| //===- TFUtils.cpp - tensorflow evaluation utilities ----------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements utilities for interfacing with tensorflow C APIs. |
| // |
| //===----------------------------------------------------------------------===// |
| #include "llvm/Config/config.h" |
| #if defined(LLVM_HAVE_TF_API) |
| |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Analysis/Utils/TFUtils.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/JSON.h" |
| #include "llvm/Support/ManagedStatic.h" |
| #include "llvm/Support/MemoryBuffer.h" |
| #include "llvm/Support/Path.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| #include "google/protobuf/text_format.h" |
| #include "tensorflow/c/c_api.h" |
| #include "tensorflow/c/c_api_experimental.h" |
| #include "tensorflow/core/example/example.pb.h" |
| #include <cassert> |
| #include <numeric> |
| |
| using namespace llvm; |
| |
| using google::protobuf::Message; |
| using google::protobuf::TextFormat; |
| |
| static cl::opt<bool> |
| ProtobufTextMode("tfutils-text-log", cl::init(false), cl::Hidden, |
| cl::desc("Output textual (human-readable) protobuf.")); |
| |
| namespace { |
| |
| using TFGraphPtr = std::unique_ptr<TF_Graph, decltype(&TF_DeleteGraph)>; |
| using TFSessionOptionsPtr = |
| std::unique_ptr<TF_SessionOptions, decltype(&TF_DeleteSessionOptions)>; |
| using TFStatusPtr = std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)>; |
| |
| struct TFInitializer { |
| TFInitializer() { |
| assert(!IsInitialized && "TFInitialized should be called only once"); |
| int Argc = 1; |
| const char *Name = ""; |
| const char **NamePtr = &Name; |
| TF_InitMain(Name, &Argc, const_cast<char ***>(&NamePtr)); |
| IsInitialized = true; |
| } |
| bool IsInitialized = false; |
| }; |
| |
| llvm::ManagedStatic<TFInitializer> TFLibInitializer; |
| |
| bool ensureInitTF() { return TFLibInitializer->IsInitialized; } |
| |
| TFGraphPtr createTFGraph() { |
| return TFGraphPtr(TF_NewGraph(), &TF_DeleteGraph); |
| } |
| |
| TFStatusPtr createTFStatus() { |
| return TFStatusPtr(TF_NewStatus(), &TF_DeleteStatus); |
| } |
| |
| TFSessionOptionsPtr createTFSessionOptions() { |
| return TFSessionOptionsPtr(TF_NewSessionOptions(), &TF_DeleteSessionOptions); |
| } |
| } // namespace |
| |
| namespace llvm { |
| class EvaluationResultImpl { |
| public: |
| EvaluationResultImpl(size_t OutputSize) |
| : OutputSize(OutputSize), Output(OutputSize){}; |
| |
| ~EvaluationResultImpl() { |
| for (auto *P : Output) |
| if (P) |
| TF_DeleteTensor(P); |
| } |
| |
| EvaluationResultImpl(const EvaluationResultImpl &) = delete; |
| EvaluationResultImpl(EvaluationResultImpl &&Other) = delete; |
| std::vector<TF_Tensor *> &getOutput() { return Output; } |
| |
| private: |
| const size_t OutputSize; |
| std::vector<TF_Tensor *> Output; |
| }; |
| |
| size_t TensorSpec::getElementByteSize() const { |
| return TF_DataTypeSize(static_cast<TF_DataType>(TypeIndex)); |
| } |
| |
| TensorSpec::TensorSpec(const std::string &Name, int Port, int TypeIndex, |
| const std::vector<int64_t> &Shape) |
| : Name(Name), Port(Port), TypeIndex(TypeIndex), Shape(Shape), |
| ElementCount(std::accumulate(Shape.begin(), Shape.end(), 1, |
| std::multiplies<int64_t>())) {} |
| |
| Optional<TensorSpec> getTensorSpecFromJSON(LLVMContext &Ctx, |
| const json::Value &Value) { |
