| //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// Custom DAG lowering for SI |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SIISelLowering.h" |
| #include "AMDGPU.h" |
| #include "AMDGPUInstrInfo.h" |
| #include "AMDGPUTargetMachine.h" |
| #include "GCNSubtarget.h" |
| #include "MCTargetDesc/AMDGPUMCTargetDesc.h" |
| #include "SIMachineFunctionInfo.h" |
| #include "SIRegisterInfo.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/FloatingPointMode.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/Analysis/UniformityAnalysis.h" |
| #include "llvm/BinaryFormat/ELF.h" |
| #include "llvm/CodeGen/Analysis.h" |
| #include "llvm/CodeGen/ByteProvider.h" |
| #include "llvm/CodeGen/FunctionLoweringInfo.h" |
| #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" |
| #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" |
| #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/IntrinsicsAMDGPU.h" |
| #include "llvm/IR/IntrinsicsR600.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/ModRef.h" |
| #include "llvm/Transforms/Utils/LowerAtomic.h" |
| #include <optional> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "si-lower" |
| |
| STATISTIC(NumTailCalls, "Number of tail calls"); |
| |
| static cl::opt<bool> DisableLoopAlignment( |
| "amdgpu-disable-loop-alignment", |
| cl::desc("Do not align and prefetch loops"), |
| cl::init(false)); |
| |
| static cl::opt<bool> UseDivergentRegisterIndexing( |
| "amdgpu-use-divergent-register-indexing", |
| cl::Hidden, |
| cl::desc("Use indirect register addressing for divergent indexes"), |
| cl::init(false)); |
| |
| static bool denormalModeIsFlushAllF32(const MachineFunction &MF) { |
| const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| return Info->getMode().FP32Denormals == DenormalMode::getPreserveSign(); |
| } |
| |
| static bool denormalModeIsFlushAllF64F16(const MachineFunction &MF) { |
| const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| return Info->getMode().FP64FP16Denormals == DenormalMode::getPreserveSign(); |
| } |
| |
| static unsigned findFirstFreeSGPR(CCState &CCInfo) { |
| unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs(); |
| for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) { |
| if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) { |
| return AMDGPU::SGPR0 + Reg; |
| } |
| } |
| llvm_unreachable("Cannot allocate sgpr"); |
| } |
| |
| SITargetLowering::SITargetLowering(const TargetMachine &TM, |
| const GCNSubtarget &STI) |
| : AMDGPUTargetLowering(TM, STI), |
| Subtarget(&STI) { |
| addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass); |
| addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); |
| |
| addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass); |
| addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass); |
| |
| addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass); |
| |
| const SIRegisterInfo *TRI = STI.getRegisterInfo(); |
| const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class(); |
| |
| addRegisterClass(MVT::f64, V64RegClass); |
| addRegisterClass(MVT::v2f32, V64RegClass); |
| addRegisterClass(MVT::Untyped, V64RegClass); |
| |
| addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass); |
| addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96)); |
| |
| addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass); |
| addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass); |
| |
| addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass); |
| addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128)); |
| |
| addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass); |
| addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160)); |
| |
| addRegisterClass(MVT::v6i32, &AMDGPU::SGPR_192RegClass); |
| addRegisterClass(MVT::v6f32, TRI->getVGPRClassForBitWidth(192)); |
| |
| addRegisterClass(MVT::v3i64, &AMDGPU::SGPR_192RegClass); |
| addRegisterClass(MVT::v3f64, TRI->getVGPRClassForBitWidth(192)); |
| |
| addRegisterClass(MVT::v7i32, &AMDGPU::SGPR_224RegClass); |
| addRegisterClass(MVT::v7f32, TRI->getVGPRClassForBitWidth(224)); |
| |
| addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass); |
| addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256)); |
| |
| addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass); |
| addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256)); |
| |
| addRegisterClass(MVT::v9i32, &AMDGPU::SGPR_288RegClass); |
| addRegisterClass(MVT::v9f32, TRI->getVGPRClassForBitWidth(288)); |
| |
| addRegisterClass(MVT::v10i32, &AMDGPU::SGPR_320RegClass); |
| addRegisterClass(MVT::v10f32, TRI->getVGPRClassForBitWidth(320)); |
| |
| addRegisterClass(MVT::v11i32, &AMDGPU::SGPR_352RegClass); |
| addRegisterClass(MVT::v11f32, TRI->getVGPRClassForBitWidth(352)); |
| |
| addRegisterClass(MVT::v12i32, &AMDGPU::SGPR_384RegClass); |
| addRegisterClass(MVT::v12f32, TRI->getVGPRClassForBitWidth(384)); |
| |
| addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass); |
| addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512)); |
| |
| addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass); |
| addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512)); |
| |
| addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass); |
| addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024)); |
| |
| if (Subtarget->has16BitInsts()) { |
| if (Subtarget->useRealTrue16Insts()) { |
| addRegisterClass(MVT::i16, &AMDGPU::VGPR_16RegClass); |
| addRegisterClass(MVT::f16, &AMDGPU::VGPR_16RegClass); |
| addRegisterClass(MVT::bf16, &AMDGPU::VGPR_16RegClass); |
| } else { |
| addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass); |
| addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass); |
| addRegisterClass(MVT::bf16, &AMDGPU::SReg_32RegClass); |
| } |
| |
| // Unless there are also VOP3P operations, not operations are really legal. |
| addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass); |
| addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass); |
| addRegisterClass(MVT::v2bf16, &AMDGPU::SReg_32RegClass); |
| addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass); |
| addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass); |
| addRegisterClass(MVT::v4bf16, &AMDGPU::SReg_64RegClass); |
| addRegisterClass(MVT::v8i16, &AMDGPU::SGPR_128RegClass); |
| addRegisterClass(MVT::v8f16, &AMDGPU::SGPR_128RegClass); |
| addRegisterClass(MVT::v8bf16, &AMDGPU::SGPR_128RegClass); |
| addRegisterClass(MVT::v16i16, &AMDGPU::SGPR_256RegClass); |
| addRegisterClass(MVT::v16f16, &AMDGPU::SGPR_256RegClass); |
| addRegisterClass(MVT::v16bf16, &AMDGPU::SGPR_256RegClass); |
| addRegisterClass(MVT::v32i16, &AMDGPU::SGPR_512RegClass); |
| addRegisterClass(MVT::v32f16, &AMDGPU::SGPR_512RegClass); |
| addRegisterClass(MVT::v32bf16, &AMDGPU::SGPR_512RegClass); |
| } |
| |
| addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass); |
| addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024)); |
| |
| computeRegisterProperties(Subtarget->getRegisterInfo()); |
| |
| // The boolean content concept here is too inflexible. Compares only ever |
| // really produce a 1-bit result. Any copy/extend from these will turn into a |
| // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as |
| // it's what most targets use. |
| setBooleanContents(ZeroOrOneBooleanContent); |
| setBooleanVectorContents(ZeroOrOneBooleanContent); |
| |
| // We need to custom lower vector stores from local memory |
| setOperationAction(ISD::LOAD, |
| {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, |
| MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32, |
| MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32, |
| MVT::i1, MVT::v32i32}, |
| Custom); |
| |
| setOperationAction(ISD::STORE, |
| {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, |
| MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32, |
| MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32, |
| MVT::i1, MVT::v32i32}, |
| Custom); |
| |
| if (isTypeLegal(MVT::bf16)) { |
| for (unsigned Opc : |
| {ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV, |
| ISD::FREM, ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM, |
| ISD::FMINIMUM, ISD::FMAXIMUM, ISD::FSQRT, ISD::FCBRT, |
| ISD::FSIN, ISD::FCOS, ISD::FPOW, ISD::FPOWI, |
| ISD::FLDEXP, ISD::FFREXP, ISD::FLOG, ISD::FLOG2, |
| ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FEXP10, |
| ISD::FCEIL, ISD::FTRUNC, ISD::FRINT, ISD::FNEARBYINT, |
| ISD::FROUND, ISD::FROUNDEVEN, ISD::FFLOOR, ISD::FCANONICALIZE, |
| ISD::SETCC}) { |
| // FIXME: The promoted to type shouldn't need to be explicit |
| setOperationAction(Opc, MVT::bf16, Promote); |
| AddPromotedToType(Opc, MVT::bf16, MVT::f32); |
| } |
| |
| setOperationAction(ISD::FP_ROUND, MVT::bf16, Expand); |
| |
| setOperationAction(ISD::SELECT, MVT::bf16, Promote); |
| AddPromotedToType(ISD::SELECT, MVT::bf16, MVT::i16); |
| |
| setOperationAction(ISD::FABS, MVT::bf16, Legal); |
| setOperationAction(ISD::FNEG, MVT::bf16, Legal); |
| setOperationAction(ISD::FCOPYSIGN, MVT::bf16, Legal); |
| |
| // We only need to custom lower because we can't specify an action for bf16 |
| // sources. |
| setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); |
| } |
| |
| setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); |
| setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand); |
| setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); |
| setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); |
| setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); |
| setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand); |
| setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand); |
| setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand); |
| setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand); |
| setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); |
| setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand); |
| setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand); |
| setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand); |
| setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand); |
| setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand); |
| setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand); |
| |
| setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand); |
| setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand); |
| setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand); |
| setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand); |
| setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand); |
| setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand); |
| setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand); |
| |
| setOperationAction(ISD::GlobalAddress, {MVT::i32, MVT::i64}, Custom); |
| |
| setOperationAction(ISD::SELECT, MVT::i1, Promote); |
| setOperationAction(ISD::SELECT, MVT::i64, Custom); |
| setOperationAction(ISD::SELECT, MVT::f64, Promote); |
| AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64); |
| |
| setOperationAction(ISD::FSQRT, {MVT::f32, MVT::f64}, Custom); |
| |
| setOperationAction(ISD::SELECT_CC, |
| {MVT::f32, MVT::i32, MVT::i64, MVT::f64, MVT::i1}, Expand); |
| |
| setOperationAction(ISD::SETCC, MVT::i1, Promote); |
| setOperationAction(ISD::SETCC, {MVT::v2i1, MVT::v4i1}, Expand); |
| AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); |
| |
| setOperationAction(ISD::TRUNCATE, |
| {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, |
| MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32, |
| MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32}, |
| Expand); |
| setOperationAction(ISD::FP_ROUND, |
| {MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, |
| MVT::v6f32, MVT::v7f32, MVT::v8f32, MVT::v9f32, |
| MVT::v10f32, MVT::v11f32, MVT::v12f32, MVT::v16f32}, |
| Expand); |
| |
| setOperationAction(ISD::SIGN_EXTEND_INREG, |
| {MVT::v2i1, MVT::v4i1, MVT::v2i8, MVT::v4i8, MVT::v2i16, |
| MVT::v3i16, MVT::v4i16, MVT::Other}, |
| Custom); |
| |
| setOperationAction(ISD::BRCOND, MVT::Other, Custom); |
| setOperationAction(ISD::BR_CC, |
| {MVT::i1, MVT::i32, MVT::i64, MVT::f32, MVT::f64}, Expand); |
| |
| setOperationAction({ISD::UADDO, ISD::USUBO}, MVT::i32, Legal); |
| |
| setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY}, MVT::i32, Legal); |
| |
| setOperationAction({ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS}, MVT::i64, |
| Expand); |
| |
| #if 0 |
| setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY}, MVT::i64, Legal); |
| #endif |
| |
| // We only support LOAD/STORE and vector manipulation ops for vectors |
| // with > 4 elements. |
| for (MVT VT : |
| {MVT::v8i32, MVT::v8f32, MVT::v9i32, MVT::v9f32, MVT::v10i32, |
| MVT::v10f32, MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32, |
| MVT::v16i32, MVT::v16f32, MVT::v2i64, MVT::v2f64, MVT::v4i16, |
| MVT::v4f16, MVT::v4bf16, MVT::v3i64, MVT::v3f64, MVT::v6i32, |
| MVT::v6f32, MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64, |
| MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16, MVT::v16f16, |
| MVT::v16bf16, MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32, |
| MVT::v32i16, MVT::v32f16, MVT::v32bf16}) { |
| for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { |
| switch (Op) { |
| case ISD::LOAD: |
| case ISD::STORE: |
| case ISD::BUILD_VECTOR: |
| case ISD::BITCAST: |
| case ISD::UNDEF: |
| case ISD::EXTRACT_VECTOR_ELT: |
| case ISD::INSERT_VECTOR_ELT: |
| case ISD::SCALAR_TO_VECTOR: |
| case ISD::IS_FPCLASS: |
| break; |
| case ISD::EXTRACT_SUBVECTOR: |
| case ISD::INSERT_SUBVECTOR: |
| case ISD::CONCAT_VECTORS: |
| setOperationAction(Op, VT, Custom); |
| break; |
| default: |
| setOperationAction(Op, VT, Expand); |
| break; |
| } |
| } |
| } |
| |
| setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand); |
| |
| // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that |
| // is expanded to avoid having two separate loops in case the index is a VGPR. |
| |
| // Most operations are naturally 32-bit vector operations. We only support |
| // load and store of i64 vectors, so promote v2i64 vector operations to v4i32. |
| for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) { |
| setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); |
| AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32); |
| |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); |
| AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32); |
| |
| setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); |
| AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32); |
| |
| setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); |
| AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32); |
| } |
| |
| for (MVT Vec64 : { MVT::v3i64, MVT::v3f64 }) { |
| setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); |
| AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v6i32); |
| |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); |
| AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v6i32); |
| |
| setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); |
| AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v6i32); |
| |
| setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); |
| AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v6i32); |
| } |
| |
| for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) { |
| setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); |
| AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32); |
| |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); |
| AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32); |
| |
| setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); |
| AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32); |
| |
| setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); |
| AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32); |
| } |
| |
| for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) { |
| setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); |
| AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32); |
| |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); |
| AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32); |
| |
| setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); |
| AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32); |
| |
| setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); |
| AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32); |
| } |
| |
| for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) { |
| setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); |
| AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32); |
| |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); |
| AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32); |
| |
| setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); |
| AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32); |
| |
| setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); |
| AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32); |
| } |
| |
| setOperationAction(ISD::VECTOR_SHUFFLE, |
| {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32}, |
| Expand); |
| |
| setOperationAction(ISD::BUILD_VECTOR, {MVT::v4f16, MVT::v4i16, MVT::v4bf16}, |
| Custom); |
| |
| // Avoid stack access for these. |
| // TODO: Generalize to more vector types. |
| setOperationAction({ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}, |
| {MVT::v2i16, MVT::v2f16, MVT::v2bf16, MVT::v2i8, MVT::v4i8, |
| MVT::v8i8, MVT::v4i16, MVT::v4f16, MVT::v4bf16}, |
| Custom); |
| |
| // Deal with vec3 vector operations when widened to vec4. |
| setOperationAction(ISD::INSERT_SUBVECTOR, |
| {MVT::v3i32, MVT::v3f32, MVT::v4i32, MVT::v4f32}, Custom); |
| |
| // Deal with vec5/6/7 vector operations when widened to vec8. |
| setOperationAction(ISD::INSERT_SUBVECTOR, |
| {MVT::v5i32, MVT::v5f32, MVT::v6i32, MVT::v6f32, |
| MVT::v7i32, MVT::v7f32, MVT::v8i32, MVT::v8f32, |
| MVT::v9i32, MVT::v9f32, MVT::v10i32, MVT::v10f32, |
| MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32}, |
| Custom); |
| |
| // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, |
| // and output demarshalling |
| setOperationAction(ISD::ATOMIC_CMP_SWAP, {MVT::i32, MVT::i64}, Custom); |
| |
| // We can't return success/failure, only the old value, |
| // let LLVM add the comparison |
| setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, {MVT::i32, MVT::i64}, |
| Expand); |
| |
| setOperationAction(ISD::ADDRSPACECAST, {MVT::i32, MVT::i64}, Custom); |
| |
| setOperationAction(ISD::BITREVERSE, {MVT::i32, MVT::i64}, Legal); |
| |
| // FIXME: This should be narrowed to i32, but that only happens if i64 is |
| // illegal. |
| // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32. |
| setOperationAction(ISD::BSWAP, {MVT::i64, MVT::i32}, Legal); |
| |
| // On SI this is s_memtime and s_memrealtime on VI. |
| setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); |
| |
| if (Subtarget->hasSMemRealTime() || |
| Subtarget->getGeneration() >= AMDGPUSubtarget::GFX11) |
| setOperationAction(ISD::READSTEADYCOUNTER, MVT::i64, Legal); |
| setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Custom); |
| |
| if (Subtarget->has16BitInsts()) { |
| setOperationAction({ISD::FPOW, ISD::FPOWI}, MVT::f16, Promote); |
| setOperationAction({ISD::FLOG, ISD::FEXP, ISD::FLOG10}, MVT::f16, Custom); |
| } else { |
| setOperationAction(ISD::FSQRT, MVT::f16, Custom); |
| } |
| |
| if (Subtarget->hasMadMacF32Insts()) |
| setOperationAction(ISD::FMAD, MVT::f32, Legal); |
| |
| if (!Subtarget->hasBFI()) |
| // fcopysign can be done in a single instruction with BFI. |
| setOperationAction(ISD::FCOPYSIGN, {MVT::f32, MVT::f64}, Expand); |
| |
| if (!Subtarget->hasBCNT(32)) |
| setOperationAction(ISD::CTPOP, MVT::i32, Expand); |
| |
| if (!Subtarget->hasBCNT(64)) |
| setOperationAction(ISD::CTPOP, MVT::i64, Expand); |
| |
| if (Subtarget->hasFFBH()) |
| setOperationAction({ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, MVT::i32, Custom); |
| |
| if (Subtarget->hasFFBL()) |
| setOperationAction({ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF}, MVT::i32, Custom); |
| |
| // We only really have 32-bit BFE instructions (and 16-bit on VI). |
| // |
| // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any |
| // effort to match them now. We want this to be false for i64 cases when the |
| // extraction isn't restricted to the upper or lower half. Ideally we would |
| // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that |
| // span the midpoint are probably relatively rare, so don't worry about them |
| // for now. |
| if (Subtarget->hasBFE()) |
| setHasExtractBitsInsn(true); |
| |
| // Clamp modifier on add/sub |
| if (Subtarget->hasIntClamp()) |
| setOperationAction({ISD::UADDSAT, ISD::USUBSAT}, MVT::i32, Legal); |
| |
| if (Subtarget->hasAddNoCarry()) |
| setOperationAction({ISD::SADDSAT, ISD::SSUBSAT}, {MVT::i16, MVT::i32}, |
| Legal); |
| |
| setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, {MVT::f32, MVT::f64}, |
| Custom); |
| |
| // These are really only legal for ieee_mode functions. We should be avoiding |
| // them for functions that don't have ieee_mode enabled, so just say they are |
| // legal. |
| setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE}, |
| {MVT::f32, MVT::f64}, Legal); |
| |
| if (Subtarget->haveRoundOpsF64()) |
| setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FROUNDEVEN}, MVT::f64, |
| Legal); |
| else |
| setOperationAction({ISD::FCEIL, ISD::FTRUNC, ISD::FROUNDEVEN, ISD::FFLOOR}, |
| MVT::f64, Custom); |
| |
| setOperationAction(ISD::FFLOOR, MVT::f64, Legal); |
| setOperationAction({ISD::FLDEXP, ISD::STRICT_FLDEXP}, {MVT::f32, MVT::f64}, |
| Legal); |
| setOperationAction(ISD::FFREXP, {MVT::f32, MVT::f64}, Custom); |
| |
| setOperationAction({ISD::FSIN, ISD::FCOS, ISD::FDIV}, MVT::f32, Custom); |
| setOperationAction(ISD::FDIV, MVT::f64, Custom); |
| |
| setOperationAction(ISD::BF16_TO_FP, {MVT::i16, MVT::f32, MVT::f64}, Expand); |
| setOperationAction(ISD::FP_TO_BF16, {MVT::i16, MVT::f32, MVT::f64}, Expand); |
| |
| // Custom lower these because we can't specify a rule based on an illegal |
| // source bf16. |
| setOperationAction({ISD::FP_EXTEND, ISD::STRICT_FP_EXTEND}, MVT::f32, Custom); |
| setOperationAction({ISD::FP_EXTEND, ISD::STRICT_FP_EXTEND}, MVT::f64, Custom); |
| |
| if (Subtarget->has16BitInsts()) { |
| setOperationAction({ISD::Constant, ISD::SMIN, ISD::SMAX, ISD::UMIN, |
| ISD::UMAX, ISD::UADDSAT, ISD::USUBSAT}, |
| MVT::i16, Legal); |
| |
| AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32); |
| |
| setOperationAction({ISD::ROTR, ISD::ROTL, ISD::SELECT_CC, ISD::BR_CC}, |
| MVT::i16, Expand); |
| |
| setOperationAction({ISD::SIGN_EXTEND, ISD::SDIV, ISD::UDIV, ISD::SREM, |
| ISD::UREM, ISD::BITREVERSE, ISD::CTTZ, |
| ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF, |
| ISD::CTPOP}, |
| MVT::i16, Promote); |
| |
| setOperationAction(ISD::LOAD, MVT::i16, Custom); |
| |
| setTruncStoreAction(MVT::i64, MVT::i16, Expand); |
| |
| setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote); |
| AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32); |
| setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote); |
| AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32); |
| |
| setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::i16, Custom); |
| setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i16, Custom); |
| setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i16, Custom); |
| |
| setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i32, Custom); |
| |
| // F16 - Constant Actions. |
| setOperationAction(ISD::ConstantFP, MVT::f16, Legal); |
| setOperationAction(ISD::ConstantFP, MVT::bf16, Legal); |
| |
| // F16 - Load/Store Actions. |
| setOperationAction(ISD::LOAD, MVT::f16, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16); |
| setOperationAction(ISD::STORE, MVT::f16, Promote); |
| AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16); |
| |
| // BF16 - Load/Store Actions. |
| setOperationAction(ISD::LOAD, MVT::bf16, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::bf16, MVT::i16); |
| setOperationAction(ISD::STORE, MVT::bf16, Promote); |
| AddPromotedToType(ISD::STORE, MVT::bf16, MVT::i16); |
| |
| // F16 - VOP1 Actions. |
| setOperationAction({ISD::FP_ROUND, ISD::STRICT_FP_ROUND, ISD::FCOS, |
| ISD::FSIN, ISD::FROUND}, |
| MVT::f16, Custom); |
| |
| setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::f16, Promote); |
| setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::bf16, Promote); |
| |
| // F16 - VOP2 Actions. |
| setOperationAction({ISD::BR_CC, ISD::SELECT_CC}, {MVT::f16, MVT::bf16}, |
| Expand); |
| setOperationAction({ISD::FLDEXP, ISD::STRICT_FLDEXP}, MVT::f16, Custom); |
| setOperationAction(ISD::FFREXP, MVT::f16, Custom); |
| setOperationAction(ISD::FDIV, MVT::f16, Custom); |
| |
| // F16 - VOP3 Actions. |
| setOperationAction(ISD::FMA, MVT::f16, Legal); |
| if (STI.hasMadF16()) |
| setOperationAction(ISD::FMAD, MVT::f16, Legal); |
| |
| for (MVT VT : |
| {MVT::v2i16, MVT::v2f16, MVT::v2bf16, MVT::v4i16, MVT::v4f16, |
| MVT::v4bf16, MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16, |
| MVT::v16f16, MVT::v16bf16, MVT::v32i16, MVT::v32f16}) { |
| for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { |
| switch (Op) { |
| case ISD::LOAD: |
| case ISD::STORE: |
| case ISD::BUILD_VECTOR: |
| case ISD::BITCAST: |
| case ISD::UNDEF: |
| case ISD::EXTRACT_VECTOR_ELT: |
| case ISD::INSERT_VECTOR_ELT: |
| case ISD::INSERT_SUBVECTOR: |
| case ISD::SCALAR_TO_VECTOR: |
| case ISD::IS_FPCLASS: |
| break; |
| case ISD::EXTRACT_SUBVECTOR: |
| case ISD::CONCAT_VECTORS: |
| setOperationAction(Op, VT, Custom); |
| break; |
| default: |
| setOperationAction(Op, VT, Expand); |
| break; |
| } |
| } |
| } |
| |
| // v_perm_b32 can handle either of these. |
| setOperationAction(ISD::BSWAP, {MVT::i16, MVT::v2i16}, Legal); |
| setOperationAction(ISD::BSWAP, MVT::v4i16, Custom); |
| |
| // XXX - Do these do anything? Vector constants turn into build_vector. |
| setOperationAction(ISD::Constant, {MVT::v2i16, MVT::v2f16}, Legal); |
| |
| setOperationAction(ISD::UNDEF, {MVT::v2i16, MVT::v2f16, MVT::v2bf16}, |
| Legal); |
| |
| setOperationAction(ISD::STORE, MVT::v2i16, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32); |
| setOperationAction(ISD::STORE, MVT::v2f16, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v2i16, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32); |
| setOperationAction(ISD::LOAD, MVT::v2f16, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32); |
| |
| setOperationAction(ISD::AND, MVT::v2i16, Promote); |
| AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32); |
| setOperationAction(ISD::OR, MVT::v2i16, Promote); |
| AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32); |
| setOperationAction(ISD::XOR, MVT::v2i16, Promote); |
| AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v4i16, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32); |
| setOperationAction(ISD::LOAD, MVT::v4f16, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32); |
| setOperationAction(ISD::LOAD, MVT::v4bf16, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v4bf16, MVT::v2i32); |
| |
| setOperationAction(ISD::STORE, MVT::v4i16, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); |
| setOperationAction(ISD::STORE, MVT::v4f16, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); |
| setOperationAction(ISD::STORE, MVT::v4bf16, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v4bf16, MVT::v2i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v8i16, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v8i16, MVT::v4i32); |
| setOperationAction(ISD::LOAD, MVT::v8f16, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v8f16, MVT::v4i32); |
| setOperationAction(ISD::LOAD, MVT::v8bf16, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v8bf16, MVT::v4i32); |
| |
| setOperationAction(ISD::STORE, MVT::v4i16, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32); |
| setOperationAction(ISD::STORE, MVT::v4f16, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32); |
| |
| setOperationAction(ISD::STORE, MVT::v8i16, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v8i16, MVT::v4i32); |
| setOperationAction(ISD::STORE, MVT::v8f16, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v8f16, MVT::v4i32); |
| setOperationAction(ISD::STORE, MVT::v8bf16, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v8bf16, MVT::v4i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v16i16, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v16i16, MVT::v8i32); |
| setOperationAction(ISD::LOAD, MVT::v16f16, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v16f16, MVT::v8i32); |
| setOperationAction(ISD::LOAD, MVT::v16bf16, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v16bf16, MVT::v8i32); |
| |
| setOperationAction(ISD::STORE, MVT::v16i16, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v16i16, MVT::v8i32); |
| setOperationAction(ISD::STORE, MVT::v16f16, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v16f16, MVT::v8i32); |
| setOperationAction(ISD::STORE, MVT::v16bf16, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v16bf16, MVT::v8i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v32i16, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v32i16, MVT::v16i32); |
| setOperationAction(ISD::LOAD, MVT::v32f16, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v32f16, MVT::v16i32); |
| setOperationAction(ISD::LOAD, MVT::v32bf16, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v32bf16, MVT::v16i32); |
| |
| setOperationAction(ISD::STORE, MVT::v32i16, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v32i16, MVT::v16i32); |
| setOperationAction(ISD::STORE, MVT::v32f16, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v32f16, MVT::v16i32); |
| setOperationAction(ISD::STORE, MVT::v32bf16, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v32bf16, MVT::v16i32); |
| |
| setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, |
| MVT::v2i32, Expand); |
| setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand); |
| |
| setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, |
| MVT::v4i32, Expand); |
| |
| setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND}, |
| MVT::v8i32, Expand); |
| |
| setOperationAction(ISD::BUILD_VECTOR, {MVT::v2i16, MVT::v2f16, MVT::v2bf16}, |
| Subtarget->hasVOP3PInsts() ? Legal : Custom); |
| |
| setOperationAction(ISD::FNEG, MVT::v2f16, Legal); |
| // This isn't really legal, but this avoids the legalizer unrolling it (and |
| // allows matching fneg (fabs x) patterns) |
| setOperationAction(ISD::FABS, MVT::v2f16, Legal); |
| |
| setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, MVT::f16, Custom); |
| setOperationAction({ISD::FMAXNUM_IEEE, ISD::FMINNUM_IEEE}, MVT::f16, Legal); |
| |
| setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE}, |
| {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16}, |
| Custom); |
| |
| setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, |
| {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16}, |
| Expand); |
| |
| for (MVT Vec16 : |
| {MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16, MVT::v16f16, |
| MVT::v16bf16, MVT::v32i16, MVT::v32f16, MVT::v32bf16}) { |
| setOperationAction( |
| {ISD::BUILD_VECTOR, ISD::EXTRACT_VECTOR_ELT, ISD::SCALAR_TO_VECTOR}, |
| Vec16, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, Vec16, Expand); |
| } |
| } |
| |
| if (Subtarget->hasVOP3PInsts()) { |
| setOperationAction({ISD::ADD, ISD::SUB, ISD::MUL, ISD::SHL, ISD::SRL, |
| ISD::SRA, ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX, |
| ISD::UADDSAT, ISD::USUBSAT, ISD::SADDSAT, ISD::SSUBSAT}, |
| MVT::v2i16, Legal); |
| |
| setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FMINNUM_IEEE, |
| ISD::FMAXNUM_IEEE, ISD::FCANONICALIZE}, |
| MVT::v2f16, Legal); |
| |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, {MVT::v2i16, MVT::v2f16, MVT::v2bf16}, |
| Custom); |
| |
| setOperationAction(ISD::VECTOR_SHUFFLE, |
| {MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::v8i16, |
| MVT::v16f16, MVT::v16i16, MVT::v32f16, MVT::v32i16}, |
| Custom); |
| |
| for (MVT VT : {MVT::v4i16, MVT::v8i16, MVT::v16i16, MVT::v32i16}) |
| // Split vector operations. |
| setOperationAction({ISD::SHL, ISD::SRA, ISD::SRL, ISD::ADD, ISD::SUB, |
| ISD::MUL, ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, |
| ISD::UMAX, ISD::UADDSAT, ISD::SADDSAT, ISD::USUBSAT, |
| ISD::SSUBSAT}, |
| VT, Custom); |
| |
| for (MVT VT : {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16}) |
| // Split vector operations. |
| setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FCANONICALIZE}, |
| VT, Custom); |
| |
| setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, {MVT::v2f16, MVT::v4f16}, |
| Custom); |
| |
| setOperationAction(ISD::FEXP, MVT::v2f16, Custom); |
| setOperationAction(ISD::SELECT, {MVT::v4i16, MVT::v4f16, MVT::v4bf16}, |
| Custom); |
| |
| if (Subtarget->hasPackedFP32Ops()) { |
| setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FNEG}, |
| MVT::v2f32, Legal); |
| setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA}, |
| {MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32}, |
| Custom); |
| } |
| } |
| |
| setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v4f16, Custom); |
| |
| if (Subtarget->has16BitInsts()) { |
| setOperationAction(ISD::SELECT, MVT::v2i16, Promote); |
| AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32); |
| setOperationAction(ISD::SELECT, MVT::v2f16, Promote); |
| AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32); |
| } else { |
| // Legalization hack. |
| setOperationAction(ISD::SELECT, {MVT::v2i16, MVT::v2f16}, Custom); |
| |
| setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v2f16, Custom); |
| } |
| |
| setOperationAction(ISD::SELECT, |
| {MVT::v4i16, MVT::v4f16, MVT::v4bf16, MVT::v2i8, MVT::v4i8, |
| MVT::v8i8, MVT::v8i16, MVT::v8f16, MVT::v8bf16, |
| MVT::v16i16, MVT::v16f16, MVT::v16bf16, MVT::v32i16, |
| MVT::v32f16, MVT::v32bf16}, |
| Custom); |
| |
| setOperationAction({ISD::SMULO, ISD::UMULO}, MVT::i64, Custom); |
| |
| if (Subtarget->hasScalarSMulU64()) |
| setOperationAction(ISD::MUL, MVT::i64, Custom); |
| |
| if (Subtarget->hasMad64_32()) |
| setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, MVT::i32, Custom); |
| |
| if (Subtarget->hasPrefetch()) |
| setOperationAction(ISD::PREFETCH, MVT::Other, Custom); |
| |
| if (Subtarget->hasIEEEMinMax()) { |
| setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM}, |
| {MVT::f16, MVT::f32, MVT::f64, MVT::v2f16}, Legal); |
| setOperationAction({ISD::FMINIMUM, ISD::FMAXIMUM}, |
| {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16}, |
| Custom); |
| } |
| |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, |
| {MVT::Other, MVT::f32, MVT::v4f32, MVT::i16, MVT::f16, |
| MVT::bf16, MVT::v2i16, MVT::v2f16, MVT::v2bf16, MVT::i128, |
| MVT::i8}, |
| Custom); |
| |
| setOperationAction(ISD::INTRINSIC_W_CHAIN, |
| {MVT::v2f16, MVT::v2i16, MVT::v2bf16, MVT::v3f16, |
| MVT::v3i16, MVT::v4f16, MVT::v4i16, MVT::v4bf16, |
| MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::Other, MVT::f16, |
| MVT::i16, MVT::bf16, MVT::i8, MVT::i128}, |
| Custom); |
| |
| setOperationAction(ISD::INTRINSIC_VOID, |
| {MVT::Other, MVT::v2i16, MVT::v2f16, MVT::v2bf16, |
| MVT::v3i16, MVT::v3f16, MVT::v4f16, MVT::v4i16, |
| MVT::v4bf16, MVT::v8i16, MVT::v8f16, MVT::v8bf16, |
| MVT::f16, MVT::i16, MVT::bf16, MVT::i8, MVT::i128}, |
| Custom); |
| |
| setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); |
| setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom); |
| setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); |
| setOperationAction(ISD::GET_FPENV, MVT::i64, Custom); |
| setOperationAction(ISD::SET_FPENV, MVT::i64, Custom); |
| |
| // TODO: Could move this to custom lowering, could benefit from combines on |
| // extract of relevant bits. |
| setOperationAction(ISD::GET_FPMODE, MVT::i32, Legal); |
| |
| setOperationAction(ISD::MUL, MVT::i1, Promote); |
| |
| setTargetDAGCombine({ISD::ADD, |
| ISD::UADDO_CARRY, |
| ISD::SUB, |
| ISD::USUBO_CARRY, |
| ISD::FADD, |
| ISD::FSUB, |
| ISD::FDIV, |
| ISD::FMINNUM, |
| ISD::FMAXNUM, |
| ISD::FMINNUM_IEEE, |
| ISD::FMAXNUM_IEEE, |
| ISD::FMINIMUM, |
| ISD::FMAXIMUM, |
| ISD::FMA, |
| ISD::SMIN, |
| ISD::SMAX, |
| ISD::UMIN, |
| ISD::UMAX, |
| ISD::SETCC, |
| ISD::AND, |
| ISD::OR, |
| ISD::XOR, |
| ISD::FSHR, |
| ISD::SINT_TO_FP, |
| ISD::UINT_TO_FP, |
| ISD::FCANONICALIZE, |
| ISD::SCALAR_TO_VECTOR, |
| ISD::ZERO_EXTEND, |
| ISD::SIGN_EXTEND_INREG, |
| ISD::EXTRACT_VECTOR_ELT, |
| ISD::INSERT_VECTOR_ELT, |
| ISD::FCOPYSIGN}); |
| |
| if (Subtarget->has16BitInsts() && !Subtarget->hasMed3_16()) |
| setTargetDAGCombine(ISD::FP_ROUND); |
| |
| // All memory operations. Some folding on the pointer operand is done to help |
| // matching the constant offsets in the addressing modes. |
| setTargetDAGCombine({ISD::LOAD, |
| ISD::STORE, |
| ISD::ATOMIC_LOAD, |
| ISD::ATOMIC_STORE, |
| ISD::ATOMIC_CMP_SWAP, |
| ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, |
| ISD::ATOMIC_SWAP, |
| ISD::ATOMIC_LOAD_ADD, |
| ISD::ATOMIC_LOAD_SUB, |
| ISD::ATOMIC_LOAD_AND, |
| ISD::ATOMIC_LOAD_OR, |
| ISD::ATOMIC_LOAD_XOR, |
| ISD::ATOMIC_LOAD_NAND, |
| ISD::ATOMIC_LOAD_MIN, |
| ISD::ATOMIC_LOAD_MAX, |
| ISD::ATOMIC_LOAD_UMIN, |
| ISD::ATOMIC_LOAD_UMAX, |
| ISD::ATOMIC_LOAD_FADD, |
| ISD::ATOMIC_LOAD_FMIN, |
| ISD::ATOMIC_LOAD_FMAX, |
| ISD::ATOMIC_LOAD_UINC_WRAP, |
| ISD::ATOMIC_LOAD_UDEC_WRAP, |
| ISD::INTRINSIC_VOID, |
| ISD::INTRINSIC_W_CHAIN}); |
| |
| // FIXME: In other contexts we pretend this is a per-function property. |
| setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32); |
| |
| setSchedulingPreference(Sched::RegPressure); |
| } |
| |
| const GCNSubtarget *SITargetLowering::getSubtarget() const { |
| return Subtarget; |
| } |
| |
| ArrayRef<MCPhysReg> SITargetLowering::getRoundingControlRegisters() const { |
| static const MCPhysReg RCRegs[] = {AMDGPU::MODE}; |
| return RCRegs; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TargetLowering queries |
| //===----------------------------------------------------------------------===// |
| |
| // v_mad_mix* support a conversion from f16 to f32. |
| // |
| // There is only one special case when denormals are enabled we don't currently, |
| // where this is OK to use. |
| bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode, |
| EVT DestVT, EVT SrcVT) const { |
| return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) || |
| (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) && |
| DestVT.getScalarType() == MVT::f32 && |
| SrcVT.getScalarType() == MVT::f16 && |
| // TODO: This probably only requires no input flushing? |
| denormalModeIsFlushAllF32(DAG.getMachineFunction()); |
| } |
| |
| bool SITargetLowering::isFPExtFoldable(const MachineInstr &MI, unsigned Opcode, |
| LLT DestTy, LLT SrcTy) const { |
| return ((Opcode == TargetOpcode::G_FMAD && Subtarget->hasMadMixInsts()) || |
| (Opcode == TargetOpcode::G_FMA && Subtarget->hasFmaMixInsts())) && |
| DestTy.getScalarSizeInBits() == 32 && |
| SrcTy.getScalarSizeInBits() == 16 && |
| // TODO: This probably only requires no input flushing? |
| denormalModeIsFlushAllF32(*MI.getMF()); |
| } |
| |
| bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const { |
| // SI has some legal vector types, but no legal vector operations. Say no |
| // shuffles are legal in order to prefer scalarizing some vector operations. |
| return false; |
| } |
| |
| MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, |
| CallingConv::ID CC, |
| EVT VT) const { |
| if (CC == CallingConv::AMDGPU_KERNEL) |
| return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); |
| |
| if (VT.isVector()) { |
| EVT ScalarVT = VT.getScalarType(); |
| unsigned Size = ScalarVT.getSizeInBits(); |
| if (Size == 16) { |
| if (Subtarget->has16BitInsts()) { |
| if (VT.isInteger()) |
| return MVT::v2i16; |
| return (ScalarVT == MVT::bf16 ? MVT::i32 : MVT::v2f16); |
| } |
| return VT.isInteger() ? MVT::i32 : MVT::f32; |
| } |
| |
| if (Size < 16) |
| return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32; |
| return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32; |
| } |
| |
| if (VT.getSizeInBits() > 32) |
| return MVT::i32; |
| |
| return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); |
| } |
| |
| unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, |
| CallingConv::ID CC, |
| EVT VT) const { |
| if (CC == CallingConv::AMDGPU_KERNEL) |
| return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); |
| |
| if (VT.isVector()) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| EVT ScalarVT = VT.getScalarType(); |
| unsigned Size = ScalarVT.getSizeInBits(); |
| |
| // FIXME: Should probably promote 8-bit vectors to i16. |
| if (Size == 16 && Subtarget->has16BitInsts()) |
| return (NumElts + 1) / 2; |
| |
| if (Size <= 32) |
| return NumElts; |
| |
| if (Size > 32) |
| return NumElts * ((Size + 31) / 32); |
| } else if (VT.getSizeInBits() > 32) |
| return (VT.getSizeInBits() + 31) / 32; |
| |
| return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); |
| } |
| |
| unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv( |
| LLVMContext &Context, CallingConv::ID CC, |
| EVT VT, EVT &IntermediateVT, |
| unsigned &NumIntermediates, MVT &RegisterVT) const { |
| if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| EVT ScalarVT = VT.getScalarType(); |
| unsigned Size = ScalarVT.getSizeInBits(); |
| // FIXME: We should fix the ABI to be the same on targets without 16-bit |
| // support, but unless we can properly handle 3-vectors, it will be still be |
| // inconsistent. |
| if (Size == 16 && Subtarget->has16BitInsts()) { |
| if (ScalarVT == MVT::bf16) { |
| RegisterVT = MVT::i32; |
| IntermediateVT = MVT::v2bf16; |
| } else { |
| RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16; |
| IntermediateVT = RegisterVT; |
| } |
| NumIntermediates = (NumElts + 1) / 2; |
| return NumIntermediates; |
| } |
| |
| if (Size == 32) { |
| RegisterVT = ScalarVT.getSimpleVT(); |
| IntermediateVT = RegisterVT; |
| NumIntermediates = NumElts; |
| return NumIntermediates; |
| } |
| |
| if (Size < 16 && Subtarget->has16BitInsts()) { |
| // FIXME: Should probably form v2i16 pieces |
| RegisterVT = MVT::i16; |
| IntermediateVT = ScalarVT; |
| NumIntermediates = NumElts; |
| return NumIntermediates; |
| } |
| |
| |
| if (Size != 16 && Size <= 32) { |
| RegisterVT = MVT::i32; |
| IntermediateVT = ScalarVT; |
| NumIntermediates = NumElts; |
| return NumIntermediates; |
| } |
| |
| if (Size > 32) { |
| RegisterVT = MVT::i32; |
| IntermediateVT = RegisterVT; |
| NumIntermediates = NumElts * ((Size + 31) / 32); |
| return NumIntermediates; |
| } |
| } |
| |
| return TargetLowering::getVectorTypeBreakdownForCallingConv( |
| Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT); |
| } |
| |
| static EVT memVTFromLoadIntrData(const SITargetLowering &TLI, |
| const DataLayout &DL, Type *Ty, |
| unsigned MaxNumLanes) { |
| assert(MaxNumLanes != 0); |
| |
| LLVMContext &Ctx = Ty->getContext(); |
| if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { |
| unsigned NumElts = std::min(MaxNumLanes, VT->getNumElements()); |
| return EVT::getVectorVT(Ctx, TLI.getValueType(DL, VT->getElementType()), |
| NumElts); |
| } |
| |
| return TLI.getValueType(DL, Ty); |
| } |
| |
| // Peek through TFE struct returns to only use the data size. |
| static EVT memVTFromLoadIntrReturn(const SITargetLowering &TLI, |
| const DataLayout &DL, Type *Ty, |
| unsigned MaxNumLanes) { |
| auto *ST = dyn_cast<StructType>(Ty); |
| if (!ST) |
| return memVTFromLoadIntrData(TLI, DL, Ty, MaxNumLanes); |
| |
| // TFE intrinsics return an aggregate type. |
| assert(ST->getNumContainedTypes() == 2 && |
| ST->getContainedType(1)->isIntegerTy(32)); |
| return memVTFromLoadIntrData(TLI, DL, ST->getContainedType(0), MaxNumLanes); |
| } |
| |
| /// Map address space 7 to MVT::v5i32 because that's its in-memory |
| /// representation. This return value is vector-typed because there is no |
| /// MVT::i160 and it is not clear if one can be added. While this could |
| /// cause issues during codegen, these address space 7 pointers will be |
| /// rewritten away by then. Therefore, we can return MVT::v5i32 in order |
| /// to allow pre-codegen passes that query TargetTransformInfo, often for cost |
| /// modeling, to work. |
| MVT SITargetLowering::getPointerTy(const DataLayout &DL, unsigned AS) const { |
| if (AMDGPUAS::BUFFER_FAT_POINTER == AS && DL.getPointerSizeInBits(AS) == 160) |
| return MVT::v5i32; |
| if (AMDGPUAS::BUFFER_STRIDED_POINTER == AS && |
| DL.getPointerSizeInBits(AS) == 192) |
| return MVT::v6i32; |
| return AMDGPUTargetLowering::getPointerTy(DL, AS); |
| } |
| /// Similarly, the in-memory representation of a p7 is {p8, i32}, aka |
| /// v8i32 when padding is added. |
| /// The in-memory representation of a p9 is {p8, i32, i32}, which is |
| /// also v8i32 with padding. |
| MVT SITargetLowering::getPointerMemTy(const DataLayout &DL, unsigned AS) const { |
| if ((AMDGPUAS::BUFFER_FAT_POINTER == AS && |
| DL.getPointerSizeInBits(AS) == 160) || |
| (AMDGPUAS::BUFFER_STRIDED_POINTER == AS && |
| DL.getPointerSizeInBits(AS) == 192)) |
| return MVT::v8i32; |
| return AMDGPUTargetLowering::getPointerMemTy(DL, AS); |
| } |
| |
| bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, |
| const CallInst &CI, |
| MachineFunction &MF, |
| unsigned IntrID) const { |
| Info.flags = MachineMemOperand::MONone; |
| if (CI.hasMetadata(LLVMContext::MD_invariant_load)) |
| Info.flags |= MachineMemOperand::MOInvariant; |
| |
| if (const AMDGPU::RsrcIntrinsic *RsrcIntr = |
| AMDGPU::lookupRsrcIntrinsic(IntrID)) { |
| AttributeList Attr = Intrinsic::getAttributes(CI.getContext(), |
| (Intrinsic::ID)IntrID); |
| MemoryEffects ME = Attr.getMemoryEffects(); |
| if (ME.doesNotAccessMemory()) |
| return false; |
| |
| // TODO: Should images get their own address space? |
| Info.fallbackAddressSpace = AMDGPUAS::BUFFER_RESOURCE; |
| |
| const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = nullptr; |
| if (RsrcIntr->IsImage) { |
| const AMDGPU::ImageDimIntrinsicInfo *Intr = |
| AMDGPU::getImageDimIntrinsicInfo(IntrID); |
| BaseOpcode = AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); |
| Info.align.reset(); |
| } |
| |
| Value *RsrcArg = CI.getArgOperand(RsrcIntr->RsrcArg); |
| if (auto *RsrcPtrTy = dyn_cast<PointerType>(RsrcArg->getType())) { |
| if (RsrcPtrTy->getAddressSpace() == AMDGPUAS::BUFFER_RESOURCE) |
| // We conservatively set the memory operand of a buffer intrinsic to the |
| // base resource pointer, so that we can access alias information about |
| // those pointers. Cases like "this points at the same value |
| // but with a different offset" are handled in |
| // areMemAccessesTriviallyDisjoint. |
| Info.ptrVal = RsrcArg; |
| } |
| |
| bool IsSPrefetch = IntrID == Intrinsic::amdgcn_s_buffer_prefetch_data; |
| if (!IsSPrefetch) { |
| auto *Aux = cast<ConstantInt>(CI.getArgOperand(CI.arg_size() - 1)); |
| if (Aux->getZExtValue() & AMDGPU::CPol::VOLATILE) |
| Info.flags |= MachineMemOperand::MOVolatile; |
| } |
| |
| Info.flags |= MachineMemOperand::MODereferenceable; |
| if (ME.onlyReadsMemory()) { |
| if (RsrcIntr->IsImage) { |
| unsigned MaxNumLanes = 4; |
| |
| if (!BaseOpcode->Gather4) { |
| // If this isn't a gather, we may have excess loaded elements in the |
| // IR type. Check the dmask for the real number of elements loaded. |
| unsigned DMask |
| = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue(); |
| MaxNumLanes = DMask == 0 ? 1 : llvm::popcount(DMask); |
| } |
| |
| Info.memVT = memVTFromLoadIntrReturn(*this, MF.getDataLayout(), |
| CI.getType(), MaxNumLanes); |
| } else { |
| Info.memVT = |
| memVTFromLoadIntrReturn(*this, MF.getDataLayout(), CI.getType(), |
| std::numeric_limits<unsigned>::max()); |
| } |
| |
| // FIXME: What does alignment mean for an image? |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.flags |= MachineMemOperand::MOLoad; |
| } else if (ME.onlyWritesMemory()) { |
| Info.opc = ISD::INTRINSIC_VOID; |
| |
| Type *DataTy = CI.getArgOperand(0)->getType(); |
| if (RsrcIntr->IsImage) { |
| unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue(); |
| unsigned DMaskLanes = DMask == 0 ? 1 : llvm::popcount(DMask); |
| Info.memVT = memVTFromLoadIntrData(*this, MF.getDataLayout(), DataTy, |
| DMaskLanes); |
| } else |
| Info.memVT = getValueType(MF.getDataLayout(), DataTy); |
| |
| Info.flags |= MachineMemOperand::MOStore; |
| } else { |
| // Atomic, NoReturn Sampler or prefetch |
| Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID : |
| ISD::INTRINSIC_W_CHAIN; |
| Info.flags |= |
| MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable; |
| |
| if (!IsSPrefetch) |
| Info.flags |= MachineMemOperand::MOStore; |
| |
| switch (IntrID) { |
| default: |
| if ((RsrcIntr->IsImage && BaseOpcode->NoReturn) || IsSPrefetch) { |
| // Fake memory access type for no return sampler intrinsics |
| Info.memVT = MVT::i32; |
| } else { |
| // XXX - Should this be volatile without known ordering? |
| Info.flags |= MachineMemOperand::MOVolatile; |
| Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType()); |
| } |
| break; |
| case Intrinsic::amdgcn_raw_buffer_load_lds: |
| case Intrinsic::amdgcn_raw_ptr_buffer_load_lds: |
| case Intrinsic::amdgcn_struct_buffer_load_lds: |
| case Intrinsic::amdgcn_struct_ptr_buffer_load_lds: { |
| unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue(); |
| Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8); |
| Info.ptrVal = CI.getArgOperand(1); |
| return true; |
| } |
| case Intrinsic::amdgcn_raw_atomic_buffer_load: |
| case Intrinsic::amdgcn_raw_ptr_atomic_buffer_load: |
| case Intrinsic::amdgcn_struct_atomic_buffer_load: |
| case Intrinsic::amdgcn_struct_ptr_atomic_buffer_load: { |
| Info.memVT = |
| memVTFromLoadIntrReturn(*this, MF.getDataLayout(), CI.getType(), |
| std::numeric_limits<unsigned>::max()); |
| Info.flags &= ~MachineMemOperand::MOStore; |
| return true; |
| } |
| } |
| } |
| return true; |
| } |
| |
| switch (IntrID) { |
| case Intrinsic::amdgcn_ds_ordered_add: |
| case Intrinsic::amdgcn_ds_ordered_swap: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::getVT(CI.getType()); |
| Info.ptrVal = CI.getOperand(0); |
| Info.align.reset(); |
| Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; |
| |
| const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4)); |
| if (!Vol->isZero()) |
| Info.flags |= MachineMemOperand::MOVolatile; |
| |
| return true; |
| } |
| case Intrinsic::amdgcn_ds_add_gs_reg_rtn: |
| case Intrinsic::amdgcn_ds_sub_gs_reg_rtn: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::getVT(CI.getOperand(0)->getType()); |
| Info.ptrVal = nullptr; |
| Info.fallbackAddressSpace = AMDGPUAS::STREAMOUT_REGISTER; |
| Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; |
| return true; |
| } |
| case Intrinsic::amdgcn_ds_append: |
| case Intrinsic::amdgcn_ds_consume: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::getVT(CI.getType()); |
| Info.ptrVal = CI.getOperand(0); |
| Info.align.reset(); |
| Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; |
| |
| const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1)); |
| if (!Vol->isZero()) |
| Info.flags |= MachineMemOperand::MOVolatile; |
| |
| return true; |
| } |
| case Intrinsic::amdgcn_global_atomic_csub: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::getVT(CI.getType()); |
| Info.ptrVal = CI.getOperand(0); |
| Info.align.reset(); |
| Info.flags |= MachineMemOperand::MOLoad | |
| MachineMemOperand::MOStore | |
| MachineMemOperand::MOVolatile; |
| return true; |
| } |
| case Intrinsic::amdgcn_image_bvh_intersect_ray: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT? |
| |
| Info.fallbackAddressSpace = AMDGPUAS::BUFFER_RESOURCE; |
| Info.align.reset(); |
| Info.flags |= MachineMemOperand::MOLoad | |
| MachineMemOperand::MODereferenceable; |
| return true; |
| } |
| case Intrinsic::amdgcn_global_atomic_fmin: |
| case Intrinsic::amdgcn_global_atomic_fmax: |
| case Intrinsic::amdgcn_global_atomic_fmin_num: |
| case Intrinsic::amdgcn_global_atomic_fmax_num: |
| case Intrinsic::amdgcn_global_atomic_ordered_add_b64: |
| case Intrinsic::amdgcn_flat_atomic_fmin: |
| case Intrinsic::amdgcn_flat_atomic_fmax: |
| case Intrinsic::amdgcn_flat_atomic_fmin_num: |
| case Intrinsic::amdgcn_flat_atomic_fmax_num: |
| case Intrinsic::amdgcn_atomic_cond_sub_u32: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::getVT(CI.getType()); |
| Info.ptrVal = CI.getOperand(0); |
| Info.align.reset(); |
| Info.flags |= MachineMemOperand::MOLoad | |
| MachineMemOperand::MOStore | |
| MachineMemOperand::MODereferenceable | |
| MachineMemOperand::MOVolatile; |
| return true; |
| } |
| case Intrinsic::amdgcn_global_load_tr_b64: |
| case Intrinsic::amdgcn_global_load_tr_b128: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::getVT(CI.getType()); |
| Info.ptrVal = CI.getOperand(0); |
| Info.align.reset(); |
| Info.flags |= MachineMemOperand::MOLoad; |
| return true; |
| } |
| case Intrinsic::amdgcn_ds_gws_init: |
| case Intrinsic::amdgcn_ds_gws_barrier: |
| case Intrinsic::amdgcn_ds_gws_sema_v: |
| case Intrinsic::amdgcn_ds_gws_sema_br: |
| case Intrinsic::amdgcn_ds_gws_sema_p: |
| case Intrinsic::amdgcn_ds_gws_sema_release_all: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| |
| const GCNTargetMachine &TM = |
| static_cast<const GCNTargetMachine &>(getTargetMachine()); |
| |
| SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| Info.ptrVal = MFI->getGWSPSV(TM); |
| |
| // This is an abstract access, but we need to specify a type and size. |
| Info.memVT = MVT::i32; |
| Info.size = 4; |
| Info.align = Align(4); |
| |
| if (IntrID == Intrinsic::amdgcn_ds_gws_barrier) |
| Info.flags |= MachineMemOperand::MOLoad; |
| else |
| Info.flags |= MachineMemOperand::MOStore; |
| return true; |
| } |
| case Intrinsic::amdgcn_global_load_lds: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue(); |
| Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8); |
| Info.ptrVal = CI.getArgOperand(1); |
| Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; |
| return true; |
| } |
| case Intrinsic::amdgcn_ds_bvh_stack_rtn: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| |
| const GCNTargetMachine &TM = |
| static_cast<const GCNTargetMachine &>(getTargetMachine()); |
| |
| SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| Info.ptrVal = MFI->getGWSPSV(TM); |
| |
| // This is an abstract access, but we need to specify a type and size. |
| Info.memVT = MVT::i32; |
| Info.size = 4; |
| Info.align = Align(4); |
| |
| Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; |
| return true; |
| } |
| case Intrinsic::amdgcn_s_prefetch_data: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| Info.memVT = EVT::getIntegerVT(CI.getContext(), 8); |
| Info.ptrVal = CI.getArgOperand(0); |
| Info.flags |= MachineMemOperand::MOLoad; |
| return true; |
| } |
| default: |
| return false; |
| } |
| } |
| |
| void SITargetLowering::CollectTargetIntrinsicOperands( |
| const CallInst &I, SmallVectorImpl<SDValue> &Ops, SelectionDAG &DAG) const { |
| switch (cast<IntrinsicInst>(I).getIntrinsicID()) { |
| case Intrinsic::amdgcn_addrspacecast_nonnull: { |
| // The DAG's ValueType loses the addrspaces. |
| // Add them as 2 extra Constant operands "from" and "to". |
| unsigned SrcAS = I.getOperand(0)->getType()->getPointerAddressSpace(); |
| unsigned DstAS = I.getType()->getPointerAddressSpace(); |
| Ops.push_back(DAG.getTargetConstant(SrcAS, SDLoc(), MVT::i32)); |
| Ops.push_back(DAG.getTargetConstant(DstAS, SDLoc(), MVT::i32)); |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| |
| bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II, |
| SmallVectorImpl<Value*> &Ops, |
| Type *&AccessTy) const { |
| Value *Ptr = nullptr; |
| switch (II->getIntrinsicID()) { |
| case Intrinsic::amdgcn_atomic_cond_sub_u32: |
| case Intrinsic::amdgcn_ds_append: |
| case Intrinsic::amdgcn_ds_consume: |
| case Intrinsic::amdgcn_ds_ordered_add: |
| case Intrinsic::amdgcn_ds_ordered_swap: |
| case Intrinsic::amdgcn_flat_atomic_fmax: |
| case Intrinsic::amdgcn_flat_atomic_fmax_num: |
| case Intrinsic::amdgcn_flat_atomic_fmin: |
| case Intrinsic::amdgcn_flat_atomic_fmin_num: |
| case Intrinsic::amdgcn_global_atomic_csub: |
| case Intrinsic::amdgcn_global_atomic_fmax: |
| case Intrinsic::amdgcn_global_atomic_fmax_num: |
| case Intrinsic::amdgcn_global_atomic_fmin: |
| case Intrinsic::amdgcn_global_atomic_fmin_num: |
| case Intrinsic::amdgcn_global_atomic_ordered_add_b64: |
| case Intrinsic::amdgcn_global_load_tr_b64: |
| case Intrinsic::amdgcn_global_load_tr_b128: |
| Ptr = II->getArgOperand(0); |
| break; |
| case Intrinsic::amdgcn_global_load_lds: |
| Ptr = II->getArgOperand(1); |
| break; |
| default: |
| return false; |
| } |
| AccessTy = II->getType(); |
| Ops.push_back(Ptr); |
| return true; |
| } |
| |
| bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM, |
| unsigned AddrSpace) const { |
| if (!Subtarget->hasFlatInstOffsets()) { |
| // Flat instructions do not have offsets, and only have the register |
| // address. |
| return AM.BaseOffs == 0 && AM.Scale == 0; |
| } |
| |
| decltype(SIInstrFlags::FLAT) FlatVariant = |
| AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ? SIInstrFlags::FlatGlobal |
| : AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ? SIInstrFlags::FlatScratch |
| : SIInstrFlags::FLAT; |
| |
| return AM.Scale == 0 && |
| (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset( |
| AM.BaseOffs, AddrSpace, FlatVariant)); |
| } |
| |
| bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const { |
| if (Subtarget->hasFlatGlobalInsts()) |
| return isLegalFlatAddressingMode(AM, AMDGPUAS::GLOBAL_ADDRESS); |
| |
| if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) { |
| // Assume the we will use FLAT for all global memory accesses |
| // on VI. |
| // FIXME: This assumption is currently wrong. On VI we still use |
| // MUBUF instructions for the r + i addressing mode. As currently |
| // implemented, the MUBUF instructions only work on buffer < 4GB. |
| // It may be possible to support > 4GB buffers with MUBUF instructions, |
| // by setting the stride value in the resource descriptor which would |
| // increase the size limit to (stride * 4GB). However, this is risky, |
| // because it has never been validated. |
| return isLegalFlatAddressingMode(AM, AMDGPUAS::FLAT_ADDRESS); |
| } |
| |
| return isLegalMUBUFAddressingMode(AM); |
| } |
| |
| bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const { |
| // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and |
| // additionally can do r + r + i with addr64. 32-bit has more addressing |
| // mode options. Depending on the resource constant, it can also do |
| // (i64 r0) + (i32 r1) * (i14 i). |
| // |
| // Private arrays end up using a scratch buffer most of the time, so also |
| // assume those use MUBUF instructions. Scratch loads / stores are currently |
| // implemented as mubuf instructions with offen bit set, so slightly |
| // different than the normal addr64. |
| const SIInstrInfo *TII = Subtarget->getInstrInfo(); |
| if (!TII->isLegalMUBUFImmOffset(AM.BaseOffs)) |
| return false; |
| |
| // FIXME: Since we can split immediate into soffset and immediate offset, |
| // would it make sense to allow any immediate? |
| |
| switch (AM.Scale) { |
| case 0: // r + i or just i, depending on HasBaseReg. |
| return true; |
| case 1: |
| return true; // We have r + r or r + i. |
| case 2: |
| if (AM.HasBaseReg) { |
| // Reject 2 * r + r. |
| return false; |
| } |
| |
| // Allow 2 * r as r + r |
| // Or 2 * r + i is allowed as r + r + i. |
| return true; |
| default: // Don't allow n * r |
| return false; |
| } |
| } |
| |
| bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL, |
| const AddrMode &AM, Type *Ty, |
| unsigned AS, Instruction *I) const { |
| // No global is ever allowed as a base. |
| if (AM.BaseGV) |
| return false; |
| |
| if (AS == AMDGPUAS::GLOBAL_ADDRESS) |
| return isLegalGlobalAddressingMode(AM); |
| |
| if (AS == AMDGPUAS::CONSTANT_ADDRESS || |
| AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || |
| AS == AMDGPUAS::BUFFER_FAT_POINTER || AS == AMDGPUAS::BUFFER_RESOURCE || |
| AS == AMDGPUAS::BUFFER_STRIDED_POINTER) { |
| // If the offset isn't a multiple of 4, it probably isn't going to be |
| // correctly aligned. |
| // FIXME: Can we get the real alignment here? |
| if (AM.BaseOffs % 4 != 0) |
| return isLegalMUBUFAddressingMode(AM); |
| |
| if (!Subtarget->hasScalarSubwordLoads()) { |
| // There are no SMRD extloads, so if we have to do a small type access we |
| // will use a MUBUF load. |
| // FIXME?: We also need to do this if unaligned, but we don't know the |
| // alignment here. |
| if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4) |
| return isLegalGlobalAddressingMode(AM); |
| } |
| |
| if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) { |
| // SMRD instructions have an 8-bit, dword offset on SI. |
| if (!isUInt<8>(AM.BaseOffs / 4)) |
| return false; |
| } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) { |
| // On CI+, this can also be a 32-bit literal constant offset. If it fits |
| // in 8-bits, it can use a smaller encoding. |
| if (!isUInt<32>(AM.BaseOffs / 4)) |
| return false; |
| } else if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX9) { |
| // On VI, these use the SMEM format and the offset is 20-bit in bytes. |
| if (!isUInt<20>(AM.BaseOffs)) |
| return false; |
| } else if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX12) { |
| // On GFX9 the offset is signed 21-bit in bytes (but must not be negative |
| // for S_BUFFER_* instructions). |
| if (!isInt<21>(AM.BaseOffs)) |
| return false; |
| } else { |
| // On GFX12, all offsets are signed 24-bit in bytes. |
| if (!isInt<24>(AM.BaseOffs)) |
| return false; |
| } |
| |
| if ((AS == AMDGPUAS::CONSTANT_ADDRESS || |
| AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && |
| AM.BaseOffs < 0) { |
| // Scalar (non-buffer) loads can only use a negative offset if |
| // soffset+offset is non-negative. Since the compiler can only prove that |
| // in a few special cases, it is safer to claim that negative offsets are |
| // not supported. |
| return false; |
| } |
| |
| if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. |
| return true; |
| |
| if (AM.Scale == 1 && AM.HasBaseReg) |
| return true; |
| |
| return false; |
| } |
| |
| if (AS == AMDGPUAS::PRIVATE_ADDRESS) |
| return Subtarget->enableFlatScratch() |
| ? isLegalFlatAddressingMode(AM, AMDGPUAS::PRIVATE_ADDRESS) |
| : isLegalMUBUFAddressingMode(AM); |
| |
| if (AS == AMDGPUAS::LOCAL_ADDRESS || |
| (AS == AMDGPUAS::REGION_ADDRESS && Subtarget->hasGDS())) { |
| // Basic, single offset DS instructions allow a 16-bit unsigned immediate |
| // field. |
| // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have |
| // an 8-bit dword offset but we don't know the alignment here. |
| if (!isUInt<16>(AM.BaseOffs)) |
| return false; |
| |
| if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. |
| return true; |
| |
| if (AM.Scale == 1 && AM.HasBaseReg) |
| return true; |
| |
| return false; |
| } |
| |
| if (AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) { |
| // For an unknown address space, this usually means that this is for some |
| // reason being used for pure arithmetic, and not based on some addressing |
| // computation. We don't have instructions that compute pointers with any |
| // addressing modes, so treat them as having no offset like flat |
| // instructions. |
| return isLegalFlatAddressingMode(AM, AMDGPUAS::FLAT_ADDRESS); |
| } |
| |
| // Assume a user alias of global for unknown address spaces. |
| return isLegalGlobalAddressingMode(AM); |
| } |
| |
| bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT, |
| const MachineFunction &MF) const { |
| if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) |
| return (MemVT.getSizeInBits() <= 4 * 32); |
| if (AS == AMDGPUAS::PRIVATE_ADDRESS) { |
| unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize(); |
| return (MemVT.getSizeInBits() <= MaxPrivateBits); |
| } |
| if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) |
| return (MemVT.getSizeInBits() <= 2 * 32); |
| return true; |
| } |
| |
| bool SITargetLowering::allowsMisalignedMemoryAccessesImpl( |
| unsigned Size, unsigned AddrSpace, Align Alignment, |
| MachineMemOperand::Flags Flags, unsigned *IsFast) const { |
| if (IsFast) |
| *IsFast = 0; |
| |
| if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || |
| AddrSpace == AMDGPUAS::REGION_ADDRESS) { |
| // Check if alignment requirements for ds_read/write instructions are |
| // disabled. |
| if (!Subtarget->hasUnalignedDSAccessEnabled() && Alignment < Align(4)) |
| return false; |
| |
| Align RequiredAlignment( |
| PowerOf2Ceil(divideCeil(Size, 8))); // Natural alignment. |
| if (Subtarget->hasLDSMisalignedBug() && Size > 32 && |
| Alignment < RequiredAlignment) |
| return false; |
| |
| // Either, the alignment requirements are "enabled", or there is an |
| // unaligned LDS access related hardware bug though alignment requirements |
| // are "disabled". In either case, we need to check for proper alignment |
| // requirements. |
| // |
| switch (Size) { |
| case 64: |
| // SI has a hardware bug in the LDS / GDS bounds checking: if the base |
| // address is negative, then the instruction is incorrectly treated as |
| // out-of-bounds even if base + offsets is in bounds. Split vectorized |
| // loads here to avoid emitting ds_read2_b32. We may re-combine the |
| // load later in the SILoadStoreOptimizer. |
| if (!Subtarget->hasUsableDSOffset() && Alignment < Align(8)) |
| return false; |
| |
| // 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we |
| // can do a 4 byte aligned, 8 byte access in a single operation using |
| // ds_read2/write2_b32 with adjacent offsets. |
| RequiredAlignment = Align(4); |
| |
| if (Subtarget->hasUnalignedDSAccessEnabled()) { |
| // We will either select ds_read_b64/ds_write_b64 or ds_read2_b32/ |
| // ds_write2_b32 depending on the alignment. In either case with either |
| // alignment there is no faster way of doing this. |
| |
| // The numbers returned here and below are not additive, it is a 'speed |
| // rank'. They are just meant to be compared to decide if a certain way |
| // of lowering an operation is faster than another. For that purpose |
| // naturally aligned operation gets it bitsize to indicate that "it |
| // operates with a speed comparable to N-bit wide load". With the full |
| // alignment ds128 is slower than ds96 for example. If underaligned it |
| // is comparable to a speed of a single dword access, which would then |
| // mean 32 < 128 and it is faster to issue a wide load regardless. |
| // 1 is simply "slow, don't do it". I.e. comparing an aligned load to a |
| // wider load which will not be aligned anymore the latter is slower. |
| if (IsFast) |
| *IsFast = (Alignment >= RequiredAlignment) ? 64 |
| : (Alignment < Align(4)) ? 32 |
| : 1; |
| return true; |
| } |
| |
| break; |
| case 96: |
| if (!Subtarget->hasDS96AndDS128()) |
| return false; |
| |
| // 12 byte accessing via ds_read/write_b96 require 16-byte alignment on |
| // gfx8 and older. |
| |
| if (Subtarget->hasUnalignedDSAccessEnabled()) { |
| // Naturally aligned access is fastest. However, also report it is Fast |
| // if memory is aligned less than DWORD. A narrow load or store will be |
| // be equally slow as a single ds_read_b96/ds_write_b96, but there will |
| // be more of them, so overall we will pay less penalty issuing a single |
| // instruction. |
| |
| // See comment on the values above. |
| if (IsFast) |
| *IsFast = (Alignment >= RequiredAlignment) ? 96 |
| : (Alignment < Align(4)) ? 32 |
| : 1; |
| return true; |
| } |
| |
| break; |
| case 128: |
| if (!Subtarget->hasDS96AndDS128() || !Subtarget->useDS128()) |
| return false; |
| |
| // 16 byte accessing via ds_read/write_b128 require 16-byte alignment on |
| // gfx8 and older, but we can do a 8 byte aligned, 16 byte access in a |
| // single operation using ds_read2/write2_b64. |
| RequiredAlignment = Align(8); |
| |
| if (Subtarget->hasUnalignedDSAccessEnabled()) { |
| // Naturally aligned access is fastest. However, also report it is Fast |
| // if memory is aligned less than DWORD. A narrow load or store will be |
| // be equally slow as a single ds_read_b128/ds_write_b128, but there |
| // will be more of them, so overall we will pay less penalty issuing a |
| // single instruction. |
| |
| // See comment on the values above. |
| if (IsFast) |
| *IsFast = (Alignment >= RequiredAlignment) ? 128 |
| : (Alignment < Align(4)) ? 32 |
| : 1; |
| return true; |
| } |
| |
| break; |
| default: |
| if (Size > 32) |
| return false; |
| |
| break; |
| } |
| |
| // See comment on the values above. |
| // Note that we have a single-dword or sub-dword here, so if underaligned |
| // it is a slowest possible access, hence returned value is 0. |
| if (IsFast) |
| *IsFast = (Alignment >= RequiredAlignment) ? Size : 0; |
| |
| return Alignment >= RequiredAlignment || |
| Subtarget->hasUnalignedDSAccessEnabled(); |
| } |
| |
| if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { |
| bool AlignedBy4 = Alignment >= Align(4); |
| if (IsFast) |
| *IsFast = AlignedBy4; |
| |
| return AlignedBy4 || |
| Subtarget->enableFlatScratch() || |
| Subtarget->hasUnalignedScratchAccess(); |
| } |
| |
| // FIXME: We have to be conservative here and assume that flat operations |
| // will access scratch. If we had access to the IR function, then we |
| // could determine if any private memory was used in the function. |
| if (AddrSpace == AMDGPUAS::FLAT_ADDRESS && |
| !Subtarget->hasUnalignedScratchAccess()) { |
| bool AlignedBy4 = Alignment >= Align(4); |
| if (IsFast) |
| *IsFast = AlignedBy4; |
| |
| return AlignedBy4; |
| } |
| |
| // So long as they are correct, wide global memory operations perform better |
| // than multiple smaller memory ops -- even when misaligned |
| if (AMDGPU::isExtendedGlobalAddrSpace(AddrSpace)) { |
| if (IsFast) |
| *IsFast = Size; |
| |
| return Alignment >= Align(4) || |
| Subtarget->hasUnalignedBufferAccessEnabled(); |
| } |
| |
| // Smaller than dword value must be aligned. |
| if (Size < 32) |
| return false; |
| |
| // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the |
| // byte-address are ignored, thus forcing Dword alignment. |
| // This applies to private, global, and constant memory. |
| if (IsFast) |
| *IsFast = 1; |
| |
| return Size >= 32 && Alignment >= Align(4); |
| } |
| |
| bool SITargetLowering::allowsMisalignedMemoryAccesses( |
| EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, |
| unsigned *IsFast) const { |
| return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace, |
| Alignment, Flags, IsFast); |
| } |
| |
| EVT SITargetLowering::getOptimalMemOpType( |
| const MemOp &Op, const AttributeList &FuncAttributes) const { |
| // FIXME: Should account for address space here. |
| |
| // The default fallback uses the private pointer size as a guess for a type to |
| // use. Make sure we switch these to 64-bit accesses. |
| |
| if (Op.size() >= 16 && |
| Op.isDstAligned(Align(4))) // XXX: Should only do for global |
| return MVT::v4i32; |
| |
| if (Op.size() >= 8 && Op.isDstAligned(Align(4))) |
| return MVT::v2i32; |
| |
| // Use the default. |
| return MVT::Other; |
| } |
| |
| bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const { |
| const MemSDNode *MemNode = cast<MemSDNode>(N); |
| return MemNode->getMemOperand()->getFlags() & MONoClobber; |
| } |
| |
| bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) { |
| return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS || |
| AS == AMDGPUAS::PRIVATE_ADDRESS; |
| } |
| |
| bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS, |
| unsigned DestAS) const { |
| // Flat -> private/local is a simple truncate. |
