified directly. |
| assert(((!TyEl->isSubClassOf("LLVMExtendedType") && |
| !TyEl->isSubClassOf("LLVMTruncatedType")) || |
| VT == MVT::iAny || VT == MVT::vAny) && |
| "Expected iAny or vAny type"); |
| } else |
| VT = getValueType(TyEl->getValueAsDef("VT")); |
| |
| // Reject invalid types. |
| if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/) |
| PrintFatalError(DefLoc, "Intrinsic '" + DefName + |
| " has void in result type list!"); |
| |
| IS.ParamVTs.push_back(VT); |
| IS.ParamTypeDefs.push_back(TyEl); |
| } |
| |
| // Parse the intrinsic properties. |
| ListInit *PropList = R->getValueAsListInit("IntrProperties"); |
| for (unsigned i = 0, e = PropList->size(); i != e; ++i) { |
| Record *Property = PropList->getElementAsRecord(i); |
| assert(Property->isSubClassOf("IntrinsicProperty") && |
| "Expected a property!"); |
| |
| setProperty(Property); |
| } |
| |
| // Set default properties to true. |
| setDefaultProperties(R, DefaultProperties); |
| |
| // Also record the SDPatternOperator Properties. |
| Properties = parseSDPatternOperatorProperties(R); |
| |
| // Sort the argument attributes for later benefit. |
| llvm::sort(ArgumentAttributes); |
| } |
| |
| void CodeGenIntrinsic::setDefaultProperties( |
| Record *R, std::vector<Record *> DefaultProperties) { |
| // opt-out of using default attributes. |
| if (R->getValueAsBit("DisableDefaultAttributes")) |
| return; |
| |
| for (Record *Rec : DefaultProperties) |
| setProperty(Rec); |
| } |
| |
| void CodeGenIntrinsic::setProperty(Record *R) { |
| if (R->getName() == "IntrNoMem") |
| ModRef = NoMem; |
| else if (R->getName() == "IntrReadMem") { |
| if (!(ModRef & MR_Ref)) |
| PrintFatalError(TheDef->getLoc(), |
| Twine("IntrReadMem cannot be used after IntrNoMem or " |
| "IntrWriteMem. Default is ReadWrite")); |
| ModRef = ModRefBehavior(ModRef & ~MR_Mod); |
| } else if (R->getName() == "IntrWriteMem") { |
| if (!(ModRef & MR_Mod)) |
| PrintFatalError(TheDef->getLoc(), |
| Twine("IntrWriteMem cannot be used after IntrNoMem or " |
| "IntrReadMem. Default is ReadWrite")); |
| ModRef = ModRefBehavior(ModRef & ~MR_Ref); |
| } else if (R->getName() == "IntrArgMemOnly") |
| ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem); |
| else if (R->getName() == "IntrInaccessibleMemOnly") |
| ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_InaccessibleMem); |
| else if (R->getName() == "IntrInaccessibleMemOrArgMemOnly") |
| ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem | |
| MR_InaccessibleMem); |
| else if (R->getName() == "Commutative") |
| isCommutative = true; |
| else if (R->getName() == "Throws") |
| canThrow = true; |
| else if (R->getName() == "IntrNoDuplicate") |
| isNoDuplicate = true; |
| else if (R->getName() == "IntrNoMerge") |
| isNoMerge = true; |
| else if (R->getName() == "IntrConvergent") |
| isConvergent = true; |
| else if (R->getName() == "IntrNoReturn") |
| isNoReturn = true; |
| else if (R->getName() == "IntrNoSync") |
| isNoSync = true; |
| else if (R->getName() == "IntrNoFree") |
| isNoFree = true; |
| else if (R->getName() == "IntrWillReturn") |
| isWillReturn = !isNoReturn; |
| else if (R->getName() == "IntrCold") |
| isCold = true; |
| else if (R->getName() == "IntrSpeculatable") |
| isSpeculatable = true; |
| else if (R->getName() == "IntrHasSideEffects") |
| hasSideEffects = true; |
| else if (R->isSubClassOf("NoCapture")) { |
| unsigned ArgNo = R->getValueAsInt("ArgNo"); |
| ArgumentAttributes.emplace_back(ArgNo, NoCapture, 0); |
| } else if (R->isSubClassOf("NoAlias")) { |
| unsigned ArgNo = R->getValueAsInt("ArgNo"); |
| ArgumentAttributes.emplace_back(ArgNo, NoAlias, 0); |
| } else if (R->isSubClassOf("NoUndef")) { |
| unsigned ArgNo = R->getValueAsInt("ArgNo"); |
| ArgumentAttributes.emplace_back(ArgNo, NoUndef, 0); |
| } else if (R->isSubClassOf("Returned")) { |
| unsigned ArgNo = R->getValueAsInt("ArgNo"); |
| ArgumentAttributes.emplace_back(ArgNo, Returned, 0); |
| } else if (R->isSubClassOf("ReadOnly")) { |
| unsigned ArgNo = R->getValueAsInt("ArgNo"); |
| ArgumentAttributes.emplace_back(ArgNo, ReadOnly, 0); |
| } else if (R->isSubClassOf("WriteOnly")) { |
| unsigned ArgNo = R->getValueAsInt("ArgNo"); |
| ArgumentAttributes.emplace_back(ArgNo, WriteOnly, 0); |
| } else if (R->isSubClassOf("ReadNone")) { |
| unsigned ArgNo = R->getValueAsInt("ArgNo"); |
| ArgumentAttributes.emplace_back(ArgNo, ReadNone, 0); |
| } else if (R->isSubClassOf("ImmArg")) { |
| unsigned ArgNo = R->getValueAsInt("ArgNo"); |
| ArgumentAttributes.emplace_back(ArgNo, ImmArg, 0); |
| } else if (R->isSubClassOf("Align")) { |
| unsigned ArgNo = R->getValueAsInt("ArgNo"); |
| uint64_t Align = R->getValueAsInt("Align"); |
| ArgumentAttributes.emplace_back(ArgNo, Alignment, Align); |
| } else |
| llvm_unreachable("Unknown property!"); |
| } |
| |
| bool CodeGenIntrinsic::isParamAPointer(unsigned ParamIdx) const { |
| if (ParamIdx >= IS.ParamVTs.size()) |
| return false; |
| MVT ParamType = MVT(IS.ParamVTs[ParamIdx]); |
| return ParamType == MVT::iPTR || ParamType == MVT::iPTRAny; |
| } |
| |
| bool CodeGenIntrinsic::isParamImmArg(unsigned ParamIdx) const { |
| // Convert argument index to attribute index starting from `FirstArgIndex`. |
| ArgAttribute Val{ParamIdx + 1, ImmArg, 0}; |
| return std::binary_search(ArgumentAttributes.begin(), |
| ArgumentAttributes.end(), Val); |
| } |