| auto EmitError = [&](const llvm::Twine &Message) -> Optional<TensorSpec> { |
| std::string S; |
| llvm::raw_string_ostream OS(S); |
| OS << Value; |
| Ctx.emitError("Unable to parse JSON Value as spec (" + Message + "): " + S); |
| return None; |
| }; |
| // FIXME: accept a Path as a parameter, and use it for error reporting. |
| json::Path::Root Root("tensor_spec"); |
| json::ObjectMapper Mapper(Value, Root); |
| if (!Mapper) |
| return EmitError("Value is not a dict"); |
| |
| std::string TensorName; |
| int TensorPort = -1; |
| std::string TensorType; |
| std::vector<int64_t> TensorShape; |
| |
| if (!Mapper.map<std::string>("name", TensorName)) |
| return EmitError("'name' property not present or not a string"); |
| if (!Mapper.map<std::string>("type", TensorType)) |
| return EmitError("'type' property not present or not a string"); |
| if (!Mapper.map<int>("port", TensorPort)) |
| return EmitError("'port' property not present or not an int"); |
| if (!Mapper.map<std::vector<int64_t>>("shape", TensorShape)) |
| return EmitError("'shape' property not present or not an int array"); |
| |
| #define PARSE_TYPE(T, E) \ |
| if (TensorType == #T) \ |
| return TensorSpec::createSpec<T>(TensorName, TensorShape, TensorPort); |
| TFUTILS_SUPPORTED_TYPES(PARSE_TYPE) |
| #undef PARSE_TYPE |
| return None; |
| } |
| |
| Optional<std::vector<LoggedFeatureSpec>> |
| loadOutputSpecs(LLVMContext &Ctx, StringRef ExpectedDecisionName, |
| StringRef ModelPath, StringRef SpecFileOverride) { |
| SmallVector<char, 128> OutputSpecsPath; |
| StringRef FileName = SpecFileOverride; |
| if (FileName.empty()) { |
| llvm::sys::path::append(OutputSpecsPath, ModelPath, "output_spec.json"); |
| FileName = {OutputSpecsPath.data(), OutputSpecsPath.size()}; |
| } |
| |
| auto BufferOrError = MemoryBuffer::getFileOrSTDIN(FileName); |
| if (!BufferOrError) { |
| Ctx.emitError("Error opening output specs file: " + FileName + " : " + |
| BufferOrError.getError().message()); |
| return None; |
| } |
| auto ParsedJSONValues = json::parse(BufferOrError.get()->getBuffer()); |
| if (!ParsedJSONValues) { |
| Ctx.emitError("Could not parse specs file: " + FileName); |
| return None; |
| } |
| auto ValuesArray = ParsedJSONValues->getAsArray(); |
| if (!ValuesArray) { |
| Ctx.emitError("Expected an array of {tensor_spec:<TensorSpec>, " |
| "logging_name:<name>} dictionaries"); |
| return None; |
| } |
| std::vector<LoggedFeatureSpec> Ret; |
| for (const auto &Value : *ValuesArray) |
| if (const auto *Obj = Value.getAsObject()) |
| if (const auto *SpecPart = Obj->get("tensor_spec")) |
| if (auto TensorSpec = getTensorSpecFromJSON(Ctx, *SpecPart)) |
| if (auto LoggingName = Obj->getString("logging_name")) { |
| if (!TensorSpec->isElementType<int64_t>() && |
| !TensorSpec->isElementType<int32_t>() && |
| !TensorSpec->isElementType<float>()) { |
| Ctx.emitError( |
| "Only int64, int32, and float tensors are supported. " |
| "Found unsupported type for tensor named " + |
| TensorSpec->name()); |
| return None; |
| } |
| Ret.push_back({*TensorSpec, LoggingName->str()}); |
| } |
| |
| if (ValuesArray->size() != Ret.size()) { |
| Ctx.emitError( |
| "Unable to parse output spec. It should be a json file containing an " |
| "array of dictionaries. Each dictionary must have a 'tensor_spec' key, " |