| // Flat -> global is no-op |
| if (SrcAS == AMDGPUAS::FLAT_ADDRESS) |
| return true; |
| |
| const GCNTargetMachine &TM = |
| static_cast<const GCNTargetMachine &>(getTargetMachine()); |
| return TM.isNoopAddrSpaceCast(SrcAS, DestAS); |
| } |
| |
| bool SITargetLowering::isMemOpUniform(const SDNode *N) const { |
| const MemSDNode *MemNode = cast<MemSDNode>(N); |
| |
| return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand()); |
| } |
| |
| TargetLoweringBase::LegalizeTypeAction |
| SITargetLowering::getPreferredVectorAction(MVT VT) const { |
| if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 && |
| VT.getScalarType().bitsLE(MVT::i16)) |
| return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector; |
| return TargetLoweringBase::getPreferredVectorAction(VT); |
| } |
| |
| bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, |
| Type *Ty) const { |
| // FIXME: Could be smarter if called for vector constants. |
| return true; |
| } |
| |
| bool SITargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, |
| unsigned Index) const { |
| if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT)) |
| return false; |
| |
| // TODO: Add more cases that are cheap. |
| return Index == 0; |
| } |
| |
| bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const { |
| if (Subtarget->has16BitInsts() && VT == MVT::i16) { |
| switch (Op) { |
| case ISD::LOAD: |
| case ISD::STORE: |
| |
| // These operations are done with 32-bit instructions anyway. |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: |
| case ISD::SELECT: |
| // TODO: Extensions? |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| // SimplifySetCC uses this function to determine whether or not it should |
| // create setcc with i1 operands. We don't have instructions for i1 setcc. |
| if (VT == MVT::i1 && Op == ISD::SETCC) |
| return false; |
| |
| return TargetLowering::isTypeDesirableForOp(Op, VT); |
| } |
| |
| SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG, |
| const SDLoc &SL, |
| SDValue Chain, |
| uint64_t Offset) const { |
| const DataLayout &DL = DAG.getDataLayout(); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| |
| const ArgDescriptor *InputPtrReg; |
| const TargetRegisterClass *RC; |
| LLT ArgTy; |
| MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); |
| |
| std::tie(InputPtrReg, RC, ArgTy) = |
| Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); |
| |
| // We may not have the kernarg segment argument if we have no kernel |
| // arguments. |
| if (!InputPtrReg) |
| return DAG.getConstant(Offset, SL, PtrVT); |
| |
| MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); |
| SDValue BasePtr = DAG.getCopyFromReg(Chain, SL, |
| MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT); |
| |
| return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::getFixed(Offset)); |
| } |
| |
| SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG, |
| const SDLoc &SL) const { |
| uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(), |
| FIRST_IMPLICIT); |
| return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset); |
| } |
| |
| SDValue SITargetLowering::getLDSKernelId(SelectionDAG &DAG, |
| const SDLoc &SL) const { |
| |
| Function &F = DAG.getMachineFunction().getFunction(); |
| std::optional<uint32_t> KnownSize = |
| AMDGPUMachineFunction::getLDSKernelIdMetadata(F); |
| if (KnownSize.has_value()) |
| return DAG.getConstant(*KnownSize, SL, MVT::i32); |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT, |
| const SDLoc &SL, SDValue Val, |
| bool Signed, |
| const ISD::InputArg *Arg) const { |
| // First, if it is a widened vector, narrow it. |
| if (VT.isVector() && |
| VT.getVectorNumElements() != MemVT.getVectorNumElements()) { |
| EVT NarrowedVT = |
| EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), |
| VT.getVectorNumElements()); |
| Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val, |
| DAG.getConstant(0, SL, MVT::i32)); |
| } |
| |
| // Then convert the vector elements or scalar value. |
| if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) && |
| VT.bitsLT(MemVT)) { |
| unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext; |
| Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT)); |
| } |
| |
| if (MemVT.isFloatingPoint()) |
| Val = getFPExtOrFPRound(DAG, Val, SL, VT); |
| else if (Signed) |
| Val = DAG.getSExtOrTrunc(Val, SL, VT); |
| else |
| Val = DAG.getZExtOrTrunc(Val, SL, VT); |
| |
| return Val; |
| } |
| |
| SDValue SITargetLowering::lowerKernargMemParameter( |
| SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain, |
| uint64_t Offset, Align Alignment, bool Signed, |
| const ISD::InputArg *Arg) const { |
| MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); |
| |
| // Try to avoid using an extload by loading earlier than the argument address, |
| // and extracting the relevant bits. The load should hopefully be merged with |
| // the previous argument. |
| if (MemVT.getStoreSize() < 4 && Alignment < 4) { |
| // TODO: Handle align < 4 and size >= 4 (can happen with packed structs). |
| int64_t AlignDownOffset = alignDown(Offset, 4); |
| int64_t OffsetDiff = Offset - AlignDownOffset; |
| |
| EVT IntVT = MemVT.changeTypeToInteger(); |
| |
| // TODO: If we passed in the base kernel offset we could have a better |
| // alignment than 4, but we don't really need it. |
| SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset); |
| SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4), |
| MachineMemOperand::MODereferenceable | |
| MachineMemOperand::MOInvariant); |
| |
| SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32); |
| SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt); |
| |
| SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract); |
| ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal); |
| ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg); |
| |
| |
| return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL); |
| } |
| |
| SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset); |
| SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment, |
| MachineMemOperand::MODereferenceable | |
| MachineMemOperand::MOInvariant); |
| |
| SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg); |
| return DAG.getMergeValues({ Val, Load.getValue(1) }, SL); |
| } |
| |
| SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA, |
| const SDLoc &SL, SDValue Chain, |
| const ISD::InputArg &Arg) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| |
| if (Arg.Flags.isByVal()) { |
| unsigned Size = Arg.Flags.getByValSize(); |
| int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false); |
| return DAG.getFrameIndex(FrameIdx, MVT::i32); |
| } |
| |
| unsigned ArgOffset = VA.getLocMemOffset(); |
| unsigned ArgSize = VA.getValVT().getStoreSize(); |
| |
| int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true); |
| |
| // Create load nodes to retrieve arguments from the stack. |
| SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); |
| SDValue ArgValue; |
| |
| // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) |
| ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; |
| MVT MemVT = VA.getValVT(); |
| |
| switch (VA.getLocInfo()) { |
| default: |
| break; |
| case CCValAssign::BCvt: |
| MemVT = VA.getLocVT(); |
| break; |
| case CCValAssign::SExt: |
| ExtType = ISD::SEXTLOAD; |
| break; |
| case CCValAssign::ZExt: |
| ExtType = ISD::ZEXTLOAD; |
| break; |
| case CCValAssign::AExt: |
| ExtType = ISD::EXTLOAD; |
| break; |
| } |
| |
| ArgValue = DAG.getExtLoad( |
| ExtType, SL, VA.getLocVT(), Chain, FIN, |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), |
| MemVT); |
| return ArgValue; |
| } |
| |
| SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG, |
| const SIMachineFunctionInfo &MFI, |
| EVT VT, |
| AMDGPUFunctionArgInfo::PreloadedValue PVID) const { |
| const ArgDescriptor *Reg = nullptr; |
| const TargetRegisterClass *RC; |
| LLT Ty; |
| |
| CallingConv::ID CC = DAG.getMachineFunction().getFunction().getCallingConv(); |
| const ArgDescriptor WorkGroupIDX = |
| ArgDescriptor::createRegister(AMDGPU::TTMP9); |
| // If GridZ is not programmed in an entry function then the hardware will set |
| // it to all zeros, so there is no need to mask the GridY value in the low |
| // order bits. |
| const ArgDescriptor WorkGroupIDY = ArgDescriptor::createRegister( |
| AMDGPU::TTMP7, |
| AMDGPU::isEntryFunctionCC(CC) && !MFI.hasWorkGroupIDZ() ? ~0u : 0xFFFFu); |
| const ArgDescriptor WorkGroupIDZ = |
| ArgDescriptor::createRegister(AMDGPU::TTMP7, 0xFFFF0000u); |
| if (Subtarget->hasArchitectedSGPRs() && |
| (AMDGPU::isCompute(CC) || CC == CallingConv::AMDGPU_Gfx)) { |
| switch (PVID) { |
| case AMDGPUFunctionArgInfo::WORKGROUP_ID_X: |
| Reg = &WorkGroupIDX; |
| RC = &AMDGPU::SReg_32RegClass; |
| Ty = LLT::scalar(32); |
| break; |
| case AMDGPUFunctionArgInfo::WORKGROUP_ID_Y: |
| Reg = &WorkGroupIDY; |
| RC = &AMDGPU::SReg_32RegClass; |
| Ty = LLT::scalar(32); |
| break; |
| case AMDGPUFunctionArgInfo::WORKGROUP_ID_Z: |
| Reg = &WorkGroupIDZ; |
| RC = &AMDGPU::SReg_32RegClass; |
| Ty = LLT::scalar(32); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if (!Reg) |
| std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID); |
| if (!Reg) { |
| if (PVID == AMDGPUFunctionArgInfo::PreloadedValue::KERNARG_SEGMENT_PTR) { |
| // It's possible for a kernarg intrinsic call to appear in a kernel with |
| // no allocated segment, in which case we do not add the user sgpr |
| // argument, so just return null. |
| return DAG.getConstant(0, SDLoc(), VT); |
| } |
| |
| // It's undefined behavior if a function marked with the amdgpu-no-* |
| // attributes uses the corresponding intrinsic. |
| return DAG.getUNDEF(VT); |
| } |
| |
| return loadInputValue(DAG, RC, VT, SDLoc(DAG.getEntryNode()), *Reg); |
| } |
| |
| static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits, |
| CallingConv::ID CallConv, |
| ArrayRef<ISD::InputArg> Ins, BitVector &Skipped, |
| FunctionType *FType, |
| SIMachineFunctionInfo *Info) { |
| for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) { |
| const ISD::InputArg *Arg = &Ins[I]; |
| |
| assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && |
| "vector type argument should have been split"); |
| |
| // First check if it's a PS input addr. |
| if (CallConv == CallingConv::AMDGPU_PS && |
| !Arg->Flags.isInReg() && PSInputNum <= 15) { |
| bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum); |
| |
| // Inconveniently only the first part of the split is marked as isSplit, |
| // so skip to the end. We only want to increment PSInputNum once for the |
| // entire split argument. |
| if (Arg->Flags.isSplit()) { |
| while (!Arg->Flags.isSplitEnd()) { |
| assert((!Arg->VT.isVector() || |
| Arg->VT.getScalarSizeInBits() == 16) && |
| "unexpected vector split in ps argument type"); |
| if (!SkipArg) |
| Splits.push_back(*Arg); |
| Arg = &Ins[++I]; |
| } |
| } |
| |
| if (SkipArg) { |
| // We can safely skip PS inputs. |
| Skipped.set(Arg->getOrigArgIndex()); |
| ++PSInputNum; |
| continue; |
| } |
| |
| Info->markPSInputAllocated(PSInputNum); |
| if (Arg->Used) |
| Info->markPSInputEnabled(PSInputNum); |
| |
| ++PSInputNum; |
| } |
| |
| Splits.push_back(*Arg); |
| } |
| } |
| |
| // Allocate special inputs passed in VGPRs. |
| void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo, |
| MachineFunction &MF, |
| const SIRegisterInfo &TRI, |
| SIMachineFunctionInfo &Info) const { |
| const LLT S32 = LLT::scalar(32); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| |
| if (Info.hasWorkItemIDX()) { |
| Register Reg = AMDGPU::VGPR0; |
| MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); |
| |
| CCInfo.AllocateReg(Reg); |
| unsigned Mask = (Subtarget->hasPackedTID() && |
| Info.hasWorkItemIDY()) ? 0x3ff : ~0u; |
| Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); |
| } |
| |
| if (Info.hasWorkItemIDY()) { |
| assert(Info.hasWorkItemIDX()); |
| if (Subtarget->hasPackedTID()) { |
| Info.setWorkItemIDY(ArgDescriptor::createRegister(AMDGPU::VGPR0, |
| 0x3ff << 10)); |
| } else { |
| unsigned Reg = AMDGPU::VGPR1; |
| MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); |
| |
| CCInfo.AllocateReg(Reg); |
| Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg)); |
| } |
| } |
| |
| if (Info.hasWorkItemIDZ()) { |
| assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY()); |
| if (Subtarget->hasPackedTID()) { |
| Info.setWorkItemIDZ(ArgDescriptor::createRegister(AMDGPU::VGPR0, |
| 0x3ff << 20)); |
| } else { |
| unsigned Reg = AMDGPU::VGPR2; |
| MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32); |
| |
| CCInfo.AllocateReg(Reg); |
| Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg)); |
| } |
| } |
| } |
| |
| // Try to allocate a VGPR at the end of the argument list, or if no argument |
| // VGPRs are left allocating a stack slot. |
| // If \p Mask is is given it indicates bitfield position in the register. |
| // If \p Arg is given use it with new ]p Mask instead of allocating new. |
| static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u, |
| ArgDescriptor Arg = ArgDescriptor()) { |
| if (Arg.isSet()) |
| return ArgDescriptor::createArg(Arg, Mask); |
| |
| ArrayRef<MCPhysReg> ArgVGPRs = ArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32); |
| unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs); |
| if (RegIdx == ArgVGPRs.size()) { |
| // Spill to stack required. |
| int64_t Offset = CCInfo.AllocateStack(4, Align(4)); |
| |
| return ArgDescriptor::createStack(Offset, Mask); |
| } |
| |
| unsigned Reg = ArgVGPRs[RegIdx]; |
| Reg = CCInfo.AllocateReg(Reg); |
| assert(Reg != AMDGPU::NoRegister); |
| |
| MachineFunction &MF = CCInfo.getMachineFunction(); |
| Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); |
| MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32)); |
| return ArgDescriptor::createRegister(Reg, Mask); |
| } |
| |
| static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo, |
| const TargetRegisterClass *RC, |
| unsigned NumArgRegs) { |
| ArrayRef<MCPhysReg> ArgSGPRs = ArrayRef(RC->begin(), 32); |
| unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs); |
| if (RegIdx == ArgSGPRs.size()) |
| report_fatal_error("ran out of SGPRs for arguments"); |
| |
| unsigned Reg = ArgSGPRs[RegIdx]; |
| Reg = CCInfo.AllocateReg(Reg); |
| assert(Reg != AMDGPU::NoRegister); |
| |
| MachineFunction &MF = CCInfo.getMachineFunction(); |
| MF.addLiveIn(Reg, RC); |
| return ArgDescriptor::createRegister(Reg); |
| } |
| |
| // If this has a fixed position, we still should allocate the register in the |
| // CCInfo state. Technically we could get away with this for values passed |
| // outside of the normal argument range. |
| static void allocateFixedSGPRInputImpl(CCState &CCInfo, |
| const TargetRegisterClass *RC, |
| MCRegister Reg) { |
| Reg = CCInfo.AllocateReg(Reg); |
| assert(Reg != AMDGPU::NoRegister); |
| MachineFunction &MF = CCInfo.getMachineFunction(); |
| MF.addLiveIn(Reg, RC); |
| } |
| |
| static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) { |
| if (Arg) { |
| allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, |
| Arg.getRegister()); |
| } else |
| Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32); |
| } |
| |
| static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) { |
| if (Arg) { |
| allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, |
| Arg.getRegister()); |
| } else |
| Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16); |
| } |
| |
| /// Allocate implicit function VGPR arguments at the end of allocated user |
| /// arguments. |
| void SITargetLowering::allocateSpecialInputVGPRs( |
| CCState &CCInfo, MachineFunction &MF, |
| const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { |
| const unsigned Mask = 0x3ff; |
| ArgDescriptor Arg; |
| |
| if (Info.hasWorkItemIDX()) { |
| Arg = allocateVGPR32Input(CCInfo, Mask); |
| Info.setWorkItemIDX(Arg); |
| } |
| |
| if (Info.hasWorkItemIDY()) { |
| Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg); |
| Info.setWorkItemIDY(Arg); |
| } |
| |
| if (Info.hasWorkItemIDZ()) |
| Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg)); |
| } |
| |
| /// Allocate implicit function VGPR arguments in fixed registers. |
| void SITargetLowering::allocateSpecialInputVGPRsFixed( |
| CCState &CCInfo, MachineFunction &MF, |
| const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { |
| Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31); |
| if (!Reg) |
| report_fatal_error("failed to allocated VGPR for implicit arguments"); |
| |
| const unsigned Mask = 0x3ff; |
| Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask)); |
| Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10)); |
| Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20)); |
| } |
| |
| void SITargetLowering::allocateSpecialInputSGPRs( |
| CCState &CCInfo, |
| MachineFunction &MF, |
| const SIRegisterInfo &TRI, |
| SIMachineFunctionInfo &Info) const { |
| auto &ArgInfo = Info.getArgInfo(); |
| const GCNUserSGPRUsageInfo &UserSGPRInfo = Info.getUserSGPRInfo(); |
| |
| // TODO: Unify handling with private memory pointers. |
| if (UserSGPRInfo.hasDispatchPtr()) |
| allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr); |
| |
| const Module *M = MF.getFunction().getParent(); |
| if (UserSGPRInfo.hasQueuePtr() && |
| AMDGPU::getAMDHSACodeObjectVersion(*M) < AMDGPU::AMDHSA_COV5) |
| allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr); |
| |
| // Implicit arg ptr takes the place of the kernarg segment pointer. This is a |
| // constant offset from the kernarg segment. |
| if (Info.hasImplicitArgPtr()) |
| allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr); |
| |
| if (UserSGPRInfo.hasDispatchID()) |
| allocateSGPR64Input(CCInfo, ArgInfo.DispatchID); |
| |
| // flat_scratch_init is not applicable for non-kernel functions. |
| |
| if (Info.hasWorkGroupIDX()) |
| allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX); |
| |
| if (Info.hasWorkGroupIDY()) |
| allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY); |
| |
| if (Info.hasWorkGroupIDZ()) |
| allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ); |
| |
| if (Info.hasLDSKernelId()) |
| allocateSGPR32Input(CCInfo, ArgInfo.LDSKernelId); |
| } |
| |
| // Allocate special inputs passed in user SGPRs. |
| void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo, |
| MachineFunction &MF, |
| const SIRegisterInfo &TRI, |
| SIMachineFunctionInfo &Info) const { |
| const GCNUserSGPRUsageInfo &UserSGPRInfo = Info.getUserSGPRInfo(); |
| if (UserSGPRInfo.hasImplicitBufferPtr()) { |
| Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI); |
| MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); |
| CCInfo.AllocateReg(ImplicitBufferPtrReg); |
| } |
| |
| // FIXME: How should these inputs interact with inreg / custom SGPR inputs? |
| if (UserSGPRInfo.hasPrivateSegmentBuffer()) { |
| Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); |
| MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); |
| CCInfo.AllocateReg(PrivateSegmentBufferReg); |
| } |
| |
| if (UserSGPRInfo.hasDispatchPtr()) { |
| Register DispatchPtrReg = Info.addDispatchPtr(TRI); |
| MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); |
| CCInfo.AllocateReg(DispatchPtrReg); |
| } |
| |
| const Module *M = MF.getFunction().getParent(); |
| if (UserSGPRInfo.hasQueuePtr() && |
| AMDGPU::getAMDHSACodeObjectVersion(*M) < AMDGPU::AMDHSA_COV5) { |
| Register QueuePtrReg = Info.addQueuePtr(TRI); |
| MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); |
| CCInfo.AllocateReg(QueuePtrReg); |
| } |
| |
| if (UserSGPRInfo.hasKernargSegmentPtr()) { |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| Register InputPtrReg = Info.addKernargSegmentPtr(TRI); |
| CCInfo.AllocateReg(InputPtrReg); |
| |
| Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass); |
| MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64)); |
| } |
| |
| if (UserSGPRInfo.hasDispatchID()) { |
| Register DispatchIDReg = Info.addDispatchID(TRI); |
| MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); |
| CCInfo.AllocateReg(DispatchIDReg); |
| } |
| |
| if (UserSGPRInfo.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) { |
| Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); |
| MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); |
| CCInfo.AllocateReg(FlatScratchInitReg); |
| } |
| |
| if (UserSGPRInfo.hasPrivateSegmentSize()) { |
| Register PrivateSegmentSizeReg = Info.addPrivateSegmentSize(TRI); |
| MF.addLiveIn(PrivateSegmentSizeReg, &AMDGPU::SGPR_32RegClass); |
| CCInfo.AllocateReg(PrivateSegmentSizeReg); |
| } |
| |
| // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read |
| // these from the dispatch pointer. |
| } |
| |
| // Allocate pre-loaded kernel arguemtns. Arguments to be preloading must be |
| // sequential starting from the first argument. |
| void SITargetLowering::allocatePreloadKernArgSGPRs( |
| CCState &CCInfo, SmallVectorImpl<CCValAssign> &ArgLocs, |
| const SmallVectorImpl<ISD::InputArg> &Ins, MachineFunction &MF, |
| const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const { |
| Function &F = MF.getFunction(); |
| unsigned LastExplicitArgOffset = |
| MF.getSubtarget<GCNSubtarget>().getExplicitKernelArgOffset(); |
| GCNUserSGPRUsageInfo &SGPRInfo = Info.getUserSGPRInfo(); |
| bool InPreloadSequence = true; |
| unsigned InIdx = 0; |
| for (auto &Arg : F.args()) { |
| if (!InPreloadSequence || !Arg.hasInRegAttr()) |
| break; |
| |
| int ArgIdx = Arg.getArgNo(); |
| // Don't preload non-original args or parts not in the current preload |
| // sequence. |
| if (InIdx < Ins.size() && (!Ins[InIdx].isOrigArg() || |
| (int)Ins[InIdx].getOrigArgIndex() != ArgIdx)) |
| break; |
| |
| for (; InIdx < Ins.size() && Ins[InIdx].isOrigArg() && |
| (int)Ins[InIdx].getOrigArgIndex() == ArgIdx; |
| InIdx++) { |
| assert(ArgLocs[ArgIdx].isMemLoc()); |
| auto &ArgLoc = ArgLocs[InIdx]; |
| const Align KernelArgBaseAlign = Align(16); |
| unsigned ArgOffset = ArgLoc.getLocMemOffset(); |
| Align Alignment = commonAlignment(KernelArgBaseAlign, ArgOffset); |
| unsigned NumAllocSGPRs = |
| alignTo(ArgLoc.getLocVT().getFixedSizeInBits(), 32) / 32; |
| |
| // Arg is preloaded into the previous SGPR. |
| if (ArgLoc.getLocVT().getStoreSize() < 4 && Alignment < 4) { |
| Info.getArgInfo().PreloadKernArgs[InIdx].Regs.push_back( |
| Info.getArgInfo().PreloadKernArgs[InIdx - 1].Regs[0]); |
| continue; |
| } |
| |
| unsigned Padding = ArgOffset - LastExplicitArgOffset; |
| unsigned PaddingSGPRs = alignTo(Padding, 4) / 4; |
| // Check for free user SGPRs for preloading. |
| if (PaddingSGPRs + NumAllocSGPRs + 1 /*Synthetic SGPRs*/ > |
| SGPRInfo.getNumFreeUserSGPRs()) { |
| InPreloadSequence = false; |
| break; |
| } |
| |
| // Preload this argument. |
| const TargetRegisterClass *RC = |
| TRI.getSGPRClassForBitWidth(NumAllocSGPRs * 32); |
| SmallVectorImpl<MCRegister> *PreloadRegs = |
| Info.addPreloadedKernArg(TRI, RC, NumAllocSGPRs, InIdx, PaddingSGPRs); |
| |
| if (PreloadRegs->size() > 1) |
| RC = &AMDGPU::SGPR_32RegClass; |
| for (auto &Reg : *PreloadRegs) { |
| assert(Reg); |
| MF.addLiveIn(Reg, RC); |
| CCInfo.AllocateReg(Reg); |
| } |
| |
| LastExplicitArgOffset = NumAllocSGPRs * 4 + ArgOffset; |
| } |
| } |
| } |
| |
| void SITargetLowering::allocateLDSKernelId(CCState &CCInfo, MachineFunction &MF, |
| const SIRegisterInfo &TRI, |
| SIMachineFunctionInfo &Info) const { |
| // Always allocate this last since it is a synthetic preload. |
| if (Info.hasLDSKernelId()) { |
| Register Reg = Info.addLDSKernelId(); |
| MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); |
| CCInfo.AllocateReg(Reg); |
| } |
| } |
| |
| // Allocate special input registers that are initialized per-wave. |
| void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo, |
| MachineFunction &MF, |
| SIMachineFunctionInfo &Info, |
| CallingConv::ID CallConv, |
| bool IsShader) const { |
| bool HasArchitectedSGPRs = Subtarget->hasArchitectedSGPRs(); |
| if (Subtarget->hasUserSGPRInit16Bug() && !IsShader) { |
| // Note: user SGPRs are handled by the front-end for graphics shaders |
| // Pad up the used user SGPRs with dead inputs. |
| |
| // TODO: NumRequiredSystemSGPRs computation should be adjusted appropriately |
| // before enabling architected SGPRs for workgroup IDs. |
| assert(!HasArchitectedSGPRs && "Unhandled feature for the subtarget"); |
| |
| unsigned CurrentUserSGPRs = Info.getNumUserSGPRs(); |
| // Note we do not count the PrivateSegmentWaveByteOffset. We do not want to |
| // rely on it to reach 16 since if we end up having no stack usage, it will |
| // not really be added. |
| unsigned NumRequiredSystemSGPRs = Info.hasWorkGroupIDX() + |
| Info.hasWorkGroupIDY() + |
| Info.hasWorkGroupIDZ() + |
| Info.hasWorkGroupInfo(); |
| for (unsigned i = NumRequiredSystemSGPRs + CurrentUserSGPRs; i < 16; ++i) { |
| Register Reg = Info.addReservedUserSGPR(); |
| MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); |
| CCInfo.AllocateReg(Reg); |
| } |
| } |
| |
| if (!HasArchitectedSGPRs) { |
| if (Info.hasWorkGroupIDX()) { |
| Register Reg = Info.addWorkGroupIDX(); |
| MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); |
| CCInfo.AllocateReg(Reg); |
| } |
| |
| if (Info.hasWorkGroupIDY()) { |
| Register Reg = Info.addWorkGroupIDY(); |
| MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); |
| CCInfo.AllocateReg(Reg); |
| } |
| |
| if (Info.hasWorkGroupIDZ()) { |
| Register Reg = Info.addWorkGroupIDZ(); |
| MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); |
| CCInfo.AllocateReg(Reg); |
| } |
| } |
| |
| if (Info.hasWorkGroupInfo()) { |
| Register Reg = Info.addWorkGroupInfo(); |
| MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass); |
| CCInfo.AllocateReg(Reg); |
| } |
| |
| if (Info.hasPrivateSegmentWaveByteOffset()) { |
| // Scratch wave offset passed in system SGPR. |
| unsigned PrivateSegmentWaveByteOffsetReg; |
| |
| if (IsShader) { |
| PrivateSegmentWaveByteOffsetReg = |
| Info.getPrivateSegmentWaveByteOffsetSystemSGPR(); |
| |
| // This is true if the scratch wave byte offset doesn't have a fixed |
| // location. |
| if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) { |
| PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo); |
| Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg); |
| } |
| } else |
| PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset(); |
| |
| MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass); |
| CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg); |
| } |
| |
| assert(!Subtarget->hasUserSGPRInit16Bug() || IsShader || |
| Info.getNumPreloadedSGPRs() >= 16); |
| } |
| |
| static void reservePrivateMemoryRegs(const TargetMachine &TM, |
| MachineFunction &MF, |
| const SIRegisterInfo &TRI, |
| SIMachineFunctionInfo &Info) { |
| // Now that we've figured out where the scratch register inputs are, see if |
| // should reserve the arguments and use them directly. |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| bool HasStackObjects = MFI.hasStackObjects(); |
| const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); |
| |
| // Record that we know we have non-spill stack objects so we don't need to |
| // check all stack objects later. |
| if (HasStackObjects) |
| Info.setHasNonSpillStackObjects(true); |
| |
| // Everything live out of a block is spilled with fast regalloc, so it's |
| // almost certain that spilling will be required. |
| if (TM.getOptLevel() == CodeGenOptLevel::None) |
| HasStackObjects = true; |
| |
| // For now assume stack access is needed in any callee functions, so we need |
| // the scratch registers to pass in. |
| bool RequiresStackAccess = HasStackObjects || MFI.hasCalls(); |
| |
| if (!ST.enableFlatScratch()) { |
| if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) { |
| // If we have stack objects, we unquestionably need the private buffer |
| // resource. For the Code Object V2 ABI, this will be the first 4 user |
| // SGPR inputs. We can reserve those and use them directly. |
| |
| Register PrivateSegmentBufferReg = |
| Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER); |
| Info.setScratchRSrcReg(PrivateSegmentBufferReg); |
| } else { |
| unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF); |
| // We tentatively reserve the last registers (skipping the last registers |
| // which may contain VCC, FLAT_SCR, and XNACK). After register allocation, |
| // we'll replace these with the ones immediately after those which were |
| // really allocated. In the prologue copies will be inserted from the |
| // argument to these reserved registers. |
| |
| // Without HSA, relocations are used for the scratch pointer and the |
| // buffer resource setup is always inserted in the prologue. Scratch wave |
| // offset is still in an input SGPR. |
| Info.setScratchRSrcReg(ReservedBufferReg); |
| } |
| } |
| |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| |
| // For entry functions we have to set up the stack pointer if we use it, |
| // whereas non-entry functions get this "for free". This means there is no |
| // intrinsic advantage to using S32 over S34 in cases where we do not have |
| // calls but do need a frame pointer (i.e. if we are requested to have one |
| // because frame pointer elimination is disabled). To keep things simple we |
| // only ever use S32 as the call ABI stack pointer, and so using it does not |
| // imply we need a separate frame pointer. |
| // |
| // Try to use s32 as the SP, but move it if it would interfere with input |
| // arguments. This won't work with calls though. |
| // |
| // FIXME: Move SP to avoid any possible inputs, or find a way to spill input |
| // registers. |
| if (!MRI.isLiveIn(AMDGPU::SGPR32)) { |
| Info.setStackPtrOffsetReg(AMDGPU::SGPR32); |
| } else { |
| assert(AMDGPU::isShader(MF.getFunction().getCallingConv())); |
| |
| if (MFI.hasCalls()) |
| report_fatal_error("call in graphics shader with too many input SGPRs"); |
| |
| for (unsigned Reg : AMDGPU::SGPR_32RegClass) { |
| if (!MRI.isLiveIn(Reg)) { |
| Info.setStackPtrOffsetReg(Reg); |
| break; |
| } |
| } |
| |
| if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG) |
| report_fatal_error("failed to find register for SP"); |
| } |
| |
| // hasFP should be accurate for entry functions even before the frame is |
| // finalized, because it does not rely on the known stack size, only |
| // properties like whether variable sized objects are present. |
| if (ST.getFrameLowering()->hasFP(MF)) { |
| Info.setFrameOffsetReg(AMDGPU::SGPR33); |
| } |
| } |
| |
| bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const { |
| const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); |
| return !Info->isEntryFunction(); |
| } |
| |
| void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { |
| |
| } |
| |
| void SITargetLowering::insertCopiesSplitCSR( |
| MachineBasicBlock *Entry, |
| const SmallVectorImpl<MachineBasicBlock *> &Exits) const { |
| const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); |
| |
| const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); |
| if (!IStart) |
| return; |
| |
| const TargetInstrInfo *TII = Subtarget->getInstrInfo(); |
| MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); |
| MachineBasicBlock::iterator MBBI = Entry->begin(); |
| for (const MCPhysReg *I = IStart; *I; ++I) { |
| const TargetRegisterClass *RC = nullptr; |
| if (AMDGPU::SReg_64RegClass.contains(*I)) |
| RC = &AMDGPU::SGPR_64RegClass; |
| else if (AMDGPU::SReg_32RegClass.contains(*I)) |
| RC = &AMDGPU::SGPR_32RegClass; |
| else |
| llvm_unreachable("Unexpected register class in CSRsViaCopy!"); |
| |
| Register NewVR = MRI->createVirtualRegister(RC); |
| // Create copy from CSR to a virtual register. |
| Entry->addLiveIn(*I); |
| BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) |
| .addReg(*I); |
| |
| // Insert the copy-back instructions right before the terminator. |
| for (auto *Exit : Exits) |
| BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), |
| TII->get(TargetOpcode::COPY), *I) |
| .addReg(NewVR); |
| } |
| } |
| |
| SDValue SITargetLowering::LowerFormalArguments( |
| SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const Function &Fn = MF.getFunction(); |
| FunctionType *FType = MF.getFunction().getFunctionType(); |
| SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| |
| if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) { |
| DiagnosticInfoUnsupported NoGraphicsHSA( |
| Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc()); |
| DAG.getContext()->diagnose(NoGraphicsHSA); |
| return DAG.getEntryNode(); |
| } |
| |
| SmallVector<ISD::InputArg, 16> Splits; |
| SmallVector<CCValAssign, 16> ArgLocs; |
| BitVector Skipped(Ins.size()); |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, |
| *DAG.getContext()); |
| |
| bool IsGraphics = AMDGPU::isGraphics(CallConv); |
| bool IsKernel = AMDGPU::isKernel(CallConv); |
| bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv); |
| |
| if (IsGraphics) { |
| const GCNUserSGPRUsageInfo &UserSGPRInfo = Info->getUserSGPRInfo(); |
| assert(!UserSGPRInfo.hasDispatchPtr() && |
| !UserSGPRInfo.hasKernargSegmentPtr() && !Info->hasWorkGroupInfo() && |
| !Info->hasLDSKernelId() && !Info->hasWorkItemIDX() && |
| !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()); |
| (void)UserSGPRInfo; |
| if (!Subtarget->enableFlatScratch()) |
| assert(!UserSGPRInfo.hasFlatScratchInit()); |
| if ((CallConv != CallingConv::AMDGPU_CS && |
| CallConv != CallingConv::AMDGPU_Gfx) || |
| !Subtarget->hasArchitectedSGPRs()) |
| assert(!Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && |
| !Info->hasWorkGroupIDZ()); |
| } |
| |
| if (CallConv == CallingConv::AMDGPU_PS) { |
| processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info); |
| |
| // At least one interpolation mode must be enabled or else the GPU will |
| // hang. |
| // |
| // Check PSInputAddr instead of PSInputEnable. The idea is that if the user |
| // set PSInputAddr, the user wants to enable some bits after the compilation |
| // based on run-time states. Since we can't know what the final PSInputEna |
| // will look like, so we shouldn't do anything here and the user should take |
| // responsibility for the correct programming. |
| // |
| // Otherwise, the following restrictions apply: |
| // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. |
| // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be |
| // enabled too. |
| if ((Info->getPSInputAddr() & 0x7F) == 0 || |
| ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) { |
| CCInfo.AllocateReg(AMDGPU::VGPR0); |
| CCInfo.AllocateReg(AMDGPU::VGPR1); |
| Info->markPSInputAllocated(0); |
| Info->markPSInputEnabled(0); |
| } |
| if (Subtarget->isAmdPalOS()) { |
| // For isAmdPalOS, the user does not enable some bits after compilation |
| // based on run-time states; the register values being generated here are |
| // the final ones set in hardware. Therefore we need to apply the |
| // workaround to PSInputAddr and PSInputEnable together. (The case where |
| // a bit is set in PSInputAddr but not PSInputEnable is where the |
| // frontend set up an input arg for a particular interpolation mode, but |
| // nothing uses that input arg. Really we should have an earlier pass |
| // that removes such an arg.) |
| unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); |
| if ((PsInputBits & 0x7F) == 0 || |
| ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1))) |
| Info->markPSInputEnabled(llvm::countr_zero(Info->getPSInputAddr())); |
| } |
| } else if (IsKernel) { |
| assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()); |
| } else { |
| Splits.append(Ins.begin(), Ins.end()); |
| } |
| |
| if (IsKernel) |
| analyzeFormalArgumentsCompute(CCInfo, Ins); |
| |
| if (IsEntryFunc) { |
| allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); |
| allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info); |
| if (IsKernel && Subtarget->hasKernargPreload()) |
| allocatePreloadKernArgSGPRs(CCInfo, ArgLocs, Ins, MF, *TRI, *Info); |
| |
| allocateLDSKernelId(CCInfo, MF, *TRI, *Info); |
| } else if (!IsGraphics) { |
| // For the fixed ABI, pass workitem IDs in the last argument register. |
| allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); |
| |
| // FIXME: Sink this into allocateSpecialInputSGPRs |
| if (!Subtarget->enableFlatScratch()) |
| CCInfo.AllocateReg(Info->getScratchRSrcReg()); |
| |
| allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); |
| } |
| |
| if (!IsKernel) { |
| CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg); |
| CCInfo.AnalyzeFormalArguments(Splits, AssignFn); |
| } |
| |
| SmallVector<SDValue, 16> Chains; |
| |
| // FIXME: This is the minimum kernel argument alignment. We should improve |
| // this to the maximum alignment of the arguments. |
| // |
| // FIXME: Alignment of explicit arguments totally broken with non-0 explicit |
| // kern arg offset. |
| const Align KernelArgBaseAlign = Align(16); |
| |
| for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { |
| const ISD::InputArg &Arg = Ins[i]; |
| if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) { |
| InVals.push_back(DAG.getUNDEF(Arg.VT)); |
| continue; |
| } |
| |
| CCValAssign &VA = ArgLocs[ArgIdx++]; |
| MVT VT = VA.getLocVT(); |
| |
| if (IsEntryFunc && VA.isMemLoc()) { |
| VT = Ins[i].VT; |
| EVT MemVT = VA.getLocVT(); |
| |
| const uint64_t Offset = VA.getLocMemOffset(); |
| Align Alignment = commonAlignment(KernelArgBaseAlign, Offset); |
| |
| if (Arg.Flags.isByRef()) { |
| SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset); |
| |
| const GCNTargetMachine &TM = |
| static_cast<const GCNTargetMachine &>(getTargetMachine()); |
| if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS, |
| Arg.Flags.getPointerAddrSpace())) { |
| Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS, |
| Arg.Flags.getPointerAddrSpace()); |
| } |
| |
| InVals.push_back(Ptr); |
| continue; |
| } |
| |
| SDValue NewArg; |
| if (Arg.isOrigArg() && Info->getArgInfo().PreloadKernArgs.count(i)) { |
| if (MemVT.getStoreSize() < 4 && Alignment < 4) { |
| // In this case the argument is packed into the previous preload SGPR. |
| int64_t AlignDownOffset = alignDown(Offset, 4); |
| int64_t OffsetDiff = Offset - AlignDownOffset; |
| EVT IntVT = MemVT.changeTypeToInteger(); |
| |
| const SIMachineFunctionInfo *Info = |
| MF.getInfo<SIMachineFunctionInfo>(); |
| MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); |
| Register Reg = |
| Info->getArgInfo().PreloadKernArgs.find(i)->getSecond().Regs[0]; |
| |
| assert(Reg); |
| Register VReg = MRI.getLiveInVirtReg(Reg); |
| SDValue Copy = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i32); |
| |
| SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, DL, MVT::i32); |
| SDValue Extract = DAG.getNode(ISD::SRL, DL, MVT::i32, Copy, ShiftAmt); |
| |
| SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, Extract); |
| ArgVal = DAG.getNode(ISD::BITCAST, DL, MemVT, ArgVal); |
| NewArg = convertArgType(DAG, VT, MemVT, DL, ArgVal, |
| Ins[i].Flags.isSExt(), &Ins[i]); |
| |
| NewArg = DAG.getMergeValues({NewArg, Copy.getValue(1)}, DL); |
| } else { |
| const SIMachineFunctionInfo *Info = |
| MF.getInfo<SIMachineFunctionInfo>(); |
| MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); |
| const SmallVectorImpl<MCRegister> &PreloadRegs = |
| Info->getArgInfo().PreloadKernArgs.find(i)->getSecond().Regs; |
| |
| SDValue Copy; |
| if (PreloadRegs.size() == 1) { |
| Register VReg = MRI.getLiveInVirtReg(PreloadRegs[0]); |
| const TargetRegisterClass *RC = MRI.getRegClass(VReg); |
| NewArg = DAG.getCopyFromReg( |
| Chain, DL, VReg, |
| EVT::getIntegerVT(*DAG.getContext(), |
| TRI->getRegSizeInBits(*RC))); |
| |
| } else { |
| // If the kernarg alignment does not match the alignment of the SGPR |
| // tuple RC that can accommodate this argument, it will be built up |
| // via copies from from the individual SGPRs that the argument was |
| // preloaded to. |
| SmallVector<SDValue, 4> Elts; |
| for (auto Reg : PreloadRegs) { |
| Register VReg = MRI.getLiveInVirtReg(Reg); |
| Copy = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i32); |
| Elts.push_back(Copy); |
| } |
| NewArg = |
| DAG.getBuildVector(EVT::getVectorVT(*DAG.getContext(), MVT::i32, |
| PreloadRegs.size()), |
| DL, Elts); |
| } |
| |
| // If the argument was preloaded to multiple consecutive 32-bit |
| // registers because of misalignment between addressable SGPR tuples |
| // and the argument size, we can still assume that because of kernarg |
| // segment alignment restrictions that NewArg's size is the same as |
| // MemVT and just do a bitcast. If MemVT is less than 32-bits we add a |
| // truncate since we cannot preload to less than a single SGPR and the |
| // MemVT may be smaller. |
| EVT MemVTInt = |
| EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); |
| if (MemVT.bitsLT(NewArg.getSimpleValueType())) |
| NewArg = DAG.getNode(ISD::TRUNCATE, DL, MemVTInt, NewArg); |
| |
| NewArg = DAG.getBitcast(MemVT, NewArg); |
| NewArg = convertArgType(DAG, VT, MemVT, DL, NewArg, |
| Ins[i].Flags.isSExt(), &Ins[i]); |
| NewArg = DAG.getMergeValues({NewArg, Chain}, DL); |
| } |
| } else { |
| NewArg = |
| lowerKernargMemParameter(DAG, VT, MemVT, DL, Chain, Offset, |
| Alignment, Ins[i].Flags.isSExt(), &Ins[i]); |
| } |
| Chains.push_back(NewArg.getValue(1)); |
| |
| auto *ParamTy = |
| dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex())); |
| if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && |
| ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || |
| ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) { |
| // On SI local pointers are just offsets into LDS, so they are always |
| // less than 16-bits. On CI and newer they could potentially be |
| // real pointers, so we can't guarantee their size. |
| NewArg = DAG.getNode(ISD::AssertZext, DL, NewArg.getValueType(), NewArg, |
| DAG.getValueType(MVT::i16)); |
| } |
| |
| InVals.push_back(NewArg); |
| continue; |
| } |
| if (!IsEntryFunc && VA.isMemLoc()) { |
| SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg); |
| InVals.push_back(Val); |
| if (!Arg.Flags.isByVal()) |
| Chains.push_back(Val.getValue(1)); |
| continue; |
| } |
| |
| assert(VA.isRegLoc() && "Parameter must be in a register!"); |
| |
| Register Reg = VA.getLocReg(); |
| const TargetRegisterClass *RC = nullptr; |
| if (AMDGPU::VGPR_32RegClass.contains(Reg)) |
| RC = &AMDGPU::VGPR_32RegClass; |
| else if (AMDGPU::SGPR_32RegClass.contains(Reg)) |
| RC = &AMDGPU::SGPR_32RegClass; |
| else |
| llvm_unreachable("Unexpected register class in LowerFormalArguments!"); |
| EVT ValVT = VA.getValVT(); |
| |
| Reg = MF.addLiveIn(Reg, RC); |
| SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); |
| |
| if (Arg.Flags.isSRet()) { |
| // The return object should be reasonably addressable. |
| |
| // FIXME: This helps when the return is a real sret. If it is a |
| // automatically inserted sret (i.e. CanLowerReturn returns false), an |
| // extra copy is inserted in SelectionDAGBuilder which obscures this. |
| unsigned NumBits |
| = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex(); |
| Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, |
| DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits))); |
| } |
| |
| // If this is an 8 or 16-bit value, it is really passed promoted |
| // to 32 bits. Insert an assert[sz]ext to capture this, then |
| // truncate to the right size. |
| switch (VA.getLocInfo()) { |
| case CCValAssign::Full: |
| break; |
| case CCValAssign::BCvt: |
| Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); |
| break; |
| case CCValAssign::SExt: |
| Val = DAG.getNode(ISD::AssertSext, DL, VT, Val, |
| DAG.getValueType(ValVT)); |
| Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); |
| break; |
| case CCValAssign::ZExt: |
| Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, |
| DAG.getValueType(ValVT)); |
| Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); |
| break; |
| case CCValAssign::AExt: |
| Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); |
| break; |
| default: |
| llvm_unreachable("Unknown loc info!"); |
| } |
| |
| InVals.push_back(Val); |
| } |
| |
| // Start adding system SGPRs. |
| if (IsEntryFunc) |
| allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics); |
| |
| // DAG.getPass() returns nullptr when using new pass manager. |
| // TODO: Use DAG.getMFAM() to access analysis result. |
| if (DAG.getPass()) { |
| auto &ArgUsageInfo = DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); |
| ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo()); |
| } |
| |
| unsigned StackArgSize = CCInfo.getStackSize(); |
| Info->setBytesInStackArgArea(StackArgSize); |
| |
| return Chains.empty() ? Chain : |
| DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); |
| } |
| |
| // TODO: If return values can't fit in registers, we should return as many as |
| // possible in registers before passing on stack. |
| bool SITargetLowering::CanLowerReturn( |
| CallingConv::ID CallConv, |
| MachineFunction &MF, bool IsVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| LLVMContext &Context) const { |
| // Replacing returns with sret/stack usage doesn't make sense for shaders. |
| // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn |
| // for shaders. Vector types should be explicitly handled by CC. |
| if (AMDGPU::isEntryFunctionCC(CallConv)) |
| return true; |
| |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); |
| if (!CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg))) |
| return false; |
| |
| // We must use the stack if return would require unavailable registers. |
| unsigned MaxNumVGPRs = Subtarget->getMaxNumVGPRs(MF); |
| unsigned TotalNumVGPRs = AMDGPU::VGPR_32RegClass.getNumRegs(); |
| for (unsigned i = MaxNumVGPRs; i < TotalNumVGPRs; ++i) |
| if (CCInfo.isAllocated(AMDGPU::VGPR_32RegClass.getRegister(i))) |
| return false; |
| |
| return true; |
| } |
| |
| SDValue |
| SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, |
| bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SDLoc &DL, SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| |
| if (AMDGPU::isKernel(CallConv)) { |
| return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs, |
| OutVals, DL, DAG); |
| } |
| |
| bool IsShader = AMDGPU::isShader(CallConv); |
| |
| Info->setIfReturnsVoid(Outs.empty()); |
| bool IsWaveEnd = Info->returnsVoid() && IsShader; |
| |
| // CCValAssign - represent the assignment of the return value to a location. |
| SmallVector<CCValAssign, 48> RVLocs; |
| SmallVector<ISD::OutputArg, 48> Splits; |
| |
| // CCState - Info about the registers and stack slots. |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, |
| *DAG.getContext()); |
| |
| // Analyze outgoing return values. |
| CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg)); |
| |
| SDValue Glue; |
| SmallVector<SDValue, 48> RetOps; |
| RetOps.push_back(Chain); // Operand #0 = Chain (updated below) |
| |
| // Copy the result values into the output registers. |
| for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E; |
| ++I, ++RealRVLocIdx) { |
| CCValAssign &VA = RVLocs[I]; |
| assert(VA.isRegLoc() && "Can only return in registers!"); |
| // TODO: Partially return in registers if return values don't fit. |
| SDValue Arg = OutVals[RealRVLocIdx]; |
| |
| // Copied from other backends. |
| switch (VA.getLocInfo()) { |
| case CCValAssign::Full: |
| break; |
| case CCValAssign::BCvt: |
| Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::SExt: |
| Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::ZExt: |
| Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::AExt: |
| Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); |
| break; |
| default: |
| llvm_unreachable("Unknown loc info!"); |
| } |
| |
| Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Glue); |
| Glue = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); |
| } |
| |
| // FIXME: Does sret work properly? |
| if (!Info->isEntryFunction()) { |
| const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); |
| const MCPhysReg *I = |
| TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); |
| if (I) { |
| for (; *I; ++I) { |
| if (AMDGPU::SReg_64RegClass.contains(*I)) |
| RetOps.push_back(DAG.getRegister(*I, MVT::i64)); |
| else if (AMDGPU::SReg_32RegClass.contains(*I)) |
| RetOps.push_back(DAG.getRegister(*I, MVT::i32)); |
| else |
| llvm_unreachable("Unexpected register class in CSRsViaCopy!"); |
| } |
| } |
| } |
| |
| // Update chain and glue. |
| RetOps[0] = Chain; |
| if (Glue.getNode()) |
| RetOps.push_back(Glue); |
| |
| unsigned Opc = AMDGPUISD::ENDPGM; |
| if (!IsWaveEnd) |
| Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_GLUE; |
| return DAG.getNode(Opc, DL, MVT::Other, RetOps); |
| } |
| |
| SDValue SITargetLowering::LowerCallResult( |
| SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool IsVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn, |
| SDValue ThisVal) const { |
| CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg); |
| |
| // Assign locations to each value returned by this call. |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, |
| *DAG.getContext()); |
| CCInfo.AnalyzeCallResult(Ins, RetCC); |
| |
| // Copy all of the result registers out of their specified physreg. |
| for (CCValAssign VA : RVLocs) { |
| SDValue Val; |
| |
| if (VA.isRegLoc()) { |
| Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InGlue); |
| Chain = Val.getValue(1); |
| InGlue = Val.getValue(2); |
| } else if (VA.isMemLoc()) { |
| report_fatal_error("TODO: return values in memory"); |
| } else |
| llvm_unreachable("unknown argument location type"); |
| |
| switch (VA.getLocInfo()) { |
| case CCValAssign::Full: |
| break; |
| case CCValAssign::BCvt: |
| Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); |
| break; |
| case CCValAssign::ZExt: |
| Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, |
| DAG.getValueType(VA.getValVT())); |
| Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); |
| break; |
| case CCValAssign::SExt: |
| Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, |
| DAG.getValueType(VA.getValVT())); |
| Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); |
| break; |
| case CCValAssign::AExt: |
| Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); |
| break; |
| default: |
| llvm_unreachable("Unknown loc info!"); |
| } |
| |
| InVals.push_back(Val); |
| } |
| |
| return Chain; |
| } |
| |
| // Add code to pass special inputs required depending on used features separate |
| // from the explicit user arguments present in the IR. |
| void SITargetLowering::passSpecialInputs( |
| CallLoweringInfo &CLI, |
| CCState &CCInfo, |
| const SIMachineFunctionInfo &Info, |
| SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, |
| SmallVectorImpl<SDValue> &MemOpChains, |
| SDValue Chain) const { |
| // If we don't have a call site, this was a call inserted by |
| // legalization. These can never use special inputs. |
| if (!CLI.CB) |
| return; |
| |
| SelectionDAG &DAG = CLI.DAG; |
| const SDLoc &DL = CLI.DL; |
| const Function &F = DAG.getMachineFunction().getFunction(); |
| |
| const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); |
| const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo(); |
| |
| const AMDGPUFunctionArgInfo *CalleeArgInfo |
| = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; |
| if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) { |
| // DAG.getPass() returns nullptr when using new pass manager. |
| // TODO: Use DAG.getMFAM() to access analysis result. |
| if (DAG.getPass()) { |
| auto &ArgUsageInfo = |
| DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>(); |
| CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc); |
| } |
| } |
| |
| // TODO: Unify with private memory register handling. This is complicated by |
| // the fact that at least in kernels, the input argument is not necessarily |
| // in the same location as the input. |
| static constexpr std::pair<AMDGPUFunctionArgInfo::PreloadedValue, |
| StringLiteral> ImplicitAttrs[] = { |
| {AMDGPUFunctionArgInfo::DISPATCH_PTR, "amdgpu-no-dispatch-ptr"}, |
| {AMDGPUFunctionArgInfo::QUEUE_PTR, "amdgpu-no-queue-ptr" }, |
| {AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, "amdgpu-no-implicitarg-ptr"}, |
| {AMDGPUFunctionArgInfo::DISPATCH_ID, "amdgpu-no-dispatch-id"}, |
| {AMDGPUFunctionArgInfo::WORKGROUP_ID_X, "amdgpu-no-workgroup-id-x"}, |
| {AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,"amdgpu-no-workgroup-id-y"}, |
| {AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,"amdgpu-no-workgroup-id-z"}, |
| {AMDGPUFunctionArgInfo::LDS_KERNEL_ID,"amdgpu-no-lds-kernel-id"}, |
| }; |
| |
| for (auto Attr : ImplicitAttrs) { |
| const ArgDescriptor *OutgoingArg; |
| const TargetRegisterClass *ArgRC; |
| LLT ArgTy; |
| |
| AMDGPUFunctionArgInfo::PreloadedValue InputID = Attr.first; |
| |
| // If the callee does not use the attribute value, skip copying the value. |
| if (CLI.CB->hasFnAttr(Attr.second)) |
| continue; |
| |
| std::tie(OutgoingArg, ArgRC, ArgTy) = |
| CalleeArgInfo->getPreloadedValue(InputID); |
| if (!OutgoingArg) |
| continue; |
| |
| const ArgDescriptor *IncomingArg; |
| const TargetRegisterClass *IncomingArgRC; |
| LLT Ty; |
| std::tie(IncomingArg, IncomingArgRC, Ty) = |
| CallerArgInfo.getPreloadedValue(InputID); |
| assert(IncomingArgRC == ArgRC); |
| |
| // All special arguments are ints for now. |
| EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32; |
| SDValue InputReg; |
| |
| if (IncomingArg) { |
| InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg); |
| } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) { |
| // The implicit arg ptr is special because it doesn't have a corresponding |
| // input for kernels, and is computed from the kernarg segment pointer. |
| InputReg = getImplicitArgPtr(DAG, DL); |
| } else if (InputID == AMDGPUFunctionArgInfo::LDS_KERNEL_ID) { |
| std::optional<uint32_t> Id = |
| AMDGPUMachineFunction::getLDSKernelIdMetadata(F); |
| if (Id.has_value()) { |
| InputReg = DAG.getConstant(*Id, DL, ArgVT); |
| } else { |
| InputReg = DAG.getUNDEF(ArgVT); |
| } |
| } else { |
| // We may have proven the input wasn't needed, although the ABI is |
| // requiring it. We just need to allocate the register appropriately. |
| InputReg = DAG.getUNDEF(ArgVT); |
| } |
| |
| if (OutgoingArg->isRegister()) { |
| RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); |
| if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) |
| report_fatal_error("failed to allocate implicit input argument"); |
| } else { |
| unsigned SpecialArgOffset = |
| CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4)); |
| SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, |
| SpecialArgOffset); |
| MemOpChains.push_back(ArgStore); |
| } |
| } |
| |
| // Pack workitem IDs into a single register or pass it as is if already |
| // packed. |
| const ArgDescriptor *OutgoingArg; |
| const TargetRegisterClass *ArgRC; |
| LLT Ty; |
| |
| std::tie(OutgoingArg, ArgRC, Ty) = |
| CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); |
| if (!OutgoingArg) |
| std::tie(OutgoingArg, ArgRC, Ty) = |
| CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); |
| if (!OutgoingArg) |
| std::tie(OutgoingArg, ArgRC, Ty) = |
| CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); |
| if (!OutgoingArg) |
| return; |
| |
| const ArgDescriptor *IncomingArgX = std::get<0>( |
| CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X)); |
| const ArgDescriptor *IncomingArgY = std::get<0>( |
| CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y)); |
| const ArgDescriptor *IncomingArgZ = std::get<0>( |
| CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z)); |
| |
| SDValue InputReg; |
| SDLoc SL; |
| |
| const bool NeedWorkItemIDX = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-x"); |
| const bool NeedWorkItemIDY = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-y"); |
| const bool NeedWorkItemIDZ = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-z"); |
| |
| // If incoming ids are not packed we need to pack them. |
| if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX && |
| NeedWorkItemIDX) { |
| if (Subtarget->getMaxWorkitemID(F, 0) != 0) { |
| InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX); |
| } else { |
| InputReg = DAG.getConstant(0, DL, MVT::i32); |
| } |
| } |
| |
| if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY && |
| NeedWorkItemIDY && Subtarget->getMaxWorkitemID(F, 1) != 0) { |
| SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY); |
| Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y, |
| DAG.getShiftAmountConstant(10, MVT::i32, SL)); |
| InputReg = InputReg.getNode() ? |
| DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y; |
| } |
| |
| if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ && |
| NeedWorkItemIDZ && Subtarget->getMaxWorkitemID(F, 2) != 0) { |
| SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ); |
| Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z, |
| DAG.getShiftAmountConstant(20, MVT::i32, SL)); |
| InputReg = InputReg.getNode() ? |
| DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z; |
| } |
| |
| if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) { |
| if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) { |
| // We're in a situation where the outgoing function requires the workitem |
| // ID, but the calling function does not have it (e.g a graphics function |
| // calling a C calling convention function). This is illegal, but we need |
| // to produce something. |
| InputReg = DAG.getUNDEF(MVT::i32); |
| } else { |
| // Workitem ids are already packed, any of present incoming arguments |
| // will carry all required fields. |
| ArgDescriptor IncomingArg = ArgDescriptor::createArg( |
| IncomingArgX ? *IncomingArgX : |
| IncomingArgY ? *IncomingArgY : |
| *IncomingArgZ, ~0u); |
| InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg); |
| } |
| } |
| |
| if (OutgoingArg->isRegister()) { |
| if (InputReg) |
| RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); |
| |
| CCInfo.AllocateReg(OutgoingArg->getRegister()); |
| } else { |
| unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4)); |
| if (InputReg) { |
| SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg, |
| SpecialArgOffset); |
| MemOpChains.push_back(ArgStore); |
| } |
| } |
| } |
| |
| static bool canGuaranteeTCO(CallingConv::ID CC) { |
| return CC == CallingConv::Fast; |
| } |
| |
| /// Return true if we might ever do TCO for calls with this calling convention. |
| static bool mayTailCallThisCC(CallingConv::ID CC) { |
| switch (CC) { |
| case CallingConv::C: |
| case CallingConv::AMDGPU_Gfx: |
| return true; |
| default: |
| return canGuaranteeTCO(CC); |
| } |
| } |
| |
| bool SITargetLowering::isEligibleForTailCallOptimization( |
| SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { |
| if (AMDGPU::isChainCC(CalleeCC)) |
| return true; |
| |
| if (!mayTailCallThisCC(CalleeCC)) |
| return false; |
| |
| // For a divergent call target, we need to do a waterfall loop over the |
| // possible callees which precludes us from using a simple jump. |
| if (Callee->isDivergent()) |
| return false; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const Function &CallerF = MF.getFunction(); |
| CallingConv::ID CallerCC = CallerF.getCallingConv(); |
| const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); |
| const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); |
| |
| // Kernels aren't callable, and don't have a live in return address so it |
| // doesn't make sense to do a tail call with entry functions. |
| if (!CallerPreserved) |
| return false; |
| |
| bool CCMatch = CallerCC == CalleeCC; |
| |
| if (DAG.getTarget().Options.GuaranteedTailCallOpt) { |
| if (canGuaranteeTCO(CalleeCC) && CCMatch) |
| return true; |
| return false; |
| } |
| |
| // TODO: Can we handle var args? |
| if (IsVarArg) |
| return false; |
| |
| for (const Argument &Arg : CallerF.args()) { |
| if (Arg.hasByValAttr()) |
| return false; |
| } |
| |
| LLVMContext &Ctx = *DAG.getContext(); |
| |
| // Check that the call results are passed in the same way. |
| if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins, |
| CCAssignFnForCall(CalleeCC, IsVarArg), |
| CCAssignFnForCall(CallerCC, IsVarArg))) |
| return false; |
| |
| // The callee has to preserve all registers the caller needs to preserve. |
| if (!CCMatch) { |
| const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); |
| if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) |
| return false; |
| } |
| |
| // Nothing more to check if the callee is taking no arguments. |
| if (Outs.empty()) |
| return true; |
| |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx); |
| |
| CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg)); |
| |
| const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); |
| // If the stack arguments for this call do not fit into our own save area then |
| // the call cannot be made tail. |
| // TODO: Is this really necessary? |
| if (CCInfo.getStackSize() > FuncInfo->getBytesInStackArgArea()) |
| return false; |
| |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals); |
| } |
| |
| bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { |
| if (!CI->isTailCall()) |
| return false; |
| |
| const Function *ParentFn = CI->getParent()->getParent(); |
| if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv())) |
| return false; |
| return true; |
| } |
| |
| // The wave scratch offset register is used as the global base pointer. |
| SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const { |
| CallingConv::ID CallConv = CLI.CallConv; |
| bool IsChainCallConv = AMDGPU::isChainCC(CallConv); |
| |
| SelectionDAG &DAG = CLI.DAG; |
| |
| TargetLowering::ArgListEntry RequestedExec; |
| if (IsChainCallConv) { |
| // The last argument should be the value that we need to put in EXEC. |
| // Pop it out of CLI.Outs and CLI.OutVals before we do any processing so we |
| // don't treat it like the rest of the arguments. |
| RequestedExec = CLI.Args.back(); |
| assert(RequestedExec.Node && "No node for EXEC"); |
| |
| if (!RequestedExec.Ty->isIntegerTy(Subtarget->getWavefrontSize())) |
| return lowerUnhandledCall(CLI, InVals, "Invalid value for EXEC"); |
| |
| assert(CLI.Outs.back().OrigArgIndex == 2 && "Unexpected last arg"); |
| CLI.Outs.pop_back(); |
| CLI.OutVals.pop_back(); |
| |
| if (RequestedExec.Ty->isIntegerTy(64)) { |
| assert(CLI.Outs.back().OrigArgIndex == 2 && "Exec wasn't split up"); |
| CLI.Outs.pop_back(); |
| CLI.OutVals.pop_back(); |
| } |
| |
| assert(CLI.Outs.back().OrigArgIndex != 2 && |
| "Haven't popped all the pieces of the EXEC mask"); |
| } |
| |
| const SDLoc &DL = CLI.DL; |
| SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; |
| SmallVector<SDValue, 32> &OutVals = CLI.OutVals; |
| SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; |
| SDValue Chain = CLI.Chain; |
| SDValue Callee = CLI.Callee; |
| bool &IsTailCall = CLI.IsTailCall; |
| bool IsVarArg = CLI.IsVarArg; |
| bool IsSibCall = false; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| if (Callee.isUndef() || isNullConstant(Callee)) { |
| if (!CLI.IsTailCall) { |
| for (ISD::InputArg &Arg : CLI.Ins) |
| InVals.push_back(DAG.getUNDEF(Arg.VT)); |
| } |
| |
| return Chain; |
| } |
| |
| if (IsVarArg) { |
| return lowerUnhandledCall(CLI, InVals, |
| "unsupported call to variadic function "); |
| } |
| |
| if (!CLI.CB) |
| report_fatal_error("unsupported libcall legalization"); |
| |
| if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) { |
| return lowerUnhandledCall(CLI, InVals, |
| "unsupported required tail call to function "); |
| } |
| |
| if (IsTailCall) { |
| IsTailCall = isEligibleForTailCallOptimization( |
| Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG); |
| if (!IsTailCall && |
| ((CLI.CB && CLI.CB->isMustTailCall()) || IsChainCallConv)) { |
| report_fatal_error("failed to perform tail call elimination on a call " |
| "site marked musttail or on llvm.amdgcn.cs.chain"); |
| } |
| |
| bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; |
| |
| // A sibling call is one where we're under the usual C ABI and not planning |
| // to change that but can still do a tail call: |
| if (!TailCallOpt && IsTailCall) |
| IsSibCall = true; |
| |
| if (IsTailCall) |
| ++NumTailCalls; |
| } |
| |
| const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; |
| SmallVector<SDValue, 8> MemOpChains; |
| |
| // Analyze operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); |
| CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg); |
| |
| if (CallConv != CallingConv::AMDGPU_Gfx && !AMDGPU::isChainCC(CallConv)) { |
| // With a fixed ABI, allocate fixed registers before user arguments. |
| passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain); |
| } |
| |
| CCInfo.AnalyzeCallOperands(Outs, AssignFn); |
| |
| // Get a count of how many bytes are to be pushed on the stack. |
| unsigned NumBytes = CCInfo.getStackSize(); |
| |
| if (IsSibCall) { |
| // Since we're not changing the ABI to make this a tail call, the memory |
| // operands are already available in the caller's incoming argument space. |
| NumBytes = 0; |
| } |
| |
| // FPDiff is the byte offset of the call's argument area from the callee's. |
| // Stores to callee stack arguments will be placed in FixedStackSlots offset |
| // by this amount for a tail call. In a sibling call it must be 0 because the |
| // caller will deallocate the entire stack and the callee still expects its |
| // arguments to begin at SP+0. Completely unused for non-tail calls. |
| int32_t FPDiff = 0; |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| |
| // Adjust the stack pointer for the new arguments... |
| // These operations are automatically eliminated by the prolog/epilog pass |
| if (!IsSibCall) |
| Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); |
| |
| if (!IsSibCall || IsChainCallConv) { |
| if (!Subtarget->enableFlatScratch()) { |
| SmallVector<SDValue, 4> CopyFromChains; |
| |
| // In the HSA case, this should be an identity copy. |
| SDValue ScratchRSrcReg |
| = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32); |
| RegsToPass.emplace_back(IsChainCallConv |
| ? AMDGPU::SGPR48_SGPR49_SGPR50_SGPR51 |
| : AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, |
| ScratchRSrcReg); |
| CopyFromChains.push_back(ScratchRSrcReg.getValue(1)); |
| Chain = DAG.getTokenFactor(DL, CopyFromChains); |
| } |
| } |
| |
| MVT PtrVT = MVT::i32; |
| |
| // Walk the register/memloc assignments, inserting copies/loads. |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| SDValue Arg = OutVals[i]; |
| |
| // Promote the value if needed. |
| switch (VA.getLocInfo()) { |
| case CCValAssign::Full: |
| break; |
| case CCValAssign::BCvt: |
| Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::ZExt: |
| Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::SExt: |
| Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::AExt: |
| Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::FPExt: |
| Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); |
| break; |
| default: |
| llvm_unreachable("Unknown loc info!"); |
| } |
| |
| if (VA.isRegLoc()) { |
| RegsToPass.push_back(std::pair(VA.getLocReg(), Arg)); |
| } else { |
| assert(VA.isMemLoc()); |
| |
| SDValue DstAddr; |
| MachinePointerInfo DstInfo; |
| |
| unsigned LocMemOffset = VA.getLocMemOffset(); |
| int32_t Offset = LocMemOffset; |
| |
| SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT); |
| MaybeAlign Alignment; |
| |
| if (IsTailCall) { |
| ISD::ArgFlagsTy Flags = Outs[i].Flags; |
| unsigned OpSize = Flags.isByVal() ? |
| Flags.getByValSize() : VA.getValVT().getStoreSize(); |
| |
| // FIXME: We can have better than the minimum byval required alignment. |
| Alignment = |
| Flags.isByVal() |
| ? Flags.getNonZeroByValAlign() |
| : commonAlignment(Subtarget->getStackAlignment(), Offset); |
| |
| Offset = Offset + FPDiff; |
| int FI = MFI.CreateFixedObject(OpSize, Offset, true); |
| |
| DstAddr = DAG.getFrameIndex(FI, PtrVT); |
| DstInfo = MachinePointerInfo::getFixedStack(MF, FI); |
| |
| // Make sure any stack arguments overlapping with where we're storing |
| // are loaded before this eventual operation. Otherwise they'll be |
| // clobbered. |
| |
| // FIXME: Why is this really necessary? This seems to just result in a |
| // lot of code to copy the stack and write them back to the same |
| // locations, which are supposed to be immutable? |
| Chain = addTokenForArgument(Chain, DAG, MFI, FI); |
| } else { |
| // Stores to the argument stack area are relative to the stack pointer. |
| SDValue SP = DAG.getCopyFromReg(Chain, DL, Info->getStackPtrOffsetReg(), |
| MVT::i32); |
| DstAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, SP, PtrOff); |
| DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset); |
| Alignment = |
| commonAlignment(Subtarget->getStackAlignment(), LocMemOffset); |
| } |
| |
| if (Outs[i].Flags.isByVal()) { |
| SDValue SizeNode = |
| DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32); |
| SDValue Cpy = |
| DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode, |
| Outs[i].Flags.getNonZeroByValAlign(), |
| /*isVol = */ false, /*AlwaysInline = */ true, |
| /*CI=*/nullptr, std::nullopt, DstInfo, |
| MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS)); |
| |
| MemOpChains.push_back(Cpy); |
| } else { |
| SDValue Store = |
| DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment); |
| MemOpChains.push_back(Store); |
| } |
| } |
| } |
| |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); |
| |
| // Build a sequence of copy-to-reg nodes chained together with token chain |
| // and flag operands which copy the outgoing args into the appropriate regs. |
| SDValue InGlue; |
| for (auto &RegToPass : RegsToPass) { |
| Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, |
| RegToPass.second, InGlue); |
| InGlue = Chain.getValue(1); |
| } |
| |
| |
| // We don't usually want to end the call-sequence here because we would tidy |
| // the frame up *after* the call, however in the ABI-changing tail-call case |
| // we've carefully laid out the parameters so that when sp is reset they'll be |
| // in the correct location. |
| if (IsTailCall && !IsSibCall) { |
| Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, DL); |
| InGlue = Chain.getValue(1); |
| } |
| |
| std::vector<SDValue> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| // Add a redundant copy of the callee global which will not be legalized, as |
| // we need direct access to the callee later. |
| if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| const GlobalValue *GV = GSD->getGlobal(); |
| Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64)); |
| } else { |
| Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64)); |
| } |
| |
| if (IsTailCall) { |
| // Each tail call may have to adjust the stack by a different amount, so |
| // this information must travel along with the operation for eventual |
| // consumption by emitEpilogue. |
| Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); |
| } |
| |
| if (IsChainCallConv) |
| Ops.push_back(RequestedExec.Node); |
| |
| // Add argument registers to the end of the list so that they are known live |
| // into the call. |
| for (auto &RegToPass : RegsToPass) { |
| Ops.push_back(DAG.getRegister(RegToPass.first, |
| RegToPass.second.getValueType())); |
| } |
| |
| // Add a register mask operand representing the call-preserved registers. |
| auto *TRI = static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); |
| const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); |
| assert(Mask && "Missing call preserved mask for calling convention"); |
| Ops.push_back(DAG.getRegisterMask(Mask)); |
| |
| if (SDValue Token = CLI.ConvergenceControlToken) { |
| SmallVector<SDValue, 2> GlueOps; |
| GlueOps.push_back(Token); |
| if (InGlue) |
| GlueOps.push_back(InGlue); |
| |
| InGlue = SDValue(DAG.getMachineNode(TargetOpcode::CONVERGENCECTRL_GLUE, DL, |
| MVT::Glue, GlueOps), |
| 0); |
| } |
| |
| if (InGlue) |
| Ops.push_back(InGlue); |
| |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| |
| // If we're doing a tall call, use a TC_RETURN here rather than an |
| // actual call instruction. |
| if (IsTailCall) { |
| MFI.setHasTailCall(); |
| unsigned OPC = AMDGPUISD::TC_RETURN; |
| switch (CallConv) { |
| case CallingConv::AMDGPU_Gfx: |
| OPC = AMDGPUISD::TC_RETURN_GFX; |
| break; |
| case CallingConv::AMDGPU_CS_Chain: |
| case CallingConv::AMDGPU_CS_ChainPreserve: |
| OPC = AMDGPUISD::TC_RETURN_CHAIN; |
| break; |
| } |
| |
| return DAG.getNode(OPC, DL, NodeTys, Ops); |
| } |
| |
| // Returns a chain and a flag for retval copy to use. |
| SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops); |
| Chain = Call.getValue(0); |
| InGlue = Call.getValue(1); |
| |
| uint64_t CalleePopBytes = NumBytes; |
| Chain = DAG.getCALLSEQ_END(Chain, 0, CalleePopBytes, InGlue, DL); |
| if (!Ins.empty()) |
| InGlue = Chain.getValue(1); |
| |
| // Handle result values, copying them out of physregs into vregs that we |
| // return. |
| return LowerCallResult(Chain, InGlue, CallConv, IsVarArg, Ins, DL, DAG, |
| InVals, /*IsThisReturn=*/false, SDValue()); |
| } |
| |
| // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC, |
| // except for applying the wave size scale to the increment amount. |
| SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl( |
| SDValue Op, SelectionDAG &DAG) const { |
| const MachineFunction &MF = DAG.getMachineFunction(); |
| const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| |
| SDLoc dl(Op); |
| EVT VT = Op.getValueType(); |
| SDValue Tmp1 = Op; |
| SDValue Tmp2 = Op.getValue(1); |
| SDValue Tmp3 = Op.getOperand(2); |
| SDValue Chain = Tmp1.getOperand(0); |
| |
| Register SPReg = Info->getStackPtrOffsetReg(); |
| |
| // Chain the dynamic stack allocation so that it doesn't modify the stack |
| // pointer when other instructions are using the stack. |
| Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); |
| |
| SDValue Size = Tmp2.getOperand(1); |
| SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); |
| Chain = SP.getValue(1); |
| MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue(); |
| const TargetFrameLowering *TFL = Subtarget->getFrameLowering(); |
| unsigned Opc = |
| TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? |
| ISD::ADD : ISD::SUB; |
| |
| SDValue ScaledSize = DAG.getNode( |
| ISD::SHL, dl, VT, Size, |
| DAG.getConstant(Subtarget->getWavefrontSizeLog2(), dl, MVT::i32)); |
| |
| Align StackAlign = TFL->getStackAlign(); |
| Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value |
| if (Alignment && *Alignment > StackAlign) { |
| Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, |
| DAG.getConstant(-(uint64_t)Alignment->value() |
| << Subtarget->getWavefrontSizeLog2(), |
| dl, VT)); |
| } |
| |
| Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain |
| Tmp2 = DAG.getCALLSEQ_END(Chain, 0, 0, SDValue(), dl); |
| |
| return DAG.getMergeValues({Tmp1, Tmp2}, dl); |
| } |
| |
| SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, |
| SelectionDAG &DAG) const { |
| // We only handle constant sizes here to allow non-entry block, static sized |
| // allocas. A truly dynamic value is more difficult to support because we |
| // don't know if the size value is uniform or not. If the size isn't uniform, |
| // we would need to do a wave reduction to get the maximum size to know how |
| // much to increment the uniform stack pointer. |
| SDValue Size = Op.getOperand(1); |
| if (isa<ConstantSDNode>(Size)) |
| return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion. |
| |
| return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG); |
| } |
| |
| SDValue SITargetLowering::LowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const { |
| if (Op.getValueType() != MVT::i32) |
| return Op; // Defer to cannot select error. |
| |
| Register SP = getStackPointerRegisterToSaveRestore(); |
| SDLoc SL(Op); |
| |
| SDValue CopyFromSP = DAG.getCopyFromReg(Op->getOperand(0), SL, SP, MVT::i32); |
| |
| // Convert from wave uniform to swizzled vector address. This should protect |
| // from any edge cases where the stacksave result isn't directly used with |
| // stackrestore. |
| SDValue VectorAddress = |
| DAG.getNode(AMDGPUISD::WAVE_ADDRESS, SL, MVT::i32, CopyFromSP); |
| return DAG.getMergeValues({VectorAddress, CopyFromSP.getValue(1)}, SL); |
| } |
| |
| SDValue SITargetLowering::lowerGET_ROUNDING(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| assert(Op.getValueType() == MVT::i32); |
| |
| uint32_t BothRoundHwReg = |
| AMDGPU::Hwreg::HwregEncoding::encode(AMDGPU::Hwreg::ID_MODE, 0, 4); |
| SDValue GetRoundBothImm = DAG.getTargetConstant(BothRoundHwReg, SL, MVT::i32); |
| |
| SDValue IntrinID = |
| DAG.getTargetConstant(Intrinsic::amdgcn_s_getreg, SL, MVT::i32); |
| SDValue GetReg = DAG.getNode(ISD::INTRINSIC_W_CHAIN, SL, Op->getVTList(), |
| Op.getOperand(0), IntrinID, GetRoundBothImm); |
| |
| // There are two rounding modes, one for f32 and one for f64/f16. We only |
| // report in the standard value range if both are the same. |
| // |
| // The raw values also differ from the expected FLT_ROUNDS values. Nearest |
| // ties away from zero is not supported, and the other values are rotated by |
| // 1. |
| // |
| // If the two rounding modes are not the same, report a target defined value. |
| |
| // Mode register rounding mode fields: |
| // |
| // [1:0] Single-precision round mode. |
| // [3:2] Double/Half-precision round mode. |
| // |
| // 0=nearest even; 1= +infinity; 2= -infinity, 3= toward zero. |
| // |
| // Hardware Spec |
| // Toward-0 3 0 |
| // Nearest Even 0 1 |
| // +Inf 1 2 |
| // -Inf 2 3 |
| // NearestAway0 N/A 4 |
| // |
| // We have to handle 16 permutations of a 4-bit value, so we create a 64-bit |
| // table we can index by the raw hardware mode. |
| // |
| // (trunc (FltRoundConversionTable >> MODE.fp_round)) & 0xf |
| |
| SDValue BitTable = |
| DAG.getConstant(AMDGPU::FltRoundConversionTable, SL, MVT::i64); |
| |
| SDValue Two = DAG.getConstant(2, SL, MVT::i32); |
| SDValue RoundModeTimesNumBits = |
| DAG.getNode(ISD::SHL, SL, MVT::i32, GetReg, Two); |
| |
| // TODO: We could possibly avoid a 64-bit shift and use a simpler table if we |
| // knew only one mode was demanded. |
| SDValue TableValue = |
| DAG.getNode(ISD::SRL, SL, MVT::i64, BitTable, RoundModeTimesNumBits); |
| SDValue TruncTable = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, TableValue); |
| |
| SDValue EntryMask = DAG.getConstant(0xf, SL, MVT::i32); |
| SDValue TableEntry = |
| DAG.getNode(ISD::AND, SL, MVT::i32, TruncTable, EntryMask); |
| |
| // There's a gap in the 4-bit encoded table and actual enum values, so offset |
| // if it's an extended value. |
| SDValue Four = DAG.getConstant(4, SL, MVT::i32); |
| SDValue IsStandardValue = |
| DAG.getSetCC(SL, MVT::i1, TableEntry, Four, ISD::SETULT); |
| SDValue EnumOffset = DAG.getNode(ISD::ADD, SL, MVT::i32, TableEntry, Four); |
| SDValue Result = DAG.getNode(ISD::SELECT, SL, MVT::i32, IsStandardValue, |
| TableEntry, EnumOffset); |
| |
| return DAG.getMergeValues({Result, GetReg.getValue(1)}, SL); |
| } |
| |
| SDValue SITargetLowering::lowerSET_ROUNDING(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| |
| SDValue NewMode = Op.getOperand(1); |
| assert(NewMode.getValueType() == MVT::i32); |
| |
| // Index a table of 4-bit entries mapping from the C FLT_ROUNDS values to the |
| // hardware MODE.fp_round values. |
| if (auto *ConstMode = dyn_cast<ConstantSDNode>(NewMode)) { |
| uint32_t ClampedVal = std::min( |
| static_cast<uint32_t>(ConstMode->getZExtValue()), |
| static_cast<uint32_t>(AMDGPU::TowardZeroF32_TowardNegativeF64)); |
| NewMode = DAG.getConstant( |
| AMDGPU::decodeFltRoundToHWConversionTable(ClampedVal), SL, MVT::i32); |
| } else { |
| // If we know the input can only be one of the supported standard modes in |
| // the range 0-3, we can use a simplified mapping to hardware values. |
| KnownBits KB = DAG.computeKnownBits(NewMode); |
| const bool UseReducedTable = KB.countMinLeadingZeros() >= 30; |
| // The supported standard values are 0-3. The extended values start at 8. We |
| // need to offset by 4 if the value is in the extended range. |
| |
| if (UseReducedTable) { |
| // Truncate to the low 32-bits. |
| SDValue BitTable = DAG.getConstant( |
| AMDGPU::FltRoundToHWConversionTable & 0xffff, SL, MVT::i32); |
| |
| SDValue Two = DAG.getConstant(2, SL, MVT::i32); |
| SDValue RoundModeTimesNumBits = |
| DAG.getNode(ISD::SHL, SL, MVT::i32, NewMode, Two); |
| |
| NewMode = |
| DAG.getNode(ISD::SRL, SL, MVT::i32, BitTable, RoundModeTimesNumBits); |
| |
| // TODO: SimplifyDemandedBits on the setreg source here can likely reduce |
| // the table extracted bits into inline immediates. |
| } else { |
| // table_index = umin(value, value - 4) |
| // MODE.fp_round = (bit_table >> (table_index << 2)) & 0xf |
| SDValue BitTable = |
| DAG.getConstant(AMDGPU::FltRoundToHWConversionTable, SL, MVT::i64); |
| |
| SDValue Four = DAG.getConstant(4, SL, MVT::i32); |
| SDValue OffsetEnum = DAG.getNode(ISD::SUB, SL, MVT::i32, NewMode, Four); |
| SDValue IndexVal = |
| DAG.getNode(ISD::UMIN, SL, MVT::i32, NewMode, OffsetEnum); |
| |
| SDValue Two = DAG.getConstant(2, SL, MVT::i32); |
| SDValue RoundModeTimesNumBits = |
| DAG.getNode(ISD::SHL, SL, MVT::i32, IndexVal, Two); |
| |
| SDValue TableValue = |
| DAG.getNode(ISD::SRL, SL, MVT::i64, BitTable, RoundModeTimesNumBits); |
| SDValue TruncTable = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, TableValue); |
| |
| // No need to mask out the high bits since the setreg will ignore them |
| // anyway. |
| NewMode = TruncTable; |
| } |
| |
| // Insert a readfirstlane in case the value is a VGPR. We could do this |
| // earlier and keep more operations scalar, but that interferes with |
| // combining the source. |
| SDValue ReadFirstLaneID = |
| DAG.getTargetConstant(Intrinsic::amdgcn_readfirstlane, SL, MVT::i32); |
| NewMode = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, MVT::i32, |
| ReadFirstLaneID, NewMode); |
| } |
| |
| // N.B. The setreg will be later folded into s_round_mode on supported |
| // targets. |
| SDValue IntrinID = |
| DAG.getTargetConstant(Intrinsic::amdgcn_s_setreg, SL, MVT::i32); |
| uint32_t BothRoundHwReg = |
| AMDGPU::Hwreg::HwregEncoding::encode(AMDGPU::Hwreg::ID_MODE, 0, 4); |
| SDValue RoundBothImm = DAG.getTargetConstant(BothRoundHwReg, SL, MVT::i32); |
| |
| SDValue SetReg = |
| DAG.getNode(ISD::INTRINSIC_VOID, SL, Op->getVTList(), Op.getOperand(0), |
| IntrinID, RoundBothImm, NewMode); |
| |
| return SetReg; |
| } |
| |
| SDValue SITargetLowering::lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const { |
| if (Op->isDivergent()) |
| return SDValue(); |
| |
| switch (cast<MemSDNode>(Op)->getAddressSpace()) { |
| case AMDGPUAS::FLAT_ADDRESS: |
| case AMDGPUAS::GLOBAL_ADDRESS: |
| case AMDGPUAS::CONSTANT_ADDRESS: |
| case AMDGPUAS::CONSTANT_ADDRESS_32BIT: |
| break; |
| default: |
| return SDValue(); |
| } |
| |
| return Op; |
| } |
| |
| // Work around DAG legality rules only based on the result type. |
| SDValue SITargetLowering::lowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { |
| bool IsStrict = Op.getOpcode() == ISD::STRICT_FP_EXTEND; |
| SDValue Src = Op.getOperand(IsStrict ? 1 : 0); |
| EVT SrcVT = Src.getValueType(); |
| |
| if (SrcVT.getScalarType() != MVT::bf16) |
| return Op; |
| |
| SDLoc SL(Op); |
| SDValue BitCast = |
| DAG.getNode(ISD::BITCAST, SL, SrcVT.changeTypeToInteger(), Src); |
| |
| EVT DstVT = Op.getValueType(); |
| if (IsStrict) |
| llvm_unreachable("Need STRICT_BF16_TO_FP"); |
| |
| return DAG.getNode(ISD::BF16_TO_FP, SL, DstVT, BitCast); |
| } |
| |
| SDValue SITargetLowering::lowerGET_FPENV(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| if (Op.getValueType() != MVT::i64) |
| return Op; |
| |
| uint32_t ModeHwReg = |
| AMDGPU::Hwreg::HwregEncoding::encode(AMDGPU::Hwreg::ID_MODE, 0, 23); |
| SDValue ModeHwRegImm = DAG.getTargetConstant(ModeHwReg, SL, MVT::i32); |
| uint32_t TrapHwReg = |
| AMDGPU::Hwreg::HwregEncoding::encode(AMDGPU::Hwreg::ID_TRAPSTS, 0, 5); |
| SDValue TrapHwRegImm = DAG.getTargetConstant(TrapHwReg, SL, MVT::i32); |
| |
| SDVTList VTList = DAG.getVTList(MVT::i32, MVT::Other); |
| SDValue IntrinID = |
| DAG.getTargetConstant(Intrinsic::amdgcn_s_getreg, SL, MVT::i32); |
| SDValue GetModeReg = DAG.getNode(ISD::INTRINSIC_W_CHAIN, SL, VTList, |
| Op.getOperand(0), IntrinID, ModeHwRegImm); |
| SDValue GetTrapReg = DAG.getNode(ISD::INTRINSIC_W_CHAIN, SL, VTList, |
| Op.getOperand(0), IntrinID, TrapHwRegImm); |
| SDValue TokenReg = |
| DAG.getNode(ISD::TokenFactor, SL, MVT::Other, GetModeReg.getValue(1), |
| GetTrapReg.getValue(1)); |
| |
| SDValue CvtPtr = |
| DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, GetModeReg, GetTrapReg); |
| SDValue Result = DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr); |
| |
| return DAG.getMergeValues({Result, TokenReg}, SL); |
| } |
| |
| SDValue SITargetLowering::lowerSET_FPENV(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| if (Op.getOperand(1).getValueType() != MVT::i64) |
| return Op; |
| |
| SDValue Input = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op.getOperand(1)); |
| SDValue NewModeReg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Input, |
| DAG.getConstant(0, SL, MVT::i32)); |
| SDValue NewTrapReg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Input, |
| DAG.getConstant(1, SL, MVT::i32)); |
| |
| SDValue ReadFirstLaneID = |
| DAG.getTargetConstant(Intrinsic::amdgcn_readfirstlane, SL, MVT::i32); |
| NewModeReg = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, MVT::i32, |
| ReadFirstLaneID, NewModeReg); |
| NewTrapReg = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, MVT::i32, |
| ReadFirstLaneID, NewTrapReg); |
| |
| unsigned ModeHwReg = |
| AMDGPU::Hwreg::HwregEncoding::encode(AMDGPU::Hwreg::ID_MODE, 0, 23); |
| SDValue ModeHwRegImm = DAG.getTargetConstant(ModeHwReg, SL, MVT::i32); |
| unsigned TrapHwReg = |
| AMDGPU::Hwreg::HwregEncoding::encode(AMDGPU::Hwreg::ID_TRAPSTS, 0, 5); |
| SDValue TrapHwRegImm = DAG.getTargetConstant(TrapHwReg, SL, MVT::i32); |
| |
| SDValue IntrinID = |
| DAG.getTargetConstant(Intrinsic::amdgcn_s_setreg, SL, MVT::i32); |
| SDValue SetModeReg = |
| DAG.getNode(ISD::INTRINSIC_VOID, SL, MVT::Other, Op.getOperand(0), |
| IntrinID, ModeHwRegImm, NewModeReg); |
| SDValue SetTrapReg = |
| DAG.getNode(ISD::INTRINSIC_VOID, SL, MVT::Other, Op.getOperand(0), |
| IntrinID, TrapHwRegImm, NewTrapReg); |
| return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, SetTrapReg, SetModeReg); |
| } |
| |
| Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT, |
| const MachineFunction &MF) const { |
| Register Reg = StringSwitch<Register>(RegName) |
| .Case("m0", AMDGPU::M0) |
| .Case("exec", AMDGPU::EXEC) |
| .Case("exec_lo", AMDGPU::EXEC_LO) |
| .Case("exec_hi", AMDGPU::EXEC_HI) |
| .Case("flat_scratch", AMDGPU::FLAT_SCR) |
| .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO) |
| .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI) |
| .Default(Register()); |
| |
| if (Reg == AMDGPU::NoRegister) { |
| report_fatal_error(Twine("invalid register name \"" |
| + StringRef(RegName) + "\".")); |
| |
| } |
| |
| if (!Subtarget->hasFlatScrRegister() && |
| Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) { |
| report_fatal_error(Twine("invalid register \"" |
| + StringRef(RegName) + "\" for subtarget.")); |
| } |
| |
| switch (Reg) { |
| case AMDGPU::M0: |
| case AMDGPU::EXEC_LO: |
| case AMDGPU::EXEC_HI: |
| case AMDGPU::FLAT_SCR_LO: |
| case AMDGPU::FLAT_SCR_HI: |
| if (VT.getSizeInBits() == 32) |
| return Reg; |
| break; |
| case AMDGPU::EXEC: |
| case AMDGPU::FLAT_SCR: |
| if (VT.getSizeInBits() == 64) |
| return Reg; |
| break; |
| default: |
| llvm_unreachable("missing register type checking"); |
| } |
| |
| report_fatal_error(Twine("invalid type for register \"" |
| + StringRef(RegName) + "\".")); |
| } |
| |
| // If kill is not the last instruction, split the block so kill is always a |
| // proper terminator. |
| MachineBasicBlock * |
| SITargetLowering::splitKillBlock(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/); |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); |
| return SplitBB; |
| } |
| |
| // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true, |
| // \p MI will be the only instruction in the loop body block. Otherwise, it will |
| // be the first instruction in the remainder block. |
| // |
| /// \returns { LoopBody, Remainder } |
| static std::pair<MachineBasicBlock *, MachineBasicBlock *> |
| splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) { |
| MachineFunction *MF = MBB.getParent(); |
| MachineBasicBlock::iterator I(&MI); |
| |
| // To insert the loop we need to split the block. Move everything after this |
| // point to a new block, and insert a new empty block between the two. |
| MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock(); |
| MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock(); |
| MachineFunction::iterator MBBI(MBB); |
| ++MBBI; |
| |
| MF->insert(MBBI, LoopBB); |
| MF->insert(MBBI, RemainderBB); |
| |
| LoopBB->addSuccessor(LoopBB); |
| LoopBB->addSuccessor(RemainderBB); |
| |
| // Move the rest of the block into a new block. |
| RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB); |
| |
| if (InstInLoop) { |
| auto Next = std::next(I); |
| |
| // Move instruction to loop body. |
| LoopBB->splice(LoopBB->begin(), &MBB, I, Next); |
| |
| // Move the rest of the block. |
| RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end()); |
| } else { |
| RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end()); |
| } |
| |
| MBB.addSuccessor(LoopBB); |
| |
| return std::pair(LoopBB, RemainderBB); |
| } |
| |
| /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it. |
| void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const { |
| MachineBasicBlock *MBB = MI.getParent(); |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| auto I = MI.getIterator(); |
| auto E = std::next(I); |
| |
| BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) |
| .addImm(0); |
| |
| MIBundleBuilder Bundler(*MBB, I, E); |
| finalizeBundle(*MBB, Bundler.begin()); |
| } |
| |
| MachineBasicBlock * |
| SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| const DebugLoc &DL = MI.getDebugLoc(); |
| |
| MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| |
| MachineBasicBlock *LoopBB; |
| MachineBasicBlock *RemainderBB; |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| |
| // Apparently kill flags are only valid if the def is in the same block? |
| if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0)) |
| Src->setIsKill(false); |
| |
| std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true); |
| |
| MachineBasicBlock::iterator I = LoopBB->end(); |
| |
| const unsigned EncodedReg = AMDGPU::Hwreg::HwregEncoding::encode( |
| AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1); |
| |
| // Clear TRAP_STS.MEM_VIOL |
| BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32)) |
| .addImm(0) |
| .addImm(EncodedReg); |
| |
| bundleInstWithWaitcnt(MI); |
| |
| Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); |
| |
| // Load and check TRAP_STS.MEM_VIOL |
| BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg) |
| .addImm(EncodedReg); |
| |
| // FIXME: Do we need to use an isel pseudo that may clobber scc? |
| BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32)) |
| .addReg(Reg, RegState::Kill) |
| .addImm(0); |
| BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) |
| .addMBB(LoopBB); |
| |
| return RemainderBB; |
| } |
| |
| // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the |
| // wavefront. If the value is uniform and just happens to be in a VGPR, this |
| // will only do one iteration. In the worst case, this will loop 64 times. |
| // |
| // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value. |
| static MachineBasicBlock::iterator |
| emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI, |
| MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB, |
| const DebugLoc &DL, const MachineOperand &Idx, |
| unsigned InitReg, unsigned ResultReg, unsigned PhiReg, |
| unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode, |
| Register &SGPRIdxReg) { |
| |
| MachineFunction *MF = OrigBB.getParent(); |
| const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); |
| const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| MachineBasicBlock::iterator I = LoopBB.begin(); |
| |
| const TargetRegisterClass *BoolRC = TRI->getBoolRC(); |
| Register PhiExec = MRI.createVirtualRegister(BoolRC); |
| Register NewExec = MRI.createVirtualRegister(BoolRC); |
| Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); |
| Register CondReg = MRI.createVirtualRegister(BoolRC); |
| |
| BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg) |
| .addReg(InitReg) |
| .addMBB(&OrigBB) |
| .addReg(ResultReg) |
| .addMBB(&LoopBB); |
| |
| BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec) |
| .addReg(InitSaveExecReg) |
| .addMBB(&OrigBB) |
| .addReg(NewExec) |
| .addMBB(&LoopBB); |
| |
| // Read the next variant <- also loop target. |
| BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg) |
| .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef())); |
| |
| // Compare the just read M0 value to all possible Idx values. |
| BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg) |
| .addReg(CurrentIdxReg) |
| .addReg(Idx.getReg(), 0, Idx.getSubReg()); |
| |
| // Update EXEC, save the original EXEC value to VCC. |
| BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 |
| : AMDGPU::S_AND_SAVEEXEC_B64), |
| NewExec) |
| .addReg(CondReg, RegState::Kill); |
| |
| MRI.setSimpleHint(NewExec, CondReg); |
| |
| if (UseGPRIdxMode) { |
| if (Offset == 0) { |
| SGPRIdxReg = CurrentIdxReg; |
| } else { |
| SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); |
| BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg) |
| .addReg(CurrentIdxReg, RegState::Kill) |
| .addImm(Offset); |
| } |
| } else { |
| // Move index from VCC into M0 |
| if (Offset == 0) { |
| BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) |
| .addReg(CurrentIdxReg, RegState::Kill); |
| } else { |
| BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) |
| .addReg(CurrentIdxReg, RegState::Kill) |
| .addImm(Offset); |
| } |
| } |
| |
| // Update EXEC, switch all done bits to 0 and all todo bits to 1. |
| unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; |
| MachineInstr *InsertPt = |
| BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term |
| : AMDGPU::S_XOR_B64_term), Exec) |
| .addReg(Exec) |
| .addReg(NewExec); |
| |
| // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use |
| // s_cbranch_scc0? |
| |
| // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover. |
| BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) |
| .addMBB(&LoopBB); |
| |
| return InsertPt->getIterator(); |
| } |
| |
| // This has slightly sub-optimal regalloc when the source vector is killed by |
| // the read. The register allocator does not understand that the kill is |
| // per-workitem, so is kept alive for the whole loop so we end up not re-using a |
| // subregister from it, using 1 more VGPR than necessary. This was saved when |
| // this was expanded after register allocation. |
| static MachineBasicBlock::iterator |
| loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI, |
| unsigned InitResultReg, unsigned PhiReg, int Offset, |
| bool UseGPRIdxMode, Register &SGPRIdxReg) { |
| MachineFunction *MF = MBB.getParent(); |
| const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); |
| const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| const DebugLoc &DL = MI.getDebugLoc(); |
| MachineBasicBlock::iterator I(&MI); |
| |
| const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); |
| Register DstReg = MI.getOperand(0).getReg(); |
| Register SaveExec = MRI.createVirtualRegister(BoolXExecRC); |
| Register TmpExec = MRI.createVirtualRegister(BoolXExecRC); |
| unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; |
| unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; |
| |
| BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec); |
| |
| // Save the EXEC mask |
| BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec) |
| .addReg(Exec); |
| |
| MachineBasicBlock *LoopBB; |
| MachineBasicBlock *RemainderBB; |
| std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false); |
| |
| const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); |
| |
| auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx, |
| InitResultReg, DstReg, PhiReg, TmpExec, |
| Offset, UseGPRIdxMode, SGPRIdxReg); |
| |
| MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock(); |
| MachineFunction::iterator MBBI(LoopBB); |
| ++MBBI; |
| MF->insert(MBBI, LandingPad); |
| LoopBB->removeSuccessor(RemainderBB); |
| LandingPad->addSuccessor(RemainderBB); |
| LoopBB->addSuccessor(LandingPad); |
| MachineBasicBlock::iterator First = LandingPad->begin(); |
| BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec) |
| .addReg(SaveExec); |
| |
| return InsPt; |
| } |
| |
| // Returns subreg index, offset |
| static std::pair<unsigned, int> |
| computeIndirectRegAndOffset(const SIRegisterInfo &TRI, |
| const TargetRegisterClass *SuperRC, |
| unsigned VecReg, |
| int Offset) { |
| int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32; |
| |
| // Skip out of bounds offsets, or else we would end up using an undefined |
| // register. |
| if (Offset >= NumElts || Offset < 0) |
| return std::pair(AMDGPU::sub0, Offset); |
| |
| return std::pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0); |
| } |
| |
| static void setM0ToIndexFromSGPR(const SIInstrInfo *TII, |
| MachineRegisterInfo &MRI, MachineInstr &MI, |
| int Offset) { |
| MachineBasicBlock *MBB = MI.getParent(); |
| const DebugLoc &DL = MI.getDebugLoc(); |
| MachineBasicBlock::iterator I(&MI); |
| |
| const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); |
| |
| assert(Idx->getReg() != AMDGPU::NoRegister); |
| |
| if (Offset == 0) { |
| BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx); |
| } else { |
| BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) |
| .add(*Idx) |
| .addImm(Offset); |
| } |
| } |
| |
| static Register getIndirectSGPRIdx(const SIInstrInfo *TII, |
| MachineRegisterInfo &MRI, MachineInstr &MI, |
| int Offset) { |
| MachineBasicBlock *MBB = MI.getParent(); |
| const DebugLoc &DL = MI.getDebugLoc(); |
| MachineBasicBlock::iterator I(&MI); |
| |
| const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); |
| |
| if (Offset == 0) |
| return Idx->getReg(); |
| |
| Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); |
| BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp) |
| .add(*Idx) |
| .addImm(Offset); |
| return Tmp; |
| } |
| |
| static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI, |
| MachineBasicBlock &MBB, |
| const GCNSubtarget &ST) { |
| const SIInstrInfo *TII = ST.getInstrInfo(); |
| const SIRegisterInfo &TRI = TII->getRegisterInfo(); |
| MachineFunction *MF = MBB.getParent(); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| |
| Register Dst = MI.getOperand(0).getReg(); |
| const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); |
| Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg(); |
| int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); |
| |
| const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg); |
| const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); |
| |
| unsigned SubReg; |
| std::tie(SubReg, Offset) |
| = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset); |
| |
| const bool UseGPRIdxMode = ST.useVGPRIndexMode(); |
| |
| // Check for a SGPR index. |
| if (TII->getRegisterInfo().isSGPRClass(IdxRC)) { |
| MachineBasicBlock::iterator I(&MI); |
| const DebugLoc &DL = MI.getDebugLoc(); |
| |
| if (UseGPRIdxMode) { |
| // TODO: Look at the uses to avoid the copy. This may require rescheduling |
| // to avoid interfering with other uses, so probably requires a new |
| // optimization pass. |
| Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset); |
| |
| const MCInstrDesc &GPRIDXDesc = |
| TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true); |
| BuildMI(MBB, I, DL, GPRIDXDesc, Dst) |
| .addReg(SrcReg) |
| .addReg(Idx) |
| .addImm(SubReg); |
| } else { |
| setM0ToIndexFromSGPR(TII, MRI, MI, Offset); |
| |
| BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) |
| .addReg(SrcReg, 0, SubReg) |
| .addReg(SrcReg, RegState::Implicit); |
| } |
| |
| MI.eraseFromParent(); |
| |
| return &MBB; |
| } |
| |
| // Control flow needs to be inserted if indexing with a VGPR. |
| const DebugLoc &DL = MI.getDebugLoc(); |
| MachineBasicBlock::iterator I(&MI); |
| |
| Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); |
| Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); |
| |
| BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg); |
| |
| Register SGPRIdxReg; |
| auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset, |
| UseGPRIdxMode, SGPRIdxReg); |
| |
| MachineBasicBlock *LoopBB = InsPt->getParent(); |
| |
| if (UseGPRIdxMode) { |
| const MCInstrDesc &GPRIDXDesc = |
| TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true); |
| |
| BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst) |
| .addReg(SrcReg) |
| .addReg(SGPRIdxReg) |
| .addImm(SubReg); |
| } else { |
| BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) |
| .addReg(SrcReg, 0, SubReg) |
| .addReg(SrcReg, RegState::Implicit); |
| } |
| |
| MI.eraseFromParent(); |
| |
| return LoopBB; |
| } |
| |
| static MachineBasicBlock *emitIndirectDst(MachineInstr &MI, |
| MachineBasicBlock &MBB, |
| const GCNSubtarget &ST) { |
| const SIInstrInfo *TII = ST.getInstrInfo(); |
| const SIRegisterInfo &TRI = TII->getRegisterInfo(); |
| MachineFunction *MF = MBB.getParent(); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| |
| Register Dst = MI.getOperand(0).getReg(); |
| const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src); |
| const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); |
| const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val); |
| int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); |
| const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg()); |
| const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); |
| |
| // This can be an immediate, but will be folded later. |
| assert(Val->getReg()); |
| |
| unsigned SubReg; |
| std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC, |
| SrcVec->getReg(), |
| Offset); |
| const bool UseGPRIdxMode = ST.useVGPRIndexMode(); |
| |
| if (Idx->getReg() == AMDGPU::NoRegister) { |
| MachineBasicBlock::iterator I(&MI); |
| const DebugLoc &DL = MI.getDebugLoc(); |
| |
| assert(Offset == 0); |
| |
| BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst) |
| .add(*SrcVec) |
| .add(*Val) |
| .addImm(SubReg); |
| |
| MI.eraseFromParent(); |
| return &MBB; |
| } |
| |
| // Check for a SGPR index. |
| if (TII->getRegisterInfo().isSGPRClass(IdxRC)) { |
| MachineBasicBlock::iterator I(&MI); |
| const DebugLoc &DL = MI.getDebugLoc(); |
| |
| if (UseGPRIdxMode) { |
| Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset); |
| |
| const MCInstrDesc &GPRIDXDesc = |
| TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); |
| BuildMI(MBB, I, DL, GPRIDXDesc, Dst) |
| .addReg(SrcVec->getReg()) |
| .add(*Val) |
| .addReg(Idx) |
| .addImm(SubReg); |
| } else { |
| setM0ToIndexFromSGPR(TII, MRI, MI, Offset); |
| |
| const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo( |
| TRI.getRegSizeInBits(*VecRC), 32, false); |
| BuildMI(MBB, I, DL, MovRelDesc, Dst) |
| .addReg(SrcVec->getReg()) |
| .add(*Val) |
| .addImm(SubReg); |
| } |
| MI.eraseFromParent(); |
| return &MBB; |
| } |
| |
| // Control flow needs to be inserted if indexing with a VGPR. |
| if (Val->isReg()) |
| MRI.clearKillFlags(Val->getReg()); |
| |
| const DebugLoc &DL = MI.getDebugLoc(); |
| |
| Register PhiReg = MRI.createVirtualRegister(VecRC); |
| |
| Register SGPRIdxReg; |
| auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset, |
| UseGPRIdxMode, SGPRIdxReg); |
| MachineBasicBlock *LoopBB = InsPt->getParent(); |
| |
| if (UseGPRIdxMode) { |
| const MCInstrDesc &GPRIDXDesc = |
| TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false); |
| |
| BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst) |
| .addReg(PhiReg) |
| .add(*Val) |
| .addReg(SGPRIdxReg) |
| .addImm(SubReg); |
| } else { |
| const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo( |
| TRI.getRegSizeInBits(*VecRC), 32, false); |
| BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst) |
| .addReg(PhiReg) |
| .add(*Val) |
| .addImm(SubReg); |
| } |
| |
| MI.eraseFromParent(); |
| return LoopBB; |
| } |
| |
| static MachineBasicBlock *lowerWaveReduce(MachineInstr &MI, |
| MachineBasicBlock &BB, |
| const GCNSubtarget &ST, |
| unsigned Opc) { |
| MachineRegisterInfo &MRI = BB.getParent()->getRegInfo(); |
| const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| const DebugLoc &DL = MI.getDebugLoc(); |
| const SIInstrInfo *TII = ST.getInstrInfo(); |
| |
| // Reduction operations depend on whether the input operand is SGPR or VGPR. |
| Register SrcReg = MI.getOperand(1).getReg(); |
| bool isSGPR = TRI->isSGPRClass(MRI.getRegClass(SrcReg)); |
| Register DstReg = MI.getOperand(0).getReg(); |
| MachineBasicBlock *RetBB = nullptr; |
| if (isSGPR) { |
| // These operations with a uniform value i.e. SGPR are idempotent. |
| // Reduced value will be same as given sgpr. |
| BuildMI(BB, MI, DL, TII->get(AMDGPU::S_MOV_B32), DstReg).addReg(SrcReg); |
| RetBB = &BB; |
| } else { |
| // TODO: Implement DPP Strategy and switch based on immediate strategy |
| // operand. For now, for all the cases (default, Iterative and DPP we use |
| // iterative approach by default.) |
| |
| // To reduce the VGPR using iterative approach, we need to iterate |
| // over all the active lanes. Lowering consists of ComputeLoop, |
| // which iterate over only active lanes. We use copy of EXEC register |
| // as induction variable and every active lane modifies it using bitset0 |
| // so that we will get the next active lane for next iteration. |
| MachineBasicBlock::iterator I = BB.end(); |
| Register SrcReg = MI.getOperand(1).getReg(); |
| |
| // Create Control flow for loop |
| // Split MI's Machine Basic block into For loop |
| auto [ComputeLoop, ComputeEnd] = splitBlockForLoop(MI, BB, true); |
| |
| // Create virtual registers required for lowering. |
| const TargetRegisterClass *WaveMaskRegClass = TRI->getWaveMaskRegClass(); |
| const TargetRegisterClass *DstRegClass = MRI.getRegClass(DstReg); |
| Register LoopIterator = MRI.createVirtualRegister(WaveMaskRegClass); |
| Register InitalValReg = MRI.createVirtualRegister(DstRegClass); |
| |
| Register AccumulatorReg = MRI.createVirtualRegister(DstRegClass); |
| Register ActiveBitsReg = MRI.createVirtualRegister(WaveMaskRegClass); |
| Register NewActiveBitsReg = MRI.createVirtualRegister(WaveMaskRegClass); |
| |
| Register FF1Reg = MRI.createVirtualRegister(DstRegClass); |
| Register LaneValueReg = MRI.createVirtualRegister(DstRegClass); |
| |
| bool IsWave32 = ST.isWave32(); |
| unsigned MovOpc = IsWave32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; |
| unsigned ExecReg = IsWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC; |
| |
| // Create initail values of induction variable from Exec, Accumulator and |
| // insert branch instr to newly created ComputeBlockk |
| uint32_t InitalValue = |
| (Opc == AMDGPU::S_MIN_U32) ? std::numeric_limits<uint32_t>::max() : 0; |
| auto TmpSReg = |
| BuildMI(BB, I, DL, TII->get(MovOpc), LoopIterator).addReg(ExecReg); |
| BuildMI(BB, I, DL, TII->get(AMDGPU::S_MOV_B32), InitalValReg) |
| .addImm(InitalValue); |
| BuildMI(BB, I, DL, TII->get(AMDGPU::S_BRANCH)).addMBB(ComputeLoop); |
| |
| // Start constructing ComputeLoop |
| I = ComputeLoop->end(); |
| auto Accumulator = |
| BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::PHI), AccumulatorReg) |
| .addReg(InitalValReg) |
| .addMBB(&BB); |
| auto ActiveBits = |
| BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::PHI), ActiveBitsReg) |
| .addReg(TmpSReg->getOperand(0).getReg()) |
| .addMBB(&BB); |
| |
| // Perform the computations |
| unsigned SFFOpc = IsWave32 ? AMDGPU::S_FF1_I32_B32 : AMDGPU::S_FF1_I32_B64; |
| auto FF1 = BuildMI(*ComputeLoop, I, DL, TII->get(SFFOpc), FF1Reg) |
| .addReg(ActiveBits->getOperand(0).getReg()); |
| auto LaneValue = BuildMI(*ComputeLoop, I, DL, |
| TII->get(AMDGPU::V_READLANE_B32), LaneValueReg) |
| .addReg(SrcReg) |
| .addReg(FF1->getOperand(0).getReg()); |
| auto NewAccumulator = BuildMI(*ComputeLoop, I, DL, TII->get(Opc), DstReg) |
| .addReg(Accumulator->getOperand(0).getReg()) |
| .addReg(LaneValue->getOperand(0).getReg()); |
| |
| // Manipulate the iterator to get the next active lane |
| unsigned BITSETOpc = |
| IsWave32 ? AMDGPU::S_BITSET0_B32 : AMDGPU::S_BITSET0_B64; |
| auto NewActiveBits = |
| BuildMI(*ComputeLoop, I, DL, TII->get(BITSETOpc), NewActiveBitsReg) |
| .addReg(FF1->getOperand(0).getReg()) |
| .addReg(ActiveBits->getOperand(0).getReg()); |
| |
| // Add phi nodes |
| Accumulator.addReg(NewAccumulator->getOperand(0).getReg()) |
| .addMBB(ComputeLoop); |
| ActiveBits.addReg(NewActiveBits->getOperand(0).getReg()) |
| .addMBB(ComputeLoop); |
| |
| // Creating branching |
| unsigned CMPOpc = IsWave32 ? AMDGPU::S_CMP_LG_U32 : AMDGPU::S_CMP_LG_U64; |
| BuildMI(*ComputeLoop, I, DL, TII->get(CMPOpc)) |
| .addReg(NewActiveBits->getOperand(0).getReg()) |
| .addImm(0); |
| BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) |
| .addMBB(ComputeLoop); |
| |
| RetBB = ComputeEnd; |
| } |
| MI.eraseFromParent(); |
| return RetBB; |
| } |
| |
| MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter( |
| MachineInstr &MI, MachineBasicBlock *BB) const { |
| |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| MachineFunction *MF = BB->getParent(); |
| SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); |
| |
| switch (MI.getOpcode()) { |
| case AMDGPU::WAVE_REDUCE_UMIN_PSEUDO_U32: |
| return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_MIN_U32); |
| case AMDGPU::WAVE_REDUCE_UMAX_PSEUDO_U32: |
| return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_MAX_U32); |
| case AMDGPU::S_UADDO_PSEUDO: |
| case AMDGPU::S_USUBO_PSEUDO: { |
| const DebugLoc &DL = MI.getDebugLoc(); |
| MachineOperand &Dest0 = MI.getOperand(0); |
| MachineOperand &Dest1 = MI.getOperand(1); |
| MachineOperand &Src0 = MI.getOperand(2); |
| MachineOperand &Src1 = MI.getOperand(3); |
| |
| unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO) |
| ? AMDGPU::S_ADD_I32 |
| : AMDGPU::S_SUB_I32; |
| BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1); |
| |
| BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg()) |
| .addImm(1) |
| .addImm(0); |
| |
| MI.eraseFromParent(); |
| return BB; |
| } |
| case AMDGPU::S_ADD_U64_PSEUDO: |
| case AMDGPU::S_SUB_U64_PSEUDO: { |
| // For targets older than GFX12, we emit a sequence of 32-bit operations. |
| // For GFX12, we emit s_add_u64 and s_sub_u64. |
| const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); |
| MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| const DebugLoc &DL = MI.getDebugLoc(); |
| MachineOperand &Dest = MI.getOperand(0); |
| MachineOperand &Src0 = MI.getOperand(1); |
| MachineOperand &Src1 = MI.getOperand(2); |
| bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO); |
| if (Subtarget->hasScalarAddSub64()) { |
| unsigned Opc = IsAdd ? AMDGPU::S_ADD_U64 : AMDGPU::S_SUB_U64; |
| BuildMI(*BB, MI, DL, TII->get(Opc), Dest.getReg()) |
| .add(Src0) |
| .add(Src1); |
| } else { |
| const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| const TargetRegisterClass *BoolRC = TRI->getBoolRC(); |
| |
| Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); |
| Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); |
| |
| MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm( |
| MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); |
| MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm( |
| MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); |
| |
| MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm( |
| MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass); |
| MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm( |
| MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass); |
| |
| unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32; |
| unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; |
| BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0) |
| .add(Src0Sub0) |
| .add(Src1Sub0); |
| BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1) |
| .add(Src0Sub1) |
| .add(Src1Sub1); |
| BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) |
| .addReg(DestSub0) |
| .addImm(AMDGPU::sub0) |
| .addReg(DestSub1) |
| .addImm(AMDGPU::sub1); |
| } |
| MI.eraseFromParent(); |
| return BB; |
| } |
| case AMDGPU::V_ADD_U64_PSEUDO: |
| case AMDGPU::V_SUB_U64_PSEUDO: { |
| MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); |
| const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| const DebugLoc &DL = MI.getDebugLoc(); |
| |
| bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO); |
| |
| MachineOperand &Dest = MI.getOperand(0); |
| MachineOperand &Src0 = MI.getOperand(1); |
| MachineOperand &Src1 = MI.getOperand(2); |
| |
| if (IsAdd && ST.hasLshlAddB64()) { |
| auto Add = BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_LSHL_ADD_U64_e64), |
| Dest.getReg()) |
| .add(Src0) |
| .addImm(0) |
| .add(Src1); |
| TII->legalizeOperands(*Add); |
| MI.eraseFromParent(); |
| return BB; |
| } |
| |
| const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); |
| |
| Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); |
| Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); |
| |
| Register CarryReg = MRI.createVirtualRegister(CarryRC); |
| Register DeadCarryReg = MRI.createVirtualRegister(CarryRC); |
| |
| const TargetRegisterClass *Src0RC = Src0.isReg() |
| ? MRI.getRegClass(Src0.getReg()) |
| : &AMDGPU::VReg_64RegClass; |
| const TargetRegisterClass *Src1RC = Src1.isReg() |
| ? MRI.getRegClass(Src1.getReg()) |
| : &AMDGPU::VReg_64RegClass; |
| |
| const TargetRegisterClass *Src0SubRC = |
| TRI->getSubRegisterClass(Src0RC, AMDGPU::sub0); |
| const TargetRegisterClass *Src1SubRC = |
| TRI->getSubRegisterClass(Src1RC, AMDGPU::sub1); |
| |
| MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm( |
| MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); |
| MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm( |
| MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC); |
| |
| MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm( |
| MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC); |
| MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm( |
| MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC); |
| |
| unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; |
| MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0) |
| .addReg(CarryReg, RegState::Define) |
| .add(SrcReg0Sub0) |
| .add(SrcReg1Sub0) |
| .addImm(0); // clamp bit |
| |
| unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64; |
| MachineInstr *HiHalf = |
| BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1) |
| .addReg(DeadCarryReg, RegState::Define | RegState::Dead) |
| .add(SrcReg0Sub1) |
| .add(SrcReg1Sub1) |
| .addReg(CarryReg, RegState::Kill) |
| .addImm(0); // clamp bit |
| |
| BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) |
| .addReg(DestSub0) |
| .addImm(AMDGPU::sub0) |
| .addReg(DestSub1) |
| .addImm(AMDGPU::sub1); |
| TII->legalizeOperands(*LoHalf); |
| TII->legalizeOperands(*HiHalf); |
| MI.eraseFromParent(); |
| return BB; |
| } |
| case AMDGPU::S_ADD_CO_PSEUDO: |
| case AMDGPU::S_SUB_CO_PSEUDO: { |
| // This pseudo has a chance to be selected |
| // only from uniform add/subcarry node. All the VGPR operands |
| // therefore assumed to be splat vectors. |
| MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); |
| const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| MachineBasicBlock::iterator MII = MI; |
| const DebugLoc &DL = MI.getDebugLoc(); |
| MachineOperand &Dest = MI.getOperand(0); |
| MachineOperand &CarryDest = MI.getOperand(1); |
| MachineOperand &Src0 = MI.getOperand(2); |
| MachineOperand &Src1 = MI.getOperand(3); |
| MachineOperand &Src2 = MI.getOperand(4); |
| unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO) |
| ? AMDGPU::S_ADDC_U32 |
| : AMDGPU::S_SUBB_U32; |
| if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) { |
| Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); |
| BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0) |
| .addReg(Src0.getReg()); |
| Src0.setReg(RegOp0); |
| } |
| if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) { |
| Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); |
| BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1) |
| .addReg(Src1.getReg()); |
| Src1.setReg(RegOp1); |
| } |
| Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); |
| if (TRI->isVectorRegister(MRI, Src2.getReg())) { |
| BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2) |
| .addReg(Src2.getReg()); |
| Src2.setReg(RegOp2); |
| } |
| |
| const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg()); |
| unsigned WaveSize = TRI->getRegSizeInBits(*Src2RC); |
| assert(WaveSize == 64 || WaveSize == 32); |
| |
| if (WaveSize == 64) { |
| if (ST.hasScalarCompareEq64()) { |
| BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64)) |
| .addReg(Src2.getReg()) |
| .addImm(0); |
| } else { |
| const TargetRegisterClass *SubRC = |
| TRI->getSubRegisterClass(Src2RC, AMDGPU::sub0); |
| MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm( |
| MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC); |
| MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm( |
| MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC); |
| Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); |
| |
| BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32) |
| .add(Src2Sub0) |
| .add(Src2Sub1); |
| |
| BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32)) |
| .addReg(Src2_32, RegState::Kill) |
| .addImm(0); |
| } |
| } else { |
| BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32)) |
| .addReg(Src2.getReg()) |
| .addImm(0); |
| } |
| |
| BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1); |
| |
| unsigned SelOpc = |
| (WaveSize == 64) ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32; |
| |
| BuildMI(*BB, MII, DL, TII->get(SelOpc), CarryDest.getReg()) |
| .addImm(-1) |
| .addImm(0); |
| |
| MI.eraseFromParent(); |
| return BB; |
| } |
| case AMDGPU::SI_INIT_M0: { |
| BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(), |
| TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) |
| .add(MI.getOperand(0)); |
| MI.eraseFromParent(); |
| return BB; |
| } |
| case AMDGPU::GET_GROUPSTATICSIZE: { |
| assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || |
| getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL); |
| DebugLoc DL = MI.getDebugLoc(); |
| BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32)) |
| .add(MI.getOperand(0)) |
| .addImm(MFI->getLDSSize()); |
| MI.eraseFromParent(); |
| return BB; |
| } |
| case AMDGPU::GET_SHADERCYCLESHILO: { |
| assert(MF->getSubtarget<GCNSubtarget>().hasShaderCyclesHiLoRegisters()); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| const DebugLoc &DL = MI.getDebugLoc(); |
| // The algorithm is: |
| // |
| // hi1 = getreg(SHADER_CYCLES_HI) |
| // lo1 = getreg(SHADER_CYCLES_LO) |
| // hi2 = getreg(SHADER_CYCLES_HI) |
| // |
| // If hi1 == hi2 then there was no overflow and the result is hi2:lo1. |
| // Otherwise there was overflow and the result is hi2:0. In both cases the |
| // result should represent the actual time at some point during the sequence |
| // of three getregs. |
| using namespace AMDGPU::Hwreg; |
| Register RegHi1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); |
| BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_GETREG_B32), RegHi1) |
| .addImm(HwregEncoding::encode(ID_SHADER_CYCLES_HI, 0, 32)); |
| Register RegLo1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); |
| BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_GETREG_B32), RegLo1) |
| .addImm(HwregEncoding::encode(ID_SHADER_CYCLES, 0, 32)); |
| Register RegHi2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); |
| BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_GETREG_B32), RegHi2) |
| .addImm(HwregEncoding::encode(ID_SHADER_CYCLES_HI, 0, 32)); |
| BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CMP_EQ_U32)) |
| .addReg(RegHi1) |
| .addReg(RegHi2); |
| Register RegLo = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); |
| BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B32), RegLo) |
| .addReg(RegLo1) |
| .addImm(0); |
| BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE)) |
| .add(MI.getOperand(0)) |
| .addReg(RegLo) |
| .addImm(AMDGPU::sub0) |
| .addReg(RegHi2) |
| .addImm(AMDGPU::sub1); |
| MI.eraseFromParent(); |
| return BB; |
| } |
| case AMDGPU::SI_INDIRECT_SRC_V1: |
| case AMDGPU::SI_INDIRECT_SRC_V2: |
| case AMDGPU::SI_INDIRECT_SRC_V4: |
| case AMDGPU::SI_INDIRECT_SRC_V8: |
| case AMDGPU::SI_INDIRECT_SRC_V9: |
| case AMDGPU::SI_INDIRECT_SRC_V10: |
| case AMDGPU::SI_INDIRECT_SRC_V11: |
| case AMDGPU::SI_INDIRECT_SRC_V12: |
| case AMDGPU::SI_INDIRECT_SRC_V16: |
| case AMDGPU::SI_INDIRECT_SRC_V32: |
| return emitIndirectSrc(MI, *BB, *getSubtarget()); |
| case AMDGPU::SI_INDIRECT_DST_V1: |
| case AMDGPU::SI_INDIRECT_DST_V2: |
| case AMDGPU::SI_INDIRECT_DST_V4: |
| case AMDGPU::SI_INDIRECT_DST_V8: |
| case AMDGPU::SI_INDIRECT_DST_V9: |
| case AMDGPU::SI_INDIRECT_DST_V10: |
| case AMDGPU::SI_INDIRECT_DST_V11: |
| case AMDGPU::SI_INDIRECT_DST_V12: |
| case AMDGPU::SI_INDIRECT_DST_V16: |
| case AMDGPU::SI_INDIRECT_DST_V32: |
| return emitIndirectDst(MI, *BB, *getSubtarget()); |
| case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO: |
| case AMDGPU::SI_KILL_I1_PSEUDO: |
| return splitKillBlock(MI, BB); |
| case AMDGPU::V_CNDMASK_B64_PSEUDO: { |
| MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); |
| const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| |
| Register Dst = MI.getOperand(0).getReg(); |
| const MachineOperand &Src0 = MI.getOperand(1); |
| const MachineOperand &Src1 = MI.getOperand(2); |
| const DebugLoc &DL = MI.getDebugLoc(); |
| Register SrcCond = MI.getOperand(3).getReg(); |
| |
| Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); |
| Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); |
| const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); |
| Register SrcCondCopy = MRI.createVirtualRegister(CondRC); |
| |
| const TargetRegisterClass *Src0RC = Src0.isReg() |
| ? MRI.getRegClass(Src0.getReg()) |
| : &AMDGPU::VReg_64RegClass; |
| const TargetRegisterClass *Src1RC = Src1.isReg() |
| ? MRI.getRegClass(Src1.getReg()) |
| : &AMDGPU::VReg_64RegClass; |
| |
| const TargetRegisterClass *Src0SubRC = |
| TRI->getSubRegisterClass(Src0RC, AMDGPU::sub0); |
| const TargetRegisterClass *Src1SubRC = |
| TRI->getSubRegisterClass(Src1RC, AMDGPU::sub1); |
| |
| MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm( |
| MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC); |
| MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm( |
| MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC); |
| |
| MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm( |
| MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC); |
| MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm( |
| MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC); |
| |
| BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy) |
| .addReg(SrcCond); |
| BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo) |
| .addImm(0) |
| .add(Src0Sub0) |
| .addImm(0) |
| .add(Src1Sub0) |
| .addReg(SrcCondCopy); |
| BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi) |
| .addImm(0) |
| .add(Src0Sub1) |
| .addImm(0) |
| .add(Src1Sub1) |
| .addReg(SrcCondCopy); |
| |
| BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst) |
| .addReg(DstLo) |
| .addImm(AMDGPU::sub0) |
| .addReg(DstHi) |
| .addImm(AMDGPU::sub1); |
| MI.eraseFromParent(); |
| return BB; |
| } |
| case AMDGPU::SI_BR_UNDEF: { |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| const DebugLoc &DL = MI.getDebugLoc(); |
| MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) |
| .add(MI.getOperand(0)); |
| Br->getOperand(1).setIsUndef(); // read undef SCC |
| MI.eraseFromParent(); |
| return BB; |
| } |
| case AMDGPU::ADJCALLSTACKUP: |
| case AMDGPU::ADJCALLSTACKDOWN: { |
| const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); |
| MachineInstrBuilder MIB(*MF, &MI); |
| MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine) |
| .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit); |
| return BB; |
| } |
| case AMDGPU::SI_CALL_ISEL: { |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| const DebugLoc &DL = MI.getDebugLoc(); |
| |
| unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF); |
| |
| MachineInstrBuilder MIB; |
| MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg); |
| |
| for (const MachineOperand &MO : MI.operands()) |
| MIB.add(MO); |
| |
| MIB.cloneMemRefs(MI); |
| MI.eraseFromParent(); |
| return BB; |
| } |
| case AMDGPU::V_ADD_CO_U32_e32: |
| case AMDGPU::V_SUB_CO_U32_e32: |
| case AMDGPU::V_SUBREV_CO_U32_e32: { |
| // TODO: Define distinct V_*_I32_Pseudo instructions instead. |
| const DebugLoc &DL = MI.getDebugLoc(); |
| unsigned Opc = MI.getOpcode(); |
| |
| bool NeedClampOperand = false; |
| if (TII->pseudoToMCOpcode(Opc) == -1) { |
| Opc = AMDGPU::getVOPe64(Opc); |
| NeedClampOperand = true; |
| } |
| |
| auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg()); |
| if (TII->isVOP3(*I)) { |
| const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); |
| const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| I.addReg(TRI->getVCC(), RegState::Define); |
| } |
| I.add(MI.getOperand(1)) |
| .add(MI.getOperand(2)); |
| if (NeedClampOperand) |
| I.addImm(0); // clamp bit for e64 encoding |
| |
| TII->legalizeOperands(*I); |
| |
| MI.eraseFromParent(); |
| return BB; |
| } |
| case AMDGPU::V_ADDC_U32_e32: |
| case AMDGPU::V_SUBB_U32_e32: |
| case AMDGPU::V_SUBBREV_U32_e32: |
| // These instructions have an implicit use of vcc which counts towards the |
| // constant bus limit. |
| TII->legalizeOperands(MI); |
| return BB; |
| case AMDGPU::DS_GWS_INIT: |
| case AMDGPU::DS_GWS_SEMA_BR: |
| case AMDGPU::DS_GWS_BARRIER: |
| TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::data0); |
| [[fallthrough]]; |
| case AMDGPU::DS_GWS_SEMA_V: |
| case AMDGPU::DS_GWS_SEMA_P: |
| case AMDGPU::DS_GWS_SEMA_RELEASE_ALL: |
| // A s_waitcnt 0 is required to be the instruction immediately following. |
| if (getSubtarget()->hasGWSAutoReplay()) { |
| bundleInstWithWaitcnt(MI); |
| return BB; |
| } |
| |
| return emitGWSMemViolTestLoop(MI, BB); |
| case AMDGPU::S_SETREG_B32: { |
| // Try to optimize cases that only set the denormal mode or rounding mode. |
| // |
| // If the s_setreg_b32 fully sets all of the bits in the rounding mode or |
| // denormal mode to a constant, we can use s_round_mode or s_denorm_mode |
| // instead. |
| // |
| // FIXME: This could be predicates on the immediate, but tablegen doesn't |
| // allow you to have a no side effect instruction in the output of a |
| // sideeffecting pattern. |
| auto [ID, Offset, Width] = |
| AMDGPU::Hwreg::HwregEncoding::decode(MI.getOperand(1).getImm()); |
| if (ID != AMDGPU::Hwreg::ID_MODE) |
| return BB; |
| |
| const unsigned WidthMask = maskTrailingOnes<unsigned>(Width); |
| const unsigned SetMask = WidthMask << Offset; |
| |
| if (getSubtarget()->hasDenormModeInst()) { |
| unsigned SetDenormOp = 0; |
| unsigned SetRoundOp = 0; |
| |
| // The dedicated instructions can only set the whole denorm or round mode |
| // at once, not a subset of bits in either. |
| if (SetMask == |
| (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) { |
| // If this fully sets both the round and denorm mode, emit the two |
| // dedicated instructions for these. |
| SetRoundOp = AMDGPU::S_ROUND_MODE; |
| SetDenormOp = AMDGPU::S_DENORM_MODE; |
| } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) { |
| SetRoundOp = AMDGPU::S_ROUND_MODE; |
| } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) { |
| SetDenormOp = AMDGPU::S_DENORM_MODE; |
| } |
| |
| if (SetRoundOp || SetDenormOp) { |
| MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg()); |
| if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) { |
| unsigned ImmVal = Def->getOperand(1).getImm(); |
| if (SetRoundOp) { |
| BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp)) |
| .addImm(ImmVal & 0xf); |
| |
| // If we also have the denorm mode, get just the denorm mode bits. |
| ImmVal >>= 4; |
| } |
| |
| if (SetDenormOp) { |
| BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp)) |
| .addImm(ImmVal & 0xf); |
| } |
| |
| MI.eraseFromParent(); |
| return BB; |
| } |
| } |
| } |
| |
| // If only FP bits are touched, used the no side effects pseudo. |
| if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK | |
| AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask) |
| MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode)); |
| |
| return BB; |
| } |
| case AMDGPU::S_INVERSE_BALLOT_U32: |
| case AMDGPU::S_INVERSE_BALLOT_U64: |
| // These opcodes only exist to let SIFixSGPRCopies insert a readfirstlane if |
| // necessary. After that they are equivalent to a COPY. |
| MI.setDesc(TII->get(AMDGPU::COPY)); |
| return BB; |
| case AMDGPU::ENDPGM_TRAP: { |
| const DebugLoc &DL = MI.getDebugLoc(); |
| if (BB->succ_empty() && std::next(MI.getIterator()) == BB->end()) { |
| MI.setDesc(TII->get(AMDGPU::S_ENDPGM)); |
| MI.addOperand(MachineOperand::CreateImm(0)); |
| return BB; |
| } |
| |
| // We need a block split to make the real endpgm a terminator. We also don't |
| // want to break phis in successor blocks, so we can't just delete to the |
| // end of the block. |
| |
| MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/); |
| MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); |
| MF->push_back(TrapBB); |
| BuildMI(*TrapBB, TrapBB->end(), DL, TII->get(AMDGPU::S_ENDPGM)) |
| .addImm(0); |
| BuildMI(*BB, &MI, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) |
| .addMBB(TrapBB); |
| |
| BB->addSuccessor(TrapBB); |
| MI.eraseFromParent(); |
| return SplitBB; |
| } |
| case AMDGPU::SIMULATED_TRAP: { |
| assert(Subtarget->hasPrivEnabledTrap2NopBug()); |
| MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| MachineBasicBlock *SplitBB = |
| TII->insertSimulatedTrap(MRI, *BB, MI, MI.getDebugLoc()); |
| MI.eraseFromParent(); |
| return SplitBB; |
| } |
| default: |
| if (TII->isImage(MI) || TII->isMUBUF(MI)) { |
| if (!MI.mayStore()) |
| AddMemOpInit(MI); |
| return BB; |
| } |
| return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); |
| } |
| } |
| |
| bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const { |
| // This currently forces unfolding various combinations of fsub into fma with |
| // free fneg'd operands. As long as we have fast FMA (controlled by |
| // isFMAFasterThanFMulAndFAdd), we should perform these. |
| |
| // When fma is quarter rate, for f64 where add / sub are at best half rate, |
| // most of these combines appear to be cycle neutral but save on instruction |
| // count / code size. |
| return true; |
| } |
| |
| bool SITargetLowering::enableAggressiveFMAFusion(LLT Ty) const { return true; } |
| |
| EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, |
| EVT VT) const { |
| if (!VT.isVector()) { |
| return MVT::i1; |
| } |
| return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements()); |
| } |
| |
| MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const { |
| // TODO: Should i16 be used always if legal? For now it would force VALU |
| // shifts. |
| return (VT == MVT::i16) ? MVT::i16 : MVT::i32; |
| } |
| |
| LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const { |
| return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts()) |
| ? Ty.changeElementSize(16) |
| : Ty.changeElementSize(32); |
| } |
| |
| // Answering this is somewhat tricky and depends on the specific device which |
| // have different rates for fma or all f64 operations. |
| // |
| // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other |
| // regardless of which device (although the number of cycles differs between |
| // devices), so it is always profitable for f64. |
| // |
| // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable |
| // only on full rate devices. Normally, we should prefer selecting v_mad_f32 |
| // which we can always do even without fused FP ops since it returns the same |
| // result as the separate operations and since it is always full |
| // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32 |
| // however does not support denormals, so we do report fma as faster if we have |
| // a fast fma device and require denormals. |
| // |
| bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, |
| EVT VT) const { |
| VT = VT.getScalarType(); |
| |
| switch (VT.getSimpleVT().SimpleTy) { |
| case MVT::f32: { |
| // If mad is not available this depends only on if f32 fma is full rate. |
| if (!Subtarget->hasMadMacF32Insts()) |
| return Subtarget->hasFastFMAF32(); |
| |
| // Otherwise f32 mad is always full rate and returns the same result as |
| // the separate operations so should be preferred over fma. |
| // However does not support denormals. |
| if (!denormalModeIsFlushAllF32(MF)) |
| return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts(); |
| |
| // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32. |
| return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts(); |
| } |
| case MVT::f64: |
| return true; |
| case MVT::f16: |
| return Subtarget->has16BitInsts() && !denormalModeIsFlushAllF64F16(MF); |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, |
| LLT Ty) const { |
| switch (Ty.getScalarSizeInBits()) { |
| case 16: |
| return isFMAFasterThanFMulAndFAdd(MF, MVT::f16); |
| case 32: |
| return isFMAFasterThanFMulAndFAdd(MF, MVT::f32); |
| case 64: |
| return isFMAFasterThanFMulAndFAdd(MF, MVT::f64); |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| bool SITargetLowering::isFMADLegal(const MachineInstr &MI, LLT Ty) const { |
| if (!Ty.isScalar()) |
| return false; |
| |
| if (Ty.getScalarSizeInBits() == 16) |
| return Subtarget->hasMadF16() && denormalModeIsFlushAllF64F16(*MI.getMF()); |
| if (Ty.getScalarSizeInBits() == 32) |
| return Subtarget->hasMadMacF32Insts() && |
| denormalModeIsFlushAllF32(*MI.getMF()); |
| |
| return false; |
| } |
| |
| bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG, |
| const SDNode *N) const { |
| // TODO: Check future ftz flag |
| // v_mad_f32/v_mac_f32 do not support denormals. |
| EVT VT = N->getValueType(0); |
| if (VT == MVT::f32) |
| return Subtarget->hasMadMacF32Insts() && |
| denormalModeIsFlushAllF32(DAG.getMachineFunction()); |
| if (VT == MVT::f16) { |
| return Subtarget->hasMadF16() && |
| denormalModeIsFlushAllF64F16(DAG.getMachineFunction()); |
| } |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Custom DAG Lowering Operations |
| //===----------------------------------------------------------------------===// |
| |
| // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the |
| // wider vector type is legal. |
| SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op, |
| SelectionDAG &DAG) const { |
| unsigned Opc = Op.getOpcode(); |
| EVT VT = Op.getValueType(); |
| assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || |
| VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 || |
| VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || |
| VT == MVT::v32f32 || VT == MVT::v32i16 || VT == MVT::v32f16); |
| |
| SDValue Lo, Hi; |
| std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); |
| |
| SDLoc SL(Op); |
| SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo, |
| Op->getFlags()); |
| SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi, |
| Op->getFlags()); |
| |
| return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); |
| } |
| |
| // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the |
| // wider vector type is legal. |
| SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op, |
| SelectionDAG &DAG) const { |
| unsigned Opc = Op.getOpcode(); |
| EVT VT = Op.getValueType(); |
| assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 || |
| VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 || |
| VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || |
| VT == MVT::v32f32 || VT == MVT::v32i16 || VT == MVT::v32f16); |
| |
| SDValue Lo0, Hi0; |
| std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0); |
| SDValue Lo1, Hi1; |
| std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); |
| |
| SDLoc SL(Op); |
| |
| SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, |
| Op->getFlags()); |
| SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, |
| Op->getFlags()); |
| |
| return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); |
| } |
| |
| SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op, |
| SelectionDAG &DAG) const { |
| unsigned Opc = Op.getOpcode(); |
| EVT VT = Op.getValueType(); |
| assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || |
| VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 || |
| VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 || |
| VT == MVT::v32f32 || VT == MVT::v32f16 || VT == MVT::v32i16 || |
| VT == MVT::v4bf16 || VT == MVT::v8bf16 || VT == MVT::v16bf16 || |
| VT == MVT::v32bf16); |
| |
| SDValue Lo0, Hi0; |
| SDValue Op0 = Op.getOperand(0); |
| std::tie(Lo0, Hi0) = Op0.getValueType().isVector() |
| ? DAG.SplitVectorOperand(Op.getNode(), 0) |
| : std::pair(Op0, Op0); |
| SDValue Lo1, Hi1; |
| std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1); |
| SDValue Lo2, Hi2; |
| std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2); |
| |
| SDLoc SL(Op); |
| auto ResVT = DAG.GetSplitDestVTs(VT); |
| |
| SDValue OpLo = DAG.getNode(Opc, SL, ResVT.first, Lo0, Lo1, Lo2, |
| Op->getFlags()); |
| SDValue OpHi = DAG.getNode(Opc, SL, ResVT.second, Hi0, Hi1, Hi2, |
| Op->getFlags()); |
| |
| return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi); |
| } |
| |
| |
| SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { |
| switch (Op.getOpcode()) { |
| default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); |
| case ISD::BRCOND: return LowerBRCOND(Op, DAG); |
| case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); |
| case ISD::LOAD: { |
| SDValue Result = LowerLOAD(Op, DAG); |
| assert((!Result.getNode() || |
| Result.getNode()->getNumValues() == 2) && |
| "Load should return a value and a chain"); |
| return Result; |
| } |
| case ISD::FSQRT: { |
| EVT VT = Op.getValueType(); |
| if (VT == MVT::f32) |
| return lowerFSQRTF32(Op, DAG); |
| if (VT == MVT::f64) |
| return lowerFSQRTF64(Op, DAG); |
| return SDValue(); |
| } |
| case ISD::FSIN: |
| case ISD::FCOS: |
| return LowerTrig(Op, DAG); |
| case ISD::SELECT: return LowerSELECT(Op, DAG); |
| case ISD::FDIV: return LowerFDIV(Op, DAG); |
| case ISD::FFREXP: return LowerFFREXP(Op, DAG); |
| case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG); |
| case ISD::STORE: return LowerSTORE(Op, DAG); |
| case ISD::GlobalAddress: { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| return LowerGlobalAddress(MFI, Op, DAG); |
| } |
| case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); |
| case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); |
| case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); |
| case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG); |
| case ISD::INSERT_SUBVECTOR: |
| return lowerINSERT_SUBVECTOR(Op, DAG); |
| case ISD::INSERT_VECTOR_ELT: |
| return lowerINSERT_VECTOR_ELT(Op, DAG); |
| case ISD::EXTRACT_VECTOR_ELT: |
| return lowerEXTRACT_VECTOR_ELT(Op, DAG); |
| case ISD::VECTOR_SHUFFLE: |
| return lowerVECTOR_SHUFFLE(Op, DAG); |
| case ISD::SCALAR_TO_VECTOR: |
| return lowerSCALAR_TO_VECTOR(Op, DAG); |
| case ISD::BUILD_VECTOR: |
| return lowerBUILD_VECTOR(Op, DAG); |
| case ISD::FP_ROUND: |
| case ISD::STRICT_FP_ROUND: |
| return lowerFP_ROUND(Op, DAG); |
| case ISD::TRAP: |
| return lowerTRAP(Op, DAG); |
| case ISD::DEBUGTRAP: |
| return lowerDEBUGTRAP(Op, DAG); |
| case ISD::ABS: |
| case ISD::FABS: |
| case ISD::FNEG: |
| case ISD::FCANONICALIZE: |
| case ISD::BSWAP: |
| return splitUnaryVectorOp(Op, DAG); |
| case ISD::FMINNUM: |
| case ISD::FMAXNUM: |
| return lowerFMINNUM_FMAXNUM(Op, DAG); |
| case ISD::FLDEXP: |
| case ISD::STRICT_FLDEXP: |
| return lowerFLDEXP(Op, DAG); |
| case ISD::FMA: |
| return splitTernaryVectorOp(Op, DAG); |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: |
| return LowerFP_TO_INT(Op, DAG); |
| case ISD::SHL: |
| case ISD::SRA: |
| case ISD::SRL: |
| case ISD::ADD: |
| case ISD::SUB: |
| case ISD::SMIN: |
| case ISD::SMAX: |
| case ISD::UMIN: |
| case ISD::UMAX: |
| case ISD::FADD: |
| case ISD::FMUL: |
| case ISD::FMINNUM_IEEE: |
| case ISD::FMAXNUM_IEEE: |
| case ISD::FMINIMUM: |
| case ISD::FMAXIMUM: |
| case ISD::UADDSAT: |
| case ISD::USUBSAT: |
| case ISD::SADDSAT: |
| case ISD::SSUBSAT: |
| return splitBinaryVectorOp(Op, DAG); |
| case ISD::MUL: |
| return lowerMUL(Op, DAG); |
| case ISD::SMULO: |
| case ISD::UMULO: |
| return lowerXMULO(Op, DAG); |
| case ISD::SMUL_LOHI: |
| case ISD::UMUL_LOHI: |
| return lowerXMUL_LOHI(Op, DAG); |
| case ISD::DYNAMIC_STACKALLOC: |
| return LowerDYNAMIC_STACKALLOC(Op, DAG); |
| case ISD::STACKSAVE: |
| return LowerSTACKSAVE(Op, DAG); |
| case ISD::GET_ROUNDING: |
| return lowerGET_ROUNDING(Op, DAG); |
| case ISD::SET_ROUNDING: |
| return lowerSET_ROUNDING(Op, DAG); |
| case ISD::PREFETCH: |
| return lowerPREFETCH(Op, DAG); |
| case ISD::FP_EXTEND: |
| case ISD::STRICT_FP_EXTEND: |
| return lowerFP_EXTEND(Op, DAG); |
| case ISD::GET_FPENV: |
| return lowerGET_FPENV(Op, DAG); |
| case ISD::SET_FPENV: |
| return lowerSET_FPENV(Op, DAG); |
| } |
| return SDValue(); |
| } |
| |
| // Used for D16: Casts the result of an instruction into the right vector, |
| // packs values if loads return unpacked values. |
| static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT, |
| const SDLoc &DL, |
| SelectionDAG &DAG, bool Unpacked) { |
| if (!LoadVT.isVector()) |
| return Result; |
| |
| // Cast back to the original packed type or to a larger type that is a |
| // multiple of 32 bit for D16. Widening the return type is a required for |
| // legalization. |
| EVT FittingLoadVT = LoadVT; |
| if ((LoadVT.getVectorNumElements() % 2) == 1) { |
| FittingLoadVT = |
| EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(), |
| LoadVT.getVectorNumElements() + 1); |
| } |
| |
| if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16. |
| // Truncate to v2i16/v4i16. |
| EVT IntLoadVT = FittingLoadVT.changeTypeToInteger(); |
| |
| // Workaround legalizer not scalarizing truncate after vector op |
| // legalization but not creating intermediate vector trunc. |
| SmallVector<SDValue, 4> Elts; |
| DAG.ExtractVectorElements(Result, Elts); |
| for (SDValue &Elt : Elts) |
| Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt); |
| |
| // Pad illegal v1i16/v3fi6 to v4i16 |
| if ((LoadVT.getVectorNumElements() % 2) == 1) |
| Elts.push_back(DAG.getUNDEF(MVT::i16)); |
| |
| Result = DAG.getBuildVector(IntLoadVT, DL, Elts); |
| |
| // Bitcast to original type (v2f16/v4f16). |
| return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result); |
| } |
| |
| // Cast back to the original packed type. |
| return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result); |
| } |
| |
| SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode, |
| MemSDNode *M, |
| SelectionDAG &DAG, |
| ArrayRef<SDValue> Ops, |
| bool IsIntrinsic) const { |
| SDLoc DL(M); |
| |
| bool Unpacked = Subtarget->hasUnpackedD16VMem(); |
| EVT LoadVT = M->getValueType(0); |
| |