| "with a json object describing a TensorSpec; and a 'logging_name' key, " |
| "which is a string to use as name when logging this tensor in the " |
| "training log."); |
| return None; |
| } |
| if (Ret.empty() || *Ret[0].LoggingName != ExpectedDecisionName) { |
| Ctx.emitError("The first output spec must describe the decision tensor, " |
| "and must have the logging_name " + |
| StringRef(ExpectedDecisionName)); |
| return None; |
| } |
| return Ret; |
| } |
| |
| class TFModelEvaluatorImpl { |
| public: |
| TFModelEvaluatorImpl(StringRef SavedModelPath, |
| const std::vector<TensorSpec> &InputSpecs, |
| function_ref<TensorSpec(size_t)> GetOutputSpecs, |
| size_t OutputSpecsSize, const char *Tags); |
| |
| bool isValid() const { return IsValid; } |
| size_t OutputSize() const { return OutputFeed.size(); } |
| |
| void evaluate(TF_Tensor **Output, TF_Status *Status) { |
| TF_SessionRun(Session, nullptr, InputFeed.data(), Input.data(), |
| Input.size(), OutputFeed.data(), Output, OutputFeed.size(), |
| nullptr, 0, nullptr, Status); |
| } |
| |
| void initInput(size_t Index, TF_DataType Type, |
| const std::vector<int64_t> &Dimensions); |
| const std::vector<TF_Tensor *> &getInput() const { return Input; } |
| |
| ~TFModelEvaluatorImpl(); |
| |
| private: |
| /// The objects necessary for carrying out an evaluation of the SavedModel. |
| /// They are expensive to set up, and we maintain them accross all the |
| /// evaluations of the model. |
| TF_Session *Session = nullptr; |
| TFGraphPtr Graph; |
| TFSessionOptionsPtr Options; |
| |
| /// The specification of the input nodes. |
| std::vector<TF_Output> InputFeed; |
| |
| /// The input tensors. They must match by index of the corresponding InputFeed |
| /// value. We set up the tensors once and just mutate theirs scalars before |
| /// each evaluation. The input tensors keep their value after an evaluation. |
| std::vector<TF_Tensor *> Input; |
| |
| /// The specification of the output nodes. When evaluating, the tensors in the |
| /// output tensor vector must match by index the corresponding element in the |
| /// OutputFeed. |
| std::vector<TF_Output> OutputFeed; |
| |
| void invalidate() { IsValid = false; } |
| |
| bool IsValid = true; |
| |
| /// Reusable utility for ensuring we can bind the requested Name to a node in |
| /// the SavedModel Graph. |
| bool checkReportAndInvalidate(const TF_Output &Output, |
| const TensorSpec &OutputSpec); |
| }; |
| |
| class LoggerDataImpl { |
| const std::vector<LoggedFeatureSpec> LoggedFeatureSpecs; |
| const TensorSpec RewardSpec; |
| const bool IncludeReward; |
| |
| std::vector<tensorflow::FeatureList> FeatureLists; |
| tensorflow::FeatureList Reward; |
| |
| bool isSelfConsistent(const tensorflow::SequenceExample &SE, |
| size_t NrRecords) const { |
| bool Ret = true; |
| for (const auto &TSpecs : LoggedFeatureSpecs) { |
| const auto &Name = TSpecs.getLoggingName(); |
| const auto &FL = SE.feature_lists().feature_list().at(Name).feature(); |
| if (NrRecords != static_cast<size_t>(FL.size())) { |
| dbgs() << "[TF-UTILS]: " << Name << " has missing records. Expected " |
| << NrRecords << " got " << FL.size() << "\n"; |
| Ret = false; |
| } |
| } |
| if (IncludeReward && static_cast<size_t>(SE.feature_lists() |
| .feature_list() |
| .at(RewardSpec.name()) |
| .feature() |
| .size()) != NrRecords) { |
| dbgs() << "[TF-UTILS]: reward is missing records.\n"; |
| Ret = false; |
| } |
| return Ret; |
| } |
| |
| void transferLog(tensorflow::SequenceExample &SE) { |
| auto *FL = SE.mutable_feature_lists()->mutable_feature_list(); |
| if (IncludeReward) |
| (*FL)[RewardSpec.name()] = std::move(Reward); |
| assert(FeatureLists.size() == LoggedFeatureSpecs.size()); |
| for (size_t I = 0; I < FeatureLists.size(); ++I) { |
| const auto &LFS = LoggedFeatureSpecs[I]; |
| (*FL)[LFS.getLoggingName()] = std::move(FeatureLists[I]); |
| } |
| } |
| |
| public: |
| LoggerDataImpl(const std::vector<LoggedFeatureSpec> &LoggedSpecs, |
| const TensorSpec &RewardSpec, bool IncludeReward) |
| : LoggedFeatureSpecs(LoggedSpecs), RewardSpec(RewardSpec), |
| IncludeReward(IncludeReward), FeatureLists(LoggedFeatureSpecs.size()) {} |
| |
| // flush the logged info to a stream and clear the log contents. |
| void flush(raw_ostream &OS) { |
| size_t NrRecords = getNrRecords(); |
| (void)NrRecords; |
| tensorflow::SequenceExample SE; |
| transferLog(SE); |
| assert(isSelfConsistent(SE, NrRecords)); |
| std::string OutStr; |
| if (ProtobufTextMode) |
| google::protobuf::TextFormat::PrintToString(SE, &OutStr); |
| else |
| OutStr = SE.SerializeAsString(); |
| |
| OS << OutStr; |
| } |
| |
| char *addNewTensor(size_t FeatureID) { |
| const auto &Spec = LoggedFeatureSpecs[FeatureID].Spec; |
| if (Spec.isElementType<float>()) { |
| auto *RF = FeatureLists[FeatureID] |
| .add_feature() |
| ->mutable_float_list() |
| ->mutable_value(); |
| RF->Resize(Spec.getElementCount(), 0.0); |
| return reinterpret_cast<char *>(RF->mutable_data()); |
| } else if (Spec.isElementType<int32_t>() || Spec.isElementType<int64_t>()) { |
| auto *RF = FeatureLists[FeatureID] |
| .add_feature() |
| ->mutable_int64_list() |
| ->mutable_value(); |
| RF->Resize(Spec.getElementCount(), 0); |
| return reinterpret_cast<char *>(RF->mutable_data()); |
| } |
| llvm_unreachable("Unsupported tensor type."); |
| } |
| |
| template <typename T> void logReward(T Value) { |
| assert(IncludeReward); |
| if (RewardSpec.isElementType<float>()) |
| Reward.add_feature()->mutable_float_list()->add_value(Value); |
| else if (RewardSpec.isElementType<int32_t>() || |
| RewardSpec.isElementType<int64_t>()) |
| Reward.add_feature()->mutable_int64_list()->add_value(Value); |
| else |
| llvm_unreachable("Unsupported tensor type."); |
| } |
| |
| size_t getNrRecords() const { |
| return FeatureLists.empty() ? 0 : FeatureLists[0].feature().size(); |
| } |
| }; |
| } // namespace llvm |
| |
| TFModelEvaluatorImpl::TFModelEvaluatorImpl( |
| StringRef SavedModelPath, const std::vector<TensorSpec> &InputSpecs, |
| function_ref<TensorSpec(size_t)> GetOutputSpecs, size_t OutputSpecsSize, |
| const char *Tags = "serve") |
| : Graph(createTFGraph()), Options(createTFSessionOptions()), |
| InputFeed(InputSpecs.size()), Input(InputSpecs.size()), |
| OutputFeed(OutputSpecsSize) { |
| if (!ensureInitTF()) { |
| errs() << "Tensorflow should have been initialized"; |
| return; |
| } |
| auto Status = createTFStatus(); |
| |
| Session = TF_LoadSessionFromSavedModel(Options.get(), nullptr, |
| SavedModelPath.str().c_str(), &Tags, 1, |
| Graph.get(), nullptr, Status.get()); |
| if (TF_GetCode(Status.get()) != TF_Code::TF_OK) { |
| errs() << TF_Message(Status.get()); |
| invalidate(); |
| } |