| EVT EquivLoadVT = LoadVT; |
| if (LoadVT.isVector()) { |
| if (Unpacked) { |
| EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, |
| LoadVT.getVectorNumElements()); |
| } else if ((LoadVT.getVectorNumElements() % 2) == 1) { |
| // Widen v3f16 to legal type |
| EquivLoadVT = |
| EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(), |
| LoadVT.getVectorNumElements() + 1); |
| } |
| } |
| |
| // Change from v4f16/v2f16 to EquivLoadVT. |
| SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other); |
| |
| SDValue Load |
| = DAG.getMemIntrinsicNode( |
| IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL, |
| VTList, Ops, M->getMemoryVT(), |
| M->getMemOperand()); |
| |
| SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked); |
| |
| return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL); |
| } |
| |
| SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat, |
| SelectionDAG &DAG, |
| ArrayRef<SDValue> Ops) const { |
| SDLoc DL(M); |
| EVT LoadVT = M->getValueType(0); |
| EVT EltType = LoadVT.getScalarType(); |
| EVT IntVT = LoadVT.changeTypeToInteger(); |
| |
| bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); |
| |
| assert(M->getNumValues() == 2 || M->getNumValues() == 3); |
| bool IsTFE = M->getNumValues() == 3; |
| |
| unsigned Opc = IsFormat ? (IsTFE ? AMDGPUISD::BUFFER_LOAD_FORMAT_TFE |
| : AMDGPUISD::BUFFER_LOAD_FORMAT) |
| : IsTFE ? AMDGPUISD::BUFFER_LOAD_TFE |
| : AMDGPUISD::BUFFER_LOAD; |
| |
| if (IsD16) { |
| return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops); |
| } |
| |
| // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics |
| if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32) |
| return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M->getMemOperand(), |
| IsTFE); |
| |
| if (isTypeLegal(LoadVT)) { |
| return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT, |
| M->getMemOperand(), DAG); |
| } |
| |
| EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT); |
| SDVTList VTList = DAG.getVTList(CastVT, MVT::Other); |
| SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT, |
| M->getMemOperand(), DAG); |
| return DAG.getMergeValues( |
| {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)}, |
| DL); |
| } |
| |
| static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI, |
| SDNode *N, SelectionDAG &DAG) { |
| EVT VT = N->getValueType(0); |
| unsigned CondCode = N->getConstantOperandVal(3); |
| if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode))) |
| return DAG.getUNDEF(VT); |
| |
| ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode); |
| |
| SDValue LHS = N->getOperand(1); |
| SDValue RHS = N->getOperand(2); |
| |
| SDLoc DL(N); |
| |
| EVT CmpVT = LHS.getValueType(); |
| if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) { |
| unsigned PromoteOp = ICmpInst::isSigned(IcInput) ? |
| ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS); |
| RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS); |
| } |
| |
| ISD::CondCode CCOpcode = getICmpCondCode(IcInput); |
| |
| unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); |
| EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); |
| |
| SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS, |
| DAG.getCondCode(CCOpcode)); |
| if (VT.bitsEq(CCVT)) |
| return SetCC; |
| return DAG.getZExtOrTrunc(SetCC, DL, VT); |
| } |
| |
| static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI, |
| SDNode *N, SelectionDAG &DAG) { |
| EVT VT = N->getValueType(0); |
| |
| unsigned CondCode = N->getConstantOperandVal(3); |
| if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode))) |
| return DAG.getUNDEF(VT); |
| |
| SDValue Src0 = N->getOperand(1); |
| SDValue Src1 = N->getOperand(2); |
| EVT CmpVT = Src0.getValueType(); |
| SDLoc SL(N); |
| |
| if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) { |
| Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); |
| Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); |
| } |
| |
| FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode); |
| ISD::CondCode CCOpcode = getFCmpCondCode(IcInput); |
| unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize(); |
| EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize); |
| SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0, |
| Src1, DAG.getCondCode(CCOpcode)); |
| if (VT.bitsEq(CCVT)) |
| return SetCC; |
| return DAG.getZExtOrTrunc(SetCC, SL, VT); |
| } |
| |
| static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N, |
| SelectionDAG &DAG) { |
| EVT VT = N->getValueType(0); |
| SDValue Src = N->getOperand(1); |
| SDLoc SL(N); |
| |
| if (Src.getOpcode() == ISD::SETCC) { |
| // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...) |
| return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0), |
| Src.getOperand(1), Src.getOperand(2)); |
| } |
| if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) { |
| // (ballot 0) -> 0 |
| if (Arg->isZero()) |
| return DAG.getConstant(0, SL, VT); |
| |
| // (ballot 1) -> EXEC/EXEC_LO |
| if (Arg->isOne()) { |
| Register Exec; |
| if (VT.getScalarSizeInBits() == 32) |
| Exec = AMDGPU::EXEC_LO; |
| else if (VT.getScalarSizeInBits() == 64) |
| Exec = AMDGPU::EXEC; |
| else |
| return SDValue(); |
| |
| return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT); |
| } |
| } |
| |
| // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0) |
| // ISD::SETNE) |
| return DAG.getNode( |
| AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32), |
| DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE)); |
| } |
| |
| static SDValue lowerLaneOp(const SITargetLowering &TLI, SDNode *N, |
| SelectionDAG &DAG) { |
| EVT VT = N->getValueType(0); |
| unsigned ValSize = VT.getSizeInBits(); |
| unsigned IID = N->getConstantOperandVal(0); |
| bool IsPermLane16 = IID == Intrinsic::amdgcn_permlane16 || |
| IID == Intrinsic::amdgcn_permlanex16; |
| SDLoc SL(N); |
| MVT IntVT = MVT::getIntegerVT(ValSize); |
| |
| auto createLaneOp = [&DAG, &SL, N, IID](SDValue Src0, SDValue Src1, |
| SDValue Src2, MVT ValT) -> SDValue { |
| SmallVector<SDValue, 8> Operands; |
| switch (IID) { |
| case Intrinsic::amdgcn_permlane16: |
| case Intrinsic::amdgcn_permlanex16: |
| Operands.push_back(N->getOperand(6)); |
| Operands.push_back(N->getOperand(5)); |
| Operands.push_back(N->getOperand(4)); |
| [[fallthrough]]; |
| case Intrinsic::amdgcn_writelane: |
| Operands.push_back(Src2); |
| [[fallthrough]]; |
| case Intrinsic::amdgcn_readlane: |
| Operands.push_back(Src1); |
| [[fallthrough]]; |
| case Intrinsic::amdgcn_readfirstlane: |
| case Intrinsic::amdgcn_permlane64: |
| Operands.push_back(Src0); |
| break; |
| default: |
| llvm_unreachable("unhandled lane op"); |
| } |
| |
| Operands.push_back(DAG.getTargetConstant(IID, SL, MVT::i32)); |
| std::reverse(Operands.begin(), Operands.end()); |
| |
| if (SDNode *GL = N->getGluedNode()) { |
| assert(GL->getOpcode() == ISD::CONVERGENCECTRL_GLUE); |
| GL = GL->getOperand(0).getNode(); |
| Operands.push_back(DAG.getNode(ISD::CONVERGENCECTRL_GLUE, SL, MVT::Glue, |
| SDValue(GL, 0))); |
| } |
| |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, ValT, Operands); |
| }; |
| |
| SDValue Src0 = N->getOperand(1); |
| SDValue Src1, Src2; |
| if (IID == Intrinsic::amdgcn_readlane || IID == Intrinsic::amdgcn_writelane || |
| IsPermLane16) { |
| Src1 = N->getOperand(2); |
| if (IID == Intrinsic::amdgcn_writelane || IsPermLane16) |
| Src2 = N->getOperand(3); |
| } |
| |
| if (ValSize == 32) { |
| // Already legal |
| return SDValue(); |
| } |
| |
| if (ValSize < 32) { |
| bool IsFloat = VT.isFloatingPoint(); |
| Src0 = DAG.getAnyExtOrTrunc(IsFloat ? DAG.getBitcast(IntVT, Src0) : Src0, |
| SL, MVT::i32); |
| |
| if (IsPermLane16) { |
| Src1 = DAG.getAnyExtOrTrunc(IsFloat ? DAG.getBitcast(IntVT, Src1) : Src1, |
| SL, MVT::i32); |
| } |
| |
| if (IID == Intrinsic::amdgcn_writelane) { |
| Src2 = DAG.getAnyExtOrTrunc(IsFloat ? DAG.getBitcast(IntVT, Src2) : Src2, |
| SL, MVT::i32); |
| } |
| |
| SDValue LaneOp = createLaneOp(Src0, Src1, Src2, MVT::i32); |
| SDValue Trunc = DAG.getAnyExtOrTrunc(LaneOp, SL, IntVT); |
| return IsFloat ? DAG.getBitcast(VT, Trunc) : Trunc; |
| } |
| |
| if (ValSize % 32 != 0) |
| return SDValue(); |
| |
| auto unrollLaneOp = [&DAG, &SL](SDNode *N) -> SDValue { |
| EVT VT = N->getValueType(0); |
| unsigned NE = VT.getVectorNumElements(); |
| EVT EltVT = VT.getVectorElementType(); |
| SmallVector<SDValue, 8> Scalars; |
| unsigned NumOperands = N->getNumOperands(); |
| SmallVector<SDValue, 4> Operands(NumOperands); |
| SDNode *GL = N->getGluedNode(); |
| |
| // only handle convergencectrl_glue |
| assert(!GL || GL->getOpcode() == ISD::CONVERGENCECTRL_GLUE); |
| |
| for (unsigned i = 0; i != NE; ++i) { |
| for (unsigned j = 0, e = GL ? NumOperands - 1 : NumOperands; j != e; |
| ++j) { |
| SDValue Operand = N->getOperand(j); |
| EVT OperandVT = Operand.getValueType(); |
| if (OperandVT.isVector()) { |
| // A vector operand; extract a single element. |
| EVT OperandEltVT = OperandVT.getVectorElementType(); |
| Operands[j] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, OperandEltVT, |
| Operand, DAG.getVectorIdxConstant(i, SL)); |
| } else { |
| // A scalar operand; just use it as is. |
| Operands[j] = Operand; |
| } |
| } |
| |
| if (GL) |
| Operands[NumOperands - 1] = |
| DAG.getNode(ISD::CONVERGENCECTRL_GLUE, SL, MVT::Glue, |
| SDValue(GL->getOperand(0).getNode(), 0)); |
| |
| Scalars.push_back(DAG.getNode(N->getOpcode(), SL, EltVT, Operands)); |
| } |
| |
| EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NE); |
| return DAG.getBuildVector(VecVT, SL, Scalars); |
| }; |
| |
| if (VT.isVector()) { |
| switch (MVT::SimpleValueType EltTy = |
| VT.getVectorElementType().getSimpleVT().SimpleTy) { |
| case MVT::i32: |
| case MVT::f32: { |
| SDValue LaneOp = createLaneOp(Src0, Src1, Src2, VT.getSimpleVT()); |
| return unrollLaneOp(LaneOp.getNode()); |
| } |
| case MVT::i16: |
| case MVT::f16: |
| case MVT::bf16: { |
| MVT SubVecVT = MVT::getVectorVT(EltTy, 2); |
| SmallVector<SDValue, 4> Pieces; |
| SDValue Src0SubVec, Src1SubVec, Src2SubVec; |
| for (unsigned i = 0, EltIdx = 0; i < ValSize / 32; i++) { |
| Src0SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, SubVecVT, Src0, |
| DAG.getConstant(EltIdx, SL, MVT::i32)); |
| |
| if (IsPermLane16) |
| Src1SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, SubVecVT, Src1, |
| DAG.getConstant(EltIdx, SL, MVT::i32)); |
| |
| if (IID == Intrinsic::amdgcn_writelane) |
| Src2SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, SubVecVT, Src2, |
| DAG.getConstant(EltIdx, SL, MVT::i32)); |
| |
| Pieces.push_back( |
| IsPermLane16 |
| ? createLaneOp(Src0SubVec, Src1SubVec, Src2, SubVecVT) |
| : createLaneOp(Src0SubVec, Src1, Src2SubVec, SubVecVT)); |
| EltIdx += 2; |
| } |
| return DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, Pieces); |
| } |
| default: |
| // Handle all other cases by bitcasting to i32 vectors |
| break; |
| } |
| } |
| |
| MVT VecVT = MVT::getVectorVT(MVT::i32, ValSize / 32); |
| Src0 = DAG.getBitcast(VecVT, Src0); |
| |
| if (IsPermLane16) |
| Src1 = DAG.getBitcast(VecVT, Src1); |
| |
| if (IID == Intrinsic::amdgcn_writelane) |
| Src2 = DAG.getBitcast(VecVT, Src2); |
| |
| SDValue LaneOp = createLaneOp(Src0, Src1, Src2, VecVT); |
| SDValue UnrolledLaneOp = unrollLaneOp(LaneOp.getNode()); |
| return DAG.getBitcast(VT, UnrolledLaneOp); |
| } |
| |
| void SITargetLowering::ReplaceNodeResults(SDNode *N, |
| SmallVectorImpl<SDValue> &Results, |
| SelectionDAG &DAG) const { |
| switch (N->getOpcode()) { |
| case ISD::INSERT_VECTOR_ELT: { |
| if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG)) |
| Results.push_back(Res); |
| return; |
| } |
| case ISD::EXTRACT_VECTOR_ELT: { |
| if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG)) |
| Results.push_back(Res); |
| return; |
| } |
| case ISD::INTRINSIC_WO_CHAIN: { |
| unsigned IID = N->getConstantOperandVal(0); |
| switch (IID) { |
| case Intrinsic::amdgcn_make_buffer_rsrc: |
| Results.push_back(lowerPointerAsRsrcIntrin(N, DAG)); |
| return; |
| case Intrinsic::amdgcn_cvt_pkrtz: { |
| SDValue Src0 = N->getOperand(1); |
| SDValue Src1 = N->getOperand(2); |
| SDLoc SL(N); |
| SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32, |
| Src0, Src1); |
| Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt)); |
| return; |
| } |
| case Intrinsic::amdgcn_cvt_pknorm_i16: |
| case Intrinsic::amdgcn_cvt_pknorm_u16: |
| case Intrinsic::amdgcn_cvt_pk_i16: |
| case Intrinsic::amdgcn_cvt_pk_u16: { |
| SDValue Src0 = N->getOperand(1); |
| SDValue Src1 = N->getOperand(2); |
| SDLoc SL(N); |
| unsigned Opcode; |
| |
| if (IID == Intrinsic::amdgcn_cvt_pknorm_i16) |
| Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; |
| else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16) |
| Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; |
| else if (IID == Intrinsic::amdgcn_cvt_pk_i16) |
| Opcode = AMDGPUISD::CVT_PK_I16_I32; |
| else |
| Opcode = AMDGPUISD::CVT_PK_U16_U32; |
| |
| EVT VT = N->getValueType(0); |
| if (isTypeLegal(VT)) |
| Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1)); |
| else { |
| SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1); |
| Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt)); |
| } |
| return; |
| } |
| case Intrinsic::amdgcn_s_buffer_load: { |
| // Lower llvm.amdgcn.s.buffer.load.(i8, u8) intrinsics. First, we generate |
| // s_buffer_load_u8 for signed and unsigned load instructions. Next, DAG |
| // combiner tries to merge the s_buffer_load_u8 with a sext instruction |
| // (performSignExtendInRegCombine()) and it replaces s_buffer_load_u8 with |
| // s_buffer_load_i8. |
| if (!Subtarget->hasScalarSubwordLoads()) |
| return; |
| SDValue Op = SDValue(N, 0); |
| SDValue Rsrc = Op.getOperand(1); |
| SDValue Offset = Op.getOperand(2); |
| SDValue CachePolicy = Op.getOperand(3); |
| EVT VT = Op.getValueType(); |
| assert(VT == MVT::i8 && "Expected 8-bit s_buffer_load intrinsics.\n"); |
| SDLoc DL(Op); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const DataLayout &DataLayout = DAG.getDataLayout(); |
| Align Alignment = |
| DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext())); |
| MachineMemOperand *MMO = MF.getMachineMemOperand( |
| MachinePointerInfo(), |
| MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | |
| MachineMemOperand::MOInvariant, |
| VT.getStoreSize(), Alignment); |
| SDValue LoadVal; |
| if (!Offset->isDivergent()) { |
| SDValue Ops[] = {Rsrc, // source register |
| Offset, CachePolicy}; |
| SDValue BufferLoad = |
| DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD_UBYTE, DL, |
| DAG.getVTList(MVT::i32), Ops, VT, MMO); |
| LoadVal = DAG.getNode(ISD::TRUNCATE, DL, VT, BufferLoad); |
| } else { |
| SDValue Ops[] = { |
| DAG.getEntryNode(), // Chain |
| Rsrc, // rsrc |
| DAG.getConstant(0, DL, MVT::i32), // vindex |
| {}, // voffset |
| {}, // soffset |
| {}, // offset |
| CachePolicy, // cachepolicy |
| DAG.getTargetConstant(0, DL, MVT::i1), // idxen |
| }; |
| setBufferOffsets(Offset, DAG, &Ops[3], Align(4)); |
| LoadVal = handleByteShortBufferLoads(DAG, VT, DL, Ops, MMO); |
| } |
| Results.push_back(LoadVal); |
| return; |
| } |
| } |
| break; |
| } |
| case ISD::INTRINSIC_W_CHAIN: { |
| if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) { |
| if (Res.getOpcode() == ISD::MERGE_VALUES) { |
| // FIXME: Hacky |
| for (unsigned I = 0; I < Res.getNumOperands(); I++) { |
| Results.push_back(Res.getOperand(I)); |
| } |
| } else { |
| Results.push_back(Res); |
| Results.push_back(Res.getValue(1)); |
| } |
| return; |
| } |
| |
| break; |
| } |
| case ISD::SELECT: { |
| SDLoc SL(N); |
| EVT VT = N->getValueType(0); |
| EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); |
| SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1)); |
| SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2)); |
| |
| EVT SelectVT = NewVT; |
| if (NewVT.bitsLT(MVT::i32)) { |
| LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS); |
| RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS); |
| SelectVT = MVT::i32; |
| } |
| |
| SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT, |
| N->getOperand(0), LHS, RHS); |
| |
| if (NewVT != SelectVT) |
| NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect); |
| Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect)); |
| return; |
| } |
| case ISD::FNEG: { |
| if (N->getValueType(0) != MVT::v2f16) |
| break; |
| |
| SDLoc SL(N); |
| SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); |
| |
| SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32, |
| BC, |
| DAG.getConstant(0x80008000, SL, MVT::i32)); |
| Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); |
| return; |
| } |
| case ISD::FABS: { |
| if (N->getValueType(0) != MVT::v2f16) |
| break; |
| |
| SDLoc SL(N); |
| SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0)); |
| |
| SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32, |
| BC, |
| DAG.getConstant(0x7fff7fff, SL, MVT::i32)); |
| Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op)); |
| return; |
| } |
| case ISD::FSQRT: { |
| if (N->getValueType(0) != MVT::f16) |
| break; |
| Results.push_back(lowerFSQRTF16(SDValue(N, 0), DAG)); |
| break; |
| } |
| default: |
| AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG); |
| break; |
| } |
| } |
| |
| /// Helper function for LowerBRCOND |
| static SDNode *findUser(SDValue Value, unsigned Opcode) { |
| |
| SDNode *Parent = Value.getNode(); |
| for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); |
| I != E; ++I) { |
| |
| if (I.getUse().get() != Value) |
| continue; |
| |
| if (I->getOpcode() == Opcode) |
| return *I; |
| } |
| return nullptr; |
| } |
| |
| unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const { |
| if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) { |
| switch (Intr->getConstantOperandVal(1)) { |
| case Intrinsic::amdgcn_if: |
| return AMDGPUISD::IF; |
| case Intrinsic::amdgcn_else: |
| return AMDGPUISD::ELSE; |
| case Intrinsic::amdgcn_loop: |
| return AMDGPUISD::LOOP; |
| case Intrinsic::amdgcn_end_cf: |
| llvm_unreachable("should not occur"); |
| default: |
| return 0; |
| } |
| } |
| |
| // break, if_break, else_break are all only used as inputs to loop, not |
| // directly as branch conditions. |
| return 0; |
| } |
| |
| bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const { |
| const Triple &TT = getTargetMachine().getTargetTriple(); |
| return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || |
| GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && |
| AMDGPU::shouldEmitConstantsToTextSection(TT); |
| } |
| |
| bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const { |
| if (Subtarget->isAmdPalOS() || Subtarget->isMesa3DOS()) |
| return false; |
| |
| // FIXME: Either avoid relying on address space here or change the default |
| // address space for functions to avoid the explicit check. |
| return (GV->getValueType()->isFunctionTy() || |
| !isNonGlobalAddrSpace(GV->getAddressSpace())) && |
| !shouldEmitFixup(GV) && !getTargetMachine().shouldAssumeDSOLocal(GV); |
| } |
| |
| bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const { |
| return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV); |
| } |
| |
| bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const { |
| if (!GV->hasExternalLinkage()) |
| return true; |
| |
| const auto OS = getTargetMachine().getTargetTriple().getOS(); |
| return OS == Triple::AMDHSA || OS == Triple::AMDPAL; |
| } |
| |
| /// This transforms the control flow intrinsics to get the branch destination as |
| /// last parameter, also switches branch target with BR if the need arise |
| SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, |
| SelectionDAG &DAG) const { |
| SDLoc DL(BRCOND); |
| |
| SDNode *Intr = BRCOND.getOperand(1).getNode(); |
| SDValue Target = BRCOND.getOperand(2); |
| SDNode *BR = nullptr; |
| SDNode *SetCC = nullptr; |
| |
| if (Intr->getOpcode() == ISD::SETCC) { |
| // As long as we negate the condition everything is fine |
| SetCC = Intr; |
| Intr = SetCC->getOperand(0).getNode(); |
| |
| } else { |
| // Get the target from BR if we don't negate the condition |
| BR = findUser(BRCOND, ISD::BR); |
| assert(BR && "brcond missing unconditional branch user"); |
| Target = BR->getOperand(1); |
| } |
| |
| unsigned CFNode = isCFIntrinsic(Intr); |
| if (CFNode == 0) { |
| // This is a uniform branch so we don't need to legalize. |
| return BRCOND; |
| } |
| |
| bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID || |
| Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN; |
| |
| assert(!SetCC || |
| (SetCC->getConstantOperandVal(1) == 1 && |
| cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == |
| ISD::SETNE)); |
| |
| // operands of the new intrinsic call |
| SmallVector<SDValue, 4> Ops; |
| if (HaveChain) |
| Ops.push_back(BRCOND.getOperand(0)); |
| |
| Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end()); |
| Ops.push_back(Target); |
| |
| ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end()); |
| |
| // build the new intrinsic call |
| SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode(); |
| |
| if (!HaveChain) { |
| SDValue Ops[] = { |
| SDValue(Result, 0), |
| BRCOND.getOperand(0) |
| }; |
| |
| Result = DAG.getMergeValues(Ops, DL).getNode(); |
| } |
| |
| if (BR) { |
| // Give the branch instruction our target |
| SDValue Ops[] = { |
| BR->getOperand(0), |
| BRCOND.getOperand(2) |
| }; |
| SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops); |
| DAG.ReplaceAllUsesWith(BR, NewBR.getNode()); |
| } |
| |
| SDValue Chain = SDValue(Result, Result->getNumValues() - 1); |
| |
| // Copy the intrinsic results to registers |
| for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { |
| SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); |
| if (!CopyToReg) |
| continue; |
| |
| Chain = DAG.getCopyToReg( |
| Chain, DL, |
| CopyToReg->getOperand(1), |
| SDValue(Result, i - 1), |
| SDValue()); |
| |
| DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); |
| } |
| |
| // Remove the old intrinsic from the chain |
| DAG.ReplaceAllUsesOfValueWith( |
| SDValue(Intr, Intr->getNumValues() - 1), |
| Intr->getOperand(0)); |
| |
| return Chain; |
| } |
| |
| SDValue SITargetLowering::LowerRETURNADDR(SDValue Op, |
| SelectionDAG &DAG) const { |
| MVT VT = Op.getSimpleValueType(); |
| SDLoc DL(Op); |
| // Checking the depth |
| if (Op.getConstantOperandVal(0) != 0) |
| return DAG.getConstant(0, DL, VT); |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| // Check for kernel and shader functions |
| if (Info->isEntryFunction()) |
| return DAG.getConstant(0, DL, VT); |
| |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| // There is a call to @llvm.returnaddress in this function |
| MFI.setReturnAddressIsTaken(true); |
| |
| const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); |
| // Get the return address reg and mark it as an implicit live-in |
| Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent())); |
| |
| return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); |
| } |
| |
| SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG, |
| SDValue Op, |
| const SDLoc &DL, |
| EVT VT) const { |
| return Op.getValueType().bitsLE(VT) ? |
| DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) : |
| DAG.getNode(ISD::FP_ROUND, DL, VT, Op, |
| DAG.getTargetConstant(0, DL, MVT::i32)); |
| } |
| |
| SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { |
| assert(Op.getValueType() == MVT::f16 && |
| "Do not know how to custom lower FP_ROUND for non-f16 type"); |
| |
| SDValue Src = Op.getOperand(0); |
| EVT SrcVT = Src.getValueType(); |
| if (SrcVT != MVT::f64) |
| return Op; |
| |
| // TODO: Handle strictfp |
| if (Op.getOpcode() != ISD::FP_ROUND) |
| return Op; |
| |
| SDLoc DL(Op); |
| |
| SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src); |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16); |
| return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc); |
| } |
| |
| SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| const MachineFunction &MF = DAG.getMachineFunction(); |
| const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| bool IsIEEEMode = Info->getMode().IEEE; |
| |
| // FIXME: Assert during selection that this is only selected for |
| // ieee_mode. Currently a combine can produce the ieee version for non-ieee |
| // mode functions, but this happens to be OK since it's only done in cases |
| // where there is known no sNaN. |
| if (IsIEEEMode) |
| return expandFMINNUM_FMAXNUM(Op.getNode(), DAG); |
| |
| if (VT == MVT::v4f16 || VT == MVT::v8f16 || VT == MVT::v16f16 || |
| VT == MVT::v16bf16) |
| return splitBinaryVectorOp(Op, DAG); |
| return Op; |
| } |
| |
| SDValue SITargetLowering::lowerFLDEXP(SDValue Op, SelectionDAG &DAG) const { |
| bool IsStrict = Op.getOpcode() == ISD::STRICT_FLDEXP; |
| EVT VT = Op.getValueType(); |
| assert(VT == MVT::f16); |
| |
| SDValue Exp = Op.getOperand(IsStrict ? 2 : 1); |
| EVT ExpVT = Exp.getValueType(); |
| if (ExpVT == MVT::i16) |
| return Op; |
| |
| SDLoc DL(Op); |
| |
| // Correct the exponent type for f16 to i16. |
| // Clamp the range of the exponent to the instruction's range. |
| |
| // TODO: This should be a generic narrowing legalization, and can easily be |
| // for GlobalISel. |
| |
| SDValue MinExp = DAG.getConstant(minIntN(16), DL, ExpVT); |
| SDValue ClampMin = DAG.getNode(ISD::SMAX, DL, ExpVT, Exp, MinExp); |
| |
| SDValue MaxExp = DAG.getConstant(maxIntN(16), DL, ExpVT); |
| SDValue Clamp = DAG.getNode(ISD::SMIN, DL, ExpVT, ClampMin, MaxExp); |
| |
| SDValue TruncExp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Clamp); |
| |
| if (IsStrict) { |
| return DAG.getNode(ISD::STRICT_FLDEXP, DL, {VT, MVT::Other}, |
| {Op.getOperand(0), Op.getOperand(1), TruncExp}); |
| } |
| |
| return DAG.getNode(ISD::FLDEXP, DL, VT, Op.getOperand(0), TruncExp); |
| } |
| |
| // Custom lowering for vector multiplications and s_mul_u64. |
| SDValue SITargetLowering::lowerMUL(SDValue Op, SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| |
| // Split vector operands. |
| if (VT.isVector()) |
| return splitBinaryVectorOp(Op, DAG); |
| |
| assert(VT == MVT::i64 && "The following code is a special for s_mul_u64"); |
| |
| // There are four ways to lower s_mul_u64: |
| // |
| // 1. If all the operands are uniform, then we lower it as it is. |
| // |
| // 2. If the operands are divergent, then we have to split s_mul_u64 in 32-bit |
| // multiplications because there is not a vector equivalent of s_mul_u64. |
| // |
| // 3. If the cost model decides that it is more efficient to use vector |
| // registers, then we have to split s_mul_u64 in 32-bit multiplications. |
| // This happens in splitScalarSMULU64() in SIInstrInfo.cpp . |
| // |
| // 4. If the cost model decides to use vector registers and both of the |
| // operands are zero-extended/sign-extended from 32-bits, then we split the |
| // s_mul_u64 in two 32-bit multiplications. The problem is that it is not |
| // possible to check if the operands are zero-extended or sign-extended in |
| // SIInstrInfo.cpp. For this reason, here, we replace s_mul_u64 with |
| // s_mul_u64_u32_pseudo if both operands are zero-extended and we replace |
| // s_mul_u64 with s_mul_i64_i32_pseudo if both operands are sign-extended. |
| // If the cost model decides that we have to use vector registers, then |
| // splitScalarSMulPseudo() (in SIInstrInfo.cpp) split s_mul_u64_u32/ |
| // s_mul_i64_i32_pseudo in two vector multiplications. If the cost model |
| // decides that we should use scalar registers, then s_mul_u64_u32_pseudo/ |
| // s_mul_i64_i32_pseudo is lowered as s_mul_u64 in expandPostRAPseudo() in |
| // SIInstrInfo.cpp . |
| |
| if (Op->isDivergent()) |
| return SDValue(); |
| |
| SDValue Op0 = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| // If all the operands are zero-enteted to 32-bits, then we replace s_mul_u64 |
| // with s_mul_u64_u32_pseudo. If all the operands are sign-extended to |
| // 32-bits, then we replace s_mul_u64 with s_mul_i64_i32_pseudo. |
| KnownBits Op0KnownBits = DAG.computeKnownBits(Op0); |
| unsigned Op0LeadingZeros = Op0KnownBits.countMinLeadingZeros(); |
| KnownBits Op1KnownBits = DAG.computeKnownBits(Op1); |
| unsigned Op1LeadingZeros = Op1KnownBits.countMinLeadingZeros(); |
| SDLoc SL(Op); |
| if (Op0LeadingZeros >= 32 && Op1LeadingZeros >= 32) |
| return SDValue( |
| DAG.getMachineNode(AMDGPU::S_MUL_U64_U32_PSEUDO, SL, VT, Op0, Op1), 0); |
| unsigned Op0SignBits = DAG.ComputeNumSignBits(Op0); |
| unsigned Op1SignBits = DAG.ComputeNumSignBits(Op1); |
| if (Op0SignBits >= 33 && Op1SignBits >= 33) |
| return SDValue( |
| DAG.getMachineNode(AMDGPU::S_MUL_I64_I32_PSEUDO, SL, VT, Op0, Op1), 0); |
| // If all the operands are uniform, then we lower s_mul_u64 as it is. |
| return Op; |
| } |
| |
| SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| SDLoc SL(Op); |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| bool isSigned = Op.getOpcode() == ISD::SMULO; |
| |
| if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { |
| const APInt &C = RHSC->getAPIntValue(); |
| // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } |
| if (C.isPowerOf2()) { |
| // smulo(x, signed_min) is same as umulo(x, signed_min). |
| bool UseArithShift = isSigned && !C.isMinSignedValue(); |
| SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32); |
| SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt); |
| SDValue Overflow = DAG.getSetCC(SL, MVT::i1, |
| DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, |
| SL, VT, Result, ShiftAmt), |
| LHS, ISD::SETNE); |
| return DAG.getMergeValues({ Result, Overflow }, SL); |
| } |
| } |
| |
| SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS); |
| SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU, |
| SL, VT, LHS, RHS); |
| |
| SDValue Sign = isSigned |
| ? DAG.getNode(ISD::SRA, SL, VT, Result, |
| DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32)) |
| : DAG.getConstant(0, SL, VT); |
| SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE); |
| |
| return DAG.getMergeValues({ Result, Overflow }, SL); |
| } |
| |
| SDValue SITargetLowering::lowerXMUL_LOHI(SDValue Op, SelectionDAG &DAG) const { |
| if (Op->isDivergent()) { |
| // Select to V_MAD_[IU]64_[IU]32. |
| return Op; |
| } |
| if (Subtarget->hasSMulHi()) { |
| // Expand to S_MUL_I32 + S_MUL_HI_[IU]32. |
| return SDValue(); |
| } |
| // The multiply is uniform but we would have to use V_MUL_HI_[IU]32 to |
| // calculate the high part, so we might as well do the whole thing with |
| // V_MAD_[IU]64_[IU]32. |
| return Op; |
| } |
| |
| SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const { |
| if (!Subtarget->isTrapHandlerEnabled() || |
| Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) |
| return lowerTrapEndpgm(Op, DAG); |
| |
| return Subtarget->supportsGetDoorbellID() ? lowerTrapHsa(Op, DAG) : |
| lowerTrapHsaQueuePtr(Op, DAG); |
| } |
| |
| SDValue SITargetLowering::lowerTrapEndpgm( |
| SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue Chain = Op.getOperand(0); |
| return DAG.getNode(AMDGPUISD::ENDPGM_TRAP, SL, MVT::Other, Chain); |
| } |
| |
| SDValue SITargetLowering::loadImplicitKernelArgument(SelectionDAG &DAG, MVT VT, |
| const SDLoc &DL, Align Alignment, ImplicitParameter Param) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| uint64_t Offset = getImplicitParameterOffset(MF, Param); |
| SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, DAG.getEntryNode(), Offset); |
| MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); |
| return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, PtrInfo, Alignment, |
| MachineMemOperand::MODereferenceable | |
| MachineMemOperand::MOInvariant); |
| } |
| |
| SDValue SITargetLowering::lowerTrapHsaQueuePtr( |
| SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue Chain = Op.getOperand(0); |
| |
| SDValue QueuePtr; |
| // For code object version 5, QueuePtr is passed through implicit kernarg. |
| const Module *M = DAG.getMachineFunction().getFunction().getParent(); |
| if (AMDGPU::getAMDHSACodeObjectVersion(*M) >= AMDGPU::AMDHSA_COV5) { |
| QueuePtr = |
| loadImplicitKernelArgument(DAG, MVT::i64, SL, Align(8), QUEUE_PTR); |
| } else { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| Register UserSGPR = Info->getQueuePtrUserSGPR(); |
| |
| if (UserSGPR == AMDGPU::NoRegister) { |
| // We probably are in a function incorrectly marked with |
| // amdgpu-no-queue-ptr. This is undefined. We don't want to delete the |
| // trap, so just use a null pointer. |
| QueuePtr = DAG.getConstant(0, SL, MVT::i64); |
| } else { |
| QueuePtr = CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, UserSGPR, |
| MVT::i64); |
| } |
| } |
| |
| SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64); |
| SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01, |
| QueuePtr, SDValue()); |
| |
| uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap); |
| SDValue Ops[] = { |
| ToReg, |
| DAG.getTargetConstant(TrapID, SL, MVT::i16), |
| SGPR01, |
| ToReg.getValue(1) |
| }; |
| return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); |
| } |
| |
| SDValue SITargetLowering::lowerTrapHsa( |
| SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue Chain = Op.getOperand(0); |
| |
| // We need to simulate the 's_trap 2' instruction on targets that run in |
| // PRIV=1 (where it is treated as a nop). |
| if (Subtarget->hasPrivEnabledTrap2NopBug()) |
| return DAG.getNode(AMDGPUISD::SIMULATED_TRAP, SL, MVT::Other, Chain); |
| |
| uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap); |
| SDValue Ops[] = { |
| Chain, |
| DAG.getTargetConstant(TrapID, SL, MVT::i16) |
| }; |
| return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); |
| } |
| |
| SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue Chain = Op.getOperand(0); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| if (!Subtarget->isTrapHandlerEnabled() || |
| Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) { |
| DiagnosticInfoUnsupported NoTrap(MF.getFunction(), |
| "debugtrap handler not supported", |
| Op.getDebugLoc(), |
| DS_Warning); |
| LLVMContext &Ctx = MF.getFunction().getContext(); |
| Ctx.diagnose(NoTrap); |
| return Chain; |
| } |
| |
| uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap); |
| SDValue Ops[] = { |
| Chain, |
| DAG.getTargetConstant(TrapID, SL, MVT::i16) |
| }; |
| return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); |
| } |
| |
| SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL, |
| SelectionDAG &DAG) const { |
| if (Subtarget->hasApertureRegs()) { |
| const unsigned ApertureRegNo = (AS == AMDGPUAS::LOCAL_ADDRESS) |
| ? AMDGPU::SRC_SHARED_BASE |
| : AMDGPU::SRC_PRIVATE_BASE; |
| // Note: this feature (register) is broken. When used as a 32-bit operand, |
| // it returns a wrong value (all zeroes?). The real value is in the upper 32 |
| // bits. |
| // |
| // To work around the issue, directly emit a 64 bit mov from this register |
| // then extract the high bits. Note that this shouldn't even result in a |
| // shift being emitted and simply become a pair of registers (e.g.): |
| // s_mov_b64 s[6:7], src_shared_base |
| // v_mov_b32_e32 v1, s7 |
| // |
| // FIXME: It would be more natural to emit a CopyFromReg here, but then copy |
| // coalescing would kick in and it would think it's okay to use the "HI" |
| // subregister directly (instead of extracting the HI 32 bits) which is an |
| // artificial (unusable) register. |
| // Register TableGen definitions would need an overhaul to get rid of the |
| // artificial "HI" aperture registers and prevent this kind of issue from |
| // happening. |
| SDNode *Mov = DAG.getMachineNode(AMDGPU::S_MOV_B64, DL, MVT::i64, |
| DAG.getRegister(ApertureRegNo, MVT::i64)); |
| return DAG.getNode( |
| ISD::TRUNCATE, DL, MVT::i32, |
| DAG.getNode(ISD::SRL, DL, MVT::i64, |
| {SDValue(Mov, 0), DAG.getConstant(32, DL, MVT::i64)})); |
| } |
| |
| // For code object version 5, private_base and shared_base are passed through |
| // implicit kernargs. |
| const Module *M = DAG.getMachineFunction().getFunction().getParent(); |
| if (AMDGPU::getAMDHSACodeObjectVersion(*M) >= AMDGPU::AMDHSA_COV5) { |
| ImplicitParameter Param = |
| (AS == AMDGPUAS::LOCAL_ADDRESS) ? SHARED_BASE : PRIVATE_BASE; |
| return loadImplicitKernelArgument(DAG, MVT::i32, DL, Align(4), Param); |
| } |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| Register UserSGPR = Info->getQueuePtrUserSGPR(); |
| if (UserSGPR == AMDGPU::NoRegister) { |
| // We probably are in a function incorrectly marked with |
| // amdgpu-no-queue-ptr. This is undefined. |
| return DAG.getUNDEF(MVT::i32); |
| } |
| |
| SDValue QueuePtr = CreateLiveInRegister( |
| DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); |
| |
| // Offset into amd_queue_t for group_segment_aperture_base_hi / |
| // private_segment_aperture_base_hi. |
| uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44; |
| |
| SDValue Ptr = |
| DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::getFixed(StructOffset)); |
| |
| // TODO: Use custom target PseudoSourceValue. |
| // TODO: We should use the value from the IR intrinsic call, but it might not |
| // be available and how do we get it? |
| MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); |
| return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo, |
| commonAlignment(Align(64), StructOffset), |
| MachineMemOperand::MODereferenceable | |
| MachineMemOperand::MOInvariant); |
| } |
| |
| /// Return true if the value is a known valid address, such that a null check is |
| /// not necessary. |
| static bool isKnownNonNull(SDValue Val, SelectionDAG &DAG, |
| const AMDGPUTargetMachine &TM, unsigned AddrSpace) { |
| if (isa<FrameIndexSDNode>(Val) || isa<GlobalAddressSDNode>(Val) || |
| isa<BasicBlockSDNode>(Val)) |
| return true; |
| |
| if (auto *ConstVal = dyn_cast<ConstantSDNode>(Val)) |
| return ConstVal->getSExtValue() != TM.getNullPointerValue(AddrSpace); |
| |
| // TODO: Search through arithmetic, handle arguments and loads |
| // marked nonnull. |
| return false; |
| } |
| |
| SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| |
| const AMDGPUTargetMachine &TM = |
| static_cast<const AMDGPUTargetMachine &>(getTargetMachine()); |
| |
| unsigned DestAS, SrcAS; |
| SDValue Src; |
| bool IsNonNull = false; |
| if (const auto *ASC = dyn_cast<AddrSpaceCastSDNode>(Op)) { |
| SrcAS = ASC->getSrcAddressSpace(); |
| Src = ASC->getOperand(0); |
| DestAS = ASC->getDestAddressSpace(); |
| } else { |
| assert(Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN && |
| Op.getConstantOperandVal(0) == |
| Intrinsic::amdgcn_addrspacecast_nonnull); |
| Src = Op->getOperand(1); |
| SrcAS = Op->getConstantOperandVal(2); |
| DestAS = Op->getConstantOperandVal(3); |
| IsNonNull = true; |
| } |
| |
| SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64); |
| |
| // flat -> local/private |
| if (SrcAS == AMDGPUAS::FLAT_ADDRESS) { |
| if (DestAS == AMDGPUAS::LOCAL_ADDRESS || |
| DestAS == AMDGPUAS::PRIVATE_ADDRESS) { |
| SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); |
| |
| if (IsNonNull || isKnownNonNull(Op, DAG, TM, SrcAS)) |
| return Ptr; |
| |
| unsigned NullVal = TM.getNullPointerValue(DestAS); |
| SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); |
| SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE); |
| |
| return DAG.getNode(ISD::SELECT, SL, MVT::i32, NonNull, Ptr, |
| SegmentNullPtr); |
| } |
| } |
| |
| // local/private -> flat |
| if (DestAS == AMDGPUAS::FLAT_ADDRESS) { |
| if (SrcAS == AMDGPUAS::LOCAL_ADDRESS || |
| SrcAS == AMDGPUAS::PRIVATE_ADDRESS) { |
| |
| SDValue Aperture = getSegmentAperture(SrcAS, SL, DAG); |
| SDValue CvtPtr = |
| DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture); |
| CvtPtr = DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr); |
| |
| if (IsNonNull || isKnownNonNull(Op, DAG, TM, SrcAS)) |
| return CvtPtr; |
| |
| unsigned NullVal = TM.getNullPointerValue(SrcAS); |
| SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); |
| |
| SDValue NonNull |
| = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE); |
| |
| return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, CvtPtr, |
| FlatNullPtr); |
| } |
| } |
| |
| if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT && |
| Op.getValueType() == MVT::i64) { |
| const SIMachineFunctionInfo *Info = |
| DAG.getMachineFunction().getInfo<SIMachineFunctionInfo>(); |
| SDValue Hi = DAG.getConstant(Info->get32BitAddressHighBits(), SL, MVT::i32); |
| SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Hi); |
| return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); |
| } |
| |
| if (DestAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT && |
| Src.getValueType() == MVT::i64) |
| return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); |
| |
| // global <-> flat are no-ops and never emitted. |
| |
| const MachineFunction &MF = DAG.getMachineFunction(); |
| DiagnosticInfoUnsupported InvalidAddrSpaceCast( |
| MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc()); |
| DAG.getContext()->diagnose(InvalidAddrSpaceCast); |
| |
| return DAG.getUNDEF(Op->getValueType(0)); |
| } |
| |
| // This lowers an INSERT_SUBVECTOR by extracting the individual elements from |
| // the small vector and inserting them into the big vector. That is better than |
| // the default expansion of doing it via a stack slot. Even though the use of |
| // the stack slot would be optimized away afterwards, the stack slot itself |
| // remains. |
| SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue Vec = Op.getOperand(0); |
| SDValue Ins = Op.getOperand(1); |
| SDValue Idx = Op.getOperand(2); |
| EVT VecVT = Vec.getValueType(); |
| EVT InsVT = Ins.getValueType(); |
| EVT EltVT = VecVT.getVectorElementType(); |
| unsigned InsNumElts = InsVT.getVectorNumElements(); |
| unsigned IdxVal = Idx->getAsZExtVal(); |
| SDLoc SL(Op); |
| |
| if (EltVT.getScalarSizeInBits() == 16 && IdxVal % 2 == 0) { |
| // Insert 32-bit registers at a time. |
| assert(InsNumElts % 2 == 0 && "expect legal vector types"); |
| |
| unsigned VecNumElts = VecVT.getVectorNumElements(); |
| EVT NewVecVT = |
| EVT::getVectorVT(*DAG.getContext(), MVT::i32, VecNumElts / 2); |
| EVT NewInsVT = InsNumElts == 2 ? MVT::i32 |
| : EVT::getVectorVT(*DAG.getContext(), |
| MVT::i32, InsNumElts / 2); |
| |
| Vec = DAG.getNode(ISD::BITCAST, SL, NewVecVT, Vec); |
| Ins = DAG.getNode(ISD::BITCAST, SL, NewInsVT, Ins); |
| |
| for (unsigned I = 0; I != InsNumElts / 2; ++I) { |
| SDValue Elt; |
| if (InsNumElts == 2) { |
| Elt = Ins; |
| } else { |
| Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Ins, |
| DAG.getConstant(I, SL, MVT::i32)); |
| } |
| Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NewVecVT, Vec, Elt, |
| DAG.getConstant(IdxVal / 2 + I, SL, MVT::i32)); |
| } |
| |
| return DAG.getNode(ISD::BITCAST, SL, VecVT, Vec); |
| } |
| |
| for (unsigned I = 0; I != InsNumElts; ++I) { |
| SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins, |
| DAG.getConstant(I, SL, MVT::i32)); |
| Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt, |
| DAG.getConstant(IdxVal + I, SL, MVT::i32)); |
| } |
| return Vec; |
| } |
| |
| SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue Vec = Op.getOperand(0); |
| SDValue InsVal = Op.getOperand(1); |
| SDValue Idx = Op.getOperand(2); |
| EVT VecVT = Vec.getValueType(); |
| EVT EltVT = VecVT.getVectorElementType(); |
| unsigned VecSize = VecVT.getSizeInBits(); |
| unsigned EltSize = EltVT.getSizeInBits(); |
| SDLoc SL(Op); |
| |
| // Specially handle the case of v4i16 with static indexing. |
| unsigned NumElts = VecVT.getVectorNumElements(); |
| auto KIdx = dyn_cast<ConstantSDNode>(Idx); |
| if (NumElts == 4 && EltSize == 16 && KIdx) { |
| SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec); |
| |
| SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, |
| DAG.getConstant(0, SL, MVT::i32)); |
| SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec, |
| DAG.getConstant(1, SL, MVT::i32)); |
| |
| SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf); |
| SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf); |
| |
| unsigned Idx = KIdx->getZExtValue(); |
| bool InsertLo = Idx < 2; |
| SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16, |
| InsertLo ? LoVec : HiVec, |
| DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal), |
| DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32)); |
| |
| InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf); |
| |
| SDValue Concat = InsertLo ? |
| DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) : |
| DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf }); |
| |
| return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat); |
| } |
| |
| // Static indexing does not lower to stack access, and hence there is no need |
| // for special custom lowering to avoid stack access. |
| if (isa<ConstantSDNode>(Idx)) |
| return SDValue(); |
| |
| // Avoid stack access for dynamic indexing by custom lowering to |
| // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec |
| |
| assert(VecSize <= 64 && "Expected target vector size to be <= 64 bits"); |
| |
| MVT IntVT = MVT::getIntegerVT(VecSize); |
| |
| // Convert vector index to bit-index and get the required bit mask. |
| assert(isPowerOf2_32(EltSize)); |
| const auto EltMask = maskTrailingOnes<uint64_t>(EltSize); |
| SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); |
| SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); |
| SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT, |
| DAG.getConstant(EltMask, SL, IntVT), ScaledIdx); |
| |
| // 1. Create a congruent vector with the target value in each element. |
| SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT, |
| DAG.getSplatBuildVector(VecVT, SL, InsVal)); |
| |
| // 2. Mask off all other indices except the required index within (1). |
| SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal); |
| |
| // 3. Mask off the required index within the target vector. |
| SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); |
| SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT, |
| DAG.getNOT(SL, BFM, IntVT), BCVec); |
| |
| // 4. Get (2) and (3) ORed into the target vector. |
| SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS); |
| |
| return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI); |
| } |
| |
| SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| |
| EVT ResultVT = Op.getValueType(); |
| SDValue Vec = Op.getOperand(0); |
| SDValue Idx = Op.getOperand(1); |
| EVT VecVT = Vec.getValueType(); |
| unsigned VecSize = VecVT.getSizeInBits(); |
| EVT EltVT = VecVT.getVectorElementType(); |
| |
| DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr); |
| |
| // Make sure we do any optimizations that will make it easier to fold |
| // source modifiers before obscuring it with bit operations. |
| |
| // XXX - Why doesn't this get called when vector_shuffle is expanded? |
| if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI)) |
| return Combined; |
| |
| if (VecSize == 128 || VecSize == 256 || VecSize == 512) { |
| SDValue Lo, Hi; |
| EVT LoVT, HiVT; |
| std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); |
| |
| if (VecSize == 128) { |
| SDValue V2 = DAG.getBitcast(MVT::v2i64, Vec); |
| Lo = DAG.getBitcast(LoVT, |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, |
| DAG.getConstant(0, SL, MVT::i32))); |
| Hi = DAG.getBitcast(HiVT, |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, |
| DAG.getConstant(1, SL, MVT::i32))); |
| } else if (VecSize == 256) { |
| SDValue V2 = DAG.getBitcast(MVT::v4i64, Vec); |
| SDValue Parts[4]; |
| for (unsigned P = 0; P < 4; ++P) { |
| Parts[P] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, |
| DAG.getConstant(P, SL, MVT::i32)); |
| } |
| |
| Lo = DAG.getBitcast(LoVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64, |
| Parts[0], Parts[1])); |
| Hi = DAG.getBitcast(HiVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64, |
| Parts[2], Parts[3])); |
| } else { |
| assert(VecSize == 512); |
| |
| SDValue V2 = DAG.getBitcast(MVT::v8i64, Vec); |
| SDValue Parts[8]; |
| for (unsigned P = 0; P < 8; ++P) { |
| Parts[P] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2, |
| DAG.getConstant(P, SL, MVT::i32)); |
| } |
| |
| Lo = DAG.getBitcast(LoVT, |
| DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v4i64, |
| Parts[0], Parts[1], Parts[2], Parts[3])); |
| Hi = DAG.getBitcast(HiVT, |
| DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v4i64, |
| Parts[4], Parts[5],Parts[6], Parts[7])); |
| } |
| |
| EVT IdxVT = Idx.getValueType(); |
| unsigned NElem = VecVT.getVectorNumElements(); |
| assert(isPowerOf2_32(NElem)); |
| SDValue IdxMask = DAG.getConstant(NElem / 2 - 1, SL, IdxVT); |
| SDValue NewIdx = DAG.getNode(ISD::AND, SL, IdxVT, Idx, IdxMask); |
| SDValue Half = DAG.getSelectCC(SL, Idx, IdxMask, Hi, Lo, ISD::SETUGT); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Half, NewIdx); |
| } |
| |
| assert(VecSize <= 64); |
| |
| MVT IntVT = MVT::getIntegerVT(VecSize); |
| |
| // If Vec is just a SCALAR_TO_VECTOR, then use the scalar integer directly. |
| SDValue VecBC = peekThroughBitcasts(Vec); |
| if (VecBC.getOpcode() == ISD::SCALAR_TO_VECTOR) { |
| SDValue Src = VecBC.getOperand(0); |
| Src = DAG.getBitcast(Src.getValueType().changeTypeToInteger(), Src); |
| Vec = DAG.getAnyExtOrTrunc(Src, SL, IntVT); |
| } |
| |
| unsigned EltSize = EltVT.getSizeInBits(); |
| assert(isPowerOf2_32(EltSize)); |
| |
| SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32); |
| |
| // Convert vector index to bit-index (* EltSize) |
| SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor); |
| |
| SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec); |
| SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx); |
| |
| if (ResultVT == MVT::f16 || ResultVT == MVT::bf16) { |
| SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt); |
| return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result); |
| } |
| |
| return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT); |
| } |
| |
| static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) { |
| assert(Elt % 2 == 0); |
| return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0); |
| } |
| |
| SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| EVT ResultVT = Op.getValueType(); |
| ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); |
| |
| EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16; |
| EVT EltVT = PackVT.getVectorElementType(); |
| int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements(); |
| |
| // vector_shuffle <0,1,6,7> lhs, rhs |
| // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2) |
| // |
| // vector_shuffle <6,7,2,3> lhs, rhs |
| // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2) |
| // |
| // vector_shuffle <6,7,0,1> lhs, rhs |
| // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0) |
| |
| // Avoid scalarizing when both halves are reading from consecutive elements. |
| SmallVector<SDValue, 4> Pieces; |
| for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) { |
| if (elementPairIsContiguous(SVN->getMask(), I)) { |
| const int Idx = SVN->getMaskElt(I); |
| int VecIdx = Idx < SrcNumElts ? 0 : 1; |
| int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts; |
| SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, |
| PackVT, SVN->getOperand(VecIdx), |
| DAG.getConstant(EltIdx, SL, MVT::i32)); |
| Pieces.push_back(SubVec); |
| } else { |
| const int Idx0 = SVN->getMaskElt(I); |
| const int Idx1 = SVN->getMaskElt(I + 1); |
| int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1; |
| int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1; |
| int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts; |
| int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts; |
| |
| SDValue Vec0 = SVN->getOperand(VecIdx0); |
| SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, |
| Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32)); |
| |
| SDValue Vec1 = SVN->getOperand(VecIdx1); |
| SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, |
| Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32)); |
| Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 })); |
| } |
| } |
| |
| return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces); |
| } |
| |
| SDValue SITargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue SVal = Op.getOperand(0); |
| EVT ResultVT = Op.getValueType(); |
| EVT SValVT = SVal.getValueType(); |
| SDValue UndefVal = DAG.getUNDEF(SValVT); |
| SDLoc SL(Op); |
| |
| SmallVector<SDValue, 8> VElts; |
| VElts.push_back(SVal); |
| for (int I = 1, E = ResultVT.getVectorNumElements(); I < E; ++I) |
| VElts.push_back(UndefVal); |
| |
| return DAG.getBuildVector(ResultVT, SL, VElts); |
| } |
| |
| SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| EVT VT = Op.getValueType(); |
| |
| if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 || |
| VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) { |
| EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), |
| VT.getVectorNumElements() / 2); |
| MVT HalfIntVT = MVT::getIntegerVT(HalfVT.getSizeInBits()); |
| |
| // Turn into pair of packed build_vectors. |
| // TODO: Special case for constants that can be materialized with s_mov_b64. |
| SmallVector<SDValue, 4> LoOps, HiOps; |
| for (unsigned I = 0, E = VT.getVectorNumElements() / 2; I != E; ++I) { |
| LoOps.push_back(Op.getOperand(I)); |
| HiOps.push_back(Op.getOperand(I + E)); |
| } |
| SDValue Lo = DAG.getBuildVector(HalfVT, SL, LoOps); |
| SDValue Hi = DAG.getBuildVector(HalfVT, SL, HiOps); |
| |
| SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Lo); |
| SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, HalfIntVT, Hi); |
| |
| SDValue Blend = DAG.getBuildVector(MVT::getVectorVT(HalfIntVT, 2), SL, |
| { CastLo, CastHi }); |
| return DAG.getNode(ISD::BITCAST, SL, VT, Blend); |
| } |
| |
| if (VT == MVT::v16i16 || VT == MVT::v16f16 || VT == MVT::v16bf16) { |
| EVT QuarterVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), |
| VT.getVectorNumElements() / 4); |
| MVT QuarterIntVT = MVT::getIntegerVT(QuarterVT.getSizeInBits()); |
| |
| SmallVector<SDValue, 4> Parts[4]; |
| for (unsigned I = 0, E = VT.getVectorNumElements() / 4; I != E; ++I) { |
| for (unsigned P = 0; P < 4; ++P) |
| Parts[P].push_back(Op.getOperand(I + P * E)); |
| } |
| SDValue Casts[4]; |
| for (unsigned P = 0; P < 4; ++P) { |
| SDValue Vec = DAG.getBuildVector(QuarterVT, SL, Parts[P]); |
| Casts[P] = DAG.getNode(ISD::BITCAST, SL, QuarterIntVT, Vec); |
| } |
| |
| SDValue Blend = |
| DAG.getBuildVector(MVT::getVectorVT(QuarterIntVT, 4), SL, Casts); |
| return DAG.getNode(ISD::BITCAST, SL, VT, Blend); |
| } |
| |
| if (VT == MVT::v32i16 || VT == MVT::v32f16 || VT == MVT::v32bf16) { |
| EVT QuarterVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), |
| VT.getVectorNumElements() / 8); |
| MVT QuarterIntVT = MVT::getIntegerVT(QuarterVT.getSizeInBits()); |
| |
| SmallVector<SDValue, 8> Parts[8]; |
| for (unsigned I = 0, E = VT.getVectorNumElements() / 8; I != E; ++I) { |
| for (unsigned P = 0; P < 8; ++P) |
| Parts[P].push_back(Op.getOperand(I + P * E)); |
| } |
| SDValue Casts[8]; |
| for (unsigned P = 0; P < 8; ++P) { |
| SDValue Vec = DAG.getBuildVector(QuarterVT, SL, Parts[P]); |
| Casts[P] = DAG.getNode(ISD::BITCAST, SL, QuarterIntVT, Vec); |
| } |
| |
| SDValue Blend = |
| DAG.getBuildVector(MVT::getVectorVT(QuarterIntVT, 8), SL, Casts); |
| return DAG.getNode(ISD::BITCAST, SL, VT, Blend); |
| } |
| |
| assert(VT == MVT::v2f16 || VT == MVT::v2i16 || VT == MVT::v2bf16); |
| assert(!Subtarget->hasVOP3PInsts() && "this should be legal"); |
| |
| SDValue Lo = Op.getOperand(0); |
| SDValue Hi = Op.getOperand(1); |
| |
| // Avoid adding defined bits with the zero_extend. |
| if (Hi.isUndef()) { |
| Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); |
| SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo); |
| return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo); |
| } |
| |
| Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi); |
| Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi); |
| |
| SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi, |
| DAG.getConstant(16, SL, MVT::i32)); |
| if (Lo.isUndef()) |
| return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi); |
| |
| Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo); |
| Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo); |
| |
| SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi); |
| return DAG.getNode(ISD::BITCAST, SL, VT, Or); |
| } |
| |
| bool |
| SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { |
| // OSes that use ELF REL relocations (instead of RELA) can only store a |
| // 32-bit addend in the instruction, so it is not safe to allow offset folding |
| // which can create arbitrary 64-bit addends. (This is only a problem for |
| // R_AMDGPU_*32_HI relocations since other relocation types are unaffected by |
| // the high 32 bits of the addend.) |
| // |
| // This should be kept in sync with how HasRelocationAddend is initialized in |
| // the constructor of ELFAMDGPUAsmBackend. |
| if (!Subtarget->isAmdHsaOS()) |
| return false; |
| |
| // We can fold offsets for anything that doesn't require a GOT relocation. |
| return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS || |
| GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || |
| GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && |
| !shouldEmitGOTReloc(GA->getGlobal()); |
| } |
| |
| static SDValue |
| buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV, |
| const SDLoc &DL, int64_t Offset, EVT PtrVT, |
| unsigned GAFlags = SIInstrInfo::MO_NONE) { |
| assert(isInt<32>(Offset + 4) && "32-bit offset is expected!"); |
| // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is |
| // lowered to the following code sequence: |
| // |
| // For constant address space: |
| // s_getpc_b64 s[0:1] |
| // s_add_u32 s0, s0, $symbol |
| // s_addc_u32 s1, s1, 0 |
| // |
| // s_getpc_b64 returns the address of the s_add_u32 instruction and then |
| // a fixup or relocation is emitted to replace $symbol with a literal |
| // constant, which is a pc-relative offset from the encoding of the $symbol |
| // operand to the global variable. |
| // |
| // For global address space: |
| // s_getpc_b64 s[0:1] |
| // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo |
| // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi |
| // |
| // s_getpc_b64 returns the address of the s_add_u32 instruction and then |
| // fixups or relocations are emitted to replace $symbol@*@lo and |
| // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant, |
| // which is a 64-bit pc-relative offset from the encoding of the $symbol |
| // operand to the global variable. |
| SDValue PtrLo = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset, GAFlags); |
| SDValue PtrHi; |
| if (GAFlags == SIInstrInfo::MO_NONE) |
| PtrHi = DAG.getTargetConstant(0, DL, MVT::i32); |
| else |
| PtrHi = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset, GAFlags + 1); |
| return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi); |
| } |
| |
| SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, |
| SDValue Op, |
| SelectionDAG &DAG) const { |
| GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op); |
| SDLoc DL(GSD); |
| EVT PtrVT = Op.getValueType(); |
| |
| const GlobalValue *GV = GSD->getGlobal(); |
| if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && |
| shouldUseLDSConstAddress(GV)) || |
| GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS || |
| GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) { |
| if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && |
| GV->hasExternalLinkage()) { |
| Type *Ty = GV->getValueType(); |
| // HIP uses an unsized array `extern __shared__ T s[]` or similar |
| // zero-sized type in other languages to declare the dynamic shared |
| // memory which size is not known at the compile time. They will be |
| // allocated by the runtime and placed directly after the static |
| // allocated ones. They all share the same offset. |
| if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) { |
| assert(PtrVT == MVT::i32 && "32-bit pointer is expected."); |
| // Adjust alignment for that dynamic shared memory array. |
| Function &F = DAG.getMachineFunction().getFunction(); |
| MFI->setDynLDSAlign(F, *cast<GlobalVariable>(GV)); |
| MFI->setUsesDynamicLDS(true); |
| return SDValue( |
| DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0); |
| } |
| } |
| return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); |
| } |
| |
| if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { |
| SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(), |
| SIInstrInfo::MO_ABS32_LO); |
| return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA); |
| } |
| |
| if (Subtarget->isAmdPalOS() || Subtarget->isMesa3DOS()) { |
| SDValue AddrLo = DAG.getTargetGlobalAddress( |
| GV, DL, MVT::i32, GSD->getOffset(), SIInstrInfo::MO_ABS32_LO); |
| AddrLo = {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, AddrLo), 0}; |
| |
| SDValue AddrHi = DAG.getTargetGlobalAddress( |
| GV, DL, MVT::i32, GSD->getOffset(), SIInstrInfo::MO_ABS32_HI); |
| AddrHi = {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, AddrHi), 0}; |
| |
| return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, AddrLo, AddrHi); |
| } |
| |
| if (shouldEmitFixup(GV)) |
| return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT); |
| |
| if (shouldEmitPCReloc(GV)) |
| return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT, |
| SIInstrInfo::MO_REL32); |
| |
| SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT, |
| SIInstrInfo::MO_GOTPCREL32); |
| |
| Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext()); |
| PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); |
| const DataLayout &DataLayout = DAG.getDataLayout(); |
| Align Alignment = DataLayout.getABITypeAlign(PtrTy); |
| MachinePointerInfo PtrInfo |
| = MachinePointerInfo::getGOT(DAG.getMachineFunction()); |
| |
| return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment, |
| MachineMemOperand::MODereferenceable | |
| MachineMemOperand::MOInvariant); |
| } |
| |
| SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, |
| const SDLoc &DL, SDValue V) const { |
| // We can't use S_MOV_B32 directly, because there is no way to specify m0 as |
| // the destination register. |
| // |
| // We can't use CopyToReg, because MachineCSE won't combine COPY instructions, |
| // so we will end up with redundant moves to m0. |
| // |
| // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result. |
| |
| // A Null SDValue creates a glue result. |
| SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue, |
| V, Chain); |
| return SDValue(M0, 0); |
| } |
| |
| SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG, |
| SDValue Op, |
| MVT VT, |
| unsigned Offset) const { |
| SDLoc SL(Op); |
| SDValue Param = lowerKernargMemParameter( |
| DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false); |
| // The local size values will have the hi 16-bits as zero. |
| return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param, |
| DAG.getValueType(VT)); |
| } |
| |
| static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, |
| EVT VT) { |
| DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), |
| "non-hsa intrinsic with hsa target", |
| DL.getDebugLoc()); |
| DAG.getContext()->diagnose(BadIntrin); |
| return DAG.getUNDEF(VT); |
| } |
| |
| static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, |
| EVT VT) { |
| DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), |
| "intrinsic not supported on subtarget", |
| DL.getDebugLoc()); |
| DAG.getContext()->diagnose(BadIntrin); |
| return DAG.getUNDEF(VT); |
| } |
| |
| static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL, |
| ArrayRef<SDValue> Elts) { |
| assert(!Elts.empty()); |
| MVT Type; |
| unsigned NumElts = Elts.size(); |
| |
| if (NumElts <= 12) { |
| Type = MVT::getVectorVT(MVT::f32, NumElts); |
| } else { |
| assert(Elts.size() <= 16); |
| Type = MVT::v16f32; |
| NumElts = 16; |
| } |
| |
| SmallVector<SDValue, 16> VecElts(NumElts); |
| for (unsigned i = 0; i < Elts.size(); ++i) { |
| SDValue Elt = Elts[i]; |
| if (Elt.getValueType() != MVT::f32) |
| Elt = DAG.getBitcast(MVT::f32, Elt); |
| VecElts[i] = Elt; |
| } |
| for (unsigned i = Elts.size(); i < NumElts; ++i) |
| VecElts[i] = DAG.getUNDEF(MVT::f32); |
| |
| if (NumElts == 1) |
| return VecElts[0]; |
| return DAG.getBuildVector(Type, DL, VecElts); |
| } |
| |
| static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT, |
| SDValue Src, int ExtraElts) { |
| EVT SrcVT = Src.getValueType(); |
| |
| SmallVector<SDValue, 8> Elts; |
| |
| if (SrcVT.isVector()) |
| DAG.ExtractVectorElements(Src, Elts); |
| else |
| Elts.push_back(Src); |
| |
| SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType()); |
| while (ExtraElts--) |
| Elts.push_back(Undef); |
| |
| return DAG.getBuildVector(CastVT, DL, Elts); |
| } |
| |
| // Re-construct the required return value for a image load intrinsic. |
| // This is more complicated due to the optional use TexFailCtrl which means the required |
| // return type is an aggregate |
| static SDValue constructRetValue(SelectionDAG &DAG, MachineSDNode *Result, |
| ArrayRef<EVT> ResultTypes, bool IsTexFail, |
| bool Unpacked, bool IsD16, int DMaskPop, |
| int NumVDataDwords, bool IsAtomicPacked16Bit, |
| const SDLoc &DL) { |
| // Determine the required return type. This is the same regardless of IsTexFail flag |
| EVT ReqRetVT = ResultTypes[0]; |
| int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1; |
| int NumDataDwords = ((IsD16 && !Unpacked) || IsAtomicPacked16Bit) |
| ? (ReqRetNumElts + 1) / 2 |
| : ReqRetNumElts; |
| |
| int MaskPopDwords = (!IsD16 || Unpacked) ? DMaskPop : (DMaskPop + 1) / 2; |
| |
| MVT DataDwordVT = NumDataDwords == 1 ? |
| MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords); |
| |
| MVT MaskPopVT = MaskPopDwords == 1 ? |
| MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords); |
| |
| SDValue Data(Result, 0); |
| SDValue TexFail; |
| |
| if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) { |
| SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32); |
| if (MaskPopVT.isVector()) { |
| Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT, |
| SDValue(Result, 0), ZeroIdx); |
| } else { |
| Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT, |
| SDValue(Result, 0), ZeroIdx); |
| } |
| } |
| |
| if (DataDwordVT.isVector() && !IsAtomicPacked16Bit) |
| Data = padEltsToUndef(DAG, DL, DataDwordVT, Data, |
| NumDataDwords - MaskPopDwords); |
| |
| if (IsD16) |
| Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked); |
| |
| EVT LegalReqRetVT = ReqRetVT; |
| if (!ReqRetVT.isVector()) { |
| if (!Data.getValueType().isInteger()) |
| Data = DAG.getNode(ISD::BITCAST, DL, |
| Data.getValueType().changeTypeToInteger(), Data); |
| Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data); |
| } else { |
| // We need to widen the return vector to a legal type |
| if ((ReqRetVT.getVectorNumElements() % 2) == 1 && |
| ReqRetVT.getVectorElementType().getSizeInBits() == 16) { |
| LegalReqRetVT = |
| EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(), |
| ReqRetVT.getVectorNumElements() + 1); |
| } |
| } |
| Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data); |
| |
| if (IsTexFail) { |
| TexFail = |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0), |
| DAG.getConstant(MaskPopDwords, DL, MVT::i32)); |
| |
| return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL); |
| } |
| |
| if (Result->getNumValues() == 1) |
| return Data; |
| |
| return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL); |
| } |
| |
| static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE, |
| SDValue *LWE, bool &IsTexFail) { |
| auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode()); |
| |
| uint64_t Value = TexFailCtrlConst->getZExtValue(); |
| if (Value) { |
| IsTexFail = true; |
| } |
| |
| SDLoc DL(TexFailCtrlConst); |
| *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32); |
| Value &= ~(uint64_t)0x1; |
| *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32); |
| Value &= ~(uint64_t)0x2; |
| |
| return Value == 0; |
| } |
| |
| static void packImage16bitOpsToDwords(SelectionDAG &DAG, SDValue Op, |
| MVT PackVectorVT, |
| SmallVectorImpl<SDValue> &PackedAddrs, |
| unsigned DimIdx, unsigned EndIdx, |
| unsigned NumGradients) { |
| SDLoc DL(Op); |
| for (unsigned I = DimIdx; I < EndIdx; I++) { |
| SDValue Addr = Op.getOperand(I); |
| |
| // Gradients are packed with undef for each coordinate. |
| // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this: |
| // 1D: undef,dx/dh; undef,dx/dv |
| // 2D: dy/dh,dx/dh; dy/dv,dx/dv |
| // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv |
| if (((I + 1) >= EndIdx) || |
| ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 || |
| I == DimIdx + NumGradients - 1))) { |
| if (Addr.getValueType() != MVT::i16) |
| Addr = DAG.getBitcast(MVT::i16, Addr); |
| Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr); |
| } else { |
| Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)}); |
| I++; |
| } |
| Addr = DAG.getBitcast(MVT::f32, Addr); |
| PackedAddrs.push_back(Addr); |
| } |
| } |
| |
| SDValue SITargetLowering::lowerImage(SDValue Op, |
| const AMDGPU::ImageDimIntrinsicInfo *Intr, |
| SelectionDAG &DAG, bool WithChain) const { |
| SDLoc DL(Op); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>(); |
| const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = |
| AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode); |
| const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim); |
| unsigned IntrOpcode = Intr->BaseOpcode; |
| bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget); |
| bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget); |
| bool IsGFX12Plus = AMDGPU::isGFX12Plus(*Subtarget); |
| |
| SmallVector<EVT, 3> ResultTypes(Op->values()); |
| SmallVector<EVT, 3> OrigResultTypes(Op->values()); |
| bool IsD16 = false; |
| bool IsG16 = false; |
| bool IsA16 = false; |
| SDValue VData; |
| int NumVDataDwords = 0; |
| bool AdjustRetType = false; |
| bool IsAtomicPacked16Bit = false; |
| |
| // Offset of intrinsic arguments |
| const unsigned ArgOffset = WithChain ? 2 : 1; |
| |
| unsigned DMask; |
| unsigned DMaskLanes = 0; |
| |
| if (BaseOpcode->Atomic) { |
| VData = Op.getOperand(2); |
| |
| IsAtomicPacked16Bit = |
| (Intr->BaseOpcode == AMDGPU::IMAGE_ATOMIC_PK_ADD_F16 || |
| Intr->BaseOpcode == AMDGPU::IMAGE_ATOMIC_PK_ADD_BF16); |
| |
| bool Is64Bit = VData.getValueSizeInBits() == 64; |
| if (BaseOpcode->AtomicX2) { |
| SDValue VData2 = Op.getOperand(3); |
| VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL, |
| {VData, VData2}); |
| if (Is64Bit) |
| VData = DAG.getBitcast(MVT::v4i32, VData); |
| |
| ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32; |
| DMask = Is64Bit ? 0xf : 0x3; |
| NumVDataDwords = Is64Bit ? 4 : 2; |
| } else { |
| DMask = Is64Bit ? 0x3 : 0x1; |
| NumVDataDwords = Is64Bit ? 2 : 1; |
| } |
| } else { |
| DMask = Op->getConstantOperandVal(ArgOffset + Intr->DMaskIndex); |
| DMaskLanes = BaseOpcode->Gather4 ? 4 : llvm::popcount(DMask); |
| |
| if (BaseOpcode->Store) { |
| VData = Op.getOperand(2); |
| |
| MVT StoreVT = VData.getSimpleValueType(); |
| if (StoreVT.getScalarType() == MVT::f16) { |
| if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) |
| return Op; // D16 is unsupported for this instruction |
| |
| IsD16 = true; |
| VData = handleD16VData(VData, DAG, true); |
| } |
| |
| NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32; |
| } else if (!BaseOpcode->NoReturn) { |
| // Work out the num dwords based on the dmask popcount and underlying type |
| // and whether packing is supported. |
| MVT LoadVT = ResultTypes[0].getSimpleVT(); |
| if (LoadVT.getScalarType() == MVT::f16) { |
| if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16) |
| return Op; // D16 is unsupported for this instruction |
| |
| IsD16 = true; |
| } |
| |
| // Confirm that the return type is large enough for the dmask specified |
| if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) || |
| (!LoadVT.isVector() && DMaskLanes > 1)) |
| return Op; |
| |
| // The sq block of gfx8 and gfx9 do not estimate register use correctly |
| // for d16 image_gather4, image_gather4_l, and image_gather4_lz |
| // instructions. |
| if (IsD16 && !Subtarget->hasUnpackedD16VMem() && |
| !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug())) |
| NumVDataDwords = (DMaskLanes + 1) / 2; |
| else |
| NumVDataDwords = DMaskLanes; |
| |
| AdjustRetType = true; |
| } |
| } |
| |
| unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd; |
| SmallVector<SDValue, 4> VAddrs; |
| |
| // Check for 16 bit addresses or derivatives and pack if true. |
| MVT VAddrVT = |
| Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType(); |
| MVT VAddrScalarVT = VAddrVT.getScalarType(); |
| MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; |
| IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16; |
| |
| VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType(); |
| VAddrScalarVT = VAddrVT.getScalarType(); |
| MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16; |
| IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16; |
| |
| // Push back extra arguments. |
| for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++) { |
| if (IsA16 && (Op.getOperand(ArgOffset + I).getValueType() == MVT::f16)) { |
| assert(I == Intr->BiasIndex && "Got unexpected 16-bit extra argument"); |
| // Special handling of bias when A16 is on. Bias is of type half but |
| // occupies full 32-bit. |
| SDValue Bias = DAG.getBuildVector( |
| MVT::v2f16, DL, |
| {Op.getOperand(ArgOffset + I), DAG.getUNDEF(MVT::f16)}); |
| VAddrs.push_back(Bias); |
| } else { |
| assert((!IsA16 || Intr->NumBiasArgs == 0 || I != Intr->BiasIndex) && |
| "Bias needs to be converted to 16 bit in A16 mode"); |
| VAddrs.push_back(Op.getOperand(ArgOffset + I)); |
| } |
| } |
| |
| if (BaseOpcode->Gradients && !ST->hasG16() && (IsA16 != IsG16)) { |
| // 16 bit gradients are supported, but are tied to the A16 control |
| // so both gradients and addresses must be 16 bit |
| LLVM_DEBUG( |
| dbgs() << "Failed to lower image intrinsic: 16 bit addresses " |
| "require 16 bit args for both gradients and addresses"); |
| return Op; |
| } |
| |
| if (IsA16) { |
| if (!ST->hasA16()) { |
| LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not " |
| "support 16 bit addresses\n"); |
| return Op; |
| } |
| } |
| |
| // We've dealt with incorrect input so we know that if IsA16, IsG16 |
| // are set then we have to compress/pack operands (either address, |
| // gradient or both) |
| // In the case where a16 and gradients are tied (no G16 support) then we |
| // have already verified that both IsA16 and IsG16 are true |
| if (BaseOpcode->Gradients && IsG16 && ST->hasG16()) { |
| // Activate g16 |
| const AMDGPU::MIMGG16MappingInfo *G16MappingInfo = |
| AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode); |
| IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16 |
| } |
| |
| // Add gradients (packed or unpacked) |
| if (IsG16) { |
| // Pack the gradients |
| // const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart); |
| packImage16bitOpsToDwords(DAG, Op, GradPackVectorVT, VAddrs, |
| ArgOffset + Intr->GradientStart, |
| ArgOffset + Intr->CoordStart, Intr->NumGradients); |
| } else { |
| for (unsigned I = ArgOffset + Intr->GradientStart; |
| I < ArgOffset + Intr->CoordStart; I++) |
| VAddrs.push_back(Op.getOperand(I)); |
| } |
| |
| // Add addresses (packed or unpacked) |
| if (IsA16) { |
| packImage16bitOpsToDwords(DAG, Op, AddrPackVectorVT, VAddrs, |
| ArgOffset + Intr->CoordStart, VAddrEnd, |
| 0 /* No gradients */); |
| } else { |
| // Add uncompressed address |
| for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++) |
| VAddrs.push_back(Op.getOperand(I)); |
| } |
| |
| // If the register allocator cannot place the address registers contiguously |
| // without introducing moves, then using the non-sequential address encoding |
| // is always preferable, since it saves VALU instructions and is usually a |
| // wash in terms of code size or even better. |
| // |
| // However, we currently have no way of hinting to the register allocator that |
| // MIMG addresses should be placed contiguously when it is possible to do so, |
| // so force non-NSA for the common 2-address case as a heuristic. |
| // |
| // SIShrinkInstructions will convert NSA encodings to non-NSA after register |
| // allocation when possible. |
| // |
| // Partial NSA is allowed on GFX11+ where the final register is a contiguous |
| // set of the remaining addresses. |
| const unsigned NSAMaxSize = ST->getNSAMaxSize(BaseOpcode->Sampler); |
| const bool HasPartialNSAEncoding = ST->hasPartialNSAEncoding(); |
| const bool UseNSA = ST->hasNSAEncoding() && |
| VAddrs.size() >= ST->getNSAThreshold(MF) && |
| (VAddrs.size() <= NSAMaxSize || HasPartialNSAEncoding); |
| const bool UsePartialNSA = |
| UseNSA && HasPartialNSAEncoding && VAddrs.size() > NSAMaxSize; |
| |
| SDValue VAddr; |
| if (UsePartialNSA) { |
| VAddr = getBuildDwordsVector(DAG, DL, |
| ArrayRef(VAddrs).drop_front(NSAMaxSize - 1)); |
| } |
| else if (!UseNSA) { |
| VAddr = getBuildDwordsVector(DAG, DL, VAddrs); |
| } |
| |
| SDValue True = DAG.getTargetConstant(1, DL, MVT::i1); |
| SDValue False = DAG.getTargetConstant(0, DL, MVT::i1); |
| SDValue Unorm; |
| if (!BaseOpcode->Sampler) { |
| Unorm = True; |
| } else { |
| uint64_t UnormConst = |
| Op.getConstantOperandVal(ArgOffset + Intr->UnormIndex); |
| |
| Unorm = UnormConst ? True : False; |
| } |
| |
| SDValue TFE; |
| SDValue LWE; |
| SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex); |
| bool IsTexFail = false; |
| if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail)) |
| return Op; |
| |
| if (IsTexFail) { |
| if (!DMaskLanes) { |
| // Expecting to get an error flag since TFC is on - and dmask is 0 |
| // Force dmask to be at least 1 otherwise the instruction will fail |
| DMask = 0x1; |
| DMaskLanes = 1; |
| NumVDataDwords = 1; |
| } |
| NumVDataDwords += 1; |
| AdjustRetType = true; |
| } |
| |
| // Has something earlier tagged that the return type needs adjusting |
| // This happens if the instruction is a load or has set TexFailCtrl flags |
| if (AdjustRetType) { |
| // NumVDataDwords reflects the true number of dwords required in the return type |
| if (DMaskLanes == 0 && !BaseOpcode->Store) { |
| // This is a no-op load. This can be eliminated |
| SDValue Undef = DAG.getUNDEF(Op.getValueType()); |
| if (isa<MemSDNode>(Op)) |
| return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL); |
| return Undef; |
| } |
| |
| EVT NewVT = NumVDataDwords > 1 ? |
| EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords) |
| : MVT::i32; |
| |
| ResultTypes[0] = NewVT; |
| if (ResultTypes.size() == 3) { |
| // Original result was aggregate type used for TexFailCtrl results |
| // The actual instruction returns as a vector type which has now been |
| // created. Remove the aggregate result. |
| ResultTypes.erase(&ResultTypes[1]); |
| } |
| } |
| |
| unsigned CPol = Op.getConstantOperandVal(ArgOffset + Intr->CachePolicyIndex); |
| if (BaseOpcode->Atomic) |
| CPol |= AMDGPU::CPol::GLC; // TODO no-return optimization |
| if (CPol & ~((IsGFX12Plus ? AMDGPU::CPol::ALL : AMDGPU::CPol::ALL_pregfx12) | |
| AMDGPU::CPol::VOLATILE)) |
| return Op; |
| |
| SmallVector<SDValue, 26> Ops; |
| if (BaseOpcode->Store || BaseOpcode->Atomic) |
| Ops.push_back(VData); // vdata |
| if (UsePartialNSA) { |
| append_range(Ops, ArrayRef(VAddrs).take_front(NSAMaxSize - 1)); |
| Ops.push_back(VAddr); |
| } |
| else if (UseNSA) |
| append_range(Ops, VAddrs); |
| else |
| Ops.push_back(VAddr); |
| Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex)); |
| if (BaseOpcode->Sampler) |
| Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex)); |
| Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32)); |
| if (IsGFX10Plus) |
| Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32)); |
| if (!IsGFX12Plus || BaseOpcode->Sampler || BaseOpcode->MSAA) |
| Ops.push_back(Unorm); |
| Ops.push_back(DAG.getTargetConstant(CPol, DL, MVT::i32)); |
| Ops.push_back(IsA16 && // r128, a16 for gfx9 |
| ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False); |
| if (IsGFX10Plus) |
| Ops.push_back(IsA16 ? True : False); |
| if (!Subtarget->hasGFX90AInsts()) { |
| Ops.push_back(TFE); //tfe |
| } else if (TFE->getAsZExtVal()) { |
| report_fatal_error("TFE is not supported on this GPU"); |
| } |
| if (!IsGFX12Plus || BaseOpcode->Sampler || BaseOpcode->MSAA) |
| Ops.push_back(LWE); // lwe |
| if (!IsGFX10Plus) |
| Ops.push_back(DimInfo->DA ? True : False); |
| if (BaseOpcode->HasD16) |
| Ops.push_back(IsD16 ? True : False); |
| if (isa<MemSDNode>(Op)) |
| Ops.push_back(Op.getOperand(0)); // chain |
| |
| int NumVAddrDwords = |
| UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32; |
| int Opcode = -1; |
| |
| if (IsGFX12Plus) { |
| Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx12, |
| NumVDataDwords, NumVAddrDwords); |
| } else if (IsGFX11Plus) { |
| Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, |
| UseNSA ? AMDGPU::MIMGEncGfx11NSA |
| : AMDGPU::MIMGEncGfx11Default, |
| NumVDataDwords, NumVAddrDwords); |
| } else if (IsGFX10Plus) { |
| Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, |
| UseNSA ? AMDGPU::MIMGEncGfx10NSA |
| : AMDGPU::MIMGEncGfx10Default, |
| NumVDataDwords, NumVAddrDwords); |
| } else { |
| if (Subtarget->hasGFX90AInsts()) { |
| Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx90a, |
| NumVDataDwords, NumVAddrDwords); |
| if (Opcode == -1) |
| report_fatal_error( |
| "requested image instruction is not supported on this GPU"); |
| } |
| if (Opcode == -1 && |
| Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) |
| Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8, |
| NumVDataDwords, NumVAddrDwords); |
| if (Opcode == -1) |
| Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6, |
| NumVDataDwords, NumVAddrDwords); |
| } |
| if (Opcode == -1) |
| return Op; |
| |
| MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops); |
| if (auto MemOp = dyn_cast<MemSDNode>(Op)) { |
| MachineMemOperand *MemRef = MemOp->getMemOperand(); |
| DAG.setNodeMemRefs(NewNode, {MemRef}); |
| } |
| |
| if (BaseOpcode->AtomicX2) { |
| SmallVector<SDValue, 1> Elt; |
| DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1); |
| return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL); |
| } |
| if (BaseOpcode->NoReturn) |
| return SDValue(NewNode, 0); |
| return constructRetValue(DAG, NewNode, OrigResultTypes, IsTexFail, |
| Subtarget->hasUnpackedD16VMem(), IsD16, DMaskLanes, |
| NumVDataDwords, IsAtomicPacked16Bit, DL); |
| } |
| |
| SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc, |
| SDValue Offset, SDValue CachePolicy, |
| SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| const DataLayout &DataLayout = DAG.getDataLayout(); |
| Align Alignment = |
| DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext())); |
| |
| MachineMemOperand *MMO = MF.getMachineMemOperand( |
| MachinePointerInfo(), |
| MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | |
| MachineMemOperand::MOInvariant, |
| VT.getStoreSize(), Alignment); |
| |
| if (!Offset->isDivergent()) { |
| SDValue Ops[] = {Rsrc, Offset, CachePolicy}; |
| |
| // Lower llvm.amdgcn.s.buffer.load.{i16, u16} intrinsics. Initially, the |
| // s_buffer_load_u16 instruction is emitted for both signed and unsigned |
| // loads. Later, DAG combiner tries to combine s_buffer_load_u16 with sext |
| // and generates s_buffer_load_i16 (performSignExtendInRegCombine). |
| if (VT == MVT::i16 && Subtarget->hasScalarSubwordLoads()) { |
| SDValue BufferLoad = |
| DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD_USHORT, DL, |
| DAG.getVTList(MVT::i32), Ops, VT, MMO); |
| return DAG.getNode(ISD::TRUNCATE, DL, VT, BufferLoad); |
| } |
| |
| // Widen vec3 load to vec4. |
| if (VT.isVector() && VT.getVectorNumElements() == 3 && |
| !Subtarget->hasScalarDwordx3Loads()) { |
| EVT WidenedVT = |
| EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); |
| auto WidenedOp = DAG.getMemIntrinsicNode( |
| AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT, |
| MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize())); |
| auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp, |
| DAG.getVectorIdxConstant(0, DL)); |
| return Subvector; |
| } |
| |
| return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL, |
| DAG.getVTList(VT), Ops, VT, MMO); |
| } |
| |
| // We have a divergent offset. Emit a MUBUF buffer load instead. We can |
| // assume that the buffer is unswizzled. |
| SDValue Ops[] = { |
| DAG.getEntryNode(), // Chain |
| Rsrc, // rsrc |
| DAG.getConstant(0, DL, MVT::i32), // vindex |
| {}, // voffset |
| {}, // soffset |
| {}, // offset |
| CachePolicy, // cachepolicy |
| DAG.getTargetConstant(0, DL, MVT::i1), // idxen |
| }; |
| if (VT == MVT::i16 && Subtarget->hasScalarSubwordLoads()) { |
| setBufferOffsets(Offset, DAG, &Ops[3], Align(4)); |
| return handleByteShortBufferLoads(DAG, VT, DL, Ops, MMO); |
| } |
| |
| SmallVector<SDValue, 4> Loads; |
| unsigned NumLoads = 1; |
| MVT LoadVT = VT.getSimpleVT(); |
| unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1; |
| assert((LoadVT.getScalarType() == MVT::i32 || |
| LoadVT.getScalarType() == MVT::f32)); |
| |
| if (NumElts == 8 || NumElts == 16) { |
| NumLoads = NumElts / 4; |
| LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4); |
| } |
| |
| SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue}); |
| |
| // Use the alignment to ensure that the required offsets will fit into the |
| // immediate offsets. |
| setBufferOffsets(Offset, DAG, &Ops[3], |
| NumLoads > 1 ? Align(16 * NumLoads) : Align(4)); |
| |
| uint64_t InstOffset = Ops[5]->getAsZExtVal(); |
| for (unsigned i = 0; i < NumLoads; ++i) { |
| Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32); |
| Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops, |
| LoadVT, MMO, DAG)); |
| } |
| |
| if (NumElts == 8 || NumElts == 16) |
| return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads); |
| |
| return Loads[0]; |
| } |
| |
| SDValue SITargetLowering::lowerWaveID(SelectionDAG &DAG, SDValue Op) const { |
| // With architected SGPRs, waveIDinGroup is in TTMP8[29:25]. |
| if (!Subtarget->hasArchitectedSGPRs()) |
| return {}; |
| SDLoc SL(Op); |
| MVT VT = MVT::i32; |
| SDValue TTMP8 = DAG.getCopyFromReg(DAG.getEntryNode(), SL, AMDGPU::TTMP8, VT); |
| return DAG.getNode(AMDGPUISD::BFE_U32, SL, VT, TTMP8, |
| DAG.getConstant(25, SL, VT), DAG.getConstant(5, SL, VT)); |
| } |
| |
| SDValue SITargetLowering::lowerWorkitemID(SelectionDAG &DAG, SDValue Op, |
| unsigned Dim, |
| const ArgDescriptor &Arg) const { |
| SDLoc SL(Op); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| unsigned MaxID = Subtarget->getMaxWorkitemID(MF.getFunction(), Dim); |
| if (MaxID == 0) |
| return DAG.getConstant(0, SL, MVT::i32); |
| |
| SDValue Val = loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, |
| SDLoc(DAG.getEntryNode()), Arg); |
| |
| // Don't bother inserting AssertZext for packed IDs since we're emitting the |
| // masking operations anyway. |
| // |
| // TODO: We could assert the top bit is 0 for the source copy. |
| if (Arg.isMasked()) |
| return Val; |
| |
| // Preserve the known bits after expansion to a copy. |
| EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_width(MaxID)); |
| return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Val, |
| DAG.getValueType(SmallVT)); |
| } |
| |
| SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, |
| SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| auto MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| |
| EVT VT = Op.getValueType(); |
| SDLoc DL(Op); |
| unsigned IntrinsicID = Op.getConstantOperandVal(0); |
| |
| // TODO: Should this propagate fast-math-flags? |
| |
| switch (IntrinsicID) { |
| case Intrinsic::amdgcn_implicit_buffer_ptr: { |
| if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction())) |
| return emitNonHSAIntrinsicError(DAG, DL, VT); |
| return getPreloadedValue(DAG, *MFI, VT, |
| AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR); |
| } |
| case Intrinsic::amdgcn_dispatch_ptr: |
| case Intrinsic::amdgcn_queue_ptr: { |
| if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) { |
| DiagnosticInfoUnsupported BadIntrin( |
| MF.getFunction(), "unsupported hsa intrinsic without hsa target", |
| DL.getDebugLoc()); |
| DAG.getContext()->diagnose(BadIntrin); |
| return DAG.getUNDEF(VT); |
| } |
| |
| auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ? |
| AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR; |
| return getPreloadedValue(DAG, *MFI, VT, RegID); |
| } |
| case Intrinsic::amdgcn_implicitarg_ptr: { |
| if (MFI->isEntryFunction()) |
| return getImplicitArgPtr(DAG, DL); |
| return getPreloadedValue(DAG, *MFI, VT, |
| AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); |
| } |
| case Intrinsic::amdgcn_kernarg_segment_ptr: { |
| if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) { |
| // This only makes sense to call in a kernel, so just lower to null. |
| return DAG.getConstant(0, DL, VT); |
| } |
| |
| return getPreloadedValue(DAG, *MFI, VT, |
| AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); |
| } |
| case Intrinsic::amdgcn_dispatch_id: { |
| return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID); |
| } |
| case Intrinsic::amdgcn_rcp: |
| return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); |
| case Intrinsic::amdgcn_rsq: |
| return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); |
| case Intrinsic::amdgcn_rsq_legacy: |
| if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) |
| return emitRemovedIntrinsicError(DAG, DL, VT); |
| return SDValue(); |
| case Intrinsic::amdgcn_rcp_legacy: |
| if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) |
| return emitRemovedIntrinsicError(DAG, DL, VT); |
| return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1)); |
| case Intrinsic::amdgcn_rsq_clamp: { |
| if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) |
| return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1)); |
| |
| Type *Type = VT.getTypeForEVT(*DAG.getContext()); |
| APFloat Max = APFloat::getLargest(Type->getFltSemantics()); |
| APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); |
| |
| SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); |
| SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, |
| DAG.getConstantFP(Max, DL, VT)); |
| return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, |
| DAG.getConstantFP(Min, DL, VT)); |
| } |
| case Intrinsic::r600_read_ngroups_x: |
| if (Subtarget->isAmdHsaOS()) |
| return emitNonHSAIntrinsicError(DAG, DL, VT); |
| |
| return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), |
| SI::KernelInputOffsets::NGROUPS_X, Align(4), |
| false); |
| case Intrinsic::r600_read_ngroups_y: |
| if (Subtarget->isAmdHsaOS()) |
| return emitNonHSAIntrinsicError(DAG, DL, VT); |
| |
| return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), |
| SI::KernelInputOffsets::NGROUPS_Y, Align(4), |
| false); |
| case Intrinsic::r600_read_ngroups_z: |
| if (Subtarget->isAmdHsaOS()) |
| return emitNonHSAIntrinsicError(DAG, DL, VT); |
| |
| return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), |
| SI::KernelInputOffsets::NGROUPS_Z, Align(4), |
| false); |
| case Intrinsic::r600_read_global_size_x: |
| if (Subtarget->isAmdHsaOS()) |
| return emitNonHSAIntrinsicError(DAG, DL, VT); |
| |
| return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), |
| SI::KernelInputOffsets::GLOBAL_SIZE_X, |
| Align(4), false); |
| case Intrinsic::r600_read_global_size_y: |
| if (Subtarget->isAmdHsaOS()) |
| return emitNonHSAIntrinsicError(DAG, DL, VT); |
| |
| return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), |
| SI::KernelInputOffsets::GLOBAL_SIZE_Y, |
| Align(4), false); |
| case Intrinsic::r600_read_global_size_z: |
| if (Subtarget->isAmdHsaOS()) |
| return emitNonHSAIntrinsicError(DAG, DL, VT); |
| |
| return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), |
| SI::KernelInputOffsets::GLOBAL_SIZE_Z, |
| Align(4), false); |
| case Intrinsic::r600_read_local_size_x: |
| if (Subtarget->isAmdHsaOS()) |
| return emitNonHSAIntrinsicError(DAG, DL, VT); |
| |
| return lowerImplicitZextParam(DAG, Op, MVT::i16, |
| SI::KernelInputOffsets::LOCAL_SIZE_X); |
| case Intrinsic::r600_read_local_size_y: |
| if (Subtarget->isAmdHsaOS()) |
| return emitNonHSAIntrinsicError(DAG, DL, VT); |
| |
| return lowerImplicitZextParam(DAG, Op, MVT::i16, |
| SI::KernelInputOffsets::LOCAL_SIZE_Y); |
| case Intrinsic::r600_read_local_size_z: |
| if (Subtarget->isAmdHsaOS()) |
| return emitNonHSAIntrinsicError(DAG, DL, VT); |
| |
| return lowerImplicitZextParam(DAG, Op, MVT::i16, |
| SI::KernelInputOffsets::LOCAL_SIZE_Z); |
| case Intrinsic::amdgcn_workgroup_id_x: |
| return getPreloadedValue(DAG, *MFI, VT, |
| AMDGPUFunctionArgInfo::WORKGROUP_ID_X); |
| case Intrinsic::amdgcn_workgroup_id_y: |
| return getPreloadedValue(DAG, *MFI, VT, |
| AMDGPUFunctionArgInfo::WORKGROUP_ID_Y); |
| case Intrinsic::amdgcn_workgroup_id_z: |
| return getPreloadedValue(DAG, *MFI, VT, |
| AMDGPUFunctionArgInfo::WORKGROUP_ID_Z); |
| case Intrinsic::amdgcn_wave_id: |
| return lowerWaveID(DAG, Op); |
| case Intrinsic::amdgcn_lds_kernel_id: { |
| if (MFI->isEntryFunction()) |
| return getLDSKernelId(DAG, DL); |
| return getPreloadedValue(DAG, *MFI, VT, |
| AMDGPUFunctionArgInfo::LDS_KERNEL_ID); |
| } |
| case Intrinsic::amdgcn_workitem_id_x: |
| return lowerWorkitemID(DAG, Op, 0, MFI->getArgInfo().WorkItemIDX); |
| case Intrinsic::amdgcn_workitem_id_y: |
| return lowerWorkitemID(DAG, Op, 1, MFI->getArgInfo().WorkItemIDY); |
| case Intrinsic::amdgcn_workitem_id_z: |
| return lowerWorkitemID(DAG, Op, 2, MFI->getArgInfo().WorkItemIDZ); |
| case Intrinsic::amdgcn_wavefrontsize: |
| return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(), |
| SDLoc(Op), MVT::i32); |
| case Intrinsic::amdgcn_s_buffer_load: { |
| unsigned CPol = Op.getConstantOperandVal(3); |
| // s_buffer_load, because of how it's optimized, can't be volatile |
| // so reject ones with the volatile bit set. |
| if (CPol & ~((Subtarget->getGeneration() >= AMDGPUSubtarget::GFX12) |
| ? AMDGPU::CPol::ALL |
| : AMDGPU::CPol::ALL_pregfx12)) |
| return Op; |
| return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), |
| DAG); |
| } |
| case Intrinsic::amdgcn_fdiv_fast: |
| return lowerFDIV_FAST(Op, DAG); |
| case Intrinsic::amdgcn_sin: |
| return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1)); |
| |
| case Intrinsic::amdgcn_cos: |
| return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1)); |
| |
| case Intrinsic::amdgcn_mul_u24: |
| return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2)); |
| case Intrinsic::amdgcn_mul_i24: |
| return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2)); |
| |
| case Intrinsic::amdgcn_log_clamp: { |
| if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS) |
| return SDValue(); |
| |
| return emitRemovedIntrinsicError(DAG, DL, VT); |
| } |
| case Intrinsic::amdgcn_fract: |
| return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1)); |
| |
| case Intrinsic::amdgcn_class: |
| return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, |
| Op.getOperand(1), Op.getOperand(2)); |
| case Intrinsic::amdgcn_div_fmas: |
| return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, |
| Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), |
| Op.getOperand(4)); |
| |
| case Intrinsic::amdgcn_div_fixup: |
| return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, |
| Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); |
| |
| case Intrinsic::amdgcn_div_scale: { |
| const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3)); |
| |
| // Translate to the operands expected by the machine instruction. The |
| // first parameter must be the same as the first instruction. |
| SDValue Numerator = Op.getOperand(1); |
| SDValue Denominator = Op.getOperand(2); |
| |
| // Note this order is opposite of the machine instruction's operations, |
| // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The |
| // intrinsic has the numerator as the first operand to match a normal |
| // division operation. |
| |
| SDValue Src0 = Param->isAllOnes() ? Numerator : Denominator; |
| |
| return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, |
| Denominator, Numerator); |
| } |
| case Intrinsic::amdgcn_icmp: { |
| // There is a Pat that handles this variant, so return it as-is. |
| if (Op.getOperand(1).getValueType() == MVT::i1 && |
| Op.getConstantOperandVal(2) == 0 && |
| Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE) |
| return Op; |
| return lowerICMPIntrinsic(*this, Op.getNode(), DAG); |
| } |
| case Intrinsic::amdgcn_fcmp: { |
| return lowerFCMPIntrinsic(*this, Op.getNode(), DAG); |
| } |
| case Intrinsic::amdgcn_ballot: |
| return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG); |
| case Intrinsic::amdgcn_fmed3: |
| return DAG.getNode(AMDGPUISD::FMED3, DL, VT, |
| Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); |
| case Intrinsic::amdgcn_fdot2: |
| return DAG.getNode(AMDGPUISD::FDOT2, DL, VT, |
| Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), |
| Op.getOperand(4)); |
| case Intrinsic::amdgcn_fmul_legacy: |
| return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT, |
| Op.getOperand(1), Op.getOperand(2)); |
| case Intrinsic::amdgcn_sffbh: |
| return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1)); |
| case Intrinsic::amdgcn_sbfe: |
| return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, |
| Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); |
| case Intrinsic::amdgcn_ubfe: |
| return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, |
| Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); |
| case Intrinsic::amdgcn_cvt_pkrtz: |
| case Intrinsic::amdgcn_cvt_pknorm_i16: |
| case Intrinsic::amdgcn_cvt_pknorm_u16: |
| case Intrinsic::amdgcn_cvt_pk_i16: |
| case Intrinsic::amdgcn_cvt_pk_u16: { |
| // FIXME: Stop adding cast if v2f16/v2i16 are legal. |
| EVT VT = Op.getValueType(); |
| unsigned Opcode; |
| |
| if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz) |
| Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32; |
| else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16) |
| Opcode = AMDGPUISD::CVT_PKNORM_I16_F32; |
| else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16) |
| Opcode = AMDGPUISD::CVT_PKNORM_U16_F32; |
| else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16) |
| Opcode = AMDGPUISD::CVT_PK_I16_I32; |
| else |
| Opcode = AMDGPUISD::CVT_PK_U16_U32; |
| |
| if (isTypeLegal(VT)) |
| return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2)); |
| |
| SDValue Node = DAG.getNode(Opcode, DL, MVT::i32, |
| Op.getOperand(1), Op.getOperand(2)); |
| return DAG.getNode(ISD::BITCAST, DL, VT, Node); |
| } |
| case Intrinsic::amdgcn_fmad_ftz: |
| return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1), |
| Op.getOperand(2), Op.getOperand(3)); |
| |
| case Intrinsic::amdgcn_if_break: |
| return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT, |
| Op->getOperand(1), Op->getOperand(2)), 0); |
| |
| case Intrinsic::amdgcn_groupstaticsize: { |
| Triple::OSType OS = getTargetMachine().getTargetTriple().getOS(); |
| if (OS == Triple::AMDHSA || OS == Triple::AMDPAL) |
| return Op; |
| |
| const Module *M = MF.getFunction().getParent(); |
| const GlobalValue *GV = |
| M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize)); |
| SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0, |
| SIInstrInfo::MO_ABS32_LO); |
| return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; |
| } |
| case Intrinsic::amdgcn_is_shared: |
| case Intrinsic::amdgcn_is_private: { |
| SDLoc SL(Op); |
| unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ? |
| AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; |
| SDValue Aperture = getSegmentAperture(AS, SL, DAG); |
| SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, |
| Op.getOperand(1)); |
| |
| SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec, |
| DAG.getConstant(1, SL, MVT::i32)); |
| return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ); |
| } |
| case Intrinsic::amdgcn_perm: |
| return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op.getOperand(1), |
| Op.getOperand(2), Op.getOperand(3)); |
| case Intrinsic::amdgcn_reloc_constant: { |
| Module *M = const_cast<Module *>(MF.getFunction().getParent()); |
| const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD(); |
| auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString(); |
| auto RelocSymbol = cast<GlobalVariable>( |
| M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext()))); |
| SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0, |
| SIInstrInfo::MO_ABS32_LO); |
| return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0}; |
| } |
| case Intrinsic::amdgcn_swmmac_f16_16x16x32_f16: |
| case Intrinsic::amdgcn_swmmac_bf16_16x16x32_bf16: |
| case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf16: |
| case Intrinsic::amdgcn_swmmac_f32_16x16x32_f16: |
| case Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_fp8: |
| case Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_bf8: |
| case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_fp8: |
| case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_bf8: { |
| if (Op.getOperand(4).getValueType() == MVT::i32) |
| return SDValue(); |
| |
| SDLoc SL(Op); |
| auto IndexKeyi32 = DAG.getAnyExtOrTrunc(Op.getOperand(4), SL, MVT::i32); |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, Op.getValueType(), |
| Op.getOperand(0), Op.getOperand(1), Op.getOperand(2), |
| Op.getOperand(3), IndexKeyi32); |
| } |
| case Intrinsic::amdgcn_swmmac_i32_16x16x32_iu4: |
| case Intrinsic::amdgcn_swmmac_i32_16x16x32_iu8: |
| case Intrinsic::amdgcn_swmmac_i32_16x16x64_iu4: { |
| if (Op.getOperand(6).getValueType() == MVT::i32) |
| return SDValue(); |
| |
| SDLoc SL(Op); |
| auto IndexKeyi32 = DAG.getAnyExtOrTrunc(Op.getOperand(6), SL, MVT::i32); |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, Op.getValueType(), |
| {Op.getOperand(0), Op.getOperand(1), Op.getOperand(2), |
| Op.getOperand(3), Op.getOperand(4), Op.getOperand(5), |
| IndexKeyi32, Op.getOperand(7)}); |
| } |
| case Intrinsic::amdgcn_addrspacecast_nonnull: |
| return lowerADDRSPACECAST(Op, DAG); |
| case Intrinsic::amdgcn_readlane: |
| case Intrinsic::amdgcn_readfirstlane: |
| case Intrinsic::amdgcn_writelane: |
| case Intrinsic::amdgcn_permlane16: |
| case Intrinsic::amdgcn_permlanex16: |
| case Intrinsic::amdgcn_permlane64: |
| return lowerLaneOp(*this, Op.getNode(), DAG); |
| default: |
| if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = |
| AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) |
| return lowerImage(Op, ImageDimIntr, DAG, false); |
| |
| return Op; |
| } |
| } |
| |
| // On targets not supporting constant in soffset field, turn zero to |
| // SGPR_NULL to avoid generating an extra s_mov with zero. |
| static SDValue selectSOffset(SDValue SOffset, SelectionDAG &DAG, |
| const GCNSubtarget *Subtarget) { |
| if (Subtarget->hasRestrictedSOffset() && isNullConstant(SOffset)) |
| return DAG.getRegister(AMDGPU::SGPR_NULL, MVT::i32); |
| return SOffset; |
| } |
| |
| SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op, |
| SelectionDAG &DAG, |
| unsigned NewOpcode) const { |
| SDLoc DL(Op); |
| |
| SDValue VData = Op.getOperand(2); |
| SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG); |
| auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); |
| auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget); |
| SDValue Ops[] = { |
| Op.getOperand(0), // Chain |
| VData, // vdata |
| Rsrc, // rsrc |
| DAG.getConstant(0, DL, MVT::i32), // vindex |
| Offsets.first, // voffset |
| SOffset, // soffset |
| Offsets.second, // offset |
| Op.getOperand(6), // cachepolicy |
| DAG.getTargetConstant(0, DL, MVT::i1), // idxen |
| }; |
| |
| auto *M = cast<MemSDNode>(Op); |
| |
| EVT MemVT = VData.getValueType(); |
| return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT, |
| M->getMemOperand()); |
| } |
| |
| SDValue |
| SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG, |
| unsigned NewOpcode) const { |
| SDLoc DL(Op); |
| |
| SDValue VData = Op.getOperand(2); |
| SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG); |
| auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); |
| auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget); |
| SDValue Ops[] = { |
| Op.getOperand(0), // Chain |
| VData, // vdata |
| Rsrc, // rsrc |
| Op.getOperand(4), // vindex |
| Offsets.first, // voffset |
| SOffset, // soffset |
| Offsets.second, // offset |
| Op.getOperand(7), // cachepolicy |
| DAG.getTargetConstant(1, DL, MVT::i1), // idxen |
| }; |
| |
| auto *M = cast<MemSDNode>(Op); |
| |
| EVT MemVT = VData.getValueType(); |
| return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT, |
| M->getMemOperand()); |
| } |
| |
| SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, |
| SelectionDAG &DAG) const { |
| unsigned IntrID = Op.getConstantOperandVal(1); |
| SDLoc DL(Op); |
| |
| switch (IntrID) { |
| case Intrinsic::amdgcn_ds_ordered_add: |
| case Intrinsic::amdgcn_ds_ordered_swap: { |
| MemSDNode *M = cast<MemSDNode>(Op); |
| SDValue Chain = M->getOperand(0); |
| SDValue M0 = M->getOperand(2); |
| SDValue Value = M->getOperand(3); |
| unsigned IndexOperand = M->getConstantOperandVal(7); |
| unsigned WaveRelease = M->getConstantOperandVal(8); |
| unsigned WaveDone = M->getConstantOperandVal(9); |
| |
| unsigned OrderedCountIndex = IndexOperand & 0x3f; |
| IndexOperand &= ~0x3f; |
| unsigned CountDw = 0; |
| |
| if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) { |
| CountDw = (IndexOperand >> 24) & 0xf; |
| IndexOperand &= ~(0xf << 24); |
| |
| if (CountDw < 1 || CountDw > 4) { |
| report_fatal_error( |
| "ds_ordered_count: dword count must be between 1 and 4"); |
| } |
| } |
| |
| if (IndexOperand) |
| report_fatal_error("ds_ordered_count: bad index operand"); |
| |
| if (WaveDone && !WaveRelease) |
| report_fatal_error("ds_ordered_count: wave_done requires wave_release"); |
| |
| unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1; |
| unsigned ShaderType = |
| SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction()); |
| unsigned Offset0 = OrderedCountIndex << 2; |
| unsigned Offset1 = WaveRelease | (WaveDone << 1) | (Instruction << 4); |
| |
| if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) |
| Offset1 |= (CountDw - 1) << 6; |
| |
| if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX11) |
| Offset1 |= ShaderType << 2; |
| |
| unsigned Offset = Offset0 | (Offset1 << 8); |
| |
| SDValue Ops[] = { |
| Chain, |
| Value, |
| DAG.getTargetConstant(Offset, DL, MVT::i16), |
| copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue |
| }; |
| return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL, |
| M->getVTList(), Ops, M->getMemoryVT(), |
| M->getMemOperand()); |
| } |
| case Intrinsic::amdgcn_raw_buffer_load: |
| case Intrinsic::amdgcn_raw_ptr_buffer_load: |
| case Intrinsic::amdgcn_raw_atomic_buffer_load: |
| case Intrinsic::amdgcn_raw_ptr_atomic_buffer_load: |
| case Intrinsic::amdgcn_raw_buffer_load_format: |
| case Intrinsic::amdgcn_raw_ptr_buffer_load_format: { |
| const bool IsFormat = |
| IntrID == Intrinsic::amdgcn_raw_buffer_load_format || |
| IntrID == Intrinsic::amdgcn_raw_ptr_buffer_load_format; |
| |
| SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG); |
| auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); |
| auto SOffset = selectSOffset(Op.getOperand(4), DAG, Subtarget); |
| SDValue Ops[] = { |
| Op.getOperand(0), // Chain |
| Rsrc, // rsrc |
| DAG.getConstant(0, DL, MVT::i32), // vindex |
| Offsets.first, // voffset |
| SOffset, // soffset |
| Offsets.second, // offset |
| Op.getOperand(5), // cachepolicy, swizzled buffer |
| DAG.getTargetConstant(0, DL, MVT::i1), // idxen |
| }; |
| |
| auto *M = cast<MemSDNode>(Op); |
| return lowerIntrinsicLoad(M, IsFormat, DAG, Ops); |
| } |
| case Intrinsic::amdgcn_struct_buffer_load: |
| case Intrinsic::amdgcn_struct_ptr_buffer_load: |
| case Intrinsic::amdgcn_struct_buffer_load_format: |
| case Intrinsic::amdgcn_struct_ptr_buffer_load_format: |
| case Intrinsic::amdgcn_struct_atomic_buffer_load: |
| case Intrinsic::amdgcn_struct_ptr_atomic_buffer_load: { |
| const bool IsFormat = |
| IntrID == Intrinsic::amdgcn_struct_buffer_load_format || |
| IntrID == Intrinsic::amdgcn_struct_ptr_buffer_load_format; |
| |
| SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG); |
| auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); |
| auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget); |
| SDValue Ops[] = { |
| Op.getOperand(0), // Chain |
| Rsrc, // rsrc |
| Op.getOperand(3), // vindex |
| Offsets.first, // voffset |
| SOffset, // soffset |
| Offsets.second, // offset |
| Op.getOperand(6), // cachepolicy, swizzled buffer |
| DAG.getTargetConstant(1, DL, MVT::i1), // idxen |
| }; |
| |
| return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops); |
| } |
| case Intrinsic::amdgcn_raw_tbuffer_load: |
| case Intrinsic::amdgcn_raw_ptr_tbuffer_load: { |
| MemSDNode *M = cast<MemSDNode>(Op); |
| EVT LoadVT = Op.getValueType(); |
| SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG); |
| auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG); |
| auto SOffset = selectSOffset(Op.getOperand(4), DAG, Subtarget); |
| |
| SDValue Ops[] = { |
| Op.getOperand(0), // Chain |
| Rsrc, // rsrc |
| DAG.getConstant(0, DL, MVT::i32), // vindex |
| Offsets.first, // voffset |
| SOffset, // soffset |
| Offsets.second, // offset |
| Op.getOperand(5), // format |
| Op.getOperand(6), // cachepolicy, swizzled buffer |
| DAG.getTargetConstant(0, DL, MVT::i1), // idxen |
| }; |
| |
| if (LoadVT.getScalarType() == MVT::f16) |
| return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, |
| M, DAG, Ops); |
| return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, |
| Op->getVTList(), Ops, LoadVT, M->getMemOperand(), |
| DAG); |
| } |
| case Intrinsic::amdgcn_struct_tbuffer_load: |
| case Intrinsic::amdgcn_struct_ptr_tbuffer_load: { |
| MemSDNode *M = cast<MemSDNode>(Op); |
| EVT LoadVT = Op.getValueType(); |
| SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG); |
| auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); |
| auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget); |
| |
| SDValue Ops[] = { |
| Op.getOperand(0), // Chain |
| Rsrc, // rsrc |
| Op.getOperand(3), // vindex |
| Offsets.first, // voffset |
| SOffset, // soffset |
| Offsets.second, // offset |
| Op.getOperand(6), // format |
| Op.getOperand(7), // cachepolicy, swizzled buffer |
| DAG.getTargetConstant(1, DL, MVT::i1), // idxen |
| }; |
| |
| if (LoadVT.getScalarType() == MVT::f16) |
| return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, |
| M, DAG, Ops); |
| return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, |
| Op->getVTList(), Ops, LoadVT, M->getMemOperand(), |
| DAG); |
| } |
| case Intrinsic::amdgcn_raw_buffer_atomic_fadd: |
| case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fadd: |
| return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD); |
| case Intrinsic::amdgcn_struct_buffer_atomic_fadd: |
| case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fadd: |
| return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD); |
| case Intrinsic::amdgcn_raw_buffer_atomic_fmin: |
| case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmin: |
| return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN); |
| case Intrinsic::amdgcn_struct_buffer_atomic_fmin: |
| case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmin: |
| return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN); |
| case Intrinsic::amdgcn_raw_buffer_atomic_fmax: |
| case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmax: |
| return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX); |
| case Intrinsic::amdgcn_struct_buffer_atomic_fmax: |
| case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmax: |
| return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX); |
| case Intrinsic::amdgcn_raw_buffer_atomic_swap: |
| case Intrinsic::amdgcn_raw_ptr_buffer_atomic_swap: |
| return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP); |
| case Intrinsic::amdgcn_raw_buffer_atomic_add: |
| case Intrinsic::amdgcn_raw_ptr_buffer_atomic_add: |
| return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD); |
| case Intrinsic::amdgcn_raw_buffer_atomic_sub: |
| case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub: |
| return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB); |
| case Intrinsic::amdgcn_raw_buffer_atomic_smin: |
| case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smin: |
| return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN); |
| case Intrinsic::amdgcn_raw_buffer_atomic_umin: |
| case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umin: |
| return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN); |
| case Intrinsic::amdgcn_raw_buffer_atomic_smax: |
| case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smax: |
| return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX); |
| case Intrinsic::amdgcn_raw_buffer_atomic_umax: |
| case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umax: |
| return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX); |
| case Intrinsic::amdgcn_raw_buffer_atomic_and: |
| case Intrinsic::amdgcn_raw_ptr_buffer_atomic_and: |
| return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND); |
| case Intrinsic::amdgcn_raw_buffer_atomic_or: |
| case Intrinsic::amdgcn_raw_ptr_buffer_atomic_or: |
| return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR); |
| case Intrinsic::amdgcn_raw_buffer_atomic_xor: |
| case Intrinsic::amdgcn_raw_ptr_buffer_atomic_xor: |
| return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR); |
| case Intrinsic::amdgcn_raw_buffer_atomic_inc: |
| case Intrinsic::amdgcn_raw_ptr_buffer_atomic_inc: |
| return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC); |
| case Intrinsic::amdgcn_raw_buffer_atomic_dec: |
| case Intrinsic::amdgcn_raw_ptr_buffer_atomic_dec: |
| return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC); |
| case Intrinsic::amdgcn_raw_buffer_atomic_cond_sub_u32: |
| return lowerRawBufferAtomicIntrin(Op, DAG, |
| AMDGPUISD::BUFFER_ATOMIC_COND_SUB_U32); |
| case Intrinsic::amdgcn_struct_buffer_atomic_swap: |
| case Intrinsic::amdgcn_struct_ptr_buffer_atomic_swap: |
| return lowerStructBufferAtomicIntrin(Op, DAG, |
| AMDGPUISD::BUFFER_ATOMIC_SWAP); |
| case Intrinsic::amdgcn_struct_buffer_atomic_add: |
| case Intrinsic::amdgcn_struct_ptr_buffer_atomic_add: |
| return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD); |
| case Intrinsic::amdgcn_struct_buffer_atomic_sub: |
| case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub: |
| return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB); |
| case Intrinsic::amdgcn_struct_buffer_atomic_smin: |
| case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smin: |
| return lowerStructBufferAtomicIntrin(Op, DAG, |
| AMDGPUISD::BUFFER_ATOMIC_SMIN); |
| case Intrinsic::amdgcn_struct_buffer_atomic_umin: |
| case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umin: |
| return lowerStructBufferAtomicIntrin(Op, DAG, |
| AMDGPUISD::BUFFER_ATOMIC_UMIN); |
| case Intrinsic::amdgcn_struct_buffer_atomic_smax: |
| case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smax: |
| return lowerStructBufferAtomicIntrin(Op, DAG, |
| AMDGPUISD::BUFFER_ATOMIC_SMAX); |
| case Intrinsic::amdgcn_struct_buffer_atomic_umax: |
| case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umax: |
| return lowerStructBufferAtomicIntrin(Op, DAG, |
| AMDGPUISD::BUFFER_ATOMIC_UMAX); |
| case Intrinsic::amdgcn_struct_buffer_atomic_and: |
| case Intrinsic::amdgcn_struct_ptr_buffer_atomic_and: |
| return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND); |
| case Intrinsic::amdgcn_struct_buffer_atomic_or: |
| case Intrinsic::amdgcn_struct_ptr_buffer_atomic_or: |
| return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR); |
| case Intrinsic::amdgcn_struct_buffer_atomic_xor: |
| case Intrinsic::amdgcn_struct_ptr_buffer_atomic_xor: |
| return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR); |
| case Intrinsic::amdgcn_struct_buffer_atomic_inc: |
| case Intrinsic::amdgcn_struct_ptr_buffer_atomic_inc: |
| return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC); |
| case Intrinsic::amdgcn_struct_buffer_atomic_dec: |
| case Intrinsic::amdgcn_struct_ptr_buffer_atomic_dec: |
| return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC); |
| case Intrinsic::amdgcn_struct_buffer_atomic_cond_sub_u32: |
| return lowerStructBufferAtomicIntrin(Op, DAG, |
| AMDGPUISD::BUFFER_ATOMIC_COND_SUB_U32); |
| |
| case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: |
| case Intrinsic::amdgcn_raw_ptr_buffer_atomic_cmpswap: { |
| SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(4), DAG); |
| auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); |
| auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget); |
| SDValue Ops[] = { |
| Op.getOperand(0), // Chain |
| Op.getOperand(2), // src |
| Op.getOperand(3), // cmp |
| Rsrc, // rsrc |
| DAG.getConstant(0, DL, MVT::i32), // vindex |
| Offsets.first, // voffset |
| SOffset, // soffset |
| Offsets.second, // offset |
| Op.getOperand(7), // cachepolicy |
| DAG.getTargetConstant(0, DL, MVT::i1), // idxen |
| }; |
| EVT VT = Op.getValueType(); |
| auto *M = cast<MemSDNode>(Op); |
| |
| return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, |
| Op->getVTList(), Ops, VT, M->getMemOperand()); |
| } |
| case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: |
| case Intrinsic::amdgcn_struct_ptr_buffer_atomic_cmpswap: { |
| SDValue Rsrc = bufferRsrcPtrToVector(Op->getOperand(4), DAG); |
| auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG); |
| auto SOffset = selectSOffset(Op.getOperand(7), DAG, Subtarget); |
| SDValue Ops[] = { |
| Op.getOperand(0), // Chain |
| Op.getOperand(2), // src |
| Op.getOperand(3), // cmp |
| Rsrc, // rsrc |
| Op.getOperand(5), // vindex |
| Offsets.first, // voffset |
| SOffset, // soffset |
| Offsets.second, // offset |
| Op.getOperand(8), // cachepolicy |
| DAG.getTargetConstant(1, DL, MVT::i1), // idxen |
| }; |
| EVT VT = Op.getValueType(); |
| auto *M = cast<MemSDNode>(Op); |
| |
| return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, |
| Op->getVTList(), Ops, VT, M->getMemOperand()); |
| } |
| case Intrinsic::amdgcn_image_bvh_intersect_ray: { |
| MemSDNode *M = cast<MemSDNode>(Op); |
| SDValue NodePtr = M->getOperand(2); |
| SDValue RayExtent = M->getOperand(3); |
| SDValue RayOrigin = M->getOperand(4); |
| SDValue RayDir = M->getOperand(5); |
| SDValue RayInvDir = M->getOperand(6); |
| SDValue TDescr = M->getOperand(7); |
| |
| assert(NodePtr.getValueType() == MVT::i32 || |
| NodePtr.getValueType() == MVT::i64); |
| assert(RayDir.getValueType() == MVT::v3f16 || |
| RayDir.getValueType() == MVT::v3f32); |
| |
| if (!Subtarget->hasGFX10_AEncoding()) { |
| emitRemovedIntrinsicError(DAG, DL, Op.getValueType()); |
| return SDValue(); |
| } |
| |
| const bool IsGFX11 = AMDGPU::isGFX11(*Subtarget); |
| const bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget); |
| const bool IsGFX12Plus = AMDGPU::isGFX12Plus(*Subtarget); |
| const bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16; |
| const bool Is64 = NodePtr.getValueType() == MVT::i64; |
| const unsigned NumVDataDwords = 4; |
| const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11); |
| const unsigned NumVAddrs = IsGFX11Plus ? (IsA16 ? 4 : 5) : NumVAddrDwords; |
| const bool UseNSA = (Subtarget->hasNSAEncoding() && |
| NumVAddrs <= Subtarget->getNSAMaxSize()) || |
| IsGFX12Plus; |
| const unsigned BaseOpcodes[2][2] = { |
| {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16}, |
| {AMDGPU::IMAGE_BVH64_INTERSECT_RAY, |
| AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}}; |
| int Opcode; |
| if (UseNSA) { |
| Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16], |
| IsGFX12Plus ? AMDGPU::MIMGEncGfx12 |
| : IsGFX11 ? AMDGPU::MIMGEncGfx11NSA |
| : AMDGPU::MIMGEncGfx10NSA, |
| NumVDataDwords, NumVAddrDwords); |
| } else { |
| assert(!IsGFX12Plus); |
| Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16], |
| IsGFX11 ? AMDGPU::MIMGEncGfx11Default |
| : AMDGPU::MIMGEncGfx10Default, |
| NumVDataDwords, NumVAddrDwords); |
| } |
| assert(Opcode != -1); |
| |
| SmallVector<SDValue, 16> Ops; |
| |
| auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) { |
| SmallVector<SDValue, 3> Lanes; |
| DAG.ExtractVectorElements(Op, Lanes, 0, 3); |
| if (Lanes[0].getValueSizeInBits() == 32) { |
| for (unsigned I = 0; I < 3; ++I) |
| Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I])); |
| } else { |
| if (IsAligned) { |
| Ops.push_back( |
| DAG.getBitcast(MVT::i32, |
| DAG.getBuildVector(MVT::v2f16, DL, |
| { Lanes[0], Lanes[1] }))); |
| Ops.push_back(Lanes[2]); |
| } else { |
| SDValue Elt0 = Ops.pop_back_val(); |
| Ops.push_back( |
| DAG.getBitcast(MVT::i32, |
| DAG.getBuildVector(MVT::v2f16, DL, |
| { Elt0, Lanes[0] }))); |
| Ops.push_back( |
| DAG.getBitcast(MVT::i32, |
| DAG.getBuildVector(MVT::v2f16, DL, |
| { Lanes[1], Lanes[2] }))); |
| } |
| } |
| }; |
| |
| if (UseNSA && IsGFX11Plus) { |
| Ops.push_back(NodePtr); |
| Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent)); |
| Ops.push_back(RayOrigin); |
| if (IsA16) { |
| SmallVector<SDValue, 3> DirLanes, InvDirLanes, MergedLanes; |
| DAG.ExtractVectorElements(RayDir, DirLanes, 0, 3); |
| DAG.ExtractVectorElements(RayInvDir, InvDirLanes, 0, 3); |
| for (unsigned I = 0; I < 3; ++I) { |
| MergedLanes.push_back(DAG.getBitcast( |
| MVT::i32, DAG.getBuildVector(MVT::v2f16, DL, |
| {DirLanes[I], InvDirLanes[I]}))); |
| } |
| Ops.push_back(DAG.getBuildVector(MVT::v3i32, DL, MergedLanes)); |
| } else { |
| Ops.push_back(RayDir); |
| Ops.push_back(RayInvDir); |
| } |
| } else { |
| if (Is64) |
| DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0, |
| 2); |
| else |
| Ops.push_back(NodePtr); |
| |
| Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent)); |
| packLanes(RayOrigin, true); |
| packLanes(RayDir, true); |
| packLanes(RayInvDir, false); |
| } |
| |
| if (!UseNSA) { |
| // Build a single vector containing all the operands so far prepared. |
| if (NumVAddrDwords > 12) { |
| SDValue Undef = DAG.getUNDEF(MVT::i32); |
| Ops.append(16 - Ops.size(), Undef); |
| } |
| assert(Ops.size() >= 8 && Ops.size() <= 12); |
| SDValue MergedOps = DAG.getBuildVector( |
| MVT::getVectorVT(MVT::i32, Ops.size()), DL, Ops); |
| Ops.clear(); |
| Ops.push_back(MergedOps); |
| } |
| |
| Ops.push_back(TDescr); |
| Ops.push_back(DAG.getTargetConstant(IsA16, DL, MVT::i1)); |
| Ops.push_back(M->getChain()); |
| |
| auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops); |
| MachineMemOperand *MemRef = M->getMemOperand(); |
| DAG.setNodeMemRefs(NewNode, {MemRef}); |
| return SDValue(NewNode, 0); |
| } |
| case Intrinsic::amdgcn_global_atomic_fmin: |
| case Intrinsic::amdgcn_global_atomic_fmax: |
| case Intrinsic::amdgcn_global_atomic_fmin_num: |
| case Intrinsic::amdgcn_global_atomic_fmax_num: |
| case Intrinsic::amdgcn_flat_atomic_fmin: |
| case Intrinsic::amdgcn_flat_atomic_fmax: |
| case Intrinsic::amdgcn_flat_atomic_fmin_num: |
| case Intrinsic::amdgcn_flat_atomic_fmax_num: { |
| MemSDNode *M = cast<MemSDNode>(Op); |
| SDValue Ops[] = { |
| M->getOperand(0), // Chain |
| M->getOperand(2), // Ptr |
| M->getOperand(3) // Value |
| }; |
| unsigned Opcode = 0; |
| switch (IntrID) { |
| case Intrinsic::amdgcn_global_atomic_fmin: |
| case Intrinsic::amdgcn_global_atomic_fmin_num: |
| case Intrinsic::amdgcn_flat_atomic_fmin: |
| case Intrinsic::amdgcn_flat_atomic_fmin_num: { |
| Opcode = ISD::ATOMIC_LOAD_FMIN; |
| break; |
| } |
| case Intrinsic::amdgcn_global_atomic_fmax: |
| case Intrinsic::amdgcn_global_atomic_fmax_num: |
| case Intrinsic::amdgcn_flat_atomic_fmax: |
| case Intrinsic::amdgcn_flat_atomic_fmax_num: { |
| Opcode = ISD::ATOMIC_LOAD_FMAX; |
| break; |
| } |
| default: |
| llvm_unreachable("unhandled atomic opcode"); |
| } |
| return DAG.getAtomic(Opcode, SDLoc(Op), M->getMemoryVT(), M->getVTList(), |
| Ops, M->getMemOperand()); |
| } |
| case Intrinsic::amdgcn_s_get_barrier_state: { |
| SDValue Chain = Op->getOperand(0); |
| SmallVector<SDValue, 2> Ops; |
| unsigned Opc; |
| bool IsInlinableBarID = false; |
| int64_t BarID; |
| |
| if (isa<ConstantSDNode>(Op->getOperand(2))) { |
| BarID = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue(); |
| IsInlinableBarID = AMDGPU::isInlinableIntLiteral(BarID); |
| } |
| |
| if (IsInlinableBarID) { |
| Opc = AMDGPU::S_GET_BARRIER_STATE_IMM; |
| SDValue K = DAG.getTargetConstant(BarID, DL, MVT::i32); |
| Ops.push_back(K); |
| } else { |
| Opc = AMDGPU::S_GET_BARRIER_STATE_M0; |
| SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(2)); |
| Ops.push_back(M0Val.getValue(0)); |
| } |
| |
| auto NewMI = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops); |
| return SDValue(NewMI, 0); |
| } |
| default: |
| |
| if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = |
| AMDGPU::getImageDimIntrinsicInfo(IntrID)) |
| return lowerImage(Op, ImageDimIntr, DAG, true); |
| |
| return SDValue(); |
| } |
| } |
| |
| // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to |
| // dwordx4 if on SI and handle TFE loads. |
| SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL, |
| SDVTList VTList, |
| ArrayRef<SDValue> Ops, EVT MemVT, |
| MachineMemOperand *MMO, |
| SelectionDAG &DAG) const { |
| LLVMContext &C = *DAG.getContext(); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| EVT VT = VTList.VTs[0]; |
| |
| assert(VTList.NumVTs == 2 || VTList.NumVTs == 3); |
| bool IsTFE = VTList.NumVTs == 3; |
| if (IsTFE) { |
| unsigned NumValueDWords = divideCeil(VT.getSizeInBits(), 32); |
| unsigned NumOpDWords = NumValueDWords + 1; |
| EVT OpDWordsVT = EVT::getVectorVT(C, MVT::i32, NumOpDWords); |
| SDVTList OpDWordsVTList = DAG.getVTList(OpDWordsVT, VTList.VTs[2]); |
| MachineMemOperand *OpDWordsMMO = |
| MF.getMachineMemOperand(MMO, 0, NumOpDWords * 4); |
| SDValue Op = getMemIntrinsicNode(Opcode, DL, OpDWordsVTList, Ops, |
| OpDWordsVT, OpDWordsMMO, DAG); |
| SDValue Status = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op, |
| DAG.getVectorIdxConstant(NumValueDWords, DL)); |
| SDValue ZeroIdx = DAG.getVectorIdxConstant(0, DL); |
| SDValue ValueDWords = |
| NumValueDWords == 1 |
| ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op, ZeroIdx) |
| : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, |
| EVT::getVectorVT(C, MVT::i32, NumValueDWords), Op, |
| ZeroIdx); |
| SDValue Value = DAG.getNode(ISD::BITCAST, DL, VT, ValueDWords); |
| return DAG.getMergeValues({Value, Status, SDValue(Op.getNode(), 1)}, DL); |
| } |
| |
| if (!Subtarget->hasDwordx3LoadStores() && |
| (VT == MVT::v3i32 || VT == MVT::v3f32)) { |
| EVT WidenedVT = EVT::getVectorVT(C, VT.getVectorElementType(), 4); |
| EVT WidenedMemVT = EVT::getVectorVT(C, MemVT.getVectorElementType(), 4); |
| MachineMemOperand *WidenedMMO = MF.getMachineMemOperand(MMO, 0, 16); |
| SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]); |
| SDValue Op = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops, |
| WidenedMemVT, WidenedMMO); |
| SDValue Value = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Op, |
| DAG.getVectorIdxConstant(0, DL)); |
| return DAG.getMergeValues({Value, SDValue(Op.getNode(), 1)}, DL); |
| } |
| |
| return DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, MemVT, MMO); |
| } |
| |
| SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG, |
| bool ImageStore) const { |
| EVT StoreVT = VData.getValueType(); |
| |
| // No change for f16 and legal vector D16 types. |
| if (!StoreVT.isVector()) |
| return VData; |
| |
| SDLoc DL(VData); |
| unsigned NumElements = StoreVT.getVectorNumElements(); |
| |
| if (Subtarget->hasUnpackedD16VMem()) { |
| // We need to unpack the packed data to store. |
| EVT IntStoreVT = StoreVT.changeTypeToInteger(); |
| SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); |
| |
| EVT EquivStoreVT = |
| EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements); |
| SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData); |
| return DAG.UnrollVectorOp(ZExt.getNode()); |
| } |
| |
| // The sq block of gfx8.1 does not estimate register use correctly for d16 |
| // image store instructions. The data operand is computed as if it were not a |
| // d16 image instruction. |
| if (ImageStore && Subtarget->hasImageStoreD16Bug()) { |
| // Bitcast to i16 |
| EVT IntStoreVT = StoreVT.changeTypeToInteger(); |
| SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); |
| |
| // Decompose into scalars |
| SmallVector<SDValue, 4> Elts; |
| DAG.ExtractVectorElements(IntVData, Elts); |
| |
| // Group pairs of i16 into v2i16 and bitcast to i32 |
| SmallVector<SDValue, 4> PackedElts; |
| for (unsigned I = 0; I < Elts.size() / 2; I += 1) { |
| SDValue Pair = |
| DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]}); |
| SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair); |
| PackedElts.push_back(IntPair); |
| } |
| if ((NumElements % 2) == 1) { |
| // Handle v3i16 |
| unsigned I = Elts.size() / 2; |
| SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL, |
| {Elts[I * 2], DAG.getUNDEF(MVT::i16)}); |
| SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair); |
| PackedElts.push_back(IntPair); |
| } |
| |
| // Pad using UNDEF |
| PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32)); |
| |
| // Build final vector |
| EVT VecVT = |
| EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size()); |
| return DAG.getBuildVector(VecVT, DL, PackedElts); |
| } |
| |
| if (NumElements == 3) { |
| EVT IntStoreVT = |
| EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits()); |
| SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData); |
| |
| EVT WidenedStoreVT = EVT::getVectorVT( |
| *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1); |
| EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(), |
| WidenedStoreVT.getStoreSizeInBits()); |
| SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData); |
| return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt); |
| } |
| |
| assert(isTypeLegal(StoreVT)); |
| return VData; |
| } |
| |
| SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| SDValue Chain = Op.getOperand(0); |
| unsigned IntrinsicID = Op.getConstantOperandVal(1); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| switch (IntrinsicID) { |
| case Intrinsic::amdgcn_exp_compr: { |
| if (!Subtarget->hasCompressedExport()) { |
| DiagnosticInfoUnsupported BadIntrin( |
| DAG.getMachineFunction().getFunction(), |
| "intrinsic not supported on subtarget", DL.getDebugLoc()); |
| DAG.getContext()->diagnose(BadIntrin); |
| } |
| SDValue Src0 = Op.getOperand(4); |
| SDValue Src1 = Op.getOperand(5); |
| // Hack around illegal type on SI by directly selecting it. |
| if (isTypeLegal(Src0.getValueType())) |
| return SDValue(); |
| |
| const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6)); |
| SDValue Undef = DAG.getUNDEF(MVT::f32); |
| const SDValue Ops[] = { |
| Op.getOperand(2), // tgt |
| DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0 |
| DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1 |
| Undef, // src2 |
| Undef, // src3 |
| Op.getOperand(7), // vm |
| DAG.getTargetConstant(1, DL, MVT::i1), // compr |
| Op.getOperand(3), // en |
| Op.getOperand(0) // Chain |
| }; |
| |
| unsigned Opc = Done->isZero() ? AMDGPU::EXP : AMDGPU::EXP_DONE; |
| return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0); |
| } |
| case Intrinsic::amdgcn_s_barrier: { |
| const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); |
| if (getTargetMachine().getOptLevel() > CodeGenOptLevel::None) { |
| unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second; |
| if (WGSize <= ST.getWavefrontSize()) |
| return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other, |
| Op.getOperand(0)), 0); |
| } |
| |
| // On GFX12 lower s_barrier into s_barrier_signal_imm and s_barrier_wait |
| if (ST.hasSplitBarriers()) { |
| SDValue K = |
| DAG.getTargetConstant(AMDGPU::Barrier::WORKGROUP, DL, MVT::i32); |
| SDValue BarSignal = |
| SDValue(DAG.getMachineNode(AMDGPU::S_BARRIER_SIGNAL_IMM, DL, |
| MVT::Other, K, Op.getOperand(0)), |
| 0); |
| SDValue BarWait = |
| SDValue(DAG.getMachineNode(AMDGPU::S_BARRIER_WAIT, DL, MVT::Other, K, |
| BarSignal.getValue(0)), |
| 0); |
| return BarWait; |
| } |
| |
| return SDValue(); |
| }; |
| |
| case Intrinsic::amdgcn_struct_tbuffer_store: |
| case Intrinsic::amdgcn_struct_ptr_tbuffer_store: { |
| SDValue VData = Op.getOperand(2); |
| bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); |
| if (IsD16) |
| VData = handleD16VData(VData, DAG); |
| SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG); |
| auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); |
| auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget); |
| SDValue Ops[] = { |
| Chain, |
| VData, // vdata |
| Rsrc, // rsrc |
| Op.getOperand(4), // vindex |
| Offsets.first, // voffset |
| SOffset, // soffset |
| Offsets.second, // offset |
| Op.getOperand(7), // format |
| Op.getOperand(8), // cachepolicy, swizzled buffer |
| DAG.getTargetConstant(1, DL, MVT::i1), // idxen |
| }; |
| unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : |
| AMDGPUISD::TBUFFER_STORE_FORMAT; |
| MemSDNode *M = cast<MemSDNode>(Op); |
| return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, |
| M->getMemoryVT(), M->getMemOperand()); |
| } |
| |
| case Intrinsic::amdgcn_raw_tbuffer_store: |
| case Intrinsic::amdgcn_raw_ptr_tbuffer_store: { |
| SDValue VData = Op.getOperand(2); |
| bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16); |
| if (IsD16) |
| VData = handleD16VData(VData, DAG); |
| SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG); |
| auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); |
| auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget); |
| SDValue Ops[] = { |
| Chain, |
| VData, // vdata |
| Rsrc, // rsrc |
| DAG.getConstant(0, DL, MVT::i32), // vindex |
| Offsets.first, // voffset |
| SOffset, // soffset |
| Offsets.second, // offset |
| Op.getOperand(6), // format |
| Op.getOperand(7), // cachepolicy, swizzled buffer |
| DAG.getTargetConstant(0, DL, MVT::i1), // idxen |
| }; |
| unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 : |
| AMDGPUISD::TBUFFER_STORE_FORMAT; |
| MemSDNode *M = cast<MemSDNode>(Op); |
| return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, |
| M->getMemoryVT(), M->getMemOperand()); |
| } |
| |
| case Intrinsic::amdgcn_raw_buffer_store: |
| case Intrinsic::amdgcn_raw_ptr_buffer_store: |
| case Intrinsic::amdgcn_raw_buffer_store_format: |
| case Intrinsic::amdgcn_raw_ptr_buffer_store_format: { |
| const bool IsFormat = |
| IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format || |
| IntrinsicID == Intrinsic::amdgcn_raw_ptr_buffer_store_format; |
| |
| SDValue VData = Op.getOperand(2); |
| EVT VDataVT = VData.getValueType(); |
| EVT EltType = VDataVT.getScalarType(); |
| bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); |
| if (IsD16) { |
| VData = handleD16VData(VData, DAG); |
| VDataVT = VData.getValueType(); |
| } |
| |
| if (!isTypeLegal(VDataVT)) { |
| VData = |
| DAG.getNode(ISD::BITCAST, DL, |
| getEquivalentMemType(*DAG.getContext(), VDataVT), VData); |
| } |
| |
| SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG); |
| auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG); |
| auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget); |
| SDValue Ops[] = { |
| Chain, |
| VData, |
| Rsrc, |
| DAG.getConstant(0, DL, MVT::i32), // vindex |
| Offsets.first, // voffset |
| SOffset, // soffset |
| Offsets.second, // offset |
| Op.getOperand(6), // cachepolicy, swizzled buffer |
| DAG.getTargetConstant(0, DL, MVT::i1), // idxen |
| }; |
| unsigned Opc = |
| IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE; |
| Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; |
| MemSDNode *M = cast<MemSDNode>(Op); |
| |
| // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics |
| if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) |
| return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M); |
| |
| return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, |
| M->getMemoryVT(), M->getMemOperand()); |
| } |
| |
| case Intrinsic::amdgcn_struct_buffer_store: |
| case Intrinsic::amdgcn_struct_ptr_buffer_store: |
| case Intrinsic::amdgcn_struct_buffer_store_format: |
| case Intrinsic::amdgcn_struct_ptr_buffer_store_format: { |
| const bool IsFormat = |
| IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format || |
| IntrinsicID == Intrinsic::amdgcn_struct_ptr_buffer_store_format; |
| |
| SDValue VData = Op.getOperand(2); |
| EVT VDataVT = VData.getValueType(); |
| EVT EltType = VDataVT.getScalarType(); |
| bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16); |
| |
| if (IsD16) { |
| VData = handleD16VData(VData, DAG); |
| VDataVT = VData.getValueType(); |
| } |
| |
| if (!isTypeLegal(VDataVT)) { |
| VData = |
| DAG.getNode(ISD::BITCAST, DL, |
| getEquivalentMemType(*DAG.getContext(), VDataVT), VData); |
| } |
| |
| auto Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG); |
| auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG); |
| auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget); |
| SDValue Ops[] = { |
| Chain, |
| VData, |
| Rsrc, |
| Op.getOperand(4), // vindex |
| Offsets.first, // voffset |
| SOffset, // soffset |
| Offsets.second, // offset |
| Op.getOperand(7), // cachepolicy, swizzled buffer |
| DAG.getTargetConstant(1, DL, MVT::i1), // idxen |
| }; |
| unsigned Opc = |
| !IsFormat ? AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; |
| Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc; |
| MemSDNode *M = cast<MemSDNode>(Op); |
| |
| // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics |
| EVT VDataType = VData.getValueType().getScalarType(); |
| if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32) |
| return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M); |
| |
| return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, |
| M->getMemoryVT(), M->getMemOperand()); |
| } |
| case Intrinsic::amdgcn_raw_buffer_load_lds: |
| case Intrinsic::amdgcn_raw_ptr_buffer_load_lds: |
| case Intrinsic::amdgcn_struct_buffer_load_lds: |
| case Intrinsic::amdgcn_struct_ptr_buffer_load_lds: { |
| assert(!AMDGPU::isGFX12Plus(*Subtarget)); |
| unsigned Opc; |
| bool HasVIndex = |
| IntrinsicID == Intrinsic::amdgcn_struct_buffer_load_lds || |
| IntrinsicID == Intrinsic::amdgcn_struct_ptr_buffer_load_lds; |
| unsigned OpOffset = HasVIndex ? 1 : 0; |
| SDValue VOffset = Op.getOperand(5 + OpOffset); |
| bool HasVOffset = !isNullConstant(VOffset); |
| unsigned Size = Op->getConstantOperandVal(4); |
| |
| switch (Size) { |
| default: |
| return SDValue(); |
| case 1: |
| Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_BOTHEN |
| : AMDGPU::BUFFER_LOAD_UBYTE_LDS_IDXEN |
| : HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFEN |
| : AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFSET; |
| break; |
| case 2: |
| Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_BOTHEN |
| : AMDGPU::BUFFER_LOAD_USHORT_LDS_IDXEN |
| : HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFEN |
| : AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFSET; |
| break; |
| case 4: |
| Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_BOTHEN |
| : AMDGPU::BUFFER_LOAD_DWORD_LDS_IDXEN |
| : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFEN |
| : AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFSET; |
| break; |
| } |
| |
| SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3)); |
| |
| SmallVector<SDValue, 8> Ops; |
| |
| if (HasVIndex && HasVOffset) |
| Ops.push_back(DAG.getBuildVector(MVT::v2i32, DL, |
| { Op.getOperand(5), // VIndex |
| VOffset })); |
| else if (HasVIndex) |
| Ops.push_back(Op.getOperand(5)); |
| else if (HasVOffset) |
| Ops.push_back(VOffset); |
| |
| SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG); |
| Ops.push_back(Rsrc); |
| Ops.push_back(Op.getOperand(6 + OpOffset)); // soffset |
| Ops.push_back(Op.getOperand(7 + OpOffset)); // imm offset |
| unsigned Aux = Op.getConstantOperandVal(8 + OpOffset); |
| Ops.push_back( |
| DAG.getTargetConstant(Aux & AMDGPU::CPol::ALL, DL, MVT::i8)); // cpol |
| Ops.push_back(DAG.getTargetConstant( |
| Aux & AMDGPU::CPol::SWZ_pregfx12 ? 1 : 0, DL, MVT::i8)); // swz |
| Ops.push_back(M0Val.getValue(0)); // Chain |
| Ops.push_back(M0Val.getValue(1)); // Glue |
| |
| auto *M = cast<MemSDNode>(Op); |
| MachineMemOperand *LoadMMO = M->getMemOperand(); |
| // Don't set the offset value here because the pointer points to the base of |
| // the buffer. |
| MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo(); |
| |
| MachinePointerInfo StorePtrI = LoadPtrI; |
| LoadPtrI.V = PoisonValue::get( |
| PointerType::get(*DAG.getContext(), AMDGPUAS::GLOBAL_ADDRESS)); |
| LoadPtrI.AddrSpace = AMDGPUAS::GLOBAL_ADDRESS; |
| StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS; |
| |
| auto F = LoadMMO->getFlags() & |
| ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad); |
| LoadMMO = |
| MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad, Size, |
| LoadMMO->getBaseAlign(), LoadMMO->getAAInfo()); |
| |
| MachineMemOperand *StoreMMO = MF.getMachineMemOperand( |
| StorePtrI, F | MachineMemOperand::MOStore, sizeof(int32_t), |
| LoadMMO->getBaseAlign(), LoadMMO->getAAInfo()); |
| |
| auto Load = DAG.getMachineNode(Opc, DL, M->getVTList(), Ops); |
| DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO}); |
| |
| return SDValue(Load, 0); |
| } |
| case Intrinsic::amdgcn_global_load_lds: { |
| unsigned Opc; |
| unsigned Size = Op->getConstantOperandVal(4); |
| switch (Size) { |
| default: |
| return SDValue(); |
| case 1: |
| Opc = AMDGPU::GLOBAL_LOAD_LDS_UBYTE; |
| break; |
| case 2: |
| Opc = AMDGPU::GLOBAL_LOAD_LDS_USHORT; |
| break; |
| case 4: |
| Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORD; |
| break; |
| } |
| |
| auto *M = cast<MemSDNode>(Op); |
| SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3)); |
| |
| SmallVector<SDValue, 6> Ops; |
| |
| SDValue Addr = Op.getOperand(2); // Global ptr |
| SDValue VOffset; |
| // Try to split SAddr and VOffset. Global and LDS pointers share the same |
| // immediate offset, so we cannot use a regular SelectGlobalSAddr(). |
| if (Addr->isDivergent() && Addr.getOpcode() == ISD::ADD) { |
| SDValue LHS = Addr.getOperand(0); |
| SDValue RHS = Addr.getOperand(1); |
| |
| if (LHS->isDivergent()) |
| std::swap(LHS, RHS); |
| |
| if (!LHS->isDivergent() && RHS.getOpcode() == ISD::ZERO_EXTEND && |
| RHS.getOperand(0).getValueType() == MVT::i32) { |
| // add (i64 sgpr), (zero_extend (i32 vgpr)) |
| Addr = LHS; |
| VOffset = RHS.getOperand(0); |
| } |
| } |
| |
| Ops.push_back(Addr); |
| if (!Addr->isDivergent()) { |
| Opc = AMDGPU::getGlobalSaddrOp(Opc); |
| if (!VOffset) |
| VOffset = SDValue( |
| DAG.getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, |
| DAG.getTargetConstant(0, DL, MVT::i32)), 0); |
| Ops.push_back(VOffset); |
| } |
| |
| Ops.push_back(Op.getOperand(5)); // Offset |
| Ops.push_back(Op.getOperand(6)); // CPol |
| Ops.push_back(M0Val.getValue(0)); // Chain |
| Ops.push_back(M0Val.getValue(1)); // Glue |
| |
| MachineMemOperand *LoadMMO = M->getMemOperand(); |
| MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo(); |
| LoadPtrI.Offset = Op->getConstantOperandVal(5); |
| MachinePointerInfo StorePtrI = LoadPtrI; |
| LoadPtrI.V = PoisonValue::get( |
| PointerType::get(*DAG.getContext(), AMDGPUAS::GLOBAL_ADDRESS)); |
| LoadPtrI.AddrSpace = AMDGPUAS::GLOBAL_ADDRESS; |
| StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS; |