| for (size_t I = 0; I < InputSpecs.size(); ++I) { |
| auto &InputSpec = InputSpecs[I]; |
| InputFeed[I] = { |
| TF_GraphOperationByName(Graph.get(), (InputSpec.name()).c_str()), |
| InputSpec.port()}; |
| if (!checkReportAndInvalidate(InputFeed[I], InputSpec)) |
| return; |
| initInput(I, static_cast<TF_DataType>(InputSpec.typeIndex()), |
| InputSpec.shape()); |
| } |
| for (size_t I = 0; I < OutputSpecsSize; ++I) { |
| auto OutputSpec = GetOutputSpecs(I); |
| OutputFeed[I] = { |
| TF_GraphOperationByName(Graph.get(), (OutputSpec.name()).c_str()), |
| OutputSpec.port()}; |
| if (!checkReportAndInvalidate(OutputFeed[I], OutputSpec)) |
| return; |
| } |
| } |
| |
| TFModelEvaluator::TFModelEvaluator( |
| StringRef SavedModelPath, const std::vector<TensorSpec> &InputSpecs, |
| function_ref<TensorSpec(size_t)> GetOutputSpecs, size_t OutputSpecsSize, |
| const char *Tags) |
| : Impl(new TFModelEvaluatorImpl(SavedModelPath, InputSpecs, GetOutputSpecs, |
| OutputSpecsSize, Tags)) { |
| if (!Impl->isValid()) |
| Impl.reset(); |
| } |
| |
| TFModelEvaluator::TFModelEvaluator(StringRef SavedModelPath, |
| const std::vector<TensorSpec> &InputSpecs, |
| const std::vector<TensorSpec> &OutputSpecs, |
| const char *Tags) |
| : TFModelEvaluator( |
| SavedModelPath, InputSpecs, [&](size_t I) { return OutputSpecs[I]; }, |
| OutputSpecs.size(), Tags) {} |
| |
| TFModelEvaluatorImpl::~TFModelEvaluatorImpl() { |
| for (auto *T : Input) { |
| TF_DeleteTensor(T); |
| } |
| if (Session == nullptr) |
| return; |
| auto Status = createTFStatus(); |
| TF_DeleteSession(Session, Status.get()); |
| Session = nullptr; |
| if (TF_GetCode(Status.get()) != TF_Code::TF_OK) |
| errs() << "Could not delete TF session"; |
| } |
| |
| bool TFModelEvaluatorImpl::checkReportAndInvalidate( |
| const TF_Output &Output, const TensorSpec &OutputSpec) { |
| if (Output.oper) |
| return true; |
| errs() << "Could not find TF_Output named: " + OutputSpec.name(); |
| IsValid = false; |
| return IsValid; |
| } |
| |
| Optional<TFModelEvaluator::EvaluationResult> TFModelEvaluator::evaluate() { |
| if (!isValid()) |
| return None; |
| std::unique_ptr<EvaluationResultImpl> Ret = |
| std::make_unique<EvaluationResultImpl>(Impl->OutputSize()); |
| auto Status = createTFStatus(); |
| Impl->evaluate(Ret->getOutput().data(), Status.get()); |
| if (TF_GetCode(Status.get()) != TF_Code::TF_OK) { |
| errs() << TF_Message(Status.get()); |
| Impl.reset(); |
| return None; |
| } |
| return EvaluationResult(std::move(Ret)); |
| } |
| |
| void TFModelEvaluatorImpl::initInput(size_t Index, TF_DataType Type, |
| const std::vector<int64_t> &Dimensions) { |
| int64_t TotalSize = TF_DataTypeSize(Type); |
| for (auto &D : Dimensions) |
| TotalSize *= D; |
| |
| Input[Index] = |
| TF_AllocateTensor(Type, Dimensions.data(), Dimensions.size(), TotalSize); |
| std::memset(TF_TensorData(Input[Index]), 0, TotalSize); |
| } |
| |
| void *TFModelEvaluator::getUntypedInput(size_t Index) { |
| return TF_TensorData(Impl->getInput()[Index]); |
| } |
| |
| TFModelEvaluator::EvaluationResult::EvaluationResult( |
| std::unique_ptr<EvaluationResultImpl> Impl) |
| : Impl(std::move(Impl)) {} |
| |
| TFModelEvaluator::EvaluationResult::EvaluationResult(EvaluationResult &&Other) |
| : Impl(std::move(Other.Impl)) {} |
| |
| TFModelEvaluator::EvaluationResult & |