| auto F = LoadMMO->getFlags() & |
| ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad); |
| LoadMMO = |
| MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad, Size, |
| LoadMMO->getBaseAlign(), LoadMMO->getAAInfo()); |
| MachineMemOperand *StoreMMO = MF.getMachineMemOperand( |
| StorePtrI, F | MachineMemOperand::MOStore, sizeof(int32_t), Align(4), |
| LoadMMO->getAAInfo()); |
| |
| auto Load = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops); |
| DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO}); |
| |
| return SDValue(Load, 0); |
| } |
| case Intrinsic::amdgcn_end_cf: |
| return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other, |
| Op->getOperand(2), Chain), 0); |
| case Intrinsic::amdgcn_s_barrier_init: |
| case Intrinsic::amdgcn_s_barrier_join: |
| case Intrinsic::amdgcn_s_wakeup_barrier: { |
| SDValue Chain = Op->getOperand(0); |
| SmallVector<SDValue, 2> Ops; |
| SDValue BarOp = Op->getOperand(2); |
| unsigned Opc; |
| bool IsInlinableBarID = false; |
| int64_t BarVal; |
| |
| if (isa<ConstantSDNode>(BarOp)) { |
| BarVal = cast<ConstantSDNode>(BarOp)->getSExtValue(); |
| IsInlinableBarID = AMDGPU::isInlinableIntLiteral(BarVal); |
| } |
| |
| if (IsInlinableBarID) { |
| switch (IntrinsicID) { |
| default: |
| return SDValue(); |
| case Intrinsic::amdgcn_s_barrier_init: |
| Opc = AMDGPU::S_BARRIER_INIT_IMM; |
| break; |
| case Intrinsic::amdgcn_s_barrier_join: |
| Opc = AMDGPU::S_BARRIER_JOIN_IMM; |
| break; |
| case Intrinsic::amdgcn_s_wakeup_barrier: |
| Opc = AMDGPU::S_WAKEUP_BARRIER_IMM; |
| break; |
| } |
| |
| SDValue K = DAG.getTargetConstant(BarVal, DL, MVT::i32); |
| Ops.push_back(K); |
| } else { |
| switch (IntrinsicID) { |
| default: |
| return SDValue(); |
| case Intrinsic::amdgcn_s_barrier_init: |
| Opc = AMDGPU::S_BARRIER_INIT_M0; |
| break; |
| case Intrinsic::amdgcn_s_barrier_join: |
| Opc = AMDGPU::S_BARRIER_JOIN_M0; |
| break; |
| case Intrinsic::amdgcn_s_wakeup_barrier: |
| Opc = AMDGPU::S_WAKEUP_BARRIER_M0; |
| break; |
| } |
| } |
| |
| if (IntrinsicID == Intrinsic::amdgcn_s_barrier_init) { |
| SDValue M0Val; |
| // Member count will be read from M0[16:22] |
| M0Val = DAG.getNode(ISD::SHL, DL, MVT::i32, Op.getOperand(3), |
| DAG.getShiftAmountConstant(16, MVT::i32, DL)); |
| |
| if (!IsInlinableBarID) { |
| // If reference to barrier id is not an inline constant then it must be |
| // referenced with M0[4:0]. Perform an OR with the member count to |
| // include it in M0. |
| M0Val = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, |
| Op.getOperand(2), M0Val), |
| 0); |
| } |
| Ops.push_back(copyToM0(DAG, Chain, DL, M0Val).getValue(0)); |
| } else if (!IsInlinableBarID) { |
| Ops.push_back(copyToM0(DAG, Chain, DL, BarOp).getValue(0)); |
| } |
| |
| auto NewMI = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops); |
| return SDValue(NewMI, 0); |
| } |
| case Intrinsic::amdgcn_s_prefetch_data: { |
| // For non-global address space preserve the chain and remove the call. |
| if (!AMDGPU::isFlatGlobalAddrSpace(cast<MemSDNode>(Op)->getAddressSpace())) |
| return Op.getOperand(0); |
| return Op; |
| } |
| case Intrinsic::amdgcn_s_buffer_prefetch_data: { |
| SDValue Ops[] = { |
| Chain, bufferRsrcPtrToVector(Op.getOperand(2), DAG), |
| Op.getOperand(3), // offset |
| Op.getOperand(4), // length |
| }; |
| |
| MemSDNode *M = cast<MemSDNode>(Op); |
| return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_PREFETCH_DATA, DL, |
| Op->getVTList(), Ops, M->getMemoryVT(), |
| M->getMemOperand()); |
| } |
| default: { |
| if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = |
| AMDGPU::getImageDimIntrinsicInfo(IntrinsicID)) |
| return lowerImage(Op, ImageDimIntr, DAG, true); |
| |
| return Op; |
| } |
| } |
| } |
| |
| // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args: |
| // offset (the offset that is included in bounds checking and swizzling, to be |
| // split between the instruction's voffset and immoffset fields) and soffset |
| // (the offset that is excluded from bounds checking and swizzling, to go in |
| // the instruction's soffset field). This function takes the first kind of |
| // offset and figures out how to split it between voffset and immoffset. |
| std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets( |
| SDValue Offset, SelectionDAG &DAG) const { |
| SDLoc DL(Offset); |
| const unsigned MaxImm = SIInstrInfo::getMaxMUBUFImmOffset(*Subtarget); |
| SDValue N0 = Offset; |
| ConstantSDNode *C1 = nullptr; |
| |
| if ((C1 = dyn_cast<ConstantSDNode>(N0))) |
| N0 = SDValue(); |
| else if (DAG.isBaseWithConstantOffset(N0)) { |
| C1 = cast<ConstantSDNode>(N0.getOperand(1)); |
| N0 = N0.getOperand(0); |
| } |
| |
| if (C1) { |
| unsigned ImmOffset = C1->getZExtValue(); |
| // If the immediate value is too big for the immoffset field, put only bits |
| // that would normally fit in the immoffset field. The remaining value that |
| // is copied/added for the voffset field is a large power of 2, and it |
| // stands more chance of being CSEd with the copy/add for another similar |
| // load/store. |
| // However, do not do that rounding down if that is a negative |
| // number, as it appears to be illegal to have a negative offset in the |
| // vgpr, even if adding the immediate offset makes it positive. |
| unsigned Overflow = ImmOffset & ~MaxImm; |
| ImmOffset -= Overflow; |
| if ((int32_t)Overflow < 0) { |
| Overflow += ImmOffset; |
| ImmOffset = 0; |
| } |
| C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32)); |
| if (Overflow) { |
| auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32); |
| if (!N0) |
| N0 = OverflowVal; |
| else { |
| SDValue Ops[] = { N0, OverflowVal }; |
| N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops); |
| } |
| } |
| } |
| if (!N0) |
| N0 = DAG.getConstant(0, DL, MVT::i32); |
| if (!C1) |
| C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32)); |
| return {N0, SDValue(C1, 0)}; |
| } |
| |
| // Analyze a combined offset from an amdgcn_s_buffer_load intrinsic and store |
| // the three offsets (voffset, soffset and instoffset) into the SDValue[3] array |
| // pointed to by Offsets. |
| void SITargetLowering::setBufferOffsets(SDValue CombinedOffset, |
| SelectionDAG &DAG, SDValue *Offsets, |
| Align Alignment) const { |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| SDLoc DL(CombinedOffset); |
| if (auto *C = dyn_cast<ConstantSDNode>(CombinedOffset)) { |
| uint32_t Imm = C->getZExtValue(); |
| uint32_t SOffset, ImmOffset; |
| if (TII->splitMUBUFOffset(Imm, SOffset, ImmOffset, Alignment)) { |
| Offsets[0] = DAG.getConstant(0, DL, MVT::i32); |
| Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); |
| Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); |
| return; |
| } |
| } |
| if (DAG.isBaseWithConstantOffset(CombinedOffset)) { |
| SDValue N0 = CombinedOffset.getOperand(0); |
| SDValue N1 = CombinedOffset.getOperand(1); |
| uint32_t SOffset, ImmOffset; |
| int Offset = cast<ConstantSDNode>(N1)->getSExtValue(); |
| if (Offset >= 0 && |
| TII->splitMUBUFOffset(Offset, SOffset, ImmOffset, Alignment)) { |
| Offsets[0] = N0; |
| Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32); |
| Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32); |
| return; |
| } |
| } |
| |
| SDValue SOffsetZero = Subtarget->hasRestrictedSOffset() |
| ? DAG.getRegister(AMDGPU::SGPR_NULL, MVT::i32) |
| : DAG.getConstant(0, DL, MVT::i32); |
| |
| Offsets[0] = CombinedOffset; |
| Offsets[1] = SOffsetZero; |
| Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32); |
| } |
| |
| SDValue SITargetLowering::bufferRsrcPtrToVector(SDValue MaybePointer, |
| SelectionDAG &DAG) const { |
| if (!MaybePointer.getValueType().isScalarInteger()) |
| return MaybePointer; |
| |
| SDLoc DL(MaybePointer); |
| |
| SDValue Rsrc = DAG.getBitcast(MVT::v4i32, MaybePointer); |
| return Rsrc; |
| } |
| |
| // Wrap a global or flat pointer into a buffer intrinsic using the flags |
| // specified in the intrinsic. |
| SDValue SITargetLowering::lowerPointerAsRsrcIntrin(SDNode *Op, |
| SelectionDAG &DAG) const { |
| SDLoc Loc(Op); |
| |
| SDValue Pointer = Op->getOperand(1); |
| SDValue Stride = Op->getOperand(2); |
| SDValue NumRecords = Op->getOperand(3); |
| SDValue Flags = Op->getOperand(4); |
| |
| auto [LowHalf, HighHalf] = DAG.SplitScalar(Pointer, Loc, MVT::i32, MVT::i32); |
| SDValue Mask = DAG.getConstant(0x0000ffff, Loc, MVT::i32); |
| SDValue Masked = DAG.getNode(ISD::AND, Loc, MVT::i32, HighHalf, Mask); |
| std::optional<uint32_t> ConstStride = std::nullopt; |
| if (auto *ConstNode = dyn_cast<ConstantSDNode>(Stride)) |
| ConstStride = ConstNode->getZExtValue(); |
| |
| SDValue NewHighHalf = Masked; |
| if (!ConstStride || *ConstStride != 0) { |
| SDValue ShiftedStride; |
| if (ConstStride) { |
| ShiftedStride = DAG.getConstant(*ConstStride << 16, Loc, MVT::i32); |
| } else { |
| SDValue ExtStride = DAG.getAnyExtOrTrunc(Stride, Loc, MVT::i32); |
| ShiftedStride = |
| DAG.getNode(ISD::SHL, Loc, MVT::i32, ExtStride, |
| DAG.getShiftAmountConstant(16, MVT::i32, Loc)); |
| } |
| NewHighHalf = DAG.getNode(ISD::OR, Loc, MVT::i32, Masked, ShiftedStride); |
| } |
| |
| SDValue Rsrc = DAG.getNode(ISD::BUILD_VECTOR, Loc, MVT::v4i32, LowHalf, |
| NewHighHalf, NumRecords, Flags); |
| SDValue RsrcPtr = DAG.getNode(ISD::BITCAST, Loc, MVT::i128, Rsrc); |
| return RsrcPtr; |
| } |
| |
| // Handle 8 bit and 16 bit buffer loads |
| SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG, |
| EVT LoadVT, SDLoc DL, |
| ArrayRef<SDValue> Ops, |
| MachineMemOperand *MMO, |
| bool IsTFE) const { |
| EVT IntVT = LoadVT.changeTypeToInteger(); |
| |
| if (IsTFE) { |
| unsigned Opc = (LoadVT.getScalarType() == MVT::i8) |
| ? AMDGPUISD::BUFFER_LOAD_UBYTE_TFE |
| : AMDGPUISD::BUFFER_LOAD_USHORT_TFE; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineMemOperand *OpMMO = MF.getMachineMemOperand(MMO, 0, 8); |
| SDVTList VTs = DAG.getVTList(MVT::v2i32, MVT::Other); |
| SDValue Op = getMemIntrinsicNode(Opc, DL, VTs, Ops, MVT::v2i32, OpMMO, DAG); |
| SDValue Status = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op, |
| DAG.getConstant(1, DL, MVT::i32)); |
| SDValue Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op, |
| DAG.getConstant(0, DL, MVT::i32)); |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, IntVT, Data); |
| SDValue Value = DAG.getNode(ISD::BITCAST, DL, LoadVT, Trunc); |
| return DAG.getMergeValues({Value, Status, SDValue(Op.getNode(), 1)}, DL); |
| } |
| |
| unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ? |
| AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT; |
| |
| SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other); |
| SDValue BufferLoad = |
| DAG.getMemIntrinsicNode(Opc, DL, ResList, Ops, IntVT, MMO); |
| SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad); |
| LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal); |
| |
| return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL); |
| } |
| |
| // Handle 8 bit and 16 bit buffer stores |
| SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG, |
| EVT VDataType, SDLoc DL, |
| SDValue Ops[], |
| MemSDNode *M) const { |
| if (VDataType == MVT::f16 || VDataType == MVT::bf16) |
| Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]); |
| |
| SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]); |
| Ops[1] = BufferStoreExt; |
| unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE : |
| AMDGPUISD::BUFFER_STORE_SHORT; |
| ArrayRef<SDValue> OpsRef = ArrayRef(&Ops[0], 9); |
| return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType, |
| M->getMemOperand()); |
| } |
| |
| static SDValue getLoadExtOrTrunc(SelectionDAG &DAG, |
| ISD::LoadExtType ExtType, SDValue Op, |
| const SDLoc &SL, EVT VT) { |
| if (VT.bitsLT(Op.getValueType())) |
| return DAG.getNode(ISD::TRUNCATE, SL, VT, Op); |
| |
| switch (ExtType) { |
| case ISD::SEXTLOAD: |
| return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op); |
| case ISD::ZEXTLOAD: |
| return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op); |
| case ISD::EXTLOAD: |
| return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op); |
| case ISD::NON_EXTLOAD: |
| return Op; |
| } |
| |
| llvm_unreachable("invalid ext type"); |
| } |
| |
| // Try to turn 8 and 16-bit scalar loads into SMEM eligible 32-bit loads. |
| // TODO: Skip this on GFX12 which does have scalar sub-dword loads. |
| SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| if (Ld->getAlign() < Align(4) || Ld->isDivergent()) |
| return SDValue(); |
| |
| // FIXME: Constant loads should all be marked invariant. |
| unsigned AS = Ld->getAddressSpace(); |
| if (AS != AMDGPUAS::CONSTANT_ADDRESS && |
| AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT && |
| (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant())) |
| return SDValue(); |
| |
| // Don't do this early, since it may interfere with adjacent load merging for |
| // illegal types. We can avoid losing alignment information for exotic types |
| // pre-legalize. |
| EVT MemVT = Ld->getMemoryVT(); |
| if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) || |
| MemVT.getSizeInBits() >= 32) |
| return SDValue(); |
| |
| SDLoc SL(Ld); |
| |
| assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) && |
| "unexpected vector extload"); |
| |
| // TODO: Drop only high part of range. |
| SDValue Ptr = Ld->getBasePtr(); |
| SDValue NewLoad = DAG.getLoad( |
| ISD::UNINDEXED, ISD::NON_EXTLOAD, MVT::i32, SL, Ld->getChain(), Ptr, |
| Ld->getOffset(), Ld->getPointerInfo(), MVT::i32, Ld->getAlign(), |
| Ld->getMemOperand()->getFlags(), Ld->getAAInfo(), |
| nullptr); // Drop ranges |
| |
| EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); |
| if (MemVT.isFloatingPoint()) { |
| assert(Ld->getExtensionType() == ISD::NON_EXTLOAD && |
| "unexpected fp extload"); |
| TruncVT = MemVT.changeTypeToInteger(); |
| } |
| |
| SDValue Cvt = NewLoad; |
| if (Ld->getExtensionType() == ISD::SEXTLOAD) { |
| Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad, |
| DAG.getValueType(TruncVT)); |
| } else if (Ld->getExtensionType() == ISD::ZEXTLOAD || |
| Ld->getExtensionType() == ISD::NON_EXTLOAD) { |
| Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT); |
| } else { |
| assert(Ld->getExtensionType() == ISD::EXTLOAD); |
| } |
| |
| EVT VT = Ld->getValueType(0); |
| EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); |
| |
| DCI.AddToWorklist(Cvt.getNode()); |
| |
| // We may need to handle exotic cases, such as i16->i64 extloads, so insert |
| // the appropriate extension from the 32-bit load. |
| Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT); |
| DCI.AddToWorklist(Cvt.getNode()); |
| |
| // Handle conversion back to floating point if necessary. |
| Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt); |
| |
| return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL); |
| } |
| |
| static bool addressMayBeAccessedAsPrivate(const MachineMemOperand *MMO, |
| const SIMachineFunctionInfo &Info) { |
| // TODO: Should check if the address can definitely not access stack. |
| if (Info.isEntryFunction()) |
| return Info.getUserSGPRInfo().hasFlatScratchInit(); |
| return true; |
| } |
| |
| SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| LoadSDNode *Load = cast<LoadSDNode>(Op); |
| ISD::LoadExtType ExtType = Load->getExtensionType(); |
| EVT MemVT = Load->getMemoryVT(); |
| |
| if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) { |
| if (MemVT == MVT::i16 && isTypeLegal(MVT::i16)) |
| return SDValue(); |
| |
| // FIXME: Copied from PPC |
| // First, load into 32 bits, then truncate to 1 bit. |
| |
| SDValue Chain = Load->getChain(); |
| SDValue BasePtr = Load->getBasePtr(); |
| MachineMemOperand *MMO = Load->getMemOperand(); |
| |
| EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16; |
| |
| SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, |
| BasePtr, RealMemVT, MMO); |
| |
| if (!MemVT.isVector()) { |
| SDValue Ops[] = { |
| DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD), |
| NewLD.getValue(1) |
| }; |
| |
| return DAG.getMergeValues(Ops, DL); |
| } |
| |
| SmallVector<SDValue, 3> Elts; |
| for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) { |
| SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD, |
| DAG.getConstant(I, DL, MVT::i32)); |
| |
| Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt)); |
| } |
| |
| SDValue Ops[] = { |
| DAG.getBuildVector(MemVT, DL, Elts), |
| NewLD.getValue(1) |
| }; |
| |
| return DAG.getMergeValues(Ops, DL); |
| } |
| |
| if (!MemVT.isVector()) |
| return SDValue(); |
| |
| assert(Op.getValueType().getVectorElementType() == MVT::i32 && |
| "Custom lowering for non-i32 vectors hasn't been implemented."); |
| |
| Align Alignment = Load->getAlign(); |
| unsigned AS = Load->getAddressSpace(); |
| if (Subtarget->hasLDSMisalignedBug() && AS == AMDGPUAS::FLAT_ADDRESS && |
| Alignment.value() < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) { |
| return SplitVectorLoad(Op, DAG); |
| } |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| // If there is a possibility that flat instruction access scratch memory |
| // then we need to use the same legalization rules we use for private. |
| if (AS == AMDGPUAS::FLAT_ADDRESS && |
| !Subtarget->hasMultiDwordFlatScratchAddressing()) |
| AS = addressMayBeAccessedAsPrivate(Load->getMemOperand(), *MFI) ? |
| AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; |
| |
| unsigned NumElements = MemVT.getVectorNumElements(); |
| |
| if (AS == AMDGPUAS::CONSTANT_ADDRESS || |
| AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { |
| if (!Op->isDivergent() && Alignment >= Align(4) && NumElements < 32) { |
| if (MemVT.isPow2VectorType() || |
| (Subtarget->hasScalarDwordx3Loads() && NumElements == 3)) |
| return SDValue(); |
| return WidenOrSplitVectorLoad(Op, DAG); |
| } |
| // Non-uniform loads will be selected to MUBUF instructions, so they |
| // have the same legalization requirements as global and private |
| // loads. |
| // |
| } |
| |
| if (AS == AMDGPUAS::CONSTANT_ADDRESS || |
| AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || |
| AS == AMDGPUAS::GLOBAL_ADDRESS) { |
| if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() && |
| Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) && |
| Alignment >= Align(4) && NumElements < 32) { |
| if (MemVT.isPow2VectorType() || |
| (Subtarget->hasScalarDwordx3Loads() && NumElements == 3)) |
| return SDValue(); |
| return WidenOrSplitVectorLoad(Op, DAG); |
| } |
| // Non-uniform loads will be selected to MUBUF instructions, so they |
| // have the same legalization requirements as global and private |
| // loads. |
| // |
| } |
| if (AS == AMDGPUAS::CONSTANT_ADDRESS || |
| AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || |
| AS == AMDGPUAS::GLOBAL_ADDRESS || |
| AS == AMDGPUAS::FLAT_ADDRESS) { |
| if (NumElements > 4) |
| return SplitVectorLoad(Op, DAG); |
| // v3 loads not supported on SI. |
| if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) |
| return WidenOrSplitVectorLoad(Op, DAG); |
| |
| // v3 and v4 loads are supported for private and global memory. |
| return SDValue(); |
| } |
| if (AS == AMDGPUAS::PRIVATE_ADDRESS) { |
| // Depending on the setting of the private_element_size field in the |
| // resource descriptor, we can only make private accesses up to a certain |
| // size. |
| switch (Subtarget->getMaxPrivateElementSize()) { |
| case 4: { |
| SDValue Ops[2]; |
| std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); |
| return DAG.getMergeValues(Ops, DL); |
| } |
| case 8: |
| if (NumElements > 2) |
| return SplitVectorLoad(Op, DAG); |
| return SDValue(); |
| case 16: |
| // Same as global/flat |
| if (NumElements > 4) |
| return SplitVectorLoad(Op, DAG); |
| // v3 loads not supported on SI. |
| if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) |
| return WidenOrSplitVectorLoad(Op, DAG); |
| |
| return SDValue(); |
| default: |
| llvm_unreachable("unsupported private_element_size"); |
| } |
| } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { |
| unsigned Fast = 0; |
| auto Flags = Load->getMemOperand()->getFlags(); |
| if (allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS, |
| Load->getAlign(), Flags, &Fast) && |
| Fast > 1) |
| return SDValue(); |
| |
| if (MemVT.isVector()) |
| return SplitVectorLoad(Op, DAG); |
| } |
| |
| if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), |
| MemVT, *Load->getMemOperand())) { |
| SDValue Ops[2]; |
| std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG); |
| return DAG.getMergeValues(Ops, DL); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| if (VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256 || |
| VT.getSizeInBits() == 512) |
| return splitTernaryVectorOp(Op, DAG); |
| |
| assert(VT.getSizeInBits() == 64); |
| |
| SDLoc DL(Op); |
| SDValue Cond = Op.getOperand(0); |
| |
| SDValue Zero = DAG.getConstant(0, DL, MVT::i32); |
| SDValue One = DAG.getConstant(1, DL, MVT::i32); |
| |
| SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); |
| SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2)); |
| |
| SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero); |
| SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero); |
| |
| SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1); |
| |
| SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One); |
| SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One); |
| |
| SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1); |
| |
| SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi}); |
| return DAG.getNode(ISD::BITCAST, DL, VT, Res); |
| } |
| |
| // Catch division cases where we can use shortcuts with rcp and rsq |
| // instructions. |
| SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| EVT VT = Op.getValueType(); |
| const SDNodeFlags Flags = Op->getFlags(); |
| |
| bool AllowInaccurateRcp = Flags.hasApproximateFuncs() || |
| DAG.getTarget().Options.UnsafeFPMath; |
| |
| if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) { |
| // Without !fpmath accuracy information, we can't do more because we don't |
| // know exactly whether rcp is accurate enough to meet !fpmath requirement. |
| // f16 is always accurate enough |
| if (!AllowInaccurateRcp && VT != MVT::f16) |
| return SDValue(); |
| |
| if (CLHS->isExactlyValue(1.0)) { |
| // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to |
| // the CI documentation has a worst case error of 1 ulp. |
| // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to |
| // use it as long as we aren't trying to use denormals. |
| // |
| // v_rcp_f16 and v_rsq_f16 DO support denormals and 0.51ulp. |
| |
| // 1.0 / sqrt(x) -> rsq(x) |
| |
| // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP |
| // error seems really high at 2^29 ULP. |
| // 1.0 / x -> rcp(x) |
| return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); |
| } |
| |
| // Same as for 1.0, but expand the sign out of the constant. |
| if (CLHS->isExactlyValue(-1.0)) { |
| // -1.0 / x -> rcp (fneg x) |
| SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); |
| return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS); |
| } |
| } |
| |
| // For f16 require afn or arcp. |
| // For f32 require afn. |
| if (!AllowInaccurateRcp && (VT != MVT::f16 || !Flags.hasAllowReciprocal())) |
| return SDValue(); |
| |
| // Turn into multiply by the reciprocal. |
| // x / y -> x * (1.0 / y) |
| SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); |
| return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags); |
| } |
| |
| SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue X = Op.getOperand(0); |
| SDValue Y = Op.getOperand(1); |
| EVT VT = Op.getValueType(); |
| const SDNodeFlags Flags = Op->getFlags(); |
| |
| bool AllowInaccurateDiv = Flags.hasApproximateFuncs() || |
| DAG.getTarget().Options.UnsafeFPMath; |
| if (!AllowInaccurateDiv) |
| return SDValue(); |
| |
| SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y); |
| SDValue One = DAG.getConstantFP(1.0, SL, VT); |
| |
| SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y); |
| SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One); |
| |
| R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R); |
| SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One); |
| R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R); |
| SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R); |
| SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X); |
| return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret); |
| } |
| |
| static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, |
| EVT VT, SDValue A, SDValue B, SDValue GlueChain, |
| SDNodeFlags Flags) { |
| if (GlueChain->getNumValues() <= 1) { |
| return DAG.getNode(Opcode, SL, VT, A, B, Flags); |
| } |
| |
| assert(GlueChain->getNumValues() == 3); |
| |
| SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); |
| switch (Opcode) { |
| default: llvm_unreachable("no chain equivalent for opcode"); |
| case ISD::FMUL: |
| Opcode = AMDGPUISD::FMUL_W_CHAIN; |
| break; |
| } |
| |
| return DAG.getNode(Opcode, SL, VTList, |
| {GlueChain.getValue(1), A, B, GlueChain.getValue(2)}, |
| Flags); |
| } |
| |
| static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, |
| EVT VT, SDValue A, SDValue B, SDValue C, |
| SDValue GlueChain, SDNodeFlags Flags) { |
| if (GlueChain->getNumValues() <= 1) { |
| return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags); |
| } |
| |
| assert(GlueChain->getNumValues() == 3); |
| |
| SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); |
| switch (Opcode) { |
| default: llvm_unreachable("no chain equivalent for opcode"); |
| case ISD::FMA: |
| Opcode = AMDGPUISD::FMA_W_CHAIN; |
| break; |
| } |
| |
| return DAG.getNode(Opcode, SL, VTList, |
| {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)}, |
| Flags); |
| } |
| |
| SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const { |
| if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) |
| return FastLowered; |
| |
| SDLoc SL(Op); |
| SDValue Src0 = Op.getOperand(0); |
| SDValue Src1 = Op.getOperand(1); |
| |
| SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); |
| SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); |
| |
| SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1); |
| SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1); |
| |
| SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32); |
| SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag); |
| |
| return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0); |
| } |
| |
| // Faster 2.5 ULP division that does not support denormals. |
| SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const { |
| SDNodeFlags Flags = Op->getFlags(); |
| SDLoc SL(Op); |
| SDValue LHS = Op.getOperand(1); |
| SDValue RHS = Op.getOperand(2); |
| |
| SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS, Flags); |
| |
| const APFloat K0Val(0x1p+96f); |
| const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32); |
| |
| const APFloat K1Val(0x1p-32f); |
| const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32); |
| |
| const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); |
| |
| EVT SetCCVT = |
| getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); |
| |
| SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT); |
| |
| SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One, Flags); |
| |
| r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3, Flags); |
| |
| // rcp does not support denormals. |
| SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1, Flags); |
| |
| SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0, Flags); |
| |
| return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul, Flags); |
| } |
| |
| // Returns immediate value for setting the F32 denorm mode when using the |
| // S_DENORM_MODE instruction. |
| static SDValue getSPDenormModeValue(uint32_t SPDenormMode, SelectionDAG &DAG, |
| const SIMachineFunctionInfo *Info, |
| const GCNSubtarget *ST) { |
| assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE"); |
| uint32_t DPDenormModeDefault = Info->getMode().fpDenormModeDPValue(); |
| uint32_t Mode = SPDenormMode | (DPDenormModeDefault << 2); |
| return DAG.getTargetConstant(Mode, SDLoc(), MVT::i32); |
| } |
| |
| SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const { |
| if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) |
| return FastLowered; |
| |
| // The selection matcher assumes anything with a chain selecting to a |
| // mayRaiseFPException machine instruction. Since we're introducing a chain |
| // here, we need to explicitly report nofpexcept for the regular fdiv |
| // lowering. |
| SDNodeFlags Flags = Op->getFlags(); |
| Flags.setNoFPExcept(true); |
| |
| SDLoc SL(Op); |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| |
| const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); |
| |
| SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1); |
| |
| SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, |
| {RHS, RHS, LHS}, Flags); |
| SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, |
| {LHS, RHS, LHS}, Flags); |
| |
| // Denominator is scaled to not be denormal, so using rcp is ok. |
| SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, |
| DenominatorScaled, Flags); |
| SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32, |
| DenominatorScaled, Flags); |
| |
| using namespace AMDGPU::Hwreg; |
| const unsigned Denorm32Reg = HwregEncoding::encode(ID_MODE, 4, 2); |
| const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32); |
| |
| const MachineFunction &MF = DAG.getMachineFunction(); |
| const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| const DenormalMode DenormMode = Info->getMode().FP32Denormals; |
| |
| const bool PreservesDenormals = DenormMode == DenormalMode::getIEEE(); |
| const bool HasDynamicDenormals = |
| (DenormMode.Input == DenormalMode::Dynamic) || |
| (DenormMode.Output == DenormalMode::Dynamic); |
| |
| SDValue SavedDenormMode; |
| |
| if (!PreservesDenormals) { |
| // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV |
| // lowering. The chain dependence is insufficient, and we need glue. We do |
| // not need the glue variants in a strictfp function. |
| |
| SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| |
| SDValue Glue = DAG.getEntryNode(); |
| if (HasDynamicDenormals) { |
| SDNode *GetReg = DAG.getMachineNode(AMDGPU::S_GETREG_B32, SL, |
| DAG.getVTList(MVT::i32, MVT::Glue), |
| {BitField, Glue}); |
| SavedDenormMode = SDValue(GetReg, 0); |
| |
| Glue = DAG.getMergeValues( |
| {DAG.getEntryNode(), SDValue(GetReg, 0), SDValue(GetReg, 1)}, SL); |
| } |
| |
| SDNode *EnableDenorm; |
| if (Subtarget->hasDenormModeInst()) { |
| const SDValue EnableDenormValue = |
| getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, Info, Subtarget); |
| |
| EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs, Glue, |
| EnableDenormValue) |
| .getNode(); |
| } else { |
| const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE, |
| SL, MVT::i32); |
| EnableDenorm = DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs, |
| {EnableDenormValue, BitField, Glue}); |
| } |
| |
| SDValue Ops[3] = { |
| NegDivScale0, |
| SDValue(EnableDenorm, 0), |
| SDValue(EnableDenorm, 1) |
| }; |
| |
| NegDivScale0 = DAG.getMergeValues(Ops, SL); |
| } |
| |
| SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, |
| ApproxRcp, One, NegDivScale0, Flags); |
| |
| SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp, |
| ApproxRcp, Fma0, Flags); |
| |
| SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled, |
| Fma1, Fma1, Flags); |
| |
| SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul, |
| NumeratorScaled, Mul, Flags); |
| |
| SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, |
| Fma2, Fma1, Mul, Fma2, Flags); |
| |
| SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3, |
| NumeratorScaled, Fma3, Flags); |
| |
| if (!PreservesDenormals) { |
| SDNode *DisableDenorm; |
| if (!HasDynamicDenormals && Subtarget->hasDenormModeInst()) { |
| const SDValue DisableDenormValue = getSPDenormModeValue( |
| FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, Info, Subtarget); |
| |
| DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other, |
| Fma4.getValue(1), DisableDenormValue, |
| Fma4.getValue(2)).getNode(); |
| } else { |
| assert(HasDynamicDenormals == (bool)SavedDenormMode); |
| const SDValue DisableDenormValue = |
| HasDynamicDenormals |
| ? SavedDenormMode |
| : DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32); |
| |
| DisableDenorm = DAG.getMachineNode( |
| AMDGPU::S_SETREG_B32, SL, MVT::Other, |
| {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)}); |
| } |
| |
| SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, |
| SDValue(DisableDenorm, 0), DAG.getRoot()); |
| DAG.setRoot(OutputChain); |
| } |
| |
| SDValue Scale = NumeratorScaled.getValue(1); |
| SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32, |
| {Fma4, Fma1, Fma3, Scale}, Flags); |
| |
| return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags); |
| } |
| |
| SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const { |
| if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG)) |
| return FastLowered; |
| |
| SDLoc SL(Op); |
| SDValue X = Op.getOperand(0); |
| SDValue Y = Op.getOperand(1); |
| |
| const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); |
| |
| SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1); |
| |
| SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X); |
| |
| SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0); |
| |
| SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0); |
| |
| SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One); |
| |
| SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp); |
| |
| SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One); |
| |
| SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X); |
| |
| SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1); |
| SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3); |
| |
| SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64, |
| NegDivScale0, Mul, DivScale1); |
| |
| SDValue Scale; |
| |
| if (!Subtarget->hasUsableDivScaleConditionOutput()) { |
| // Workaround a hardware bug on SI where the condition output from div_scale |
| // is not usable. |
| |
| const SDValue Hi = DAG.getConstant(1, SL, MVT::i32); |
| |
| // Figure out if the scale to use for div_fmas. |
| SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); |
| SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y); |
| SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0); |
| SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1); |
| |
| SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi); |
| SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi); |
| |
| SDValue Scale0Hi |
| = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi); |
| SDValue Scale1Hi |
| = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi); |
| |
| SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ); |
| SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ); |
| Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen); |
| } else { |
| Scale = DivScale1.getValue(1); |
| } |
| |
| SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64, |
| Fma4, Fma3, Mul, Scale); |
| |
| return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X); |
| } |
| |
| SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| |
| if (VT == MVT::f32) |
| return LowerFDIV32(Op, DAG); |
| |
| if (VT == MVT::f64) |
| return LowerFDIV64(Op, DAG); |
| |
| if (VT == MVT::f16) |
| return LowerFDIV16(Op, DAG); |
| |
| llvm_unreachable("Unexpected type for fdiv"); |
| } |
| |
| SDValue SITargetLowering::LowerFFREXP(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| SDValue Val = Op.getOperand(0); |
| EVT VT = Val.getValueType(); |
| EVT ResultExpVT = Op->getValueType(1); |
| EVT InstrExpVT = VT == MVT::f16 ? MVT::i16 : MVT::i32; |
| |
| SDValue Mant = DAG.getNode( |
| ISD::INTRINSIC_WO_CHAIN, dl, VT, |
| DAG.getTargetConstant(Intrinsic::amdgcn_frexp_mant, dl, MVT::i32), Val); |
| |
| SDValue Exp = DAG.getNode( |
| ISD::INTRINSIC_WO_CHAIN, dl, InstrExpVT, |
| DAG.getTargetConstant(Intrinsic::amdgcn_frexp_exp, dl, MVT::i32), Val); |
| |
| if (Subtarget->hasFractBug()) { |
| SDValue Fabs = DAG.getNode(ISD::FABS, dl, VT, Val); |
| SDValue Inf = |
| DAG.getConstantFP(APFloat::getInf(VT.getFltSemantics()), dl, VT); |
| |
| SDValue IsFinite = DAG.getSetCC(dl, MVT::i1, Fabs, Inf, ISD::SETOLT); |
| SDValue Zero = DAG.getConstant(0, dl, InstrExpVT); |
| Exp = DAG.getNode(ISD::SELECT, dl, InstrExpVT, IsFinite, Exp, Zero); |
| Mant = DAG.getNode(ISD::SELECT, dl, VT, IsFinite, Mant, Val); |
| } |
| |
| SDValue CastExp = DAG.getSExtOrTrunc(Exp, dl, ResultExpVT); |
| return DAG.getMergeValues({Mant, CastExp}, dl); |
| } |
| |
| SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| StoreSDNode *Store = cast<StoreSDNode>(Op); |
| EVT VT = Store->getMemoryVT(); |
| |
| if (VT == MVT::i1) { |
| return DAG.getTruncStore(Store->getChain(), DL, |
| DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32), |
| Store->getBasePtr(), MVT::i1, Store->getMemOperand()); |
| } |
| |
| assert(VT.isVector() && |
| Store->getValue().getValueType().getScalarType() == MVT::i32); |
| |
| unsigned AS = Store->getAddressSpace(); |
| if (Subtarget->hasLDSMisalignedBug() && |
| AS == AMDGPUAS::FLAT_ADDRESS && |
| Store->getAlign().value() < VT.getStoreSize() && VT.getSizeInBits() > 32) { |
| return SplitVectorStore(Op, DAG); |
| } |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| // If there is a possibility that flat instruction access scratch memory |
| // then we need to use the same legalization rules we use for private. |
| if (AS == AMDGPUAS::FLAT_ADDRESS && |
| !Subtarget->hasMultiDwordFlatScratchAddressing()) |
| AS = addressMayBeAccessedAsPrivate(Store->getMemOperand(), *MFI) ? |
| AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS; |
| |
| unsigned NumElements = VT.getVectorNumElements(); |
| if (AS == AMDGPUAS::GLOBAL_ADDRESS || |
| AS == AMDGPUAS::FLAT_ADDRESS) { |
| if (NumElements > 4) |
| return SplitVectorStore(Op, DAG); |
| // v3 stores not supported on SI. |
| if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores()) |
| return SplitVectorStore(Op, DAG); |
| |
| if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), |
| VT, *Store->getMemOperand())) |
| return expandUnalignedStore(Store, DAG); |
| |
| return SDValue(); |
| } |
| if (AS == AMDGPUAS::PRIVATE_ADDRESS) { |
| switch (Subtarget->getMaxPrivateElementSize()) { |
| case 4: |
| return scalarizeVectorStore(Store, DAG); |
| case 8: |
| if (NumElements > 2) |
| return SplitVectorStore(Op, DAG); |
| return SDValue(); |
| case 16: |
| if (NumElements > 4 || |
| (NumElements == 3 && !Subtarget->enableFlatScratch())) |
| return SplitVectorStore(Op, DAG); |
| return SDValue(); |
| default: |
| llvm_unreachable("unsupported private_element_size"); |
| } |
| } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { |
| unsigned Fast = 0; |
| auto Flags = Store->getMemOperand()->getFlags(); |
| if (allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS, |
| Store->getAlign(), Flags, &Fast) && |
| Fast > 1) |
| return SDValue(); |
| |
| if (VT.isVector()) |
| return SplitVectorStore(Op, DAG); |
| |
| return expandUnalignedStore(Store, DAG); |
| } |
| |
| // Probably an invalid store. If so we'll end up emitting a selection error. |
| return SDValue(); |
| } |
| |
| // Avoid the full correct expansion for f32 sqrt when promoting from f16. |
| SDValue SITargetLowering::lowerFSQRTF16(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| assert(!Subtarget->has16BitInsts()); |
| SDNodeFlags Flags = Op->getFlags(); |
| SDValue Ext = |
| DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Op.getOperand(0), Flags); |
| |
| SDValue SqrtID = DAG.getTargetConstant(Intrinsic::amdgcn_sqrt, SL, MVT::i32); |
| SDValue Sqrt = |
| DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, MVT::f32, SqrtID, Ext, Flags); |
| |
| return DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Sqrt, |
| DAG.getTargetConstant(0, SL, MVT::i32), Flags); |
| } |
| |
| SDValue SITargetLowering::lowerFSQRTF32(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| SDNodeFlags Flags = Op->getFlags(); |
| MVT VT = Op.getValueType().getSimpleVT(); |
| const SDValue X = Op.getOperand(0); |
| |
| if (allowApproxFunc(DAG, Flags)) { |
| // Instruction is 1ulp but ignores denormals. |
| return DAG.getNode( |
| ISD::INTRINSIC_WO_CHAIN, DL, VT, |
| DAG.getTargetConstant(Intrinsic::amdgcn_sqrt, DL, MVT::i32), X, Flags); |
| } |
| |
| SDValue ScaleThreshold = DAG.getConstantFP(0x1.0p-96f, DL, VT); |
| SDValue NeedScale = DAG.getSetCC(DL, MVT::i1, X, ScaleThreshold, ISD::SETOLT); |
| |
| SDValue ScaleUpFactor = DAG.getConstantFP(0x1.0p+32f, DL, VT); |
| |
| SDValue ScaledX = DAG.getNode(ISD::FMUL, DL, VT, X, ScaleUpFactor, Flags); |
| |
| SDValue SqrtX = |
| DAG.getNode(ISD::SELECT, DL, VT, NeedScale, ScaledX, X, Flags); |
| |
| SDValue SqrtS; |
| if (needsDenormHandlingF32(DAG, X, Flags)) { |
| SDValue SqrtID = |
| DAG.getTargetConstant(Intrinsic::amdgcn_sqrt, DL, MVT::i32); |
| SqrtS = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, SqrtID, SqrtX, Flags); |
| |
| SDValue SqrtSAsInt = DAG.getNode(ISD::BITCAST, DL, MVT::i32, SqrtS); |
| SDValue SqrtSNextDownInt = DAG.getNode(ISD::ADD, DL, MVT::i32, SqrtSAsInt, |
| DAG.getConstant(-1, DL, MVT::i32)); |
| SDValue SqrtSNextDown = DAG.getNode(ISD::BITCAST, DL, VT, SqrtSNextDownInt); |
| |
| SDValue NegSqrtSNextDown = |
| DAG.getNode(ISD::FNEG, DL, VT, SqrtSNextDown, Flags); |
| |
| SDValue SqrtVP = |
| DAG.getNode(ISD::FMA, DL, VT, NegSqrtSNextDown, SqrtS, SqrtX, Flags); |
| |
| SDValue SqrtSNextUpInt = DAG.getNode(ISD::ADD, DL, MVT::i32, SqrtSAsInt, |
| DAG.getConstant(1, DL, MVT::i32)); |
| SDValue SqrtSNextUp = DAG.getNode(ISD::BITCAST, DL, VT, SqrtSNextUpInt); |
| |
| SDValue NegSqrtSNextUp = DAG.getNode(ISD::FNEG, DL, VT, SqrtSNextUp, Flags); |
| SDValue SqrtVS = |
| DAG.getNode(ISD::FMA, DL, VT, NegSqrtSNextUp, SqrtS, SqrtX, Flags); |
| |
| SDValue Zero = DAG.getConstantFP(0.0f, DL, VT); |
| SDValue SqrtVPLE0 = DAG.getSetCC(DL, MVT::i1, SqrtVP, Zero, ISD::SETOLE); |
| |
| SqrtS = DAG.getNode(ISD::SELECT, DL, VT, SqrtVPLE0, SqrtSNextDown, SqrtS, |
| Flags); |
| |
| SDValue SqrtVPVSGT0 = DAG.getSetCC(DL, MVT::i1, SqrtVS, Zero, ISD::SETOGT); |
| SqrtS = DAG.getNode(ISD::SELECT, DL, VT, SqrtVPVSGT0, SqrtSNextUp, SqrtS, |
| Flags); |
| } else { |
| SDValue SqrtR = DAG.getNode(AMDGPUISD::RSQ, DL, VT, SqrtX, Flags); |
| |
| SqrtS = DAG.getNode(ISD::FMUL, DL, VT, SqrtX, SqrtR, Flags); |
| |
| SDValue Half = DAG.getConstantFP(0.5f, DL, VT); |
| SDValue SqrtH = DAG.getNode(ISD::FMUL, DL, VT, SqrtR, Half, Flags); |
| SDValue NegSqrtH = DAG.getNode(ISD::FNEG, DL, VT, SqrtH, Flags); |
| |
| SDValue SqrtE = DAG.getNode(ISD::FMA, DL, VT, NegSqrtH, SqrtS, Half, Flags); |
| SqrtH = DAG.getNode(ISD::FMA, DL, VT, SqrtH, SqrtE, SqrtH, Flags); |
| SqrtS = DAG.getNode(ISD::FMA, DL, VT, SqrtS, SqrtE, SqrtS, Flags); |
| |
| SDValue NegSqrtS = DAG.getNode(ISD::FNEG, DL, VT, SqrtS, Flags); |
| SDValue SqrtD = |
| DAG.getNode(ISD::FMA, DL, VT, NegSqrtS, SqrtS, SqrtX, Flags); |
| SqrtS = DAG.getNode(ISD::FMA, DL, VT, SqrtD, SqrtH, SqrtS, Flags); |
| } |
| |
| SDValue ScaleDownFactor = DAG.getConstantFP(0x1.0p-16f, DL, VT); |
| |
| SDValue ScaledDown = |
| DAG.getNode(ISD::FMUL, DL, VT, SqrtS, ScaleDownFactor, Flags); |
| |
| SqrtS = DAG.getNode(ISD::SELECT, DL, VT, NeedScale, ScaledDown, SqrtS, Flags); |
| SDValue IsZeroOrInf = |
| DAG.getNode(ISD::IS_FPCLASS, DL, MVT::i1, SqrtX, |
| DAG.getTargetConstant(fcZero | fcPosInf, DL, MVT::i32)); |
| |
| return DAG.getNode(ISD::SELECT, DL, VT, IsZeroOrInf, SqrtX, SqrtS, Flags); |
| } |
| |
| SDValue SITargetLowering::lowerFSQRTF64(SDValue Op, SelectionDAG &DAG) const { |
| // For double type, the SQRT and RSQ instructions don't have required |
| // precision, we apply Goldschmidt's algorithm to improve the result: |
| // |
| // y0 = rsq(x) |
| // g0 = x * y0 |
| // h0 = 0.5 * y0 |
| // |
| // r0 = 0.5 - h0 * g0 |
| // g1 = g0 * r0 + g0 |
| // h1 = h0 * r0 + h0 |
| // |
| // r1 = 0.5 - h1 * g1 => d0 = x - g1 * g1 |
| // g2 = g1 * r1 + g1 g2 = d0 * h1 + g1 |
| // h2 = h1 * r1 + h1 |
| // |
| // r2 = 0.5 - h2 * g2 => d1 = x - g2 * g2 |
| // g3 = g2 * r2 + g2 g3 = d1 * h1 + g2 |
| // |
| // sqrt(x) = g3 |
| |
| SDNodeFlags Flags = Op->getFlags(); |
| |
| SDLoc DL(Op); |
| |
| SDValue X = Op.getOperand(0); |
| SDValue ScaleConstant = DAG.getConstantFP(0x1.0p-767, DL, MVT::f64); |
| |
| SDValue Scaling = DAG.getSetCC(DL, MVT::i1, X, ScaleConstant, ISD::SETOLT); |
| |
| SDValue ZeroInt = DAG.getConstant(0, DL, MVT::i32); |
| |
| // Scale up input if it is too small. |
| SDValue ScaleUpFactor = DAG.getConstant(256, DL, MVT::i32); |
| SDValue ScaleUp = |
| DAG.getNode(ISD::SELECT, DL, MVT::i32, Scaling, ScaleUpFactor, ZeroInt); |
| SDValue SqrtX = DAG.getNode(ISD::FLDEXP, DL, MVT::f64, X, ScaleUp, Flags); |
| |
| SDValue SqrtY = DAG.getNode(AMDGPUISD::RSQ, DL, MVT::f64, SqrtX); |
| |
| SDValue SqrtS0 = DAG.getNode(ISD::FMUL, DL, MVT::f64, SqrtX, SqrtY); |
| |
| SDValue Half = DAG.getConstantFP(0.5, DL, MVT::f64); |
| SDValue SqrtH0 = DAG.getNode(ISD::FMUL, DL, MVT::f64, SqrtY, Half); |
| |
| SDValue NegSqrtH0 = DAG.getNode(ISD::FNEG, DL, MVT::f64, SqrtH0); |
| SDValue SqrtR0 = DAG.getNode(ISD::FMA, DL, MVT::f64, NegSqrtH0, SqrtS0, Half); |
| |
| SDValue SqrtH1 = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtH0, SqrtR0, SqrtH0); |
| |
| SDValue SqrtS1 = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtS0, SqrtR0, SqrtS0); |
| |
| SDValue NegSqrtS1 = DAG.getNode(ISD::FNEG, DL, MVT::f64, SqrtS1); |
| SDValue SqrtD0 = DAG.getNode(ISD::FMA, DL, MVT::f64, NegSqrtS1, SqrtS1, SqrtX); |
| |
| SDValue SqrtS2 = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtD0, SqrtH1, SqrtS1); |
| |
| SDValue NegSqrtS2 = DAG.getNode(ISD::FNEG, DL, MVT::f64, SqrtS2); |
| SDValue SqrtD1 = |
| DAG.getNode(ISD::FMA, DL, MVT::f64, NegSqrtS2, SqrtS2, SqrtX); |
| |
| SDValue SqrtRet = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtD1, SqrtH1, SqrtS2); |
| |
| SDValue ScaleDownFactor = DAG.getConstant(-128, DL, MVT::i32); |
| SDValue ScaleDown = |
| DAG.getNode(ISD::SELECT, DL, MVT::i32, Scaling, ScaleDownFactor, ZeroInt); |
| SqrtRet = DAG.getNode(ISD::FLDEXP, DL, MVT::f64, SqrtRet, ScaleDown, Flags); |
| |
| // TODO: Switch to fcmp oeq 0 for finite only. Can't fully remove this check |
| // with finite only or nsz because rsq(+/-0) = +/-inf |
| |
| // TODO: Check for DAZ and expand to subnormals |
| SDValue IsZeroOrInf = |
| DAG.getNode(ISD::IS_FPCLASS, DL, MVT::i1, SqrtX, |
| DAG.getTargetConstant(fcZero | fcPosInf, DL, MVT::i32)); |
| |
| // If x is +INF, +0, or -0, use its original value |
| return DAG.getNode(ISD::SELECT, DL, MVT::f64, IsZeroOrInf, SqrtX, SqrtRet, |
| Flags); |
| } |
| |
| SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| EVT VT = Op.getValueType(); |
| SDValue Arg = Op.getOperand(0); |
| SDValue TrigVal; |
| |
| // Propagate fast-math flags so that the multiply we introduce can be folded |
| // if Arg is already the result of a multiply by constant. |
| auto Flags = Op->getFlags(); |
| |
| SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT); |
| |
| if (Subtarget->hasTrigReducedRange()) { |
| SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); |
| TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags); |
| } else { |
| TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags); |
| } |
| |
| switch (Op.getOpcode()) { |
| case ISD::FCOS: |
| return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags); |
| case ISD::FSIN: |
| return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags); |
| default: |
| llvm_unreachable("Wrong trig opcode"); |
| } |
| } |
| |
| SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const { |
| AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op); |
| assert(AtomicNode->isCompareAndSwap()); |
| unsigned AS = AtomicNode->getAddressSpace(); |
| |
| // No custom lowering required for local address space |
| if (!AMDGPU::isFlatGlobalAddrSpace(AS)) |
| return Op; |
| |
| // Non-local address space requires custom lowering for atomic compare |
| // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2 |
| SDLoc DL(Op); |
| SDValue ChainIn = Op.getOperand(0); |
| SDValue Addr = Op.getOperand(1); |
| SDValue Old = Op.getOperand(2); |
| SDValue New = Op.getOperand(3); |
| EVT VT = Op.getValueType(); |
| MVT SimpleVT = VT.getSimpleVT(); |
| MVT VecType = MVT::getVectorVT(SimpleVT, 2); |
| |
| SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old}); |
| SDValue Ops[] = { ChainIn, Addr, NewOld }; |
| |
| return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(), |
| Ops, VT, AtomicNode->getMemOperand()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Custom DAG optimizations |
| //===----------------------------------------------------------------------===// |
| |
| SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| EVT VT = N->getValueType(0); |
| EVT ScalarVT = VT.getScalarType(); |
| if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc DL(N); |
| |
| SDValue Src = N->getOperand(0); |
| EVT SrcVT = Src.getValueType(); |
| |
| // TODO: We could try to match extracting the higher bytes, which would be |
| // easier if i8 vectors weren't promoted to i32 vectors, particularly after |
| // types are legalized. v4i8 -> v4f32 is probably the only case to worry |
| // about in practice. |
| if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) { |
| if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) { |
| SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src); |
| DCI.AddToWorklist(Cvt.getNode()); |
| |
| // For the f16 case, fold to a cast to f32 and then cast back to f16. |
| if (ScalarVT != MVT::f32) { |
| Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt, |
| DAG.getTargetConstant(0, DL, MVT::i32)); |
| } |
| return Cvt; |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performFCopySignCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SDValue MagnitudeOp = N->getOperand(0); |
| SDValue SignOp = N->getOperand(1); |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc DL(N); |
| |
| // f64 fcopysign is really an f32 copysign on the high bits, so replace the |
| // lower half with a copy. |
| // fcopysign f64:x, _:y -> x.lo32, (fcopysign (f32 x.hi32), _:y) |
| if (MagnitudeOp.getValueType() == MVT::f64) { |
| SDValue MagAsVector = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, MagnitudeOp); |
| SDValue MagLo = |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, MagAsVector, |
| DAG.getConstant(0, DL, MVT::i32)); |
| SDValue MagHi = |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, MagAsVector, |
| DAG.getConstant(1, DL, MVT::i32)); |
| |
| SDValue HiOp = |
| DAG.getNode(ISD::FCOPYSIGN, DL, MVT::f32, MagHi, SignOp); |
| |
| SDValue Vector = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f32, MagLo, HiOp); |
| |
| return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Vector); |
| } |
| |
| if (SignOp.getValueType() != MVT::f64) |
| return SDValue(); |
| |
| // Reduce width of sign operand, we only need the highest bit. |
| // |
| // fcopysign f64:x, f64:y -> |
| // fcopysign f64:x, (extract_vector_elt (bitcast f64:y to v2f32), 1) |
| // TODO: In some cases it might make sense to go all the way to f16. |
| SDValue SignAsVector = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, SignOp); |
| SDValue SignAsF32 = |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, SignAsVector, |
| DAG.getConstant(1, DL, MVT::i32)); |
| |
| return DAG.getNode(ISD::FCOPYSIGN, DL, N->getValueType(0), N->getOperand(0), |
| SignAsF32); |
| } |
| |
| // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2) |
| // (shl (or x, c1), c2) -> add (shl x, c2), (shl c1, c2) iff x and c1 share no |
| // bits |
| |
| // This is a variant of |
| // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2), |
| // |
| // The normal DAG combiner will do this, but only if the add has one use since |
| // that would increase the number of instructions. |
| // |
| // This prevents us from seeing a constant offset that can be folded into a |
| // memory instruction's addressing mode. If we know the resulting add offset of |
| // a pointer can be folded into an addressing offset, we can replace the pointer |
| // operand with the add of new constant offset. This eliminates one of the uses, |
| // and may allow the remaining use to also be simplified. |
| // |
| SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, |
| unsigned AddrSpace, |
| EVT MemVT, |
| DAGCombinerInfo &DCI) const { |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| // We only do this to handle cases where it's profitable when there are |
| // multiple uses of the add, so defer to the standard combine. |
| if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) || |
| N0->hasOneUse()) |
| return SDValue(); |
| |
| const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1); |
| if (!CN1) |
| return SDValue(); |
| |
| const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| if (!CAdd) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| |
| if (N0->getOpcode() == ISD::OR && |
| !DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) |
| return SDValue(); |
| |
| // If the resulting offset is too large, we can't fold it into the |
| // addressing mode offset. |
| APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue(); |
| Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext()); |
| |
| AddrMode AM; |
| AM.HasBaseReg = true; |
| AM.BaseOffs = Offset.getSExtValue(); |
| if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace)) |
| return SDValue(); |
| |
| SDLoc SL(N); |
| EVT VT = N->getValueType(0); |
| |
| SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1); |
| SDValue COffset = DAG.getConstant(Offset, SL, VT); |
| |
| SDNodeFlags Flags; |
| Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() && |
| (N0.getOpcode() == ISD::OR || |
| N0->getFlags().hasNoUnsignedWrap())); |
| |
| return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags); |
| } |
| |
| /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset |
| /// by the chain and intrinsic ID. Theoretically we would also need to check the |
| /// specific intrinsic, but they all place the pointer operand first. |
| static unsigned getBasePtrIndex(const MemSDNode *N) { |
| switch (N->getOpcode()) { |
| case ISD::STORE: |
| case ISD::INTRINSIC_W_CHAIN: |
| case ISD::INTRINSIC_VOID: |
| return 2; |
| default: |
| return 1; |
| } |
| } |
| |
| SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc SL(N); |
| |
| unsigned PtrIdx = getBasePtrIndex(N); |
| SDValue Ptr = N->getOperand(PtrIdx); |
| |
| // TODO: We could also do this for multiplies. |
| if (Ptr.getOpcode() == ISD::SHL) { |
| SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(), |
| N->getMemoryVT(), DCI); |
| if (NewPtr) { |
| SmallVector<SDValue, 8> NewOps(N->ops()); |
| |
| NewOps[PtrIdx] = NewPtr; |
| return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) { |
| return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) || |
| (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) || |
| (Opc == ISD::XOR && Val == 0); |
| } |
| |
| // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This |
| // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit |
| // integer combine opportunities since most 64-bit operations are decomposed |
| // this way. TODO: We won't want this for SALU especially if it is an inline |
| // immediate. |
| SDValue SITargetLowering::splitBinaryBitConstantOp( |
| DAGCombinerInfo &DCI, |
| const SDLoc &SL, |
| unsigned Opc, SDValue LHS, |
| const ConstantSDNode *CRHS) const { |
| uint64_t Val = CRHS->getZExtValue(); |
| uint32_t ValLo = Lo_32(Val); |
| uint32_t ValHi = Hi_32(Val); |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| |
| if ((bitOpWithConstantIsReducible(Opc, ValLo) || |
| bitOpWithConstantIsReducible(Opc, ValHi)) || |
| (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) { |
| // If we need to materialize a 64-bit immediate, it will be split up later |
| // anyway. Avoid creating the harder to understand 64-bit immediate |
| // materialization. |
| return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi); |
| } |
| |
| return SDValue(); |
| } |
| |
| bool llvm::isBoolSGPR(SDValue V) { |
| if (V.getValueType() != MVT::i1) |
| return false; |
| switch (V.getOpcode()) { |
| default: |
| break; |
| case ISD::SETCC: |
| case AMDGPUISD::FP_CLASS: |
| return true; |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: |
| return isBoolSGPR(V.getOperand(0)) && isBoolSGPR(V.getOperand(1)); |
| } |
| return false; |
| } |
| |
| // If a constant has all zeroes or all ones within each byte return it. |
| // Otherwise return 0. |
| static uint32_t getConstantPermuteMask(uint32_t C) { |
| // 0xff for any zero byte in the mask |
| uint32_t ZeroByteMask = 0; |
| if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff; |
| if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00; |
| if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000; |
| if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000; |
| uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte |
| if ((NonZeroByteMask & C) != NonZeroByteMask) |
| return 0; // Partial bytes selected. |
| return C; |
| } |
| |
| // Check if a node selects whole bytes from its operand 0 starting at a byte |
| // boundary while masking the rest. Returns select mask as in the v_perm_b32 |
| // or -1 if not succeeded. |
| // Note byte select encoding: |
| // value 0-3 selects corresponding source byte; |
| // value 0xc selects zero; |
| // value 0xff selects 0xff. |
| static uint32_t getPermuteMask(SDValue V) { |
| assert(V.getValueSizeInBits() == 32); |
| |
| if (V.getNumOperands() != 2) |
| return ~0; |
| |
| ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1)); |
| if (!N1) |
| return ~0; |
| |
| uint32_t C = N1->getZExtValue(); |
| |
| switch (V.getOpcode()) { |
| default: |
| break; |
| case ISD::AND: |
| if (uint32_t ConstMask = getConstantPermuteMask(C)) |
| return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask); |
| break; |
| |
| case ISD::OR: |
| if (uint32_t ConstMask = getConstantPermuteMask(C)) |
| return (0x03020100 & ~ConstMask) | ConstMask; |
| break; |
| |
| case ISD::SHL: |
| if (C % 8) |
| return ~0; |
| |
| return uint32_t((0x030201000c0c0c0cull << C) >> 32); |
| |
| case ISD::SRL: |
| if (C % 8) |
| return ~0; |
| |
| return uint32_t(0x0c0c0c0c03020100ull >> C); |
| } |
| |
| return ~0; |
| } |
| |
| SDValue SITargetLowering::performAndCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| if (DCI.isBeforeLegalize()) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| EVT VT = N->getValueType(0); |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| |
| |
| const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); |
| if (VT == MVT::i64 && CRHS) { |
| if (SDValue Split |
| = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS)) |
| return Split; |
| } |
| |
| if (CRHS && VT == MVT::i32) { |
| // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb |
| // nb = number of trailing zeroes in mask |
| // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass, |
| // given that we are selecting 8 or 16 bit fields starting at byte boundary. |
| uint64_t Mask = CRHS->getZExtValue(); |
| unsigned Bits = llvm::popcount(Mask); |
| if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL && |
| (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) { |
| if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) { |
| unsigned Shift = CShift->getZExtValue(); |
| unsigned NB = CRHS->getAPIntValue().countr_zero(); |
| unsigned Offset = NB + Shift; |
| if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary. |
| SDLoc SL(N); |
| SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, |
| LHS->getOperand(0), |
| DAG.getConstant(Offset, SL, MVT::i32), |
| DAG.getConstant(Bits, SL, MVT::i32)); |
| EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits); |
| SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE, |
| DAG.getValueType(NarrowVT)); |
| SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext, |
| DAG.getConstant(NB, SDLoc(CRHS), MVT::i32)); |
| return Shl; |
| } |
| } |
| } |
| |
| // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) |
| if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM && |
| isa<ConstantSDNode>(LHS.getOperand(2))) { |
| uint32_t Sel = getConstantPermuteMask(Mask); |
| if (!Sel) |
| return SDValue(); |
| |
| // Select 0xc for all zero bytes |
| Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c); |
| SDLoc DL(N); |
| return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), |
| LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); |
| } |
| } |
| |
| // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) -> |
| // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity) |
| if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) { |
| ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); |
| ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get(); |
| |
| SDValue X = LHS.getOperand(0); |
| SDValue Y = RHS.getOperand(0); |
| if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X || |
| !isTypeLegal(X.getValueType())) |
| return SDValue(); |
| |
| if (LCC == ISD::SETO) { |
| if (X != LHS.getOperand(1)) |
| return SDValue(); |
| |
| if (RCC == ISD::SETUNE) { |
| const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1)); |
| if (!C1 || !C1->isInfinity() || C1->isNegative()) |
| return SDValue(); |
| |
| const uint32_t Mask = SIInstrFlags::N_NORMAL | |
| SIInstrFlags::N_SUBNORMAL | |
| SIInstrFlags::N_ZERO | |
| SIInstrFlags::P_ZERO | |
| SIInstrFlags::P_SUBNORMAL | |
| SIInstrFlags::P_NORMAL; |
| |
| static_assert(((~(SIInstrFlags::S_NAN | |
| SIInstrFlags::Q_NAN | |
| SIInstrFlags::N_INFINITY | |
| SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask, |
| "mask not equal"); |
| |
| SDLoc DL(N); |
| return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, |
| X, DAG.getConstant(Mask, DL, MVT::i32)); |
| } |
| } |
| } |
| |
| if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS) |
| std::swap(LHS, RHS); |
| |
| if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS && |
| RHS.hasOneUse()) { |
| ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); |
| // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan) |
| // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan) |
| const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); |
| if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask && |
| (RHS.getOperand(0) == LHS.getOperand(0) && |
| LHS.getOperand(0) == LHS.getOperand(1))) { |
| const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN; |
| unsigned NewMask = LCC == ISD::SETO ? |
| Mask->getZExtValue() & ~OrdMask : |
| Mask->getZExtValue() & OrdMask; |
| |
| SDLoc DL(N); |
| return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0), |
| DAG.getConstant(NewMask, DL, MVT::i32)); |
| } |
| } |
| |
| if (VT == MVT::i32 && |
| (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) { |
| // and x, (sext cc from i1) => select cc, x, 0 |
| if (RHS.getOpcode() != ISD::SIGN_EXTEND) |
| std::swap(LHS, RHS); |
| if (isBoolSGPR(RHS.getOperand(0))) |
| return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0), |
| LHS, DAG.getConstant(0, SDLoc(N), MVT::i32)); |
| } |
| |
| // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && |
| N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { |
| uint32_t LHSMask = getPermuteMask(LHS); |
| uint32_t RHSMask = getPermuteMask(RHS); |
| if (LHSMask != ~0u && RHSMask != ~0u) { |
| // Canonicalize the expression in an attempt to have fewer unique masks |
| // and therefore fewer registers used to hold the masks. |
| if (LHSMask > RHSMask) { |
| std::swap(LHSMask, RHSMask); |
| std::swap(LHS, RHS); |
| } |
| |
| // Select 0xc for each lane used from source operand. Zero has 0xc mask |
| // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. |
| uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; |
| uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; |
| |
| // Check of we need to combine values from two sources within a byte. |
| if (!(LHSUsedLanes & RHSUsedLanes) && |
| // If we select high and lower word keep it for SDWA. |
| // TODO: teach SDWA to work with v_perm_b32 and remove the check. |
| !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { |
| // Each byte in each mask is either selector mask 0-3, or has higher |
| // bits set in either of masks, which can be 0xff for 0xff or 0x0c for |
| // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise |
| // mask which is not 0xff wins. By anding both masks we have a correct |
| // result except that 0x0c shall be corrected to give 0x0c only. |
| uint32_t Mask = LHSMask & RHSMask; |
| for (unsigned I = 0; I < 32; I += 8) { |
| uint32_t ByteSel = 0xff << I; |
| if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c) |
| Mask &= (0x0c << I) & 0xffffffff; |
| } |
| |
| // Add 4 to each active LHS lane. It will not affect any existing 0xff |
| // or 0x0c. |
| uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404); |
| SDLoc DL(N); |
| |
| return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, |
| LHS.getOperand(0), RHS.getOperand(0), |
| DAG.getConstant(Sel, DL, MVT::i32)); |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| // A key component of v_perm is a mapping between byte position of the src |
| // operands, and the byte position of the dest. To provide such, we need: 1. the |
| // node that provides x byte of the dest of the OR, and 2. the byte of the node |
| // used to provide that x byte. calculateByteProvider finds which node provides |
| // a certain byte of the dest of the OR, and calculateSrcByte takes that node, |
| // and finds an ultimate src and byte position For example: The supported |
| // LoadCombine pattern for vector loads is as follows |
| // t1 |
| // or |
| // / \ |
| // t2 t3 |
| // zext shl |
| // | | \ |
| // t4 t5 16 |
| // or anyext |
| // / \ | |
| // t6 t7 t8 |
| // srl shl or |
| // / | / \ / \ |
| // t9 t10 t11 t12 t13 t14 |
| // trunc* 8 trunc* 8 and and |
| // | | / | | \ |
| // t15 t16 t17 t18 t19 t20 |
| // trunc* 255 srl -256 |
| // | / \ |
| // t15 t15 16 |
| // |
| // *In this example, the truncs are from i32->i16 |
| // |
| // calculateByteProvider would find t6, t7, t13, and t14 for bytes 0-3 |
| // respectively. calculateSrcByte would find (given node) -> ultimate src & |
| // byteposition: t6 -> t15 & 1, t7 -> t16 & 0, t13 -> t15 & 0, t14 -> t15 & 3. |
| // After finding the mapping, we can combine the tree into vperm t15, t16, |
| // 0x05000407 |
| |
| // Find the source and byte position from a node. |
| // \p DestByte is the byte position of the dest of the or that the src |
| // ultimately provides. \p SrcIndex is the byte of the src that maps to this |
| // dest of the or byte. \p Depth tracks how many recursive iterations we have |
| // performed. |
| static const std::optional<ByteProvider<SDValue>> |
| calculateSrcByte(const SDValue Op, uint64_t DestByte, uint64_t SrcIndex = 0, |
| unsigned Depth = 0) { |
| // We may need to recursively traverse a series of SRLs |
| if (Depth >= 6) |
| return std::nullopt; |
| |
| if (Op.getValueSizeInBits() < 8) |
| return std::nullopt; |
| |
| if (Op.getValueType().isVector()) |
| return ByteProvider<SDValue>::getSrc(Op, DestByte, SrcIndex); |
| |
| switch (Op->getOpcode()) { |
| case ISD::TRUNCATE: { |
| return calculateSrcByte(Op->getOperand(0), DestByte, SrcIndex, Depth + 1); |
| } |
| |
| case ISD::SIGN_EXTEND: |
| case ISD::ZERO_EXTEND: |
| case ISD::SIGN_EXTEND_INREG: { |
| SDValue NarrowOp = Op->getOperand(0); |
| auto NarrowVT = NarrowOp.getValueType(); |
| if (Op->getOpcode() == ISD::SIGN_EXTEND_INREG) { |
| auto *VTSign = cast<VTSDNode>(Op->getOperand(1)); |
| NarrowVT = VTSign->getVT(); |
| } |
| if (!NarrowVT.isByteSized()) |
| return std::nullopt; |
| uint64_t NarrowByteWidth = NarrowVT.getStoreSize(); |
| |
| if (SrcIndex >= NarrowByteWidth) |
| return std::nullopt; |
| return calculateSrcByte(Op->getOperand(0), DestByte, SrcIndex, Depth + 1); |
| } |
| |
| case ISD::SRA: |
| case ISD::SRL: { |
| auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); |
| if (!ShiftOp) |
| return std::nullopt; |
| |
| uint64_t BitShift = ShiftOp->getZExtValue(); |
| |
| if (BitShift % 8 != 0) |
| return std::nullopt; |
| |
| SrcIndex += BitShift / 8; |
| |
| return calculateSrcByte(Op->getOperand(0), DestByte, SrcIndex, Depth + 1); |
| } |
| |
| default: { |
| return ByteProvider<SDValue>::getSrc(Op, DestByte, SrcIndex); |
| } |
| } |
| llvm_unreachable("fully handled switch"); |
| } |
| |
| // For a byte position in the result of an Or, traverse the tree and find the |
| // node (and the byte of the node) which ultimately provides this {Or, |
| // BytePosition}. \p Op is the operand we are currently examining. \p Index is |
| // the byte position of the Op that corresponds with the originally requested |
| // byte of the Or \p Depth tracks how many recursive iterations we have |
| // performed. \p StartingIndex is the originally requested byte of the Or |
| static const std::optional<ByteProvider<SDValue>> |
| calculateByteProvider(const SDValue &Op, unsigned Index, unsigned Depth, |
| unsigned StartingIndex = 0) { |
| // Finding Src tree of RHS of or typically requires at least 1 additional |
| // depth |
| if (Depth > 6) |
| return std::nullopt; |
| |
| unsigned BitWidth = Op.getScalarValueSizeInBits(); |
| if (BitWidth % 8 != 0) |
| return std::nullopt; |
| if (Index > BitWidth / 8 - 1) |
| return std::nullopt; |
| |
| bool IsVec = Op.getValueType().isVector(); |
| switch (Op.getOpcode()) { |
| case ISD::OR: { |
| if (IsVec) |
| return std::nullopt; |
| |
| auto RHS = calculateByteProvider(Op.getOperand(1), Index, Depth + 1, |
| StartingIndex); |
| if (!RHS) |
| return std::nullopt; |
| auto LHS = calculateByteProvider(Op.getOperand(0), Index, Depth + 1, |
| StartingIndex); |
| if (!LHS) |
| return std::nullopt; |
| // A well formed Or will have two ByteProviders for each byte, one of which |
| // is constant zero |
| if (!LHS->isConstantZero() && !RHS->isConstantZero()) |
| return std::nullopt; |
| if (!LHS || LHS->isConstantZero()) |
| return RHS; |
| if (!RHS || RHS->isConstantZero()) |
| return LHS; |
| return std::nullopt; |
| } |
| |
| case ISD::AND: { |
| if (IsVec) |
| return std::nullopt; |
| |
| auto BitMaskOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); |
| if (!BitMaskOp) |
| return std::nullopt; |
| |
| uint32_t BitMask = BitMaskOp->getZExtValue(); |
| // Bits we expect for our StartingIndex |
| uint32_t IndexMask = 0xFF << (Index * 8); |
| |
| if ((IndexMask & BitMask) != IndexMask) { |
| // If the result of the and partially provides the byte, then it |
| // is not well formatted |
| if (IndexMask & BitMask) |
| return std::nullopt; |
| return ByteProvider<SDValue>::getConstantZero(); |
| } |
| |
| return calculateSrcByte(Op->getOperand(0), StartingIndex, Index); |
| } |
| |
| case ISD::FSHR: { |
| if (IsVec) |
| return std::nullopt; |
| |
| // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) |
| auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(2)); |
| if (!ShiftOp || Op.getValueType().isVector()) |
| return std::nullopt; |
| |
| uint64_t BitsProvided = Op.getValueSizeInBits(); |
| if (BitsProvided % 8 != 0) |
| return std::nullopt; |
| |
| uint64_t BitShift = ShiftOp->getAPIntValue().urem(BitsProvided); |
| if (BitShift % 8) |
| return std::nullopt; |
| |
| uint64_t ConcatSizeInBytes = BitsProvided / 4; |
| uint64_t ByteShift = BitShift / 8; |
| |
| uint64_t NewIndex = (Index + ByteShift) % ConcatSizeInBytes; |
| uint64_t BytesProvided = BitsProvided / 8; |
| SDValue NextOp = Op.getOperand(NewIndex >= BytesProvided ? 0 : 1); |
| NewIndex %= BytesProvided; |
| return calculateByteProvider(NextOp, NewIndex, Depth + 1, StartingIndex); |
| } |
| |
| case ISD::SRA: |
| case ISD::SRL: { |
| if (IsVec) |
| return std::nullopt; |
| |
| auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); |
| if (!ShiftOp) |
| return std::nullopt; |
| |
| uint64_t BitShift = ShiftOp->getZExtValue(); |
| if (BitShift % 8) |
| return std::nullopt; |
| |
| auto BitsProvided = Op.getScalarValueSizeInBits(); |
| if (BitsProvided % 8 != 0) |
| return std::nullopt; |
| |
| uint64_t BytesProvided = BitsProvided / 8; |
| uint64_t ByteShift = BitShift / 8; |
| // The dest of shift will have good [0 : (BytesProvided - ByteShift)] bytes. |
| // If the byte we are trying to provide (as tracked by index) falls in this |
| // range, then the SRL provides the byte. The byte of interest of the src of |
| // the SRL is Index + ByteShift |
| return BytesProvided - ByteShift > Index |
| ? calculateSrcByte(Op->getOperand(0), StartingIndex, |
| Index + ByteShift) |
| : ByteProvider<SDValue>::getConstantZero(); |
| } |
| |
| case ISD::SHL: { |
| if (IsVec) |
| return std::nullopt; |
| |
| auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); |
| if (!ShiftOp) |
| return std::nullopt; |
| |
| uint64_t BitShift = ShiftOp->getZExtValue(); |
| if (BitShift % 8 != 0) |
| return std::nullopt; |
| uint64_t ByteShift = BitShift / 8; |
| |
| // If we are shifting by an amount greater than (or equal to) |
| // the index we are trying to provide, then it provides 0s. If not, |
| // then this bytes are not definitively 0s, and the corresponding byte |
| // of interest is Index - ByteShift of the src |
| return Index < ByteShift |
| ? ByteProvider<SDValue>::getConstantZero() |
| : calculateByteProvider(Op.getOperand(0), Index - ByteShift, |
| Depth + 1, StartingIndex); |
| } |
| case ISD::ANY_EXTEND: |
| case ISD::SIGN_EXTEND: |
| case ISD::ZERO_EXTEND: |
| case ISD::SIGN_EXTEND_INREG: |
| case ISD::AssertZext: |
| case ISD::AssertSext: { |
| if (IsVec) |
| return std::nullopt; |
| |
| SDValue NarrowOp = Op->getOperand(0); |
| unsigned NarrowBitWidth = NarrowOp.getValueSizeInBits(); |
| if (Op->getOpcode() == ISD::SIGN_EXTEND_INREG || |
| Op->getOpcode() == ISD::AssertZext || |
| Op->getOpcode() == ISD::AssertSext) { |
| auto *VTSign = cast<VTSDNode>(Op->getOperand(1)); |
| NarrowBitWidth = VTSign->getVT().getSizeInBits(); |
| } |
| if (NarrowBitWidth % 8 != 0) |
| return std::nullopt; |
| uint64_t NarrowByteWidth = NarrowBitWidth / 8; |
| |
| if (Index >= NarrowByteWidth) |
| return Op.getOpcode() == ISD::ZERO_EXTEND |
| ? std::optional<ByteProvider<SDValue>>( |
| ByteProvider<SDValue>::getConstantZero()) |
| : std::nullopt; |
| return calculateByteProvider(NarrowOp, Index, Depth + 1, StartingIndex); |
| } |
| |
| case ISD::TRUNCATE: { |
| if (IsVec) |
| return std::nullopt; |
| |
| uint64_t NarrowByteWidth = BitWidth / 8; |
| |
| if (NarrowByteWidth >= Index) { |
| return calculateByteProvider(Op.getOperand(0), Index, Depth + 1, |
| StartingIndex); |
| } |
| |
| return std::nullopt; |
| } |
| |
| case ISD::CopyFromReg: { |
| if (BitWidth / 8 > Index) |
| return calculateSrcByte(Op, StartingIndex, Index); |
| |
| return std::nullopt; |
| } |
| |
| case ISD::LOAD: { |
| auto L = cast<LoadSDNode>(Op.getNode()); |
| |
| unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits(); |
| if (NarrowBitWidth % 8 != 0) |
| return std::nullopt; |
| uint64_t NarrowByteWidth = NarrowBitWidth / 8; |
| |
| // If the width of the load does not reach byte we are trying to provide for |
| // and it is not a ZEXTLOAD, then the load does not provide for the byte in |
| // question |
| if (Index >= NarrowByteWidth) { |
| return L->getExtensionType() == ISD::ZEXTLOAD |
| ? std::optional<ByteProvider<SDValue>>( |
| ByteProvider<SDValue>::getConstantZero()) |
| : std::nullopt; |
| } |
| |
| if (NarrowByteWidth > Index) { |
| return calculateSrcByte(Op, StartingIndex, Index); |
| } |
| |
| return std::nullopt; |
| } |
| |
| case ISD::BSWAP: { |
| if (IsVec) |
| return std::nullopt; |
| |
| return calculateByteProvider(Op->getOperand(0), BitWidth / 8 - Index - 1, |
| Depth + 1, StartingIndex); |
| } |
| |
| case ISD::EXTRACT_VECTOR_ELT: { |
| auto IdxOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); |
| if (!IdxOp) |
| return std::nullopt; |
| auto VecIdx = IdxOp->getZExtValue(); |
| auto ScalarSize = Op.getScalarValueSizeInBits(); |
| if (ScalarSize < 32) |
| Index = ScalarSize == 8 ? VecIdx : VecIdx * 2 + Index; |
| return calculateSrcByte(ScalarSize >= 32 ? Op : Op.getOperand(0), |
| StartingIndex, Index); |
| } |
| |
| case AMDGPUISD::PERM: { |
| if (IsVec) |
| return std::nullopt; |
| |
| auto PermMask = dyn_cast<ConstantSDNode>(Op->getOperand(2)); |
| if (!PermMask) |
| return std::nullopt; |
| |
| auto IdxMask = |
| (PermMask->getZExtValue() & (0xFF << (Index * 8))) >> (Index * 8); |
| if (IdxMask > 0x07 && IdxMask != 0x0c) |
| return std::nullopt; |
| |
| auto NextOp = Op.getOperand(IdxMask > 0x03 ? 0 : 1); |
| auto NextIndex = IdxMask > 0x03 ? IdxMask % 4 : IdxMask; |
| |
| return IdxMask != 0x0c ? calculateSrcByte(NextOp, StartingIndex, NextIndex) |
| : ByteProvider<SDValue>( |
| ByteProvider<SDValue>::getConstantZero()); |
| } |
| |
| default: { |
| return std::nullopt; |
| } |
| } |
| |
| llvm_unreachable("fully handled switch"); |
| } |
| |
| // Returns true if the Operand is a scalar and is 16 bits |
| static bool isExtendedFrom16Bits(SDValue &Operand) { |
| |
| switch (Operand.getOpcode()) { |
| case ISD::ANY_EXTEND: |
| case ISD::SIGN_EXTEND: |
| case ISD::ZERO_EXTEND: { |
| auto OpVT = Operand.getOperand(0).getValueType(); |
| return !OpVT.isVector() && OpVT.getSizeInBits() == 16; |
| } |
| case ISD::LOAD: { |
| LoadSDNode *L = cast<LoadSDNode>(Operand.getNode()); |
| auto ExtType = cast<LoadSDNode>(L)->getExtensionType(); |
| if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::SEXTLOAD || |
| ExtType == ISD::EXTLOAD) { |
| auto MemVT = L->getMemoryVT(); |
| return !MemVT.isVector() && MemVT.getSizeInBits() == 16; |
| } |
| return L->getMemoryVT().getSizeInBits() == 16; |
| } |
| default: |
| return false; |
| } |
| } |
| |
| // Returns true if the mask matches consecutive bytes, and the first byte |
| // begins at a power of 2 byte offset from 0th byte |
| static bool addresses16Bits(int Mask) { |
| int Low8 = Mask & 0xff; |
| int Hi8 = (Mask & 0xff00) >> 8; |
| |
| assert(Low8 < 8 && Hi8 < 8); |
| // Are the bytes contiguous in the order of increasing addresses. |
| bool IsConsecutive = (Hi8 - Low8 == 1); |
| // Is the first byte at location that is aligned for 16 bit instructions. |
| // A counter example is taking 2 consecutive bytes starting at the 8th bit. |
| // In this case, we still need code to extract the 16 bit operand, so it |
| // is better to use i8 v_perm |
| bool Is16Aligned = !(Low8 % 2); |
| |
| return IsConsecutive && Is16Aligned; |
| } |
| |
| // Do not lower into v_perm if the operands are actually 16 bit |
| // and the selected bits (based on PermMask) correspond with two |
| // easily addressable 16 bit operands. |
| static bool hasNon16BitAccesses(uint64_t PermMask, SDValue &Op, |
| SDValue &OtherOp) { |
| int Low16 = PermMask & 0xffff; |
| int Hi16 = (PermMask & 0xffff0000) >> 16; |
| |
| auto TempOp = peekThroughBitcasts(Op); |
| auto TempOtherOp = peekThroughBitcasts(OtherOp); |
| |
| auto OpIs16Bit = |
| TempOtherOp.getValueSizeInBits() == 16 || isExtendedFrom16Bits(TempOp); |
| if (!OpIs16Bit) |
| return true; |
| |
| auto OtherOpIs16Bit = TempOtherOp.getValueSizeInBits() == 16 || |
| isExtendedFrom16Bits(TempOtherOp); |
| if (!OtherOpIs16Bit) |
| return true; |
| |
| // Do we cleanly address both |
| return !addresses16Bits(Low16) || !addresses16Bits(Hi16); |
| } |
| |
| static SDValue getDWordFromOffset(SelectionDAG &DAG, SDLoc SL, SDValue Src, |
| unsigned DWordOffset) { |
| SDValue Ret; |
| |
| auto TypeSize = Src.getValueSizeInBits().getFixedValue(); |
| // ByteProvider must be at least 8 bits |
| assert(Src.getValueSizeInBits().isKnownMultipleOf(8)); |
| |
| if (TypeSize <= 32) |
| return DAG.getBitcastedAnyExtOrTrunc(Src, SL, MVT::i32); |
| |
| if (Src.getValueType().isVector()) { |
| auto ScalarTySize = Src.getScalarValueSizeInBits(); |
| auto ScalarTy = Src.getValueType().getScalarType(); |
| if (ScalarTySize == 32) { |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Src, |
| DAG.getConstant(DWordOffset, SL, MVT::i32)); |
| } |
| if (ScalarTySize > 32) { |
| Ret = DAG.getNode( |
| ISD::EXTRACT_VECTOR_ELT, SL, ScalarTy, Src, |
| DAG.getConstant(DWordOffset / (ScalarTySize / 32), SL, MVT::i32)); |
| auto ShiftVal = 32 * (DWordOffset % (ScalarTySize / 32)); |
| if (ShiftVal) |
| Ret = DAG.getNode(ISD::SRL, SL, Ret.getValueType(), Ret, |
| DAG.getConstant(ShiftVal, SL, MVT::i32)); |
| return DAG.getBitcastedAnyExtOrTrunc(Ret, SL, MVT::i32); |
| } |
| |
| assert(ScalarTySize < 32); |
| auto NumElements = TypeSize / ScalarTySize; |
| auto Trunc32Elements = (ScalarTySize * NumElements) / 32; |
| auto NormalizedTrunc = Trunc32Elements * 32 / ScalarTySize; |
| auto NumElementsIn32 = 32 / ScalarTySize; |
| auto NumAvailElements = DWordOffset < Trunc32Elements |
| ? NumElementsIn32 |
| : NumElements - NormalizedTrunc; |
| |
| SmallVector<SDValue, 4> VecSrcs; |
| DAG.ExtractVectorElements(Src, VecSrcs, DWordOffset * NumElementsIn32, |
| NumAvailElements); |
| |
| Ret = DAG.getBuildVector( |
| MVT::getVectorVT(MVT::getIntegerVT(ScalarTySize), NumAvailElements), SL, |
| VecSrcs); |
| return Ret = DAG.getBitcastedAnyExtOrTrunc(Ret, SL, MVT::i32); |
| } |
| |
| /// Scalar Type |
| auto ShiftVal = 32 * DWordOffset; |
| Ret = DAG.getNode(ISD::SRL, SL, Src.getValueType(), Src, |
| DAG.getConstant(ShiftVal, SL, MVT::i32)); |
| return DAG.getBitcastedAnyExtOrTrunc(Ret, SL, MVT::i32); |
| } |
| |
| static SDValue matchPERM(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { |
| SelectionDAG &DAG = DCI.DAG; |
| [[maybe_unused]] EVT VT = N->getValueType(0); |
| SmallVector<ByteProvider<SDValue>, 8> PermNodes; |
| |
| // VT is known to be MVT::i32, so we need to provide 4 bytes. |
| assert(VT == MVT::i32); |
| for (int i = 0; i < 4; i++) { |
| // Find the ByteProvider that provides the ith byte of the result of OR |
| std::optional<ByteProvider<SDValue>> P = |
| calculateByteProvider(SDValue(N, 0), i, 0, /*StartingIndex = */ i); |
| // TODO support constantZero |
| if (!P || P->isConstantZero()) |
| return SDValue(); |
| |
| PermNodes.push_back(*P); |
| } |
| if (PermNodes.size() != 4) |
| return SDValue(); |
| |
| std::pair<unsigned, unsigned> FirstSrc(0, PermNodes[0].SrcOffset / 4); |
| std::optional<std::pair<unsigned, unsigned>> SecondSrc; |
| uint64_t PermMask = 0x00000000; |
| for (size_t i = 0; i < PermNodes.size(); i++) { |
| auto PermOp = PermNodes[i]; |
| // Since the mask is applied to Src1:Src2, Src1 bytes must be offset |
| // by sizeof(Src2) = 4 |
| int SrcByteAdjust = 4; |
| |
| // If the Src uses a byte from a different DWORD, then it corresponds |
| // with a difference source |
| if (!PermOp.hasSameSrc(PermNodes[FirstSrc.first]) || |
| ((PermOp.SrcOffset / 4) != FirstSrc.second)) { |
| if (SecondSrc) |
| if (!PermOp.hasSameSrc(PermNodes[SecondSrc->first]) || |
| ((PermOp.SrcOffset / 4) != SecondSrc->second)) |
| return SDValue(); |
| |
| // Set the index of the second distinct Src node |
| SecondSrc = {i, PermNodes[i].SrcOffset / 4}; |
| assert(!(PermNodes[SecondSrc->first].Src->getValueSizeInBits() % 8)); |
| SrcByteAdjust = 0; |
| } |
| assert((PermOp.SrcOffset % 4) + SrcByteAdjust < 8); |
| assert(!DAG.getDataLayout().isBigEndian()); |
| PermMask |= ((PermOp.SrcOffset % 4) + SrcByteAdjust) << (i * 8); |
| } |
| SDLoc DL(N); |
| SDValue Op = *PermNodes[FirstSrc.first].Src; |
| Op = getDWordFromOffset(DAG, DL, Op, FirstSrc.second); |
| assert(Op.getValueSizeInBits() == 32); |
| |
| // Check that we are not just extracting the bytes in order from an op |
| if (!SecondSrc) { |
| int Low16 = PermMask & 0xffff; |
| int Hi16 = (PermMask & 0xffff0000) >> 16; |
| |
| bool WellFormedLow = (Low16 == 0x0504) || (Low16 == 0x0100); |
| bool WellFormedHi = (Hi16 == 0x0706) || (Hi16 == 0x0302); |
| |
| // The perm op would really just produce Op. So combine into Op |
| if (WellFormedLow && WellFormedHi) |
| return DAG.getBitcast(MVT::getIntegerVT(32), Op); |
| } |
| |
| SDValue OtherOp = SecondSrc ? *PermNodes[SecondSrc->first].Src : Op; |
| |
| if (SecondSrc) { |
| OtherOp = getDWordFromOffset(DAG, DL, OtherOp, SecondSrc->second); |
| assert(OtherOp.getValueSizeInBits() == 32); |
| } |
| |
| if (hasNon16BitAccesses(PermMask, Op, OtherOp)) { |
| |
| assert(Op.getValueType().isByteSized() && |
| OtherOp.getValueType().isByteSized()); |
| |
| // If the ultimate src is less than 32 bits, then we will only be |
| // using bytes 0: Op.getValueSizeInBytes() - 1 in the or. |
| // CalculateByteProvider would not have returned Op as source if we |
| // used a byte that is outside its ValueType. Thus, we are free to |
| // ANY_EXTEND as the extended bits are dont-cares. |
| Op = DAG.getBitcastedAnyExtOrTrunc(Op, DL, MVT::i32); |
| OtherOp = DAG.getBitcastedAnyExtOrTrunc(OtherOp, DL, MVT::i32); |
| |
| return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op, OtherOp, |
| DAG.getConstant(PermMask, DL, MVT::i32)); |
| } |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performOrCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| |
| EVT VT = N->getValueType(0); |
| if (VT == MVT::i1) { |
| // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2) |
| if (LHS.getOpcode() == AMDGPUISD::FP_CLASS && |
| RHS.getOpcode() == AMDGPUISD::FP_CLASS) { |
| SDValue Src = LHS.getOperand(0); |
| if (Src != RHS.getOperand(0)) |
| return SDValue(); |
| |
| const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); |
| const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); |
| if (!CLHS || !CRHS) |
| return SDValue(); |
| |
| // Only 10 bits are used. |
| static const uint32_t MaxMask = 0x3ff; |
| |
| uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask; |
| SDLoc DL(N); |
| return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, |
| Src, DAG.getConstant(NewMask, DL, MVT::i32)); |
| } |
| |
| return SDValue(); |
| } |
| |
| // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2) |
| if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() && |
| LHS.getOpcode() == AMDGPUISD::PERM && |
| isa<ConstantSDNode>(LHS.getOperand(2))) { |
| uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1)); |
| if (!Sel) |
| return SDValue(); |
| |
| Sel |= LHS.getConstantOperandVal(2); |
| SDLoc DL(N); |
| return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0), |
| LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32)); |
| } |
| |
| // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2) |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() && |
| N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { |
| |
| // If all the uses of an or need to extract the individual elements, do not |
| // attempt to lower into v_perm |
| auto usesCombinedOperand = [](SDNode *OrUse) { |
| // If we have any non-vectorized use, then it is a candidate for v_perm |
| if (OrUse->getOpcode() != ISD::BITCAST || |
| !OrUse->getValueType(0).isVector()) |
| return true; |
| |
| // If we have any non-vectorized use, then it is a candidate for v_perm |
| for (auto VUse : OrUse->uses()) { |
| if (!VUse->getValueType(0).isVector()) |
| return true; |
| |
| // If the use of a vector is a store, then combining via a v_perm |
| // is beneficial. |
| // TODO -- whitelist more uses |
| for (auto VectorwiseOp : {ISD::STORE, ISD::CopyToReg, ISD::CopyFromReg}) |
| if (VUse->getOpcode() == VectorwiseOp) |
| return true; |
| } |
| return false; |
| }; |
| |
| if (!any_of(N->uses(), usesCombinedOperand)) |
| return SDValue(); |
| |
| uint32_t LHSMask = getPermuteMask(LHS); |
| uint32_t RHSMask = getPermuteMask(RHS); |
| |
| if (LHSMask != ~0u && RHSMask != ~0u) { |
| // Canonicalize the expression in an attempt to have fewer unique masks |
| // and therefore fewer registers used to hold the masks. |
| if (LHSMask > RHSMask) { |
| std::swap(LHSMask, RHSMask); |
| std::swap(LHS, RHS); |
| } |
| |
| // Select 0xc for each lane used from source operand. Zero has 0xc mask |
| // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range. |
| uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; |
| uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c; |
| |
| // Check of we need to combine values from two sources within a byte. |
| if (!(LHSUsedLanes & RHSUsedLanes) && |
| // If we select high and lower word keep it for SDWA. |
| // TODO: teach SDWA to work with v_perm_b32 and remove the check. |
| !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) { |
| // Kill zero bytes selected by other mask. Zero value is 0xc. |
| LHSMask &= ~RHSUsedLanes; |
| RHSMask &= ~LHSUsedLanes; |
| // Add 4 to each active LHS lane |
| LHSMask |= LHSUsedLanes & 0x04040404; |
| // Combine masks |
| uint32_t Sel = LHSMask | RHSMask; |
| SDLoc DL(N); |
| |
| return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, |
| LHS.getOperand(0), RHS.getOperand(0), |
| DAG.getConstant(Sel, DL, MVT::i32)); |
| } |
| } |
| if (LHSMask == ~0u || RHSMask == ~0u) { |
| if (SDValue Perm = matchPERM(N, DCI)) |
| return Perm; |
| } |
| } |
| |
| if (VT != MVT::i64 || DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| // TODO: This could be a generic combine with a predicate for extracting the |
| // high half of an integer being free. |
| |
| // (or i64:x, (zero_extend i32:y)) -> |
| // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x))) |
| if (LHS.getOpcode() == ISD::ZERO_EXTEND && |
| RHS.getOpcode() != ISD::ZERO_EXTEND) |
| std::swap(LHS, RHS); |
| |
| if (RHS.getOpcode() == ISD::ZERO_EXTEND) { |
| SDValue ExtSrc = RHS.getOperand(0); |
| EVT SrcVT = ExtSrc.getValueType(); |
| if (SrcVT == MVT::i32) { |
| SDLoc SL(N); |
| SDValue LowLHS, HiBits; |
| std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG); |
| SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc); |
| |
| DCI.AddToWorklist(LowOr.getNode()); |
| DCI.AddToWorklist(HiBits.getNode()); |
| |
| SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, |
| LowOr, HiBits); |
| return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); |
| } |
| } |
| |
| const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (CRHS) { |
| if (SDValue Split |
| = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, |
| N->getOperand(0), CRHS)) |
| return Split; |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performXorCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| if (SDValue RV = reassociateScalarOps(N, DCI.DAG)) |
| return RV; |
| |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| |
| const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS); |
| SelectionDAG &DAG = DCI.DAG; |
| |
| EVT VT = N->getValueType(0); |
| if (CRHS && VT == MVT::i64) { |
| if (SDValue Split |
| = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS)) |
| return Split; |
| } |
| |
| // Make sure to apply the 64-bit constant splitting fold before trying to fold |
| // fneg-like xors into 64-bit select. |
| if (LHS.getOpcode() == ISD::SELECT && VT == MVT::i32) { |
| // This looks like an fneg, try to fold as a source modifier. |
| if (CRHS && CRHS->getAPIntValue().isSignMask() && |
| shouldFoldFNegIntoSrc(N, LHS)) { |
| // xor (select c, a, b), 0x80000000 -> |
| // bitcast (select c, (fneg (bitcast a)), (fneg (bitcast b))) |
| SDLoc DL(N); |
| SDValue CastLHS = |
| DAG.getNode(ISD::BITCAST, DL, MVT::f32, LHS->getOperand(1)); |
| SDValue CastRHS = |
| DAG.getNode(ISD::BITCAST, DL, MVT::f32, LHS->getOperand(2)); |
| SDValue FNegLHS = DAG.getNode(ISD::FNEG, DL, MVT::f32, CastLHS); |
| SDValue FNegRHS = DAG.getNode(ISD::FNEG, DL, MVT::f32, CastRHS); |
| SDValue NewSelect = DAG.getNode(ISD::SELECT, DL, MVT::f32, |
| LHS->getOperand(0), FNegLHS, FNegRHS); |
| return DAG.getNode(ISD::BITCAST, DL, VT, NewSelect); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performZeroExtendCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| if (!Subtarget->has16BitInsts() || |
| DCI.getDAGCombineLevel() < AfterLegalizeDAG) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::i32) |
| return SDValue(); |
| |
| SDValue Src = N->getOperand(0); |
| if (Src.getValueType() != MVT::i16) |
| return SDValue(); |
| |
| return SDValue(); |
| } |
| |
| SDValue |
| SITargetLowering::performSignExtendInRegCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SDValue Src = N->getOperand(0); |
| auto *VTSign = cast<VTSDNode>(N->getOperand(1)); |
| |
| // Combine s_buffer_load_u8 or s_buffer_load_u16 with sext and replace them |
| // with s_buffer_load_i8 and s_buffer_load_i16 respectively. |
| if (((Src.getOpcode() == AMDGPUISD::SBUFFER_LOAD_UBYTE && |
| VTSign->getVT() == MVT::i8) || |
| (Src.getOpcode() == AMDGPUISD::SBUFFER_LOAD_USHORT && |
| VTSign->getVT() == MVT::i16))) { |
| assert(Subtarget->hasScalarSubwordLoads() && |
| "s_buffer_load_{u8, i8} are supported " |
| "in GFX12 (or newer) architectures."); |
| EVT VT = Src.getValueType(); |
| unsigned Opc = (Src.getOpcode() == AMDGPUISD::SBUFFER_LOAD_UBYTE) |
| ? AMDGPUISD::SBUFFER_LOAD_BYTE |
| : AMDGPUISD::SBUFFER_LOAD_SHORT; |
| SDLoc DL(N); |
| SDVTList ResList = DCI.DAG.getVTList(MVT::i32); |
| SDValue Ops[] = { |
| Src.getOperand(0), // source register |
| Src.getOperand(1), // offset |
| Src.getOperand(2) // cachePolicy |
| }; |
| auto *M = cast<MemSDNode>(Src); |
| SDValue BufferLoad = DCI.DAG.getMemIntrinsicNode( |
| Opc, DL, ResList, Ops, M->getMemoryVT(), M->getMemOperand()); |
| SDValue LoadVal = DCI.DAG.getNode(ISD::TRUNCATE, DL, VT, BufferLoad); |
| return LoadVal; |
| } |
| if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE && |
| VTSign->getVT() == MVT::i8) || |
| (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT && |
| VTSign->getVT() == MVT::i16)) && |
| Src.hasOneUse()) { |
| auto *M = cast<MemSDNode>(Src); |
| SDValue Ops[] = { |
| Src.getOperand(0), // Chain |
| Src.getOperand(1), // rsrc |
| Src.getOperand(2), // vindex |
| Src.getOperand(3), // voffset |
| Src.getOperand(4), // soffset |
| Src.getOperand(5), // offset |
| Src.getOperand(6), |
| Src.getOperand(7) |
| }; |
| // replace with BUFFER_LOAD_BYTE/SHORT |
| SDVTList ResList = DCI.DAG.getVTList(MVT::i32, |
| Src.getOperand(0).getValueType()); |
| unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ? |
| AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT; |
| SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N), |
| ResList, |
| Ops, M->getMemoryVT(), |
| M->getMemOperand()); |
| return DCI.DAG.getMergeValues({BufferLoadSignExt, |
| BufferLoadSignExt.getValue(1)}, SDLoc(N)); |
| } |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performClassCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| SDValue Mask = N->getOperand(1); |
| |
| // fp_class x, 0 -> false |
| if (isNullConstant(Mask)) |
| return DAG.getConstant(0, SDLoc(N), MVT::i1); |
| |
| if (N->getOperand(0).isUndef()) |
| return DAG.getUNDEF(MVT::i1); |
| |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performRcpCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| EVT VT = N->getValueType(0); |
| SDValue N0 = N->getOperand(0); |
| |
| if (N0.isUndef()) { |
| return DCI.DAG.getConstantFP(APFloat::getQNaN(VT.getFltSemantics()), |
| SDLoc(N), VT); |
| } |
| |
| if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP || |
| N0.getOpcode() == ISD::SINT_TO_FP)) { |
| return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0, |
| N->getFlags()); |
| } |
| |
| // TODO: Could handle f32 + amdgcn.sqrt but probably never reaches here. |
| if ((VT == MVT::f16 && N0.getOpcode() == ISD::FSQRT) && |
| N->getFlags().hasAllowContract() && N0->getFlags().hasAllowContract()) { |
| return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT, |
| N0.getOperand(0), N->getFlags()); |
| } |
| |
| return AMDGPUTargetLowering::performRcpCombine(N, DCI); |
| } |
| |
| bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op, |
| unsigned MaxDepth) const { |
| unsigned Opcode = Op.getOpcode(); |
| if (Opcode == ISD::FCANONICALIZE) |
| return true; |
| |
| if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) { |
| const auto &F = CFP->getValueAPF(); |
| if (F.isNaN() && F.isSignaling()) |
| return false; |
| if (!F.isDenormal()) |
| return true; |
| |
| DenormalMode Mode = |
| DAG.getMachineFunction().getDenormalMode(F.getSemantics()); |
| return Mode == DenormalMode::getIEEE(); |
| } |
| |
| // If source is a result of another standard FP operation it is already in |
| // canonical form. |
| if (MaxDepth == 0) |
| return false; |
| |
| switch (Opcode) { |
| // These will flush denorms if required. |
| case ISD::FADD: |
| case ISD::FSUB: |
| case ISD::FMUL: |
| case ISD::FCEIL: |
| case ISD::FFLOOR: |
| case ISD::FMA: |
| case ISD::FMAD: |
| case ISD::FSQRT: |
| case ISD::FDIV: |
| case ISD::FREM: |
| case ISD::FP_ROUND: |
| case ISD::FP_EXTEND: |
| case ISD::FP16_TO_FP: |
| case ISD::FP_TO_FP16: |
| case ISD::BF16_TO_FP: |
| case ISD::FP_TO_BF16: |
| case ISD::FLDEXP: |
| case AMDGPUISD::FMUL_LEGACY: |
| case AMDGPUISD::FMAD_FTZ: |
| case AMDGPUISD::RCP: |
| case AMDGPUISD::RSQ: |
| case AMDGPUISD::RSQ_CLAMP: |
| case AMDGPUISD::RCP_LEGACY: |
| case AMDGPUISD::RCP_IFLAG: |
| case AMDGPUISD::LOG: |
| case AMDGPUISD::EXP: |
| case AMDGPUISD::DIV_SCALE: |
| case AMDGPUISD::DIV_FMAS: |
| case AMDGPUISD::DIV_FIXUP: |
| case AMDGPUISD::FRACT: |
| case AMDGPUISD::CVT_PKRTZ_F16_F32: |
| case AMDGPUISD::CVT_F32_UBYTE0: |
| case AMDGPUISD::CVT_F32_UBYTE1: |
| case AMDGPUISD::CVT_F32_UBYTE2: |
| case AMDGPUISD::CVT_F32_UBYTE3: |
| case AMDGPUISD::FP_TO_FP16: |
| case AMDGPUISD::SIN_HW: |
| case AMDGPUISD::COS_HW: |
| return true; |
| |
| // It can/will be lowered or combined as a bit operation. |
| // Need to check their input recursively to handle. |
| case ISD::FNEG: |
| case ISD::FABS: |
| case ISD::FCOPYSIGN: |
| return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); |
| |
| case ISD::AND: |
| if (Op.getValueType() == MVT::i32) { |
| // Be careful as we only know it is a bitcast floating point type. It |
| // could be f32, v2f16, we have no way of knowing. Luckily the constant |
| // value that we optimize for, which comes up in fp32 to bf16 conversions, |
| // is valid to optimize for all types. |
| if (auto *RHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| if (RHS->getZExtValue() == 0xffff0000) { |
| return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); |
| } |
| } |
| } |
| break; |
| |
| case ISD::FSIN: |
| case ISD::FCOS: |
| case ISD::FSINCOS: |
| return Op.getValueType().getScalarType() != MVT::f16; |
| |
| case ISD::FMINNUM: |
| case ISD::FMAXNUM: |
| case ISD::FMINNUM_IEEE: |
| case ISD::FMAXNUM_IEEE: |
| case ISD::FMINIMUM: |
| case ISD::FMAXIMUM: |
| case AMDGPUISD::CLAMP: |
| case AMDGPUISD::FMED3: |
| case AMDGPUISD::FMAX3: |
| case AMDGPUISD::FMIN3: |
| case AMDGPUISD::FMAXIMUM3: |
| case AMDGPUISD::FMINIMUM3: { |
| // FIXME: Shouldn't treat the generic operations different based these. |
| // However, we aren't really required to flush the result from |
| // minnum/maxnum.. |
| |
| // snans will be quieted, so we only need to worry about denormals. |
| if (Subtarget->supportsMinMaxDenormModes() || |
| // FIXME: denormalsEnabledForType is broken for dynamic |
| denormalsEnabledForType(DAG, Op.getValueType())) |
| return true; |
| |
| // Flushing may be required. |
| // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such |
| // targets need to check their input recursively. |
| |
| // FIXME: Does this apply with clamp? It's implemented with max. |
| for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) { |
| if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1)) |
| return false; |
| } |
| |
| return true; |
| } |
| case ISD::SELECT: { |
| return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) && |
| isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1); |
| } |
| case ISD::BUILD_VECTOR: { |
| for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { |
| SDValue SrcOp = Op.getOperand(i); |
| if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1)) |
| return false; |
| } |
| |
| return true; |
| } |
| case ISD::EXTRACT_VECTOR_ELT: |
| case ISD::EXTRACT_SUBVECTOR: { |
| return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); |
| } |
| case ISD::INSERT_VECTOR_ELT: { |
| return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) && |
| isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1); |
| } |
| case ISD::UNDEF: |
| // Could be anything. |
| return false; |
| |
| case ISD::BITCAST: |
| // TODO: This is incorrect as it loses track of the operand's type. We may |
| // end up effectively bitcasting from f32 to v2f16 or vice versa, and the |
| // same bits that are canonicalized in one type need not be in the other. |
| return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1); |
| case ISD::TRUNCATE: { |
| // Hack round the mess we make when legalizing extract_vector_elt |
| if (Op.getValueType() == MVT::i16) { |
| SDValue TruncSrc = Op.getOperand(0); |
| if (TruncSrc.getValueType() == MVT::i32 && |
| TruncSrc.getOpcode() == ISD::BITCAST && |
| TruncSrc.getOperand(0).getValueType() == MVT::v2f16) { |
| return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1); |
| } |
| } |
| return false; |
| } |
| case ISD::INTRINSIC_WO_CHAIN: { |
| unsigned IntrinsicID = Op.getConstantOperandVal(0); |
| // TODO: Handle more intrinsics |
| switch (IntrinsicID) { |
| case Intrinsic::amdgcn_cvt_pkrtz: |
| case Intrinsic::amdgcn_cubeid: |
| case Intrinsic::amdgcn_frexp_mant: |
| case Intrinsic::amdgcn_fdot2: |
| case Intrinsic::amdgcn_rcp: |
| case Intrinsic::amdgcn_rsq: |
| case Intrinsic::amdgcn_rsq_clamp: |
| case Intrinsic::amdgcn_rcp_legacy: |
| case Intrinsic::amdgcn_rsq_legacy: |
| case Intrinsic::amdgcn_trig_preop: |
| case Intrinsic::amdgcn_log: |
| case Intrinsic::amdgcn_exp2: |
| case Intrinsic::amdgcn_sqrt: |
| return true; |
| default: |
| break; |
| } |
| |
| break; |
| } |
| default: |
| break; |
| } |
| |
| // FIXME: denormalsEnabledForType is broken for dynamic |
| return denormalsEnabledForType(DAG, Op.getValueType()) && |
| DAG.isKnownNeverSNaN(Op); |
| } |
| |
| bool SITargetLowering::isCanonicalized(Register Reg, const MachineFunction &MF, |
| unsigned MaxDepth) const { |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| MachineInstr *MI = MRI.getVRegDef(Reg); |
| unsigned Opcode = MI->getOpcode(); |
| |
| if (Opcode == AMDGPU::G_FCANONICALIZE) |
| return true; |
| |
| std::optional<FPValueAndVReg> FCR; |
| // Constant splat (can be padded with undef) or scalar constant. |
| if (mi_match(Reg, MRI, MIPatternMatch::m_GFCstOrSplat(FCR))) { |
| if (FCR->Value.isSignaling()) |
| return false; |
| if (!FCR->Value.isDenormal()) |
| return true; |
| |
| DenormalMode Mode = MF.getDenormalMode(FCR->Value.getSemantics()); |
| return Mode == DenormalMode::getIEEE(); |
| } |
| |
| if (MaxDepth == 0) |
| return false; |
| |
| switch (Opcode) { |
| case AMDGPU::G_FADD: |
| case AMDGPU::G_FSUB: |
| case AMDGPU::G_FMUL: |
| case AMDGPU::G_FCEIL: |
| case AMDGPU::G_FFLOOR: |
| case AMDGPU::G_FRINT: |
| case AMDGPU::G_FNEARBYINT: |
| case AMDGPU::G_INTRINSIC_FPTRUNC_ROUND: |
| case AMDGPU::G_INTRINSIC_TRUNC: |
| case AMDGPU::G_INTRINSIC_ROUNDEVEN: |
| case AMDGPU::G_FMA: |
| case AMDGPU::G_FMAD: |
| case AMDGPU::G_FSQRT: |
| case AMDGPU::G_FDIV: |
| case AMDGPU::G_FREM: |
| case AMDGPU::G_FPOW: |
| case AMDGPU::G_FPEXT: |
| case AMDGPU::G_FLOG: |
| case AMDGPU::G_FLOG2: |
| case AMDGPU::G_FLOG10: |
| case AMDGPU::G_FPTRUNC: |
| case AMDGPU::G_AMDGPU_RCP_IFLAG: |
| case AMDGPU::G_AMDGPU_CVT_F32_UBYTE0: |
| case AMDGPU::G_AMDGPU_CVT_F32_UBYTE1: |
| case AMDGPU::G_AMDGPU_CVT_F32_UBYTE2: |
| case AMDGPU::G_AMDGPU_CVT_F32_UBYTE3: |
| return true; |
| case AMDGPU::G_FNEG: |
| case AMDGPU::G_FABS: |
| case AMDGPU::G_FCOPYSIGN: |
| return isCanonicalized(MI->getOperand(1).getReg(), MF, MaxDepth - 1); |
| case AMDGPU::G_FMINNUM: |
| case AMDGPU::G_FMAXNUM: |
| case AMDGPU::G_FMINNUM_IEEE: |
| case AMDGPU::G_FMAXNUM_IEEE: |
| case AMDGPU::G_FMINIMUM: |
| case AMDGPU::G_FMAXIMUM: { |
| if (Subtarget->supportsMinMaxDenormModes() || |
| // FIXME: denormalsEnabledForType is broken for dynamic |
| denormalsEnabledForType(MRI.getType(Reg), MF)) |
| return true; |
| |
| [[fallthrough]]; |
| } |
| case AMDGPU::G_BUILD_VECTOR: |
| for (const MachineOperand &MO : llvm::drop_begin(MI->operands())) |
| if (!isCanonicalized(MO.getReg(), MF, MaxDepth - 1)) |
| return false; |
| return true; |
| case AMDGPU::G_INTRINSIC: |
| case AMDGPU::G_INTRINSIC_CONVERGENT: |
| switch (cast<GIntrinsic>(MI)->getIntrinsicID()) { |
| case Intrinsic::amdgcn_fmul_legacy: |
| case Intrinsic::amdgcn_fmad_ftz: |
| case Intrinsic::amdgcn_sqrt: |
| case Intrinsic::amdgcn_fmed3: |
| case Intrinsic::amdgcn_sin: |
| case Intrinsic::amdgcn_cos: |
| case Intrinsic::amdgcn_log: |
| case Intrinsic::amdgcn_exp2: |
| case Intrinsic::amdgcn_log_clamp: |
| case Intrinsic::amdgcn_rcp: |
| case Intrinsic::amdgcn_rcp_legacy: |
| case Intrinsic::amdgcn_rsq: |
| case Intrinsic::amdgcn_rsq_clamp: |
| case Intrinsic::amdgcn_rsq_legacy: |
| case Intrinsic::amdgcn_div_scale: |
| case Intrinsic::amdgcn_div_fmas: |
| case Intrinsic::amdgcn_div_fixup: |
| case Intrinsic::amdgcn_fract: |
| case Intrinsic::amdgcn_cvt_pkrtz: |
| case Intrinsic::amdgcn_cubeid: |
| case Intrinsic::amdgcn_cubema: |
| case Intrinsic::amdgcn_cubesc: |
| case Intrinsic::amdgcn_cubetc: |
| case Intrinsic::amdgcn_frexp_mant: |
| case Intrinsic::amdgcn_fdot2: |
| case Intrinsic::amdgcn_trig_preop: |
| return true; |
| default: |
| break; |
| } |
| |
| [[fallthrough]]; |
| default: |
| return false; |
| } |
| |
| llvm_unreachable("invalid operation"); |
| } |
| |
| // Constant fold canonicalize. |
| SDValue SITargetLowering::getCanonicalConstantFP( |
| SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const { |
| // Flush denormals to 0 if not enabled. |
| if (C.isDenormal()) { |
| DenormalMode Mode = |
| DAG.getMachineFunction().getDenormalMode(C.getSemantics()); |
| if (Mode == DenormalMode::getPreserveSign()) { |
| return DAG.getConstantFP( |
| APFloat::getZero(C.getSemantics(), C.isNegative()), SL, VT); |
| } |
| |
| if (Mode != DenormalMode::getIEEE()) |
| return SDValue(); |
| } |
| |
| if (C.isNaN()) { |
| APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics()); |
| if (C.isSignaling()) { |
| // Quiet a signaling NaN. |
| // FIXME: Is this supposed to preserve payload bits? |
| return DAG.getConstantFP(CanonicalQNaN, SL, VT); |
| } |
| |
| // Make sure it is the canonical NaN bitpattern. |
| // |
| // TODO: Can we use -1 as the canonical NaN value since it's an inline |
| // immediate? |
| if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt()) |
| return DAG.getConstantFP(CanonicalQNaN, SL, VT); |
| } |
| |
| // Already canonical. |
| return DAG.getConstantFP(C, SL, VT); |
| } |
| |
| static bool vectorEltWillFoldAway(SDValue Op) { |
| return Op.isUndef() || isa<ConstantFPSDNode>(Op); |
| } |
| |
| SDValue SITargetLowering::performFCanonicalizeCombine( |
| SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| // fcanonicalize undef -> qnan |
| if (N0.isUndef()) { |
| APFloat QNaN = APFloat::getQNaN(VT.getFltSemantics()); |
| return DAG.getConstantFP(QNaN, SDLoc(N), VT); |
| } |
| |
| if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) { |
| EVT VT = N->getValueType(0); |
| return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF()); |
| } |
| |
| // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x), |
| // (fcanonicalize k) |
| // |
| // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0 |
| |
| // TODO: This could be better with wider vectors that will be split to v2f16, |
| // and to consider uses since there aren't that many packed operations. |
| if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 && |
| isTypeLegal(MVT::v2f16)) { |
| SDLoc SL(N); |
| SDValue NewElts[2]; |
| SDValue Lo = N0.getOperand(0); |
| SDValue Hi = N0.getOperand(1); |
| EVT EltVT = Lo.getValueType(); |
| |
| if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) { |
| for (unsigned I = 0; I != 2; ++I) { |
| SDValue Op = N0.getOperand(I); |
| if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) { |
| NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT, |
| CFP->getValueAPF()); |
| } else if (Op.isUndef()) { |
| // Handled below based on what the other operand is. |
| NewElts[I] = Op; |
| } else { |
| NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op); |
| } |
| } |
| |
| // If one half is undef, and one is constant, prefer a splat vector rather |
| // than the normal qNaN. If it's a register, prefer 0.0 since that's |
| // cheaper to use and may be free with a packed operation. |
| if (NewElts[0].isUndef()) { |
| if (isa<ConstantFPSDNode>(NewElts[1])) |
| NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ? |
| NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT); |
| } |
| |
| if (NewElts[1].isUndef()) { |
| NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ? |
| NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT); |
| } |
| |
| return DAG.getBuildVector(VT, SL, NewElts); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) { |
| switch (Opc) { |
| case ISD::FMAXNUM: |
| case ISD::FMAXNUM_IEEE: |
| return AMDGPUISD::FMAX3; |
| case ISD::FMAXIMUM: |
| return AMDGPUISD::FMAXIMUM3; |
| case ISD::SMAX: |
| return AMDGPUISD::SMAX3; |
| case ISD::UMAX: |
| return AMDGPUISD::UMAX3; |
| case ISD::FMINNUM: |
| case ISD::FMINNUM_IEEE: |
| return AMDGPUISD::FMIN3; |
| case ISD::FMINIMUM: |
| return AMDGPUISD::FMINIMUM3; |
| case ISD::SMIN: |
| return AMDGPUISD::SMIN3; |
| case ISD::UMIN: |
| return AMDGPUISD::UMIN3; |
| default: |
| llvm_unreachable("Not a min/max opcode"); |
| } |
| } |
| |
| SDValue SITargetLowering::performIntMed3ImmCombine(SelectionDAG &DAG, |
| const SDLoc &SL, SDValue Src, |
| SDValue MinVal, |
| SDValue MaxVal, |
| bool Signed) const { |
| |
| // med3 comes from |
| // min(max(x, K0), K1), K0 < K1 |
| // max(min(x, K0), K1), K1 < K0 |
| // |
| // "MinVal" and "MaxVal" respectively refer to the rhs of the |
| // min/max op. |
| ConstantSDNode *MinK = dyn_cast<ConstantSDNode>(MinVal); |
| ConstantSDNode *MaxK = dyn_cast<ConstantSDNode>(MaxVal); |
| |
| if (!MinK || !MaxK) |
| return SDValue(); |
| |
| if (Signed) { |
| if (MaxK->getAPIntValue().sge(MinK->getAPIntValue())) |
| return SDValue(); |
| } else { |
| if (MaxK->getAPIntValue().uge(MinK->getAPIntValue())) |
| return SDValue(); |
| } |
| |
| EVT VT = MinK->getValueType(0); |
| unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3; |
| if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) |
| return DAG.getNode(Med3Opc, SL, VT, Src, MaxVal, MinVal); |
| |
| // Note: we could also extend to i32 and use i32 med3 if i16 med3 is |
| // not available, but this is unlikely to be profitable as constants |
| // will often need to be materialized & extended, especially on |
| // pre-GFX10 where VOP3 instructions couldn't take literal operands. |
| return SDValue(); |
| } |
| |
| static ConstantFPSDNode *getSplatConstantFP(SDValue Op) { |
| if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) |
| return C; |
| |
| if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) { |
| if (ConstantFPSDNode *C = BV->getConstantFPSplatNode()) |
| return C; |
| } |
| |
| return nullptr; |
| } |
| |
| SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG, |
| const SDLoc &SL, |
| SDValue Op0, |
| SDValue Op1) const { |
| ConstantFPSDNode *K1 = getSplatConstantFP(Op1); |
| if (!K1) |
| return SDValue(); |
| |
| ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1)); |
| if (!K0) |
| return SDValue(); |
| |
| // Ordered >= (although NaN inputs should have folded away by now). |
| if (K0->getValueAPF() > K1->getValueAPF()) |
| return SDValue(); |
| |
| const MachineFunction &MF = DAG.getMachineFunction(); |
| const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| |
| // TODO: Check IEEE bit enabled? |
| EVT VT = Op0.getValueType(); |
| if (Info->getMode().DX10Clamp) { |
| // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the |
| // hardware fmed3 behavior converting to a min. |
| // FIXME: Should this be allowing -0.0? |
| if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0)) |
| return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0)); |
| } |
| |
| // med3 for f16 is only available on gfx9+, and not available for v2f16. |
| if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) { |
| // This isn't safe with signaling NaNs because in IEEE mode, min/max on a |
| // signaling NaN gives a quiet NaN. The quiet NaN input to the min would |
| // then give the other result, which is different from med3 with a NaN |
| // input. |
| SDValue Var = Op0.getOperand(0); |
| if (!DAG.isKnownNeverSNaN(Var)) |
| return SDValue(); |
| |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| |
| if ((!K0->hasOneUse() || TII->isInlineConstant(K0->getValueAPF())) && |
| (!K1->hasOneUse() || TII->isInlineConstant(K1->getValueAPF()))) { |
| return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0), |
| Var, SDValue(K0, 0), SDValue(K1, 0)); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// \return true if the subtarget supports minimum3 and maximum3 with the given |
| /// base min/max opcode \p Opc for type \p VT. |
| static bool supportsMin3Max3(const GCNSubtarget &Subtarget, unsigned Opc, |
| EVT VT) { |
| switch (Opc) { |
| case ISD::FMINNUM: |
| case ISD::FMAXNUM: |
| case ISD::FMINNUM_IEEE: |
| case ISD::FMAXNUM_IEEE: |
| case AMDGPUISD::FMIN_LEGACY: |
| case AMDGPUISD::FMAX_LEGACY: |
| return (VT == MVT::f32) || (VT == MVT::f16 && Subtarget.hasMin3Max3_16()); |
| case ISD::FMINIMUM: |
| case ISD::FMAXIMUM: |
| return (VT == MVT::f32 || VT == MVT::f16) && Subtarget.hasIEEEMinMax3(); |
| case ISD::SMAX: |
| case ISD::SMIN: |
| case ISD::UMAX: |
| case ISD::UMIN: |
| return (VT == MVT::i32) || (VT == MVT::i16 && Subtarget.hasMin3Max3_16()); |
| default: |
| return false; |
| } |
| |
| llvm_unreachable("not a min/max opcode"); |
| } |
| |
| SDValue SITargetLowering::performMinMaxCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| |
| EVT VT = N->getValueType(0); |
| unsigned Opc = N->getOpcode(); |
| SDValue Op0 = N->getOperand(0); |
| SDValue Op1 = N->getOperand(1); |
| |
| // Only do this if the inner op has one use since this will just increases |
| // register pressure for no benefit. |
| |
| if (supportsMin3Max3(*Subtarget, Opc, VT)) { |
| // max(max(a, b), c) -> max3(a, b, c) |
| // min(min(a, b), c) -> min3(a, b, c) |
| if (Op0.getOpcode() == Opc && Op0.hasOneUse()) { |
| SDLoc DL(N); |
| return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), |
| DL, |
| N->getValueType(0), |
| Op0.getOperand(0), |
| Op0.getOperand(1), |
| Op1); |
| } |
| |
| // Try commuted. |
| // max(a, max(b, c)) -> max3(a, b, c) |
| // min(a, min(b, c)) -> min3(a, b, c) |
| if (Op1.getOpcode() == Opc && Op1.hasOneUse()) { |
| SDLoc DL(N); |
| return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), |
| DL, |
| N->getValueType(0), |
| Op0, |
| Op1.getOperand(0), |
| Op1.getOperand(1)); |
| } |
| } |
| |
| // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1) |
| // max(min(x, K0), K1), K1 < K0 -> med3(x, K1, K0) |
| if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) { |
| if (SDValue Med3 = performIntMed3ImmCombine( |
| DAG, SDLoc(N), Op0->getOperand(0), Op1, Op0->getOperand(1), true)) |
| return Med3; |
| } |
| if (Opc == ISD::SMAX && Op0.getOpcode() == ISD::SMIN && Op0.hasOneUse()) { |
| if (SDValue Med3 = performIntMed3ImmCombine( |
| DAG, SDLoc(N), Op0->getOperand(0), Op0->getOperand(1), Op1, true)) |
| return Med3; |
| } |
| |
| if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { |
| if (SDValue Med3 = performIntMed3ImmCombine( |
| DAG, SDLoc(N), Op0->getOperand(0), Op1, Op0->getOperand(1), false)) |
| return Med3; |
| } |
| if (Opc == ISD::UMAX && Op0.getOpcode() == ISD::UMIN && Op0.hasOneUse()) { |
| if (SDValue Med3 = performIntMed3ImmCombine( |
| DAG, SDLoc(N), Op0->getOperand(0), Op0->getOperand(1), Op1, false)) |
| return Med3; |
| } |
| |
| // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1) |
| if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) || |
| (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) || |
| (Opc == AMDGPUISD::FMIN_LEGACY && |
| Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) && |
| (VT == MVT::f32 || VT == MVT::f64 || |
| (VT == MVT::f16 && Subtarget->has16BitInsts()) || |
| (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) && |
| Op0.hasOneUse()) { |
| if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1)) |
| return Res; |
| } |
| |
| return SDValue(); |
| } |
| |
| static bool isClampZeroToOne(SDValue A, SDValue B) { |
| if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) { |
| if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) { |
| // FIXME: Should this be allowing -0.0? |
| return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) || |
| (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0)); |
| } |
| } |
| |
| return false; |
| } |
| |
| // FIXME: Should only worry about snans for version with chain. |
| SDValue SITargetLowering::performFMed3Combine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| EVT VT = N->getValueType(0); |
| // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and |
| // NaNs. With a NaN input, the order of the operands may change the result. |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc SL(N); |
| |
| SDValue Src0 = N->getOperand(0); |
| SDValue Src1 = N->getOperand(1); |
| SDValue Src2 = N->getOperand(2); |
| |
| if (isClampZeroToOne(Src0, Src1)) { |
| // const_a, const_b, x -> clamp is safe in all cases including signaling |
| // nans. |
| // FIXME: Should this be allowing -0.0? |
| return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2); |
| } |
| |
| const MachineFunction &MF = DAG.getMachineFunction(); |
| const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| |
| // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother |
| // handling no dx10-clamp? |
| if (Info->getMode().DX10Clamp) { |
| // If NaNs is clamped to 0, we are free to reorder the inputs. |
| |
| if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) |
| std::swap(Src0, Src1); |
| |
| if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2)) |
| std::swap(Src1, Src2); |
| |
| if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1)) |
| std::swap(Src0, Src1); |
| |
| if (isClampZeroToOne(Src1, Src2)) |
| return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SDValue Src0 = N->getOperand(0); |
| SDValue Src1 = N->getOperand(1); |
| if (Src0.isUndef() && Src1.isUndef()) |
| return DCI.DAG.getUNDEF(N->getValueType(0)); |
| return SDValue(); |
| } |
| |
| // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be |
| // expanded into a set of cmp/select instructions. |
| bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize, |
| unsigned NumElem, |
| bool IsDivergentIdx, |
| const GCNSubtarget *Subtarget) { |
| if (UseDivergentRegisterIndexing) |
| return false; |
| |
| unsigned VecSize = EltSize * NumElem; |
| |
| // Sub-dword vectors of size 2 dword or less have better implementation. |
| if (VecSize <= 64 && EltSize < 32) |
| return false; |
| |
| // Always expand the rest of sub-dword instructions, otherwise it will be |
| // lowered via memory. |
| if (EltSize < 32) |
| return true; |
| |
| // Always do this if var-idx is divergent, otherwise it will become a loop. |
| if (IsDivergentIdx) |
| return true; |
| |
| // Large vectors would yield too many compares and v_cndmask_b32 instructions. |
| unsigned NumInsts = NumElem /* Number of compares */ + |
| ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */; |
| |
| // On some architectures (GFX9) movrel is not available and it's better |
| // to expand. |
| if (Subtarget->useVGPRIndexMode()) |
| return NumInsts <= 16; |
| |
| // If movrel is available, use it instead of expanding for vector of 8 |
| // elements. |
| if (Subtarget->hasMovrel()) |
| return NumInsts <= 15; |
| |
| return true; |
| } |
| |
| bool SITargetLowering::shouldExpandVectorDynExt(SDNode *N) const { |
| SDValue Idx = N->getOperand(N->getNumOperands() - 1); |
| if (isa<ConstantSDNode>(Idx)) |
| return false; |
| |
| SDValue Vec = N->getOperand(0); |
| EVT VecVT = Vec.getValueType(); |
| EVT EltVT = VecVT.getVectorElementType(); |
| unsigned EltSize = EltVT.getSizeInBits(); |
| unsigned NumElem = VecVT.getVectorNumElements(); |
| |
| return SITargetLowering::shouldExpandVectorDynExt( |
| EltSize, NumElem, Idx->isDivergent(), getSubtarget()); |
| } |
| |
| SDValue SITargetLowering::performExtractVectorEltCombine( |
| SDNode *N, DAGCombinerInfo &DCI) const { |
| SDValue Vec = N->getOperand(0); |
| SelectionDAG &DAG = DCI.DAG; |
| |
| EVT VecVT = Vec.getValueType(); |
| EVT VecEltVT = VecVT.getVectorElementType(); |
| EVT ResVT = N->getValueType(0); |
| |
| unsigned VecSize = VecVT.getSizeInBits(); |
| unsigned VecEltSize = VecEltVT.getSizeInBits(); |
| |
| if ((Vec.getOpcode() == ISD::FNEG || |
| Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) { |
| SDLoc SL(N); |
| SDValue Idx = N->getOperand(1); |
| SDValue Elt = |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, Vec.getOperand(0), Idx); |
| return DAG.getNode(Vec.getOpcode(), SL, ResVT, Elt); |
| } |
| |
| // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx) |
| // => |
| // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx) |
| // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx) |
| // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt |
| if (Vec.hasOneUse() && DCI.isBeforeLegalize() && VecEltVT == ResVT) { |
| SDLoc SL(N); |
| SDValue Idx = N->getOperand(1); |
| unsigned Opc = Vec.getOpcode(); |
| |
| switch(Opc) { |
| default: |
| break; |
| // TODO: Support other binary operations. |
| case ISD::FADD: |
| case ISD::FSUB: |
| case ISD::FMUL: |
| case ISD::ADD: |
| case ISD::UMIN: |
| case ISD::UMAX: |
| case ISD::SMIN: |
| case ISD::SMAX: |
| case ISD::FMAXNUM: |
| case ISD::FMINNUM: |
| case ISD::FMAXNUM_IEEE: |
| case ISD::FMINNUM_IEEE: |
| case ISD::FMAXIMUM: |
| case ISD::FMINIMUM: { |
| SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, |
| Vec.getOperand(0), Idx); |
| SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, |
| Vec.getOperand(1), Idx); |
| |
| DCI.AddToWorklist(Elt0.getNode()); |
| DCI.AddToWorklist(Elt1.getNode()); |
| return DAG.getNode(Opc, SL, ResVT, Elt0, Elt1, Vec->getFlags()); |
| } |
| } |
| } |
| |
| // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx) |
| if (shouldExpandVectorDynExt(N)) { |
| SDLoc SL(N); |
| SDValue Idx = N->getOperand(1); |
| SDValue V; |
| for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { |
| SDValue IC = DAG.getVectorIdxConstant(I, SL); |
| SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, Vec, IC); |
| if (I == 0) |
| V = Elt; |
| else |
| V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ); |
| } |
| return V; |
| } |
| |
| if (!DCI.isBeforeLegalize()) |
| return SDValue(); |
| |
| // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit |
| // elements. This exposes more load reduction opportunities by replacing |
| // multiple small extract_vector_elements with a single 32-bit extract. |
| auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (isa<MemSDNode>(Vec) && VecEltSize <= 16 && VecEltVT.isByteSized() && |
| VecSize > 32 && VecSize % 32 == 0 && Idx) { |
| EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT); |
| |
| unsigned BitIndex = Idx->getZExtValue() * VecEltSize; |
| unsigned EltIdx = BitIndex / 32; |
| unsigned LeftoverBitIdx = BitIndex % 32; |
| SDLoc SL(N); |
| |
| SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec); |
| DCI.AddToWorklist(Cast.getNode()); |
| |
| SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast, |
| DAG.getConstant(EltIdx, SL, MVT::i32)); |
| DCI.AddToWorklist(Elt.getNode()); |
| SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt, |
| DAG.getConstant(LeftoverBitIdx, SL, MVT::i32)); |
| DCI.AddToWorklist(Srl.getNode()); |
| |
| EVT VecEltAsIntVT = VecEltVT.changeTypeToInteger(); |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VecEltAsIntVT, Srl); |
| DCI.AddToWorklist(Trunc.getNode()); |
| |
| if (VecEltVT == ResVT) { |
| return DAG.getNode(ISD::BITCAST, SL, VecEltVT, Trunc); |
| } |
| |
| assert(ResVT.isScalarInteger()); |
| return DAG.getAnyExtOrTrunc(Trunc, SL, ResVT); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue |
| SITargetLowering::performInsertVectorEltCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SDValue Vec = N->getOperand(0); |
| SDValue Idx = N->getOperand(2); |
| EVT VecVT = Vec.getValueType(); |
| EVT EltVT = VecVT.getVectorElementType(); |
| |
| // INSERT_VECTOR_ELT (<n x e>, var-idx) |
| // => BUILD_VECTOR n x select (e, const-idx) |
| if (!shouldExpandVectorDynExt(N)) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc SL(N); |
| SDValue Ins = N->getOperand(1); |
| EVT IdxVT = Idx.getValueType(); |
| |
| SmallVector<SDValue, 16> Ops; |
| for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) { |
| SDValue IC = DAG.getConstant(I, SL, IdxVT); |
| SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC); |
| SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ); |
| Ops.push_back(V); |
| } |
| |
| return DAG.getBuildVector(VecVT, SL, Ops); |
| } |
| |
| /// Return the source of an fp_extend from f16 to f32, or a converted FP |
| /// constant. |
| static SDValue strictFPExtFromF16(SelectionDAG &DAG, SDValue Src) { |
| if (Src.getOpcode() == ISD::FP_EXTEND && |
| Src.getOperand(0).getValueType() == MVT::f16) { |
| return Src.getOperand(0); |
| } |
| |
| if (auto *CFP = dyn_cast<ConstantFPSDNode>(Src)) { |
| APFloat Val = CFP->getValueAPF(); |
| bool LosesInfo = true; |
| Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &LosesInfo); |
| if (!LosesInfo) |
| return DAG.getConstantFP(Val, SDLoc(Src), MVT::f16); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performFPRoundCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| assert(Subtarget->has16BitInsts() && !Subtarget->hasMed3_16() && |
| "combine only useful on gfx8"); |
| |
| SDValue TruncSrc = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::f16) |
| return SDValue(); |
| |
| if (TruncSrc.getOpcode() != AMDGPUISD::FMED3 || |
| TruncSrc.getValueType() != MVT::f32 || !TruncSrc.hasOneUse()) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc SL(N); |
| |
| // Optimize f16 fmed3 pattern performed on f32. On gfx8 there is no f16 fmed3, |
| // and expanding it with min/max saves 1 instruction vs. casting to f32 and |
| // casting back. |
| |
| // fptrunc (f32 (fmed3 (fpext f16:a, fpext f16:b, fpext f16:c))) => |
| // fmin(fmax(a, b), fmax(fmin(a, b), c)) |
| SDValue A = strictFPExtFromF16(DAG, TruncSrc.getOperand(0)); |
| if (!A) |
| return SDValue(); |
| |
| SDValue B = strictFPExtFromF16(DAG, TruncSrc.getOperand(1)); |
| if (!B) |
| return SDValue(); |
| |
| SDValue C = strictFPExtFromF16(DAG, TruncSrc.getOperand(2)); |
| if (!C) |
| return SDValue(); |
| |
| // This changes signaling nan behavior. If an input is a signaling nan, it |
| // would have been quieted by the fpext originally. We don't care because |
| // these are unconstrained ops. If we needed to insert quieting canonicalizes |
| // we would be worse off than just doing the promotion. |
| SDValue A1 = DAG.getNode(ISD::FMINNUM_IEEE, SL, VT, A, B); |
| SDValue B1 = DAG.getNode(ISD::FMAXNUM_IEEE, SL, VT, A, B); |
| SDValue C1 = DAG.getNode(ISD::FMAXNUM_IEEE, SL, VT, A1, C); |
| return DAG.getNode(ISD::FMINNUM_IEEE, SL, VT, B1, C1); |
| } |
| |
| unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG, |
| const SDNode *N0, |
| const SDNode *N1) const { |
| EVT VT = N0->getValueType(0); |
| |
| // Only do this if we are not trying to support denormals. v_mad_f32 does not |
| // support denormals ever. |
| if (((VT == MVT::f32 && |
| denormalModeIsFlushAllF32(DAG.getMachineFunction())) || |
| (VT == MVT::f16 && Subtarget->hasMadF16() && |
| denormalModeIsFlushAllF64F16(DAG.getMachineFunction()))) && |
| isOperationLegal(ISD::FMAD, VT)) |
| return ISD::FMAD; |
| |
| const TargetOptions &Options = DAG.getTarget().Options; |
| if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || |
| (N0->getFlags().hasAllowContract() && |
| N1->getFlags().hasAllowContract())) && |
| isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { |
| return ISD::FMA; |
| } |
| |
| return 0; |
| } |
| |
| // For a reassociatable opcode perform: |
| // op x, (op y, z) -> op (op x, z), y, if x and z are uniform |
| SDValue SITargetLowering::reassociateScalarOps(SDNode *N, |
| SelectionDAG &DAG) const { |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::i32 && VT != MVT::i64) |
| return SDValue(); |
| |
| if (DAG.isBaseWithConstantOffset(SDValue(N, 0))) |
| return SDValue(); |
| |
| unsigned Opc = N->getOpcode(); |
| SDValue Op0 = N->getOperand(0); |
| SDValue Op1 = N->getOperand(1); |
| |
| if (!(Op0->isDivergent() ^ Op1->isDivergent())) |
| return SDValue(); |
| |
| if (Op0->isDivergent()) |
| std::swap(Op0, Op1); |
| |
| if (Op1.getOpcode() != Opc || !Op1.hasOneUse()) |
| return SDValue(); |
| |
| SDValue Op2 = Op1.getOperand(1); |
| Op1 = Op1.getOperand(0); |
| if (!(Op1->isDivergent() ^ Op2->isDivergent())) |
| return SDValue(); |
| |
| if (Op1->isDivergent()) |
| std::swap(Op1, Op2); |
| |
| SDLoc SL(N); |
| SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1); |
| return DAG.getNode(Opc, SL, VT, Add1, Op2); |
| } |
| |
| static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL, |
| EVT VT, |
| SDValue N0, SDValue N1, SDValue N2, |
| bool Signed) { |
| unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32; |
| SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1); |
| SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2); |
| return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad); |
| } |
| |
| // Fold (add (mul x, y), z) --> (mad_[iu]64_[iu]32 x, y, z) plus high |
| // multiplies, if any. |
| // |
| // Full 64-bit multiplies that feed into an addition are lowered here instead |
| // of using the generic expansion. The generic expansion ends up with |
| // a tree of ADD nodes that prevents us from using the "add" part of the |
| // MAD instruction. The expansion produced here results in a chain of ADDs |
| // instead of a tree. |
| SDValue SITargetLowering::tryFoldToMad64_32(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| assert(N->getOpcode() == ISD::ADD); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| EVT VT = N->getValueType(0); |
| SDLoc SL(N); |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| |
| if (VT.isVector()) |
| return SDValue(); |
| |
| // S_MUL_HI_[IU]32 was added in gfx9, which allows us to keep the overall |
| // result in scalar registers for uniform values. |
| if (!N->isDivergent() && Subtarget->hasSMulHi()) |
| return SDValue(); |
| |
| unsigned NumBits = VT.getScalarSizeInBits(); |
| if (NumBits <= 32 || NumBits > 64) |
| return SDValue(); |
| |
| if (LHS.getOpcode() != ISD::MUL) { |
| assert(RHS.getOpcode() == ISD::MUL); |
| std::swap(LHS, RHS); |
| } |
| |
| // Avoid the fold if it would unduly increase the number of multiplies due to |
| // multiple uses, except on hardware with full-rate multiply-add (which is |
| // part of full-rate 64-bit ops). |
| if (!Subtarget->hasFullRate64Ops()) { |
| unsigned NumUsers = 0; |
| for (SDNode *Use : LHS->uses()) { |
| // There is a use that does not feed into addition, so the multiply can't |
| // be removed. We prefer MUL + ADD + ADDC over MAD + MUL. |
| if (Use->getOpcode() != ISD::ADD) |
| return SDValue(); |
| |
| // We prefer 2xMAD over MUL + 2xADD + 2xADDC (code density), and prefer |
| // MUL + 3xADD + 3xADDC over 3xMAD. |
| ++NumUsers; |
| if (NumUsers >= 3) |
| return SDValue(); |
| } |
| } |
| |
| SDValue MulLHS = LHS.getOperand(0); |
| SDValue MulRHS = LHS.getOperand(1); |
| SDValue AddRHS = RHS; |
| |
| // Always check whether operands are small unsigned values, since that |
| // knowledge is useful in more cases. Check for small signed values only if |
| // doing so can unlock a shorter code sequence. |
| bool MulLHSUnsigned32 = numBitsUnsigned(MulLHS, DAG) <= 32; |
| bool MulRHSUnsigned32 = numBitsUnsigned(MulRHS, DAG) <= 32; |
| |
| bool MulSignedLo = false; |
| if (!MulLHSUnsigned32 || !MulRHSUnsigned32) { |
| MulSignedLo = numBitsSigned(MulLHS, DAG) <= 32 && |
| numBitsSigned(MulRHS, DAG) <= 32; |
| } |
| |
| // The operands and final result all have the same number of bits. If |
| // operands need to be extended, they can be extended with garbage. The |
| // resulting garbage in the high bits of the mad_[iu]64_[iu]32 result is |
| // truncated away in the end. |
| if (VT != MVT::i64) { |
| MulLHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulLHS); |
| MulRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulRHS); |
| AddRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, AddRHS); |
| } |
| |
| // The basic code generated is conceptually straightforward. Pseudo code: |
| // |
| // accum = mad_64_32 lhs.lo, rhs.lo, accum |
| // accum.hi = add (mul lhs.hi, rhs.lo), accum.hi |
| // accum.hi = add (mul lhs.lo, rhs.hi), accum.hi |
| // |
| // The second and third lines are optional, depending on whether the factors |
| // are {sign,zero}-extended or not. |
| // |
| // The actual DAG is noisier than the pseudo code, but only due to |
| // instructions that disassemble values into low and high parts, and |
| // assemble the final result. |
| SDValue One = DAG.getConstant(1, SL, MVT::i32); |
| |
| auto MulLHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulLHS); |
| auto MulRHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulRHS); |
| SDValue Accum = |
| getMad64_32(DAG, SL, MVT::i64, MulLHSLo, MulRHSLo, AddRHS, MulSignedLo); |
| |
| if (!MulSignedLo && (!MulLHSUnsigned32 || !MulRHSUnsigned32)) { |
| SDValue AccumLo, AccumHi; |
| std::tie(AccumLo, AccumHi) = DAG.SplitScalar(Accum, SL, MVT::i32, MVT::i32); |
| |
| if (!MulLHSUnsigned32) { |
| auto MulLHSHi = |
| DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulLHS, One); |
| SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSHi, MulRHSLo); |
| AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi); |
| } |
| |
| if (!MulRHSUnsigned32) { |
| auto MulRHSHi = |
| DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulRHS, One); |
| SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSLo, MulRHSHi); |
| AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi); |
| } |
| |
| Accum = DAG.getBuildVector(MVT::v2i32, SL, {AccumLo, AccumHi}); |
| Accum = DAG.getBitcast(MVT::i64, Accum); |
| } |
| |
| if (VT != MVT::i64) |
| Accum = DAG.getNode(ISD::TRUNCATE, SL, VT, Accum); |
| return Accum; |
| } |
| |
| // Collect the ultimate src of each of the mul node's operands, and confirm |
| // each operand is 8 bytes. |
| static std::optional<ByteProvider<SDValue>> |
| handleMulOperand(const SDValue &MulOperand) { |
| auto Byte0 = calculateByteProvider(MulOperand, 0, 0); |
| if (!Byte0 || Byte0->isConstantZero()) { |
| return std::nullopt; |
| } |
| auto Byte1 = calculateByteProvider(MulOperand, 1, 0); |
| if (Byte1 && !Byte1->isConstantZero()) { |
| return std::nullopt; |
| } |
| return Byte0; |
| } |
| |
| static unsigned addPermMasks(unsigned First, unsigned Second) { |
| unsigned FirstCs = First & 0x0c0c0c0c; |
| unsigned SecondCs = Second & 0x0c0c0c0c; |
| unsigned FirstNoCs = First & ~0x0c0c0c0c; |
| unsigned SecondNoCs = Second & ~0x0c0c0c0c; |
| |
| assert((FirstCs & 0xFF) | (SecondCs & 0xFF)); |
| assert((FirstCs & 0xFF00) | (SecondCs & 0xFF00)); |
| assert((FirstCs & 0xFF0000) | (SecondCs & 0xFF0000)); |
| assert((FirstCs & 0xFF000000) | (SecondCs & 0xFF000000)); |
| |
| return (FirstNoCs | SecondNoCs) | (FirstCs & SecondCs); |
| } |
| |
| struct DotSrc { |
| SDValue SrcOp; |
| int64_t PermMask; |
| int64_t DWordOffset; |
| }; |
| |
| static void placeSources(ByteProvider<SDValue> &Src0, |
| ByteProvider<SDValue> &Src1, |
| SmallVectorImpl<DotSrc> &Src0s, |
| SmallVectorImpl<DotSrc> &Src1s, int Step) { |
| |
| assert(Src0.Src.has_value() && Src1.Src.has_value()); |
| // Src0s and Src1s are empty, just place arbitrarily. |
| if (Step == 0) { |
| Src0s.push_back({*Src0.Src, ((Src0.SrcOffset % 4) << 24) + 0x0c0c0c, |
| Src0.SrcOffset / 4}); |
| Src1s.push_back({*Src1.Src, ((Src1.SrcOffset % 4) << 24) + 0x0c0c0c, |
| Src1.SrcOffset / 4}); |
| return; |
| } |
| |
| for (int BPI = 0; BPI < 2; BPI++) { |
| std::pair<ByteProvider<SDValue>, ByteProvider<SDValue>> BPP = {Src0, Src1}; |
| if (BPI == 1) { |
| BPP = {Src1, Src0}; |
| } |
| unsigned ZeroMask = 0x0c0c0c0c; |
| unsigned FMask = 0xFF << (8 * (3 - Step)); |
| |
| unsigned FirstMask = |
| (BPP.first.SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask); |
| unsigned SecondMask = |
| (BPP.second.SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask); |
| // Attempt to find Src vector which contains our SDValue, if so, add our |
| // perm mask to the existing one. If we are unable to find a match for the |
| // first SDValue, attempt to find match for the second. |
| int FirstGroup = -1; |
| for (int I = 0; I < 2; I++) { |
| SmallVectorImpl<DotSrc> &Srcs = I == 0 ? Src0s : Src1s; |
| auto MatchesFirst = [&BPP](DotSrc &IterElt) { |
| return IterElt.SrcOp == *BPP.first.Src && |
| (IterElt.DWordOffset == (BPP.first.SrcOffset / 4)); |
| }; |
| |
| auto Match = llvm::find_if(Srcs, MatchesFirst); |
| if (Match != Srcs.end()) { |
| Match->PermMask = addPermMasks(FirstMask, Match->PermMask); |
| FirstGroup = I; |
| break; |
| } |
| } |
| if (FirstGroup != -1) { |
| SmallVectorImpl<DotSrc> &Srcs = FirstGroup == 1 ? Src0s : Src1s; |
| auto MatchesSecond = [&BPP](DotSrc &IterElt) { |
| return IterElt.SrcOp == *BPP.second.Src && |
| (IterElt.DWordOffset == (BPP.second.SrcOffset / 4)); |
| }; |
| auto Match = llvm::find_if(Srcs, MatchesSecond); |
| if (Match != Srcs.end()) { |
| Match->PermMask = addPermMasks(SecondMask, Match->PermMask); |
| } else |
| Srcs.push_back({*BPP.second.Src, SecondMask, BPP.second.SrcOffset / 4}); |
| return; |
| } |
| } |
| |
| // If we have made it here, then we could not find a match in Src0s or Src1s |
| // for either Src0 or Src1, so just place them arbitrarily. |
| |
| unsigned ZeroMask = 0x0c0c0c0c; |
| unsigned FMask = 0xFF << (8 * (3 - Step)); |
| |
| Src0s.push_back( |
| {*Src0.Src, |
| ((Src0.SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask)), |
| Src1.SrcOffset / 4}); |
| Src1s.push_back( |
| {*Src1.Src, |
| ((Src1.SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask)), |
| Src1.SrcOffset / 4}); |
| |
| return; |
| } |
| |
| static SDValue resolveSources(SelectionDAG &DAG, SDLoc SL, |
| SmallVectorImpl<DotSrc> &Srcs, bool IsSigned, |
| bool IsAny) { |
| |
| // If we just have one source, just permute it accordingly. |
| if (Srcs.size() == 1) { |
| auto Elt = Srcs.begin(); |
| auto EltOp = getDWordFromOffset(DAG, SL, Elt->SrcOp, Elt->DWordOffset); |
| |
| // v_perm will produce the original value |
| if (Elt->PermMask == 0x3020100) |
| return EltOp; |
| |
| return DAG.getNode(AMDGPUISD::PERM, SL, MVT::i32, EltOp, EltOp, |
| DAG.getConstant(Elt->PermMask, SL, MVT::i32)); |
| } |
| |
| auto FirstElt = Srcs.begin(); |
| auto SecondElt = std::next(FirstElt); |
| |
| SmallVector<SDValue, 2> Perms; |
| |
| // If we have multiple sources in the chain, combine them via perms (using |
| // calculated perm mask) and Ors. |
| while (true) { |
| auto FirstMask = FirstElt->PermMask; |
| auto SecondMask = SecondElt->PermMask; |
| |
| unsigned FirstCs = FirstMask & 0x0c0c0c0c; |
| unsigned FirstPlusFour = FirstMask | 0x04040404; |
| // 0x0c + 0x04 = 0x10, so anding with 0x0F will produced 0x00 for any |
| // original 0x0C. |
| FirstMask = (FirstPlusFour & 0x0F0F0F0F) | FirstCs; |
| |
| auto PermMask = addPermMasks(FirstMask, SecondMask); |
| auto FirstVal = |
| getDWordFromOffset(DAG, SL, FirstElt->SrcOp, FirstElt->DWordOffset); |
| auto SecondVal = |
| getDWordFromOffset(DAG, SL, SecondElt->SrcOp, SecondElt->DWordOffset); |
| |
| Perms.push_back(DAG.getNode(AMDGPUISD::PERM, SL, MVT::i32, FirstVal, |
| SecondVal, |
| DAG.getConstant(PermMask, SL, MVT::i32))); |
| |
| FirstElt = std::next(SecondElt); |
| if (FirstElt == Srcs.end()) |
| break; |
| |
| SecondElt = std::next(FirstElt); |
| // If we only have a FirstElt, then just combine that into the cumulative |
| // source node. |
| if (SecondElt == Srcs.end()) { |
| auto EltOp = |
| getDWordFromOffset(DAG, SL, FirstElt->SrcOp, FirstElt->DWordOffset); |
| |
| Perms.push_back( |
| DAG.getNode(AMDGPUISD::PERM, SL, MVT::i32, EltOp, EltOp, |
| DAG.getConstant(FirstElt->PermMask, SL, MVT::i32))); |
| break; |
| } |
| } |
| |
| assert(Perms.size() == 1 || Perms.size() == 2); |
| return Perms.size() == 2 |
| ? DAG.getNode(ISD::OR, SL, MVT::i32, Perms[0], Perms[1]) |
| : Perms[0]; |
| } |
| |
| static void fixMasks(SmallVectorImpl<DotSrc> &Srcs, unsigned ChainLength) { |
| for (auto &[EntryVal, EntryMask, EntryOffset] : Srcs) { |
| EntryMask = EntryMask >> ((4 - ChainLength) * 8); |
| auto ZeroMask = ChainLength == 2 ? 0x0c0c0000 : 0x0c000000; |
| EntryMask += ZeroMask; |
| } |
| } |
| |
| static bool isMul(const SDValue Op) { |
| auto Opcode = Op.getOpcode(); |
| |
| return (Opcode == ISD::MUL || Opcode == AMDGPUISD::MUL_U24 || |
| Opcode == AMDGPUISD::MUL_I24); |
| } |
| |
| static std::optional<bool> |
| checkDot4MulSignedness(const SDValue &N, ByteProvider<SDValue> &Src0, |
| ByteProvider<SDValue> &Src1, const SDValue &S0Op, |
| const SDValue &S1Op, const SelectionDAG &DAG) { |
| // If we both ops are i8s (pre legalize-dag), then the signedness semantics |
| // of the dot4 is irrelevant. |
| if (S0Op.getValueSizeInBits() == 8 && S1Op.getValueSizeInBits() == 8) |
| return false; |
| |
| auto Known0 = DAG.computeKnownBits(S0Op, 0); |
| bool S0IsUnsigned = Known0.countMinLeadingZeros() > 0; |
| bool S0IsSigned = Known0.countMinLeadingOnes() > 0; |
| auto Known1 = DAG.computeKnownBits(S1Op, 0); |
| bool S1IsUnsigned = Known1.countMinLeadingZeros() > 0; |
| bool S1IsSigned = Known1.countMinLeadingOnes() > 0; |
| |
| assert(!(S0IsUnsigned && S0IsSigned)); |
| assert(!(S1IsUnsigned && S1IsSigned)); |
| |
| // There are 9 possible permutations of |
| // {S0IsUnsigned, S0IsSigned, S1IsUnsigned, S1IsSigned} |
| |
| // In two permutations, the sign bits are known to be the same for both Ops, |
| // so simply return Signed / Unsigned corresponding to the MSB |
| |
| if ((S0IsUnsigned && S1IsUnsigned) || (S0IsSigned && S1IsSigned)) |
| return S0IsSigned; |
| |
| // In another two permutations, the sign bits are known to be opposite. In |
| // this case return std::nullopt to indicate a bad match. |
| |
| if ((S0IsUnsigned && S1IsSigned) || (S0IsSigned && S1IsUnsigned)) |
| return std::nullopt; |
| |
| // In the remaining five permutations, we don't know the value of the sign |
| // bit for at least one Op. Since we have a valid ByteProvider, we know that |
| // the upper bits must be extension bits. Thus, the only ways for the sign |
| // bit to be unknown is if it was sign extended from unknown value, or if it |
| // was any extended. In either case, it is correct to use the signed |
| // version of the signedness semantics of dot4 |
| |
| // In two of such permutations, we known the sign bit is set for |
| // one op, and the other is unknown. It is okay to used signed version of |
| // dot4. |
| if ((S0IsSigned && !(S1IsSigned || S1IsUnsigned)) || |
| ((S1IsSigned && !(S0IsSigned || S0IsUnsigned)))) |
| return true; |
| |
| // In one such permutation, we don't know either of the sign bits. It is okay |
| // to used the signed version of dot4. |
| if ((!(S1IsSigned || S1IsUnsigned) && !(S0IsSigned || S0IsUnsigned))) |
| return true; |
| |
| // In two of such permutations, we known the sign bit is unset for |
| // one op, and the other is unknown. Return std::nullopt to indicate a |
| // bad match. |
| if ((S0IsUnsigned && !(S1IsSigned || S1IsUnsigned)) || |
| ((S1IsUnsigned && !(S0IsSigned || S0IsUnsigned)))) |
| return std::nullopt; |
| |
| llvm_unreachable("Fully covered condition"); |
| } |
| |
| SDValue SITargetLowering::performAddCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| EVT VT = N->getValueType(0); |
| SDLoc SL(N); |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| |
| if (LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) { |
| if (Subtarget->hasMad64_32()) { |
| if (SDValue Folded = tryFoldToMad64_32(N, DCI)) |
| return Folded; |
| } |
| } |
| |
| if (SDValue V = reassociateScalarOps(N, DAG)) { |
| return V; |
| } |
| |
| if ((isMul(LHS) || isMul(RHS)) && Subtarget->hasDot7Insts() && |
| (Subtarget->hasDot1Insts() || Subtarget->hasDot8Insts())) { |
| SDValue TempNode(N, 0); |
| std::optional<bool> IsSigned; |
| SmallVector<DotSrc, 4> Src0s; |
| SmallVector<DotSrc, 4> Src1s; |
| SmallVector<SDValue, 4> Src2s; |
| |
| // Match the v_dot4 tree, while collecting src nodes. |
| int ChainLength = 0; |
| for (int I = 0; I < 4; I++) { |
| auto MulIdx = isMul(LHS) ? 0 : isMul(RHS) ? 1 : -1; |
| if (MulIdx == -1) |
| break; |
| auto Src0 = handleMulOperand(TempNode->getOperand(MulIdx)->getOperand(0)); |
| if (!Src0) |
| break; |
| auto Src1 = handleMulOperand(TempNode->getOperand(MulIdx)->getOperand(1)); |
| if (!Src1) |
| break; |
| |
| auto IterIsSigned = checkDot4MulSignedness( |
| TempNode->getOperand(MulIdx), *Src0, *Src1, |
| TempNode->getOperand(MulIdx)->getOperand(0), |
| TempNode->getOperand(MulIdx)->getOperand(1), DAG); |
| if (!IterIsSigned) |
| break; |
| if (!IsSigned) |
| IsSigned = *IterIsSigned; |
| if (*IterIsSigned != *IsSigned) |
| break; |
| placeSources(*Src0, *Src1, Src0s, Src1s, I); |
| auto AddIdx = 1 - MulIdx; |
| // Allow the special case where add (add (mul24, 0), mul24) became -> |
| // add (mul24, mul24). |
| if (I == 2 && isMul(TempNode->getOperand(AddIdx))) { |
| Src2s.push_back(TempNode->getOperand(AddIdx)); |
| auto Src0 = |
| handleMulOperand(TempNode->getOperand(AddIdx)->getOperand(0)); |
| if (!Src0) |
| break; |
| auto Src1 = |
| handleMulOperand(TempNode->getOperand(AddIdx)->getOperand(1)); |
| if (!Src1) |
| break; |
| auto IterIsSigned = checkDot4MulSignedness( |
| TempNode->getOperand(AddIdx), *Src0, *Src1, |
| TempNode->getOperand(AddIdx)->getOperand(0), |
| TempNode->getOperand(AddIdx)->getOperand(1), DAG); |
| if (!IterIsSigned) |
| break; |
| assert(IsSigned); |
| if (*IterIsSigned != *IsSigned) |
| break; |
| placeSources(*Src0, *Src1, Src0s, Src1s, I + 1); |
| Src2s.push_back(DAG.getConstant(0, SL, MVT::i32)); |
| ChainLength = I + 2; |
| break; |
| } |
| |
| TempNode = TempNode->getOperand(AddIdx); |
| Src2s.push_back(TempNode); |
| ChainLength = I + 1; |
| if (TempNode->getNumOperands() < 2) |
| break; |
| LHS = TempNode->getOperand(0); |
| RHS = TempNode->getOperand(1); |
| } |
| |
| if (ChainLength < 2) |
| return SDValue(); |
| |
| // Masks were constructed with assumption that we would find a chain of |
| // length 4. If not, then we need to 0 out the MSB bits (via perm mask of |
| // 0x0c) so they do not affect dot calculation. |
| if (ChainLength < 4) { |
| fixMasks(Src0s, ChainLength); |
| fixMasks(Src1s, ChainLength); |
| } |
| |
| SDValue Src0, Src1; |
| |
| // If we are just using a single source for both, and have permuted the |
| // bytes consistently, we can just use the sources without permuting |
| // (commutation). |
| bool UseOriginalSrc = false; |
| if (ChainLength == 4 && Src0s.size() == 1 && Src1s.size() == 1 && |
| Src0s.begin()->PermMask == Src1s.begin()->PermMask && |
| Src0s.begin()->SrcOp.getValueSizeInBits() >= 32 && |
| Src1s.begin()->SrcOp.getValueSizeInBits() >= 32) { |
| SmallVector<unsigned, 4> SrcBytes; |
| auto Src0Mask = Src0s.begin()->PermMask; |
| SrcBytes.push_back(Src0Mask & 0xFF000000); |
| bool UniqueEntries = true; |
| for (auto I = 1; I < 4; I++) { |
| auto NextByte = Src0Mask & (0xFF << ((3 - I) * 8)); |
| |
| if (is_contained(SrcBytes, NextByte)) { |
| UniqueEntries = false; |
| break; |
| } |
| SrcBytes.push_back(NextByte); |
| } |
| |
| if (UniqueEntries) { |
| UseOriginalSrc = true; |
| |
| auto FirstElt = Src0s.begin(); |
| auto FirstEltOp = |
| getDWordFromOffset(DAG, SL, FirstElt->SrcOp, FirstElt->DWordOffset); |
| |
| auto SecondElt = Src1s.begin(); |
| auto SecondEltOp = getDWordFromOffset(DAG, SL, SecondElt->SrcOp, |
| SecondElt->DWordOffset); |
| |
| Src0 = DAG.getBitcastedAnyExtOrTrunc(FirstEltOp, SL, |
| MVT::getIntegerVT(32)); |
| Src1 = DAG.getBitcastedAnyExtOrTrunc(SecondEltOp, SL, |
| MVT::getIntegerVT(32)); |
| } |
| } |
| |
| if (!UseOriginalSrc) { |
| Src0 = resolveSources(DAG, SL, Src0s, false, true); |
| Src1 = resolveSources(DAG, SL, Src1s, false, true); |
| } |
| |
| assert(IsSigned); |
| SDValue Src2 = |
| DAG.getExtOrTrunc(*IsSigned, Src2s[ChainLength - 1], SL, MVT::i32); |
| |
| SDValue IID = DAG.getTargetConstant(*IsSigned ? Intrinsic::amdgcn_sdot4 |
| : Intrinsic::amdgcn_udot4, |
| SL, MVT::i64); |
| |
| assert(!VT.isVector()); |
| auto Dot = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, MVT::i32, IID, Src0, |
| Src1, Src2, DAG.getTargetConstant(0, SL, MVT::i1)); |
| |
| return DAG.getExtOrTrunc(*IsSigned, Dot, SL, VT); |
| } |
| |
| if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG()) |
| return SDValue(); |
| |
| // add x, zext (setcc) => uaddo_carry x, 0, setcc |
| // add x, sext (setcc) => usubo_carry x, 0, setcc |
| unsigned Opc = LHS.getOpcode(); |
| if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND || |
| Opc == ISD::ANY_EXTEND || Opc == ISD::UADDO_CARRY) |
| std::swap(RHS, LHS); |
| |
| Opc = RHS.getOpcode(); |
| switch (Opc) { |
| default: break; |
| case ISD::ZERO_EXTEND: |
| case ISD::SIGN_EXTEND: |
| case ISD::ANY_EXTEND: { |
| auto Cond = RHS.getOperand(0); |
| // If this won't be a real VOPC output, we would still need to insert an |
| // extra instruction anyway. |
| if (!isBoolSGPR(Cond)) |
| break; |
| SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); |
| SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; |
| Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::USUBO_CARRY : ISD::UADDO_CARRY; |
| return DAG.getNode(Opc, SL, VTList, Args); |
| } |
| case ISD::UADDO_CARRY: { |
| // add x, (uaddo_carry y, 0, cc) => uaddo_carry x, y, cc |
| if (!isNullConstant(RHS.getOperand(1))) |
| break; |
| SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) }; |
| return DAG.getNode(ISD::UADDO_CARRY, SDLoc(N), RHS->getVTList(), Args); |
| } |
| } |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performSubCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| EVT VT = N->getValueType(0); |
| |
| if (VT != MVT::i32) |
| return SDValue(); |
| |
| SDLoc SL(N); |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| |
| // sub x, zext (setcc) => usubo_carry x, 0, setcc |
| // sub x, sext (setcc) => uaddo_carry x, 0, setcc |
| unsigned Opc = RHS.getOpcode(); |
| switch (Opc) { |
| default: break; |
| case ISD::ZERO_EXTEND: |
| case ISD::SIGN_EXTEND: |
| case ISD::ANY_EXTEND: { |
| auto Cond = RHS.getOperand(0); |
| // If this won't be a real VOPC output, we would still need to insert an |
| // extra instruction anyway. |
| if (!isBoolSGPR(Cond)) |
| break; |
| SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); |
| SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; |
| Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::UADDO_CARRY : ISD::USUBO_CARRY; |
| return DAG.getNode(Opc, SL, VTList, Args); |
| } |
| } |
| |
| if (LHS.getOpcode() == ISD::USUBO_CARRY) { |
| // sub (usubo_carry x, 0, cc), y => usubo_carry x, y, cc |
| if (!isNullConstant(LHS.getOperand(1))) |
| return SDValue(); |
| SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) }; |
| return DAG.getNode(ISD::USUBO_CARRY, SDLoc(N), LHS->getVTList(), Args); |
| } |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| |
| if (N->getValueType(0) != MVT::i32) |
| return SDValue(); |
| |
| if (!isNullConstant(N->getOperand(1))) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDValue LHS = N->getOperand(0); |
| |
| // uaddo_carry (add x, y), 0, cc => uaddo_carry x, y, cc |
| // usubo_carry (sub x, y), 0, cc => usubo_carry x, y, cc |
| unsigned LHSOpc = LHS.getOpcode(); |
| unsigned Opc = N->getOpcode(); |
| if ((LHSOpc == ISD::ADD && Opc == ISD::UADDO_CARRY) || |
| (LHSOpc == ISD::SUB && Opc == ISD::USUBO_CARRY)) { |
| SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) }; |
| return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args); |
| } |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performFAddCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| EVT VT = N->getValueType(0); |
| |
| SDLoc SL(N); |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| |
| // These should really be instruction patterns, but writing patterns with |
| // source modifiers is a pain. |
| |
| // fadd (fadd (a, a), b) -> mad 2.0, a, b |
| if (LHS.getOpcode() == ISD::FADD) { |
| SDValue A = LHS.getOperand(0); |
| if (A == LHS.getOperand(1)) { |
| unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); |
| if (FusedOp != 0) { |
| const SDValue Two = DAG.getConstantFP(2.0, SL, VT); |
| return DAG.getNode(FusedOp, SL, VT, A, Two, RHS); |
| } |
| } |
| } |
| |
| // fadd (b, fadd (a, a)) -> mad 2.0, a, b |
| if (RHS.getOpcode() == ISD::FADD) { |
| SDValue A = RHS.getOperand(0); |
| if (A == RHS.getOperand(1)) { |
| unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); |
| if (FusedOp != 0) { |
| const SDValue Two = DAG.getConstantFP(2.0, SL, VT); |
| return DAG.getNode(FusedOp, SL, VT, A, Two, LHS); |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performFSubCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc SL(N); |
| EVT VT = N->getValueType(0); |
| assert(!VT.isVector()); |
| |
| // Try to get the fneg to fold into the source modifier. This undoes generic |
| // DAG combines and folds them into the mad. |
| // |
| // Only do this if we are not trying to support denormals. v_mad_f32 does |
| // not support denormals ever. |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| if (LHS.getOpcode() == ISD::FADD) { |
| // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c) |
| SDValue A = LHS.getOperand(0); |
| if (A == LHS.getOperand(1)) { |
| unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); |
| if (FusedOp != 0){ |
| const SDValue Two = DAG.getConstantFP(2.0, SL, VT); |
| SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); |
| |
| return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS); |
| } |
| } |
| } |
| |
| if (RHS.getOpcode() == ISD::FADD) { |
| // (fsub c, (fadd a, a)) -> mad -2.0, a, c |
| |
| SDValue A = RHS.getOperand(0); |
| if (A == RHS.getOperand(1)) { |
| unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); |
| if (FusedOp != 0){ |
| const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT); |
| return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS); |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performFDivCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc SL(N); |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::f16 || !Subtarget->has16BitInsts()) |
| return SDValue(); |
| |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| |
| SDNodeFlags Flags = N->getFlags(); |
| SDNodeFlags RHSFlags = RHS->getFlags(); |
| if (!Flags.hasAllowContract() || !RHSFlags.hasAllowContract() || |
| !RHS->hasOneUse()) |
| return SDValue(); |
| |
| if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) { |
| bool IsNegative = false; |
| if (CLHS->isExactlyValue(1.0) || |
| (IsNegative = CLHS->isExactlyValue(-1.0))) { |
| // fdiv contract 1.0, (sqrt contract x) -> rsq for f16 |
| // fdiv contract -1.0, (sqrt contract x) -> fneg(rsq) for f16 |
| if (RHS.getOpcode() == ISD::FSQRT) { |
| // TODO: Or in RHS flags, somehow missing from SDNodeFlags |
| SDValue Rsq = |
| DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0), Flags); |
| return IsNegative ? DAG.getNode(ISD::FNEG, SL, VT, Rsq, Flags) : Rsq; |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performFMACombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| EVT VT = N->getValueType(0); |
| SDLoc SL(N); |
| |
| if (!Subtarget->hasDot7Insts() || VT != MVT::f32) |
| return SDValue(); |
| |
| // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) -> |
| // FDOT2((V2F16)S0, (V2F16)S1, (F32)z)) |
| SDValue Op1 = N->getOperand(0); |
| SDValue Op2 = N->getOperand(1); |
| SDValue FMA = N->getOperand(2); |
| |
| if (FMA.getOpcode() != ISD::FMA || |
| Op1.getOpcode() != ISD::FP_EXTEND || |
| Op2.getOpcode() != ISD::FP_EXTEND) |
| return SDValue(); |
| |
| // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero, |
| // regardless of the denorm mode setting. Therefore, |
| // unsafe-fp-math/fp-contract is sufficient to allow generating fdot2. |
| const TargetOptions &Options = DAG.getTarget().Options; |
| if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || |
| (N->getFlags().hasAllowContract() && |
| FMA->getFlags().hasAllowContract())) { |
| Op1 = Op1.getOperand(0); |
| Op2 = Op2.getOperand(0); |
| if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || |
| Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) |
| return SDValue(); |
| |
| SDValue Vec1 = Op1.getOperand(0); |
| SDValue Idx1 = Op1.getOperand(1); |
| SDValue Vec2 = Op2.getOperand(0); |
| |
| SDValue FMAOp1 = FMA.getOperand(0); |
| SDValue FMAOp2 = FMA.getOperand(1); |
| SDValue FMAAcc = FMA.getOperand(2); |
| |
| if (FMAOp1.getOpcode() != ISD::FP_EXTEND || |
| FMAOp2.getOpcode() != ISD::FP_EXTEND) |
| return SDValue(); |
| |
| FMAOp1 = FMAOp1.getOperand(0); |
| FMAOp2 = FMAOp2.getOperand(0); |
| if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || |
| FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) |
| return SDValue(); |
| |
| SDValue Vec3 = FMAOp1.getOperand(0); |
| SDValue Vec4 = FMAOp2.getOperand(0); |
| SDValue Idx2 = FMAOp1.getOperand(1); |
| |
| if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) || |
| // Idx1 and Idx2 cannot be the same. |
| Idx1 == Idx2) |
| return SDValue(); |
| |
| if (Vec1 == Vec2 || Vec3 == Vec4) |
| return SDValue(); |
| |
| if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16) |
| return SDValue(); |
| |
| if ((Vec1 == Vec3 && Vec2 == Vec4) || |
| (Vec1 == Vec4 && Vec2 == Vec3)) { |
| return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc, |
| DAG.getTargetConstant(0, SL, MVT::i1)); |
| } |
| } |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performSetCCCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc SL(N); |
| |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| EVT VT = LHS.getValueType(); |
| ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); |
| |
| auto CRHS = dyn_cast<ConstantSDNode>(RHS); |
| if (!CRHS) { |
| CRHS = dyn_cast<ConstantSDNode>(LHS); |
| if (CRHS) { |
| std::swap(LHS, RHS); |
| CC = getSetCCSwappedOperands(CC); |
| } |
| } |
| |
| if (CRHS) { |
| if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND && |
| isBoolSGPR(LHS.getOperand(0))) { |
| // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1 |
| // setcc (sext from i1 cc), -1, eq|sle|uge) => cc |
| // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1 |
| // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc |
| if ((CRHS->isAllOnes() && |
| (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) || |
| (CRHS->isZero() && |
| (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE))) |
| return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), |
| DAG.getConstant(-1, SL, MVT::i1)); |
| if ((CRHS->isAllOnes() && |
| (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) || |
| (CRHS->isZero() && |
| (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT))) |
| return LHS.getOperand(0); |
| } |
| |
| const APInt &CRHSVal = CRHS->getAPIntValue(); |
| if ((CC == ISD::SETEQ || CC == ISD::SETNE) && |
| LHS.getOpcode() == ISD::SELECT && |
| isa<ConstantSDNode>(LHS.getOperand(1)) && |
| isa<ConstantSDNode>(LHS.getOperand(2)) && |
| LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) && |
| isBoolSGPR(LHS.getOperand(0))) { |
| // Given CT != FT: |
| // setcc (select cc, CT, CF), CF, eq => xor cc, -1 |
| // setcc (select cc, CT, CF), CF, ne => cc |
| // setcc (select cc, CT, CF), CT, ne => xor cc, -1 |
| // setcc (select cc, CT, CF), CT, eq => cc |
| const APInt &CT = LHS.getConstantOperandAPInt(1); |
| const APInt &CF = LHS.getConstantOperandAPInt(2); |
| |
| if ((CF == CRHSVal && CC == ISD::SETEQ) || |
| (CT == CRHSVal && CC == ISD::SETNE)) |
| return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), |
| DAG.getConstant(-1, SL, MVT::i1)); |
| if ((CF == CRHSVal && CC == ISD::SETNE) || |
| (CT == CRHSVal && CC == ISD::SETEQ)) |
| return LHS.getOperand(0); |
| } |
| } |
| |
| if (VT != MVT::f32 && VT != MVT::f64 && |
| (!Subtarget->has16BitInsts() || VT != MVT::f16)) |
| return SDValue(); |
| |
| // Match isinf/isfinite pattern |
| // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity)) |
| // (fcmp one (fabs x), inf) -> (fp_class x, |
| // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero) |
| if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) { |
| const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); |
| if (!CRHS) |
| return SDValue(); |
| |
| const APFloat &APF = CRHS->getValueAPF(); |
| if (APF.isInfinity() && !APF.isNegative()) { |
| const unsigned IsInfMask = SIInstrFlags::P_INFINITY | |
| SIInstrFlags::N_INFINITY; |
| const unsigned IsFiniteMask = SIInstrFlags::N_ZERO | |
| SIInstrFlags::P_ZERO | |
| SIInstrFlags::N_NORMAL | |
| SIInstrFlags::P_NORMAL | |
| SIInstrFlags::N_SUBNORMAL | |
| SIInstrFlags::P_SUBNORMAL; |
| unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask; |
| return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0), |
| DAG.getConstant(Mask, SL, MVT::i32)); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc SL(N); |
| unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0; |
| |
| SDValue Src = N->getOperand(0); |
| SDValue Shift = N->getOperand(0); |
| |
| // TODO: Extend type shouldn't matter (assuming legal types). |
| if (Shift.getOpcode() == ISD::ZERO_EXTEND) |
| Shift = Shift.getOperand(0); |
| |
| if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) { |
| // cvt_f32_ubyte1 (shl x, 8) -> cvt_f32_ubyte0 x |
| // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x |
| // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x |
| // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x |
| // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x |
| if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) { |
| SDValue Shifted = DAG.getZExtOrTrunc(Shift.getOperand(0), |
| SDLoc(Shift.getOperand(0)), MVT::i32); |
| |
| unsigned ShiftOffset = 8 * Offset; |
| if (Shift.getOpcode() == ISD::SHL) |
| ShiftOffset -= C->getZExtValue(); |
| else |
| ShiftOffset += C->getZExtValue(); |
| |
| if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) { |
| return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL, |
| MVT::f32, Shifted); |
| } |
| } |
| } |
| |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8); |
| if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) { |
| // We simplified Src. If this node is not dead, visit it again so it is |
| // folded properly. |
| if (N->getOpcode() != ISD::DELETED_NODE) |
| DCI.AddToWorklist(N); |
| return SDValue(N, 0); |
| } |
| |
| // Handle (or x, (srl y, 8)) pattern when known bits are zero. |
| if (SDValue DemandedSrc = |
| TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG)) |
| return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc); |
| |
| return SDValue(); |
| } |
| |
| SDValue SITargetLowering::performClampCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); |
| if (!CSrc) |
| return SDValue(); |
| |
| const MachineFunction &MF = DCI.DAG.getMachineFunction(); |
| const APFloat &F = CSrc->getValueAPF(); |
| APFloat Zero = APFloat::getZero(F.getSemantics()); |
| if (F < Zero || |
| (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) { |
| return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0)); |
| } |
| |
| APFloat One(F.getSemantics(), "1.0"); |
| if (F > One) |
| return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0)); |
| |
| return SDValue(CSrc, 0); |
| } |
| |
| |
| SDValue SITargetLowering::PerformDAGCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| if (getTargetMachine().getOptLevel() == CodeGenOptLevel::None) |
| return SDValue(); |
| switch (N->getOpcode()) { |
| case ISD::ADD: |
| return performAddCombine(N, DCI); |
| case ISD::SUB: |
| return performSubCombine(N, DCI); |
| case ISD::UADDO_CARRY: |
| case ISD::USUBO_CARRY: |
| return performAddCarrySubCarryCombine(N, DCI); |
| case ISD::FADD: |
| return performFAddCombine(N, DCI); |
| case ISD::FSUB: |
| return performFSubCombine(N, DCI); |
| case ISD::FDIV: |
| return performFDivCombine(N, DCI); |
| case ISD::SETCC: |
| return performSetCCCombine(N, DCI); |
| case ISD::FMAXNUM: |
| case ISD::FMINNUM: |
| case ISD::FMAXNUM_IEEE: |
| case ISD::FMINNUM_IEEE: |
| case ISD::FMAXIMUM: |
| case ISD::FMINIMUM: |
| case ISD::SMAX: |
| case ISD::SMIN: |
| case ISD::UMAX: |
| case ISD::UMIN: |
| case AMDGPUISD::FMIN_LEGACY: |
| case AMDGPUISD::FMAX_LEGACY: |
| return performMinMaxCombine(N, DCI); |
| case ISD::FMA: |
| return performFMACombine(N, DCI); |
| case ISD::AND: |
| return performAndCombine(N, DCI); |
| case ISD::OR: |
| return performOrCombine(N, DCI); |
| case ISD::FSHR: { |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| if (N->getValueType(0) == MVT::i32 && N->isDivergent() && |
| TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) { |
| return matchPERM(N, DCI); |
| } |
| break; |
| } |
| case ISD::XOR: |
| return performXorCombine(N, DCI); |
| case ISD::ZERO_EXTEND: |
| return performZeroExtendCombine(N, DCI); |
| case ISD::SIGN_EXTEND_INREG: |
| return performSignExtendInRegCombine(N , DCI); |
| case AMDGPUISD::FP_CLASS: |
| return performClassCombine(N, DCI); |
| case ISD::FCANONICALIZE: |
| return performFCanonicalizeCombine(N, DCI); |
| case AMDGPUISD::RCP: |
| return performRcpCombine(N, DCI); |
| case ISD::FLDEXP: |
| case AMDGPUISD::FRACT: |
| case AMDGPUISD::RSQ: |
| case AMDGPUISD::RCP_LEGACY: |
| case AMDGPUISD::RCP_IFLAG: |
| case AMDGPUISD::RSQ_CLAMP: { |
| // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted |
| SDValue Src = N->getOperand(0); |
| if (Src.isUndef()) |
| return Src; |
| break; |
| } |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: |
| return performUCharToFloatCombine(N, DCI); |
| case ISD::FCOPYSIGN: |
| return performFCopySignCombine(N, DCI); |
| case AMDGPUISD::CVT_F32_UBYTE0: |
| case AMDGPUISD::CVT_F32_UBYTE1: |
| case AMDGPUISD::CVT_F32_UBYTE2: |
| case AMDGPUISD::CVT_F32_UBYTE3: |
| return performCvtF32UByteNCombine(N, DCI); |
| case AMDGPUISD::FMED3: |
| return performFMed3Combine(N, DCI); |
| case AMDGPUISD::CVT_PKRTZ_F16_F32: |
| return performCvtPkRTZCombine(N, DCI); |
| case AMDGPUISD::CLAMP: |
| return performClampCombine(N, DCI); |
| case ISD::SCALAR_TO_VECTOR: { |
| SelectionDAG &DAG = DCI.DAG; |
| EVT VT = N->getValueType(0); |
| |
| // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x)) |
| if (VT == MVT::v2i16 || VT == MVT::v2f16 || VT == MVT::v2bf16) { |
| SDLoc SL(N); |
| SDValue Src = N->getOperand(0); |
| EVT EltVT = Src.getValueType(); |
| if (EltVT != MVT::i16) |
| Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src); |
| |
| SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src); |
| return DAG.getNode(ISD::BITCAST, SL, VT, Ext); |
| } |
| |
| break; |
| } |
| case ISD::EXTRACT_VECTOR_ELT: |
| return performExtractVectorEltCombine(N, DCI); |
| case ISD::INSERT_VECTOR_ELT: |
| return performInsertVectorEltCombine(N, DCI); |
| case ISD::FP_ROUND: |
| return performFPRoundCombine(N, DCI); |
| case ISD::LOAD: { |
| if (SDValue Widened = widenLoad(cast<LoadSDNode>(N), DCI)) |
| return Widened; |
| [[fallthrough]]; |
| } |
| default: { |
| if (!DCI.isBeforeLegalize()) { |
| if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N)) |
| return performMemSDNodeCombine(MemNode, DCI); |
| } |
| |
| break; |
| } |
| } |
| |
| return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); |
| } |
| |
| /// Helper function for adjustWritemask |
| static unsigned SubIdx2Lane(unsigned Idx) { |
| switch (Idx) { |
| default: return ~0u; |
| case AMDGPU::sub0: return 0; |
| case AMDGPU::sub1: return 1; |
| case AMDGPU::sub2: return 2; |
| case AMDGPU::sub3: return 3; |
| case AMDGPU::sub4: return 4; // Possible with TFE/LWE |
| } |
| } |
| |
| /// Adjust the writemask of MIMG, VIMAGE or VSAMPLE instructions |
| SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node, |
| SelectionDAG &DAG) const { |
| unsigned Opcode = Node->getMachineOpcode(); |
| |
| // Subtract 1 because the vdata output is not a MachineSDNode operand. |
| int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1; |
| if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx)) |
| return Node; // not implemented for D16 |
| |
| SDNode *Users[5] = { nullptr }; |
| unsigned Lane = 0; |
| unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1; |
| unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx); |
| unsigned NewDmask = 0; |
| unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1; |
| unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1; |
| bool UsesTFC = ((int(TFEIdx) >= 0 && Node->getConstantOperandVal(TFEIdx)) || |
| (int(LWEIdx) >= 0 && Node->getConstantOperandVal(LWEIdx))) |
| ? true |
| : false; |
| unsigned TFCLane = 0; |
| bool HasChain = Node->getNumValues() > 1; |
| |
| if (OldDmask == 0) { |
| // These are folded out, but on the chance it happens don't assert. |
| return Node; |
| } |
| |
| unsigned OldBitsSet = llvm::popcount(OldDmask); |
| // Work out which is the TFE/LWE lane if that is enabled. |
| if (UsesTFC) { |
| TFCLane = OldBitsSet; |
| } |
| |
| // Try to figure out the used register components |
| for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end(); |
| I != E; ++I) { |
| |
| // Don't look at users of the chain. |
| if (I.getUse().getResNo() != 0) |
| continue; |
| |
| // Abort if we can't understand the usage |
| if (!I->isMachineOpcode() || |
| I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG) |
| return Node; |
| |
| // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used. |
| // Note that subregs are packed, i.e. Lane==0 is the first bit set |
| // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit |
| // set, etc. |
| Lane = SubIdx2Lane(I->getConstantOperandVal(1)); |
| if (Lane == ~0u) |
| return Node; |
| |
| // Check if the use is for the TFE/LWE generated result at VGPRn+1. |
| if (UsesTFC && Lane == TFCLane) { |
| Users[Lane] = *I; |
| } else { |
| // Set which texture component corresponds to the lane. |
| unsigned Comp; |
| for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) { |
| Comp = llvm::countr_zero(Dmask); |
| Dmask &= ~(1 << Comp); |
| } |
| |
| // Abort if we have more than one user per component. |
| if (Users[Lane]) |
| return Node; |
| |
| Users[Lane] = *I; |
| NewDmask |= 1 << Comp; |
| } |
| } |
| |
| // Don't allow 0 dmask, as hardware assumes one channel enabled. |
| bool NoChannels = !NewDmask; |
| if (NoChannels) { |
| if (!UsesTFC) { |
| // No uses of the result and not using TFC. Then do nothing. |
| return Node; |
| } |
| // If the original dmask has one channel - then nothing to do |
| if (OldBitsSet == 1) |
| return Node; |
| // Use an arbitrary dmask - required for the instruction to work |
| NewDmask = 1; |
| } |
| // Abort if there's no change |
| if (NewDmask == OldDmask) |
| return Node; |
| |
| unsigned BitsSet = llvm::popcount(NewDmask); |
| |
| // Check for TFE or LWE - increase the number of channels by one to account |
| // for the extra return value |
| // This will need adjustment for D16 if this is also included in |
| // adjustWriteMask (this function) but at present D16 are excluded. |
| unsigned NewChannels = BitsSet + UsesTFC; |
| |
| int NewOpcode = |
| AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels); |
| assert(NewOpcode != -1 && |
| NewOpcode != static_cast<int>(Node->getMachineOpcode()) && |
| "failed to find equivalent MIMG op"); |
| |
| // Adjust the writemask in the node |
| SmallVector<SDValue, 12> Ops; |
| Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx); |
| Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32)); |
| Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end()); |
| |
| MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT(); |
| |
| MVT ResultVT = NewChannels == 1 ? |
| SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 : |
| NewChannels == 5 ? 8 : NewChannels); |
| SDVTList NewVTList = HasChain ? |
| DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT); |
| |
| |
| MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node), |
| NewVTList, Ops); |
| |
| if (HasChain) { |
| // Update chain. |
| DAG.setNodeMemRefs(NewNode, Node->memoperands()); |
| DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1)); |
| } |
| |
| if (NewChannels == 1) { |
| assert(Node->hasNUsesOfValue(1, 0)); |
| SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY, |
| SDLoc(Node), Users[Lane]->getValueType(0), |
| SDValue(NewNode, 0)); |
| DAG.ReplaceAllUsesWith(Users[Lane], Copy); |
| return nullptr; |
| } |
| |
| // Update the users of the node with the new indices |
| for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) { |
| SDNode *User = Users[i]; |
| if (!User) { |
| // Handle the special case of NoChannels. We set NewDmask to 1 above, but |
| // Users[0] is still nullptr because channel 0 doesn't really have a use. |
| if (i || !NoChannels) |
| continue; |
| } else { |
| SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32); |
| SDNode *NewUser = DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op); |
| if (NewUser != User) { |
| DAG.ReplaceAllUsesWith(SDValue(User, 0), SDValue(NewUser, 0)); |
| DAG.RemoveDeadNode(User); |
| } |
| } |
| |
| switch (Idx) { |
| default: break; |
| case AMDGPU::sub0: Idx = AMDGPU::sub1; break; |
| case AMDGPU::sub1: Idx = AMDGPU::sub2; break; |
| case AMDGPU::sub2: Idx = AMDGPU::sub3; break; |
| case AMDGPU::sub3: Idx = AMDGPU::sub4; break; |
| } |
| } |
| |
| DAG.RemoveDeadNode(Node); |
| return nullptr; |
| } |
| |
| static bool isFrameIndexOp(SDValue Op) { |
| if (Op.getOpcode() == ISD::AssertZext) |
| Op = Op.getOperand(0); |
| |
| return isa<FrameIndexSDNode>(Op); |
| } |
| |
| /// Legalize target independent instructions (e.g. INSERT_SUBREG) |
| /// with frame index operands. |
| /// LLVM assumes that inputs are to these instructions are registers. |
| SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node, |
| SelectionDAG &DAG) const { |
| if (Node->getOpcode() == ISD::CopyToReg) { |
| RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1)); |
| SDValue SrcVal = Node->getOperand(2); |
| |
| // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have |
| // to try understanding copies to physical registers. |
| if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) { |
| SDLoc SL(Node); |
| MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); |
| SDValue VReg = DAG.getRegister( |
| MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1); |
| |
| SDNode *Glued = Node->getGluedNode(); |
| SDValue ToVReg |
| = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal, |
| SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0)); |
| SDValue ToResultReg |
| = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0), |
| VReg, ToVReg.getValue(1)); |
| DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode()); |
| DAG.RemoveDeadNode(Node); |
| return ToResultReg.getNode(); |
| } |
| } |
| |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned i = 0; i < Node->getNumOperands(); ++i) { |
| if (!isFrameIndexOp(Node->getOperand(i))) { |
| Ops.push_back(Node->getOperand(i)); |
| continue; |
| } |
| |
| SDLoc DL(Node); |
| Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, |
| Node->getOperand(i).getValueType(), |
| Node->getOperand(i)), 0)); |
| } |
| |
| return DAG.UpdateNodeOperands(Node, Ops); |
| } |
| |
| /// Fold the instructions after selecting them. |
| /// Returns null if users were already updated. |
| SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, |
| SelectionDAG &DAG) const { |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| unsigned Opcode = Node->getMachineOpcode(); |
| |
| if (TII->isImage(Opcode) && !TII->get(Opcode).mayStore() && |
| !TII->isGather4(Opcode) && |
| AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::dmask)) { |
| return adjustWritemask(Node, DAG); |
| } |
| |
| if (Opcode == AMDGPU::INSERT_SUBREG || |
| Opcode == AMDGPU::REG_SEQUENCE) { |
| legalizeTargetIndependentNode(Node, DAG); |
| return Node; |
| } |
| |
| switch (Opcode) { |
| case AMDGPU::V_DIV_SCALE_F32_e64: |
| case AMDGPU::V_DIV_SCALE_F64_e64: { |
| // Satisfy the operand register constraint when one of the inputs is |
| // undefined. Ordinarily each undef value will have its own implicit_def of |
| // a vreg, so force these to use a single register. |
| SDValue Src0 = Node->getOperand(1); |
| SDValue Src1 = Node->getOperand(3); |
| SDValue Src2 = Node->getOperand(5); |
| |
| if ((Src0.isMachineOpcode() && |
| Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) && |
| (Src0 == Src1 || Src0 == Src2)) |
| break; |
| |
| MVT VT = Src0.getValueType().getSimpleVT(); |
| const TargetRegisterClass *RC = |
| getRegClassFor(VT, Src0.getNode()->isDivergent()); |
| |
| MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); |
| SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT); |
| |
| SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node), |
| UndefReg, Src0, SDValue()); |
| |
| // src0 must be the same register as src1 or src2, even if the value is |
| // undefined, so make sure we don't violate this constraint. |
| if (Src0.isMachineOpcode() && |
| Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) { |
| if (Src1.isMachineOpcode() && |
| Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) |
| Src0 = Src1; |
| else if (Src2.isMachineOpcode() && |
| Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) |
| Src0 = Src2; |
| else { |
| assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF); |
| Src0 = UndefReg; |
| Src1 = UndefReg; |
| } |
| } else |
| break; |
| |
| SmallVector<SDValue, 9> Ops(Node->ops()); |
| Ops[1] = Src0; |
| Ops[3] = Src1; |
| Ops[5] = Src2; |
| Ops.push_back(ImpDef.getValue(1)); |
| return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); |
| } |
| default: |
| break; |
| } |
| |
| return Node; |
| } |
| |
| // Any MIMG instructions that use tfe or lwe require an initialization of the |
| // result register that will be written in the case of a memory access failure. |
| // The required code is also added to tie this init code to the result of the |
| // img instruction. |
| void SITargetLowering::AddMemOpInit(MachineInstr &MI) const { |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| const SIRegisterInfo &TRI = TII->getRegisterInfo(); |
| MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); |
| MachineBasicBlock &MBB = *MI.getParent(); |
| |
| int DstIdx = |
| AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata); |
| unsigned InitIdx = 0; |
| |
| if (TII->isImage(MI)) { |
| MachineOperand *TFE = TII->getNamedOperand(MI, AMDGPU::OpName::tfe); |
| MachineOperand *LWE = TII->getNamedOperand(MI, AMDGPU::OpName::lwe); |
| MachineOperand *D16 = TII->getNamedOperand(MI, AMDGPU::OpName::d16); |
| |
| if (!TFE && !LWE) // intersect_ray |
| return; |
| |
| unsigned TFEVal = TFE ? TFE->getImm() : 0; |
| unsigned LWEVal = LWE ? LWE->getImm() : 0; |
| unsigned D16Val = D16 ? D16->getImm() : 0; |
| |
| if (!TFEVal && !LWEVal) |
| return; |
| |
| // At least one of TFE or LWE are non-zero |
| // We have to insert a suitable initialization of the result value and |
| // tie this to the dest of the image instruction. |
| |
| // Calculate which dword we have to initialize to 0. |
| MachineOperand *MO_Dmask = TII->getNamedOperand(MI, AMDGPU::OpName::dmask); |
| |
| // check that dmask operand is found. |
| assert(MO_Dmask && "Expected dmask operand in instruction"); |
| |
| unsigned dmask = MO_Dmask->getImm(); |
| // Determine the number of active lanes taking into account the |
| // Gather4 special case |
| unsigned ActiveLanes = TII->isGather4(MI) ? 4 : llvm::popcount(dmask); |
| |
| bool Packed = !Subtarget->hasUnpackedD16VMem(); |
| |
| InitIdx = D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1; |
| |
| // Abandon attempt if the dst size isn't large enough |
| // - this is in fact an error but this is picked up elsewhere and |
| // reported correctly. |
| uint32_t DstSize = |
| TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32; |
| if (DstSize < InitIdx) |
| return; |
| } else if (TII->isMUBUF(MI) && AMDGPU::getMUBUFTfe(MI.getOpcode())) { |
| InitIdx = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32; |
| } else { |
| return; |
| } |
| |
| const DebugLoc &DL = MI.getDebugLoc(); |
| |
| // Create a register for the initialization value. |
| Register PrevDst = MRI.cloneVirtualRegister(MI.getOperand(DstIdx).getReg()); |
| unsigned NewDst = 0; // Final initialized value will be in here |
| |
| // If PRTStrictNull feature is enabled (the default) then initialize |
| // all the result registers to 0, otherwise just the error indication |
| // register (VGPRn+1) |
| unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1; |
| unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1); |
| |
| BuildMI(MBB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), PrevDst); |
| for (; SizeLeft; SizeLeft--, CurrIdx++) { |
| NewDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx)); |
| // Initialize dword |
| Register SubReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); |
| BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), SubReg) |
| .addImm(0); |
| // Insert into the super-reg |
| BuildMI(MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewDst) |
| .addReg(PrevDst) |
| .addReg(SubReg) |
| .addImm(SIRegisterInfo::getSubRegFromChannel(CurrIdx)); |
| |
| PrevDst = NewDst; |
| } |
| |
| // Add as an implicit operand |
| MI.addOperand(MachineOperand::CreateReg(NewDst, false, true)); |
| |
| // Tie the just added implicit operand to the dst |
| MI.tieOperands(DstIdx, MI.getNumOperands() - 1); |
| } |
| |
| /// Assign the register class depending on the number of |
| /// bits set in the writemask |
| void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, |
| SDNode *Node) const { |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| |
| MachineFunction *MF = MI.getParent()->getParent(); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); |
| |
| if (TII->isVOP3(MI.getOpcode())) { |
| // Make sure constant bus requirements are respected. |
| TII->legalizeOperandsVOP3(MRI, MI); |
| |
| // Prefer VGPRs over AGPRs in mAI instructions where possible. |
| // This saves a chain-copy of registers and better balance register |
| // use between vgpr and agpr as agpr tuples tend to be big. |
| if (!MI.getDesc().operands().empty()) { |
| unsigned Opc = MI.getOpcode(); |
| bool HasAGPRs = Info->mayNeedAGPRs(); |
| const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); |
| int16_t Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); |
| for (auto I : |
| {AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0), |
| AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1), Src2Idx}) { |
| if (I == -1) |
| break; |
| if ((I == Src2Idx) && (HasAGPRs)) |
| break; |
| MachineOperand &Op = MI.getOperand(I); |
| if (!Op.isReg() || !Op.getReg().isVirtual()) |
| continue; |
| auto *RC = TRI->getRegClassForReg(MRI, Op.getReg()); |
| if (!TRI->hasAGPRs(RC)) |
| continue; |
| auto *Src = MRI.getUniqueVRegDef(Op.getReg()); |
| if (!Src || !Src->isCopy() || |
| !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg())) |
| continue; |
| auto *NewRC = TRI->getEquivalentVGPRClass(RC); |
| // All uses of agpr64 and agpr32 can also accept vgpr except for |
| // v_accvgpr_read, but we do not produce agpr reads during selection, |
| // so no use checks are needed. |
| MRI.setRegClass(Op.getReg(), NewRC); |
| } |
| |
| if (!HasAGPRs) |
| return; |
| |
| // Resolve the rest of AV operands to AGPRs. |
| if (auto *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2)) { |
| if (Src2->isReg() && Src2->getReg().isVirtual()) { |
| auto *RC = TRI->getRegClassForReg(MRI, Src2->getReg()); |
| if (TRI->isVectorSuperClass(RC)) { |
| auto *NewRC = TRI->getEquivalentAGPRClass(RC); |
| MRI.setRegClass(Src2->getReg(), NewRC); |
| if (Src2->isTied()) |
| MRI.setRegClass(MI.getOperand(0).getReg(), NewRC); |
| } |
| } |
| } |
| } |
| |
| return; |
| } |
| |
| if (TII->isImage(MI)) |
| TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::vaddr); |
| } |
| |
| static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL, |
| uint64_t Val) { |
| SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32); |
| return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0); |
| } |
| |
| MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG, |
| const SDLoc &DL, |
| SDValue Ptr) const { |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| |
| // Build the half of the subregister with the constants before building the |
| // full 128-bit register. If we are building multiple resource descriptors, |
| // this will allow CSEing of the 2-component register. |
| const SDValue Ops0[] = { |
| DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32), |
| buildSMovImm32(DAG, DL, 0), |
| DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), |
| buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32), |
| DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32) |
| }; |
| |
| SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, |
| MVT::v2i32, Ops0), 0); |
| |
| // Combine the constants and the pointer. |
| const SDValue Ops1[] = { |
| DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), |
| Ptr, |
| DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32), |
| SubRegHi, |
| DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32) |
| }; |
| |
| return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1); |
| } |
| |
| /// Return a resource descriptor with the 'Add TID' bit enabled |
| /// The TID (Thread ID) is multiplied by the stride value (bits [61:48] |
| /// of the resource descriptor) to create an offset, which is added to |
| /// the resource pointer. |
| MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL, |
| SDValue Ptr, uint32_t RsrcDword1, |
| uint64_t RsrcDword2And3) const { |
| SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr); |
| SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr); |
| if (RsrcDword1) { |
| PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi, |
| DAG.getConstant(RsrcDword1, DL, MVT::i32)), |
| 0); |
| } |
| |
| SDValue DataLo = buildSMovImm32(DAG, DL, |
| RsrcDword2And3 & UINT64_C(0xFFFFFFFF)); |
| SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32); |
| |
| const SDValue Ops[] = { |
| DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), |
| PtrLo, |
| DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), |
| PtrHi, |
| DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32), |
| DataLo, |
| DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32), |
| DataHi, |
| DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32) |
| }; |
| |
| return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SI Inline Assembly Support |
| //===----------------------------------------------------------------------===// |
| |
| std::pair<unsigned, const TargetRegisterClass *> |
| SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI_, |
| StringRef Constraint, |
| MVT VT) const { |
| const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(TRI_); |
| |
| const TargetRegisterClass *RC = nullptr; |
| if (Constraint.size() == 1) { |
| const unsigned BitWidth = VT.getSizeInBits(); |
| switch (Constraint[0]) { |
| default: |
| return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); |
| case 's': |
| case 'r': |
| switch (BitWidth) { |
| case 16: |
| RC = &AMDGPU::SReg_32RegClass; |
| break; |
| case 64: |
| RC = &AMDGPU::SGPR_64RegClass; |
| break; |
| default: |
| RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth); |
| if (!RC) |
| return std::pair(0U, nullptr); |
| break; |
| } |
| break; |
| case 'v': |
| switch (BitWidth) { |
| case 16: |
| RC = &AMDGPU::VGPR_32RegClass; |
| break; |
| default: |
| RC = TRI->getVGPRClassForBitWidth(BitWidth); |
| if (!RC) |
| return std::pair(0U, nullptr); |
| break; |
| } |
| break; |
| case 'a': |
| if (!Subtarget->hasMAIInsts()) |
| break; |
| switch (BitWidth) { |
| case 16: |
| RC = &AMDGPU::AGPR_32RegClass; |
| break; |
| default: |
| RC = TRI->getAGPRClassForBitWidth(BitWidth); |
| if (!RC) |
| return std::pair(0U, nullptr); |
| break; |
| } |
| break; |
| } |
| // We actually support i128, i16 and f16 as inline parameters |
| // even if they are not reported as legal |
| if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 || |
| VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16)) |
| return std::pair(0U, RC); |
| } |
| |
| if (Constraint.starts_with("{") && Constraint.ends_with("}")) { |
| StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); |
| if (RegName.consume_front("v")) { |
| RC = &AMDGPU::VGPR_32RegClass; |
| } else if (RegName.consume_front("s")) { |
| RC = &AMDGPU::SGPR_32RegClass; |
| } else if (RegName.consume_front("a")) { |
| RC = &AMDGPU::AGPR_32RegClass; |
| } |
| |
| if (RC) { |
| uint32_t Idx; |
| if (RegName.consume_front("[")) { |
| uint32_t End; |
| bool Failed = RegName.consumeInteger(10, Idx); |
| Failed |= !RegName.consume_front(":"); |
| Failed |= RegName.consumeInteger(10, End); |
| Failed |= !RegName.consume_back("]"); |
| if (!Failed) { |
| uint32_t Width = (End - Idx + 1) * 32; |
| MCRegister Reg = RC->getRegister(Idx); |
| if (SIRegisterInfo::isVGPRClass(RC)) |
| RC = TRI->getVGPRClassForBitWidth(Width); |
| else if (SIRegisterInfo::isSGPRClass(RC)) |
| RC = TRI->getSGPRClassForBitWidth(Width); |
| else if (SIRegisterInfo::isAGPRClass(RC)) |
| RC = TRI->getAGPRClassForBitWidth(Width); |
| if (RC) { |
| Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, RC); |
| return std::pair(Reg, RC); |
| } |
| } |
| } else { |
| bool Failed = RegName.getAsInteger(10, Idx); |
| if (!Failed && Idx < RC->getNumRegs()) |
| return std::pair(RC->getRegister(Idx), RC); |
| } |
| } |
| } |
| |
| auto Ret = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); |
| if (Ret.first) |
| Ret.second = TRI->getPhysRegBaseClass(Ret.first); |
| |
| return Ret; |
| } |
| |
| static bool isImmConstraint(StringRef Constraint) { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| default: break; |
| case 'I': |
| case 'J': |
| case 'A': |
| case 'B': |
| case 'C': |
| return true; |
| } |
| } else if (Constraint == "DA" || |
| Constraint == "DB") { |
| return true; |
| } |
| return false; |
| } |
| |
| SITargetLowering::ConstraintType |
| SITargetLowering::getConstraintType(StringRef Constraint) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| default: break; |
| case 's': |
| case 'v': |
| case 'a': |
| return C_RegisterClass; |
| } |
| } |
| if (isImmConstraint(Constraint)) { |
| return C_Other; |
| } |
| return TargetLowering::getConstraintType(Constraint); |
| } |
| |
| static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) { |
| if (!AMDGPU::isInlinableIntLiteral(Val)) { |
| Val = Val & maskTrailingOnes<uint64_t>(Size); |
| } |
| return Val; |
| } |
| |
| void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op, |
| StringRef Constraint, |
| std::vector<SDValue> &Ops, |
| SelectionDAG &DAG) const { |
| if (isImmConstraint(Constraint)) { |
| uint64_t Val; |
| if (getAsmOperandConstVal(Op, Val) && |
| checkAsmConstraintVal(Op, Constraint, Val)) { |
| Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits()); |
| Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64)); |
| } |
| } else { |
| TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); |
| } |
| } |
| |
| bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const { |
| unsigned Size = Op.getScalarValueSizeInBits(); |
| if (Size > 64) |
| return false; |
| |
| if (Size == 16 && !Subtarget->has16BitInsts()) |
| return false; |
| |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { |
| Val = C->getSExtValue(); |
| return true; |
| } |
| if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { |
| Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); |
| return true; |
| } |
| if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) { |
| if (Size != 16 || Op.getNumOperands() != 2) |
| return false; |
| if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef()) |
| return false; |
| if (ConstantSDNode *C = V->getConstantSplatNode()) { |
| Val = C->getSExtValue(); |
| return true; |
| } |
| if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) { |
| Val = C->getValueAPF().bitcastToAPInt().getSExtValue(); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool SITargetLowering::checkAsmConstraintVal(SDValue Op, StringRef Constraint, |
| uint64_t Val) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| case 'I': |
| return AMDGPU::isInlinableIntLiteral(Val); |
| case 'J': |
| return isInt<16>(Val); |
| case 'A': |
| return checkAsmConstraintValA(Op, Val); |
| case 'B': |
| return isInt<32>(Val); |
| case 'C': |
| return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) || |
| AMDGPU::isInlinableIntLiteral(Val); |
| default: |
| break; |
| } |
| } else if (Constraint.size() == 2) { |
| if (Constraint == "DA") { |
| int64_t HiBits = static_cast<int32_t>(Val >> 32); |
| int64_t LoBits = static_cast<int32_t>(Val); |
| return checkAsmConstraintValA(Op, HiBits, 32) && |
| checkAsmConstraintValA(Op, LoBits, 32); |
| } |
| if (Constraint == "DB") { |
| return true; |
| } |
| } |
| llvm_unreachable("Invalid asm constraint"); |
| } |
| |
| bool SITargetLowering::checkAsmConstraintValA(SDValue Op, uint64_t Val, |
| unsigned MaxSize) const { |
| unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize); |
| bool HasInv2Pi = Subtarget->hasInv2PiInlineImm(); |
| if (Size == 16) { |
| MVT VT = Op.getSimpleValueType(); |
| switch (VT.SimpleTy) { |
| default: |
| return false; |
| case MVT::i16: |
| return AMDGPU::isInlinableLiteralI16(Val, HasInv2Pi); |
| case MVT::f16: |
| return AMDGPU::isInlinableLiteralFP16(Val, HasInv2Pi); |
| case MVT::bf16: |
| return AMDGPU::isInlinableLiteralBF16(Val, HasInv2Pi); |
| case MVT::v2i16: |
| return AMDGPU::getInlineEncodingV2I16(Val).has_value(); |
| case MVT::v2f16: |
| return AMDGPU::getInlineEncodingV2F16(Val).has_value(); |
| case MVT::v2bf16: |
| return AMDGPU::getInlineEncodingV2BF16(Val).has_value(); |
| } |
| } |
| if ((Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) || |
| (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) |
| return true; |
| return false; |
| } |
| |
| static int getAlignedAGPRClassID(unsigned UnalignedClassID) { |
| switch (UnalignedClassID) { |
| case AMDGPU::VReg_64RegClassID: |
| return AMDGPU::VReg_64_Align2RegClassID; |
| case AMDGPU::VReg_96RegClassID: |
| return AMDGPU::VReg_96_Align2RegClassID; |
| case AMDGPU::VReg_128RegClassID: |
| return AMDGPU::VReg_128_Align2RegClassID; |
| case AMDGPU::VReg_160RegClassID: |
| return AMDGPU::VReg_160_Align2RegClassID; |
| case AMDGPU::VReg_192RegClassID: |
| return AMDGPU::VReg_192_Align2RegClassID; |
| case AMDGPU::VReg_224RegClassID: |
| return AMDGPU::VReg_224_Align2RegClassID; |
| case AMDGPU::VReg_256RegClassID: |
| return AMDGPU::VReg_256_Align2RegClassID; |
| case AMDGPU::VReg_288RegClassID: |
| return AMDGPU::VReg_288_Align2RegClassID; |
| case AMDGPU::VReg_320RegClassID: |
| return AMDGPU::VReg_320_Align2RegClassID; |
| case AMDGPU::VReg_352RegClassID: |
| return AMDGPU::VReg_352_Align2RegClassID; |
| case AMDGPU::VReg_384RegClassID: |
| return AMDGPU::VReg_384_Align2RegClassID; |
| case AMDGPU::VReg_512RegClassID: |
| return AMDGPU::VReg_512_Align2RegClassID; |
| case AMDGPU::VReg_1024RegClassID: |
| return AMDGPU::VReg_1024_Align2RegClassID; |
| case AMDGPU::AReg_64RegClassID: |
| return AMDGPU::AReg_64_Align2RegClassID; |
| case AMDGPU::AReg_96RegClassID: |
| return AMDGPU::AReg_96_Align2RegClassID; |
| case AMDGPU::AReg_128RegClassID: |
| return AMDGPU::AReg_128_Align2RegClassID; |
| case AMDGPU::AReg_160RegClassID: |
| return AMDGPU::AReg_160_Align2RegClassID; |
| case AMDGPU::AReg_192RegClassID: |
| return AMDGPU::AReg_192_Align2RegClassID; |
| case AMDGPU::AReg_256RegClassID: |
| return AMDGPU::AReg_256_Align2RegClassID; |
| case AMDGPU::AReg_512RegClassID: |
| return AMDGPU::AReg_512_Align2RegClassID; |
| case AMDGPU::AReg_1024RegClassID: |
| return AMDGPU::AReg_1024_Align2RegClassID; |
| default: |
| return -1; |
| } |
| } |
| |
| // Figure out which registers should be reserved for stack access. Only after |
| // the function is legalized do we know all of the non-spill stack objects or if |
| // calls are present. |
| void SITargetLowering::finalizeLowering(MachineFunction &MF) const { |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); |
| const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); |
| const SIInstrInfo *TII = ST.getInstrInfo(); |
| |
| if (Info->isEntryFunction()) { |
| // Callable functions have fixed registers used for stack access. |
| reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info); |
| } |
| |
| // TODO: Move this logic to getReservedRegs() |
| // Reserve the SGPR(s) to save/restore EXEC for WWM spill/copy handling. |
| unsigned MaxNumSGPRs = ST.getMaxNumSGPRs(MF); |
| Register SReg = ST.isWave32() |
| ? AMDGPU::SGPR_32RegClass.getRegister(MaxNumSGPRs - 1) |
| : TRI->getAlignedHighSGPRForRC(MF, /*Align=*/2, |
| &AMDGPU::SGPR_64RegClass); |
| Info->setSGPRForEXECCopy(SReg); |
| |
| assert(!TRI->isSubRegister(Info->getScratchRSrcReg(), |
| Info->getStackPtrOffsetReg())); |
| if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG) |
| MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg()); |
| |
| // We need to worry about replacing the default register with itself in case |
| // of MIR testcases missing the MFI. |
| if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG) |
| MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg()); |
| |
| if (Info->getFrameOffsetReg() != AMDGPU::FP_REG) |
| MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg()); |
| |
| Info->limitOccupancy(MF); |
| |
| if (ST.isWave32() && !MF.empty()) { |
| for (auto &MBB : MF) { |
| for (auto &MI : MBB) { |
| TII->fixImplicitOperands(MI); |
| } |
| } |
| } |
| |
| // FIXME: This is a hack to fixup AGPR classes to use the properly aligned |
| // classes if required. Ideally the register class constraints would differ |
| // per-subtarget, but there's no easy way to achieve that right now. This is |
| // not a problem for VGPRs because the correctly aligned VGPR class is implied |
| // from using them as the register class for legal types. |
| if (ST.needsAlignedVGPRs()) { |
| for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { |
| const Register Reg = Register::index2VirtReg(I); |
| const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg); |
| if (!RC) |
| continue; |
| int NewClassID = getAlignedAGPRClassID(RC->getID()); |
| if (NewClassID != -1) |
| MRI.setRegClass(Reg, TRI->getRegClass(NewClassID)); |
| } |
| } |
| |
| TargetLoweringBase::finalizeLowering(MF); |
| } |
| |
| void SITargetLowering::computeKnownBitsForTargetNode(const SDValue Op, |
| KnownBits &Known, |
| const APInt &DemandedElts, |
| const SelectionDAG &DAG, |
| unsigned Depth) const { |
| Known.resetAll(); |
| unsigned Opc = Op.getOpcode(); |
| switch (Opc) { |
| case ISD::INTRINSIC_WO_CHAIN: { |
| unsigned IID = Op.getConstantOperandVal(0); |
| switch (IID) { |
| case Intrinsic::amdgcn_mbcnt_lo: |
| case Intrinsic::amdgcn_mbcnt_hi: { |
| const GCNSubtarget &ST = |
| DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); |
| // Wave64 mbcnt_lo returns at most 32 + src1. Otherwise these return at |
| // most 31 + src1. |
| Known.Zero.setBitsFrom( |
| IID == Intrinsic::amdgcn_mbcnt_lo ? ST.getWavefrontSizeLog2() : 5); |
| KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(2), Depth + 1); |
| Known = KnownBits::add(Known, Known2); |
| return; |
| } |
| } |
| break; |
| } |
| } |
| return AMDGPUTargetLowering::computeKnownBitsForTargetNode( |
| Op, Known, DemandedElts, DAG, Depth); |
| } |
| |
| void SITargetLowering::computeKnownBitsForFrameIndex( |
| const int FI, KnownBits &Known, const MachineFunction &MF) const { |
| TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF); |
| |
| // Set the high bits to zero based on the maximum allowed scratch size per |
| // wave. We can't use vaddr in MUBUF instructions if we don't know the address |
| // calculation won't overflow, so assume the sign bit is never set. |
| Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex()); |
| } |
| |
| static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB, |
| KnownBits &Known, unsigned Dim) { |
| unsigned MaxValue = |
| ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim); |
| Known.Zero.setHighBits(llvm::countl_zero(MaxValue)); |
| } |
| |
| void SITargetLowering::computeKnownBitsForTargetInstr( |
| GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts, |
| const MachineRegisterInfo &MRI, unsigned Depth) const { |
| const MachineInstr *MI = MRI.getVRegDef(R); |
| switch (MI->getOpcode()) { |
| case AMDGPU::G_INTRINSIC: |
| case AMDGPU::G_INTRINSIC_CONVERGENT: { |
| Intrinsic::ID IID = cast<GIntrinsic>(MI)->getIntrinsicID(); |
| switch (IID) { |
| case Intrinsic::amdgcn_workitem_id_x: |
| knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0); |
| break; |
| case Intrinsic::amdgcn_workitem_id_y: |
| knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1); |
| break; |
| case Intrinsic::amdgcn_workitem_id_z: |
| knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2); |
| break; |
| case Intrinsic::amdgcn_mbcnt_lo: |
| case Intrinsic::amdgcn_mbcnt_hi: { |
| // Wave64 mbcnt_lo returns at most 32 + src1. Otherwise these return at |
| // most 31 + src1. |
| Known.Zero.setBitsFrom(IID == Intrinsic::amdgcn_mbcnt_lo |
| ? getSubtarget()->getWavefrontSizeLog2() |
| : 5); |
| KnownBits Known2; |
| KB.computeKnownBitsImpl(MI->getOperand(3).getReg(), Known2, DemandedElts, |
| Depth + 1); |
| Known = KnownBits::add(Known, Known2); |
| break; |
| } |
| case Intrinsic::amdgcn_groupstaticsize: { |
| // We can report everything over the maximum size as 0. We can't report |
| // based on the actual size because we don't know if it's accurate or not |
| // at any given point. |
| Known.Zero.setHighBits( |
| llvm::countl_zero(getSubtarget()->getAddressableLocalMemorySize())); |
| break; |
| } |
| } |
| break; |
| } |
| case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: |
| Known.Zero.setHighBits(24); |
| break; |
| case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: |
| Known.Zero.setHighBits(16); |
| break; |
| case AMDGPU::G_AMDGPU_SMED3: |
| case AMDGPU::G_AMDGPU_UMED3: { |
| auto [Dst, Src0, Src1, Src2] = MI->getFirst4Regs(); |
| |
| KnownBits Known2; |
| KB.computeKnownBitsImpl(Src2, Known2, DemandedElts, Depth + 1); |
| if (Known2.isUnknown()) |
| break; |
| |
| KnownBits Known1; |
| KB.computeKnownBitsImpl(Src1, Known1, DemandedElts, Depth + 1); |
| if (Known1.isUnknown()) |
| break; |
| |
| KnownBits Known0; |
| KB.computeKnownBitsImpl(Src0, Known0, DemandedElts, Depth + 1); |
| if (Known0.isUnknown()) |
| break; |
| |
| // TODO: Handle LeadZero/LeadOne from UMIN/UMAX handling. |
| Known.Zero = Known0.Zero & Known1.Zero & Known2.Zero; |
| Known.One = Known0.One & Known1.One & Known2.One; |
| break; |
| } |
| } |
| } |
| |
| Align SITargetLowering::computeKnownAlignForTargetInstr( |
| GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI, |
| unsigned Depth) const { |
| const MachineInstr *MI = MRI.getVRegDef(R); |
| if (auto *GI = dyn_cast<GIntrinsic>(MI)) { |
| // FIXME: Can this move to generic code? What about the case where the call |
| // site specifies a lower alignment? |
| Intrinsic::ID IID = GI->getIntrinsicID(); |
| LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext(); |
| AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID); |
| if (MaybeAlign RetAlign = Attrs.getRetAlignment()) |
| return *RetAlign; |
| } |
| return Align(1); |
| } |
| |
| Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { |
| const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML); |
| const Align CacheLineAlign = Align(64); |
| |
| // Pre-GFX10 target did not benefit from loop alignment |
| if (!ML || DisableLoopAlignment || !getSubtarget()->hasInstPrefetch() || |
| getSubtarget()->hasInstFwdPrefetchBug()) |
| return PrefAlign; |
| |
| // On GFX10 I$ is 4 x 64 bytes cache lines. |
| // By default prefetcher keeps one cache line behind and reads two ahead. |
| // We can modify it with S_INST_PREFETCH for larger loops to have two lines |
| // behind and one ahead. |
| // Therefor we can benefit from aligning loop headers if loop fits 192 bytes. |
| // If loop fits 64 bytes it always spans no more than two cache lines and |
| // does not need an alignment. |
| // Else if loop is less or equal 128 bytes we do not need to modify prefetch, |
| // Else if loop is less or equal 192 bytes we need two lines behind. |
| |
| const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); |
| const MachineBasicBlock *Header = ML->getHeader(); |
| if (Header->getAlignment() != PrefAlign) |
| return Header->getAlignment(); // Already processed. |
| |
| unsigned LoopSize = 0; |
| for (const MachineBasicBlock *MBB : ML->blocks()) { |
| // If inner loop block is aligned assume in average half of the alignment |
| // size to be added as nops. |
| if (MBB != Header) |
| LoopSize += MBB->getAlignment().value() / 2; |
| |
| for (const MachineInstr &MI : *MBB) { |
| LoopSize += TII->getInstSizeInBytes(MI); |
| if (LoopSize > 192) |
| return PrefAlign; |
| } |
| } |
| |
| if (LoopSize <= 64) |
| return PrefAlign; |
| |
| if (LoopSize <= 128) |
| return CacheLineAlign; |
| |
| // If any of parent loops is surrounded by prefetch instructions do not |
| // insert new for inner loop, which would reset parent's settings. |
| for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) { |
| if (MachineBasicBlock *Exit = P->getExitBlock()) { |
| auto I = Exit->getFirstNonDebugInstr(); |
| if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH) |
| return CacheLineAlign; |
| } |
| } |
| |
| MachineBasicBlock *Pre = ML->getLoopPreheader(); |
| MachineBasicBlock *Exit = ML->getExitBlock(); |
| |
| if (Pre && Exit) { |
| auto PreTerm = Pre->getFirstTerminator(); |
| if (PreTerm == Pre->begin() || |
| std::prev(PreTerm)->getOpcode() != AMDGPU::S_INST_PREFETCH) |
| BuildMI(*Pre, PreTerm, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH)) |
| .addImm(1); // prefetch 2 lines behind PC |
| |
| auto ExitHead = Exit->getFirstNonDebugInstr(); |
| if (ExitHead == Exit->end() || |
| ExitHead->getOpcode() != AMDGPU::S_INST_PREFETCH) |
| BuildMI(*Exit, ExitHead, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH)) |
| .addImm(2); // prefetch 1 line behind PC |
| } |
| |
| return CacheLineAlign; |
| } |
| |
| LLVM_ATTRIBUTE_UNUSED |
| static bool isCopyFromRegOfInlineAsm(const SDNode *N) { |
| assert(N->getOpcode() == ISD::CopyFromReg); |
| do { |
| // Follow the chain until we find an INLINEASM node. |
| N = N->getOperand(0).getNode(); |
| if (N->getOpcode() == ISD::INLINEASM || |
| N->getOpcode() == ISD::INLINEASM_BR) |
| return true; |
| } while (N->getOpcode() == ISD::CopyFromReg); |
| return false; |
| } |
| |
| bool SITargetLowering::isSDNodeSourceOfDivergence(const SDNode *N, |
| FunctionLoweringInfo *FLI, |
| UniformityInfo *UA) const { |
| switch (N->getOpcode()) { |
| case ISD::CopyFromReg: { |
| const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1)); |
| const MachineRegisterInfo &MRI = FLI->MF->getRegInfo(); |
| const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); |
| Register Reg = R->getReg(); |
| |
| // FIXME: Why does this need to consider isLiveIn? |
| if (Reg.isPhysical() || MRI.isLiveIn(Reg)) |
| return !TRI->isSGPRReg(MRI, Reg); |
| |
| if (const Value *V = FLI->getValueFromVirtualReg(R->getReg())) |
| return UA->isDivergent(V); |
| |
| assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N)); |
| return !TRI->isSGPRReg(MRI, Reg); |
| } |
| case ISD::LOAD: { |
| const LoadSDNode *L = cast<LoadSDNode>(N); |
| unsigned AS = L->getAddressSpace(); |
| // A flat load may access private memory. |
| return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS; |
| } |
| case ISD::CALLSEQ_END: |
| return true; |
| case ISD::INTRINSIC_WO_CHAIN: |
| return AMDGPU::isIntrinsicSourceOfDivergence(N->getConstantOperandVal(0)); |
| case ISD::INTRINSIC_W_CHAIN: |
| return AMDGPU::isIntrinsicSourceOfDivergence(N->getConstantOperandVal(1)); |
| case AMDGPUISD::ATOMIC_CMP_SWAP: |
| case AMDGPUISD::BUFFER_ATOMIC_SWAP: |
| case AMDGPUISD::BUFFER_ATOMIC_ADD: |
| case AMDGPUISD::BUFFER_ATOMIC_SUB: |
| case AMDGPUISD::BUFFER_ATOMIC_SMIN: |
| case AMDGPUISD::BUFFER_ATOMIC_UMIN: |
| case AMDGPUISD::BUFFER_ATOMIC_SMAX: |
| case AMDGPUISD::BUFFER_ATOMIC_UMAX: |
| case AMDGPUISD::BUFFER_ATOMIC_AND: |
| case AMDGPUISD::BUFFER_ATOMIC_OR: |
| case AMDGPUISD::BUFFER_ATOMIC_XOR: |
| case AMDGPUISD::BUFFER_ATOMIC_INC: |
| case AMDGPUISD::BUFFER_ATOMIC_DEC: |
| case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP: |
| case AMDGPUISD::BUFFER_ATOMIC_CSUB: |
| case AMDGPUISD::BUFFER_ATOMIC_FADD: |
| case AMDGPUISD::BUFFER_ATOMIC_FMIN: |
| case AMDGPUISD::BUFFER_ATOMIC_FMAX: |
| // Target-specific read-modify-write atomics are sources of divergence. |
| return true; |
| default: |
| if (auto *A = dyn_cast<AtomicSDNode>(N)) { |
| // Generic read-modify-write atomics are sources of divergence. |
| return A->readMem() && A->writeMem(); |
| } |
| return false; |
| } |
| } |
| |
| bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG, |
| EVT VT) const { |
| switch (VT.getScalarType().getSimpleVT().SimpleTy) { |
| case MVT::f32: |
| return !denormalModeIsFlushAllF32(DAG.getMachineFunction()); |
| case MVT::f64: |
| case MVT::f16: |
| return !denormalModeIsFlushAllF64F16(DAG.getMachineFunction()); |
| default: |
| return false; |
| } |
| } |
| |
| bool SITargetLowering::denormalsEnabledForType( |
| LLT Ty, const MachineFunction &MF) const { |
| switch (Ty.getScalarSizeInBits()) { |
| case 32: |
| return !denormalModeIsFlushAllF32(MF); |
| case 64: |
| case 16: |
| return !denormalModeIsFlushAllF64F16(MF); |
| default: |
| return false; |
| } |
| } |
| |
| bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, |
| const SelectionDAG &DAG, |
| bool SNaN, |
| unsigned Depth) const { |
| if (Op.getOpcode() == AMDGPUISD::CLAMP) { |
| const MachineFunction &MF = DAG.getMachineFunction(); |
| const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| |
| if (Info->getMode().DX10Clamp) |
| return true; // Clamped to 0. |
| return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); |
| } |
| |
| return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG, |
| SNaN, Depth); |
| } |
| |
| // On older subtargets, global FP atomic instructions have a hardcoded FP mode |
| // and do not support FP32 denormals, and only support v2f16/f64 denormals. |
| static bool atomicIgnoresDenormalModeOrFPModeIsFTZ(const AtomicRMWInst *RMW) { |
| if (RMW->hasMetadata("amdgpu.ignore.denormal.mode")) |
| return true; |
| |
| const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics(); |
| auto DenormMode = RMW->getFunction()->getDenormalMode(Flt); |
| if (DenormMode == DenormalMode::getPreserveSign()) |
| return true; |
| |
| // TODO: Remove this. |
| return RMW->getFunction() |
| ->getFnAttribute("amdgpu-unsafe-fp-atomics") |
| .getValueAsBool(); |
| } |
| |
| static OptimizationRemark emitAtomicRMWLegalRemark(const AtomicRMWInst *RMW) { |
| LLVMContext &Ctx = RMW->getContext(); |
| SmallVector<StringRef> SSNs; |
| Ctx.getSyncScopeNames(SSNs); |
| StringRef MemScope = SSNs[RMW->getSyncScopeID()].empty() |
| ? "system" |
| : SSNs[RMW->getSyncScopeID()]; |
| |
| return OptimizationRemark(DEBUG_TYPE, "Passed", RMW) |
| << "Hardware instruction generated for atomic " |
| << RMW->getOperationName(RMW->getOperation()) |
| << " operation at memory scope " << MemScope; |
| } |
| |
| static bool isV2F16OrV2BF16(Type *Ty) { |
| if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { |
| Type *EltTy = VT->getElementType(); |
| return VT->getNumElements() == 2 && |
| (EltTy->isHalfTy() || EltTy->isBFloatTy()); |
| } |
| |
| return false; |
| } |
| |
| static bool isV2F16(Type *Ty) { |
| FixedVectorType *VT = dyn_cast<FixedVectorType>(Ty); |
| return VT && VT->getNumElements() == 2 && VT->getElementType()->isHalfTy(); |
| } |
| |
| static bool isV2BF16(Type *Ty) { |
| FixedVectorType *VT = dyn_cast<FixedVectorType>(Ty); |
| return VT && VT->getNumElements() == 2 && VT->getElementType()->isBFloatTy(); |
| } |
| |
| /// \return true if atomicrmw integer ops work for the type. |
| static bool isAtomicRMWLegalIntTy(Type *Ty) { |
| if (auto *IT = dyn_cast<IntegerType>(Ty)) { |
| unsigned BW = IT->getBitWidth(); |
| return BW == 32 || BW == 64; |
| } |
| |
| return false; |
| } |
| |
| /// \return true if this atomicrmw xchg type can be selected. |
| static bool isAtomicRMWLegalXChgTy(const AtomicRMWInst *RMW) { |
| Type *Ty = RMW->getType(); |
| if (isAtomicRMWLegalIntTy(Ty)) |
| return true; |
| |
| if (PointerType *PT = dyn_cast<PointerType>(Ty)) { |
| const DataLayout &DL = RMW->getFunction()->getParent()->getDataLayout(); |
| unsigned BW = DL.getPointerSizeInBits(PT->getAddressSpace()); |
| return BW == 32 || BW == 64; |
| } |
| |
| if (Ty->isFloatTy() || Ty->isDoubleTy()) |
| return true; |
| |
| if (FixedVectorType *VT = dyn_cast<FixedVectorType>(Ty)) { |
| return VT->getNumElements() == 2 && |
| VT->getElementType()->getPrimitiveSizeInBits() == 16; |
| } |
| |
| return false; |
| } |
| |
| /// \returns true if it's valid to emit a native instruction for \p RMW, based |
| /// on the properties of the target memory. |
| static bool globalMemoryFPAtomicIsLegal(const GCNSubtarget &Subtarget, |
| const AtomicRMWInst *RMW, |
| bool HasSystemScope) { |
| // The remote/fine-grained access logic is different from the integer |
| // atomics. Without AgentScopeFineGrainedRemoteMemoryAtomics support, |
| // fine-grained access does not work, even for a device local allocation. |
| // |
| // With AgentScopeFineGrainedRemoteMemoryAtomics, system scoped device local |
| // allocations work. |
| if (HasSystemScope) { |
| if (Subtarget.supportsAgentScopeFineGrainedRemoteMemoryAtomics() && |
| RMW->hasMetadata("amdgpu.no.remote.memory")) |
| return true; |
| } else if (Subtarget.supportsAgentScopeFineGrainedRemoteMemoryAtomics()) |
| return true; |
| |
| return RMW->hasMetadata("amdgpu.no.fine.grained.memory"); |
| } |
| |
| /// \return Action to perform on AtomicRMWInsts for integer operations. |
| static TargetLowering::AtomicExpansionKind |
| atomicSupportedIfLegalIntType(const AtomicRMWInst *RMW) { |
| return isAtomicRMWLegalIntTy(RMW->getType()) |
| ? TargetLowering::AtomicExpansionKind::None |
| : TargetLowering::AtomicExpansionKind::CmpXChg; |
| } |
| |
| TargetLowering::AtomicExpansionKind |
| SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { |
| unsigned AS = RMW->getPointerAddressSpace(); |
| if (AS == AMDGPUAS::PRIVATE_ADDRESS) |
| return AtomicExpansionKind::NotAtomic; |
| |
| auto ReportUnsafeHWInst = [=](TargetLowering::AtomicExpansionKind Kind) { |
| OptimizationRemarkEmitter ORE(RMW->getFunction()); |
| ORE.emit([=]() { |
| return emitAtomicRMWLegalRemark(RMW) << " due to an unsafe request."; |
| }); |
| return Kind; |
| }; |
| |
| auto SSID = RMW->getSyncScopeID(); |
| bool HasSystemScope = |
| SSID == SyncScope::System || |
| SSID == RMW->getContext().getOrInsertSyncScopeID("one-as"); |
| |
| auto Op = RMW->getOperation(); |
| switch (Op) { |
| case AtomicRMWInst::Xchg: { |
| // PCIe supports add and xchg for system atomics