| TFModelEvaluator::EvaluationResult::operator=(EvaluationResult &&Other) { |
| Impl = std::move(Other.Impl); |
| return *this; |
| } |
| |
| void *TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) { |
| return TF_TensorData(Impl->getOutput()[Index]); |
| } |
| |
| const void * |
| TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) const { |
| return TF_TensorData(Impl->getOutput()[Index]); |
| } |
| |
| #define TFUTILS_GETDATATYPE_IMPL(T, E) \ |
| template <> int TensorSpec::getDataType<T>() { return E; } |
| |
| TFUTILS_SUPPORTED_TYPES(TFUTILS_GETDATATYPE_IMPL) |
| |
| #undef TFUTILS_GETDATATYPE_IMPL |
| |
| TFModelEvaluator::EvaluationResult::~EvaluationResult() {} |
| TFModelEvaluator::~TFModelEvaluator() {} |
| |
| Logger::Logger(const std::vector<LoggedFeatureSpec> &FeatureSpecs, |
| const TensorSpec &RewardSpec, bool IncludeReward) |
| : FeatureSpecs(FeatureSpecs), RewardSpec(RewardSpec), |
| IncludeReward(IncludeReward), |
| LoggerData(std::make_unique<LoggerDataImpl>(FeatureSpecs, RewardSpec, |
| IncludeReward)) {} |
| |
| Logger::~Logger() {} |
| |
| #define LOG_REWARD(NAME, TYPE) \ |
| void Logger::log##NAME##Reward(TYPE Value) { \ |
| assert(IncludeReward); \ |
| LoggerData->logReward(Value); \ |
| } |
| |
| LOG_REWARD(Float, float) |
| LOG_REWARD(Int32, int32_t) |
| LOG_REWARD(Int64, int64_t) |
| #undef LOG_REWARD |
| |
| #define LOG_FINAL_REWARD(NAME, TYPE) \ |
| void Logger::log##NAME##FinalReward(TYPE Value) { \ |
| assert(RewardSpec.isElementType<TYPE>()); \ |
| for (size_t I = 1; I < LoggerData->getNrRecords(); ++I) \ |
| log##NAME##Reward(0); \ |
| log##NAME##Reward(Value); \ |
| } |
| |
| LOG_FINAL_REWARD(Float, float) |
| LOG_FINAL_REWARD(Int32, int32_t) |
| LOG_FINAL_REWARD(Int64, int64_t) |
| #undef LOG_FINAL_REWARD |
| |
| void Logger::logFloatValue(size_t FeatureID, const float *Value) { |
| assert(FeatureSpecs[FeatureID].Spec.isElementType<float>()); |
| logSpecifiedTensorValue(FeatureID, reinterpret_cast<const char *>(Value)); |
| } |
| |
| void Logger::logInt64Value(size_t FeatureID, const int64_t *Value) { |
| assert(FeatureSpecs[FeatureID].Spec.isElementType<int64_t>()); |
| logSpecifiedTensorValue(FeatureID, reinterpret_cast<const char *>(Value)); |
| } |
| |
| void Logger::logInt32Value(size_t FeatureID, const int32_t *Value) { |
| assert(FeatureSpecs[FeatureID].Spec.isElementType<int32_t>()); |
| logSpecifiedTensorValue(FeatureID, reinterpret_cast<const char *>(Value)); |
| } |
| |
| void Logger::logSpecifiedTensorValue(size_t FeatureID, const char *RawData) { |
| const auto &Spec = FeatureSpecs[FeatureID].Spec; |
| char *Buff = addEntryAndGetFloatOrInt64Buffer(FeatureID); |
| if (Spec.isElementType<int32_t>()) |
| for (size_t I = 0; I < Spec.getElementCount(); ++I) |
| (reinterpret_cast<int64_t *>(Buff))[I] = |
| static_cast<int64_t>((reinterpret_cast<const int32_t *>(RawData))[I]); |
| else if (Spec.isElementType<int64_t>() || Spec.isElementType<float>()) |
| std::memcpy(Buff, RawData, |
| Spec.getElementCount() * Spec.getElementByteSize()); |
| else |
| llvm_unreachable("Unsupported tensor type"); |
| } |
| |
| char *Logger::addEntryAndGetFloatOrInt64Buffer(size_t FeatureID) { |
| return reinterpret_cast<char *>(LoggerData->addNewTensor(FeatureID)); |
| } |
| |
| void Logger::flush(raw_ostream &OS) { LoggerData->flush(OS); } |
| #endif // defined(LLVM_HAVE_TF_API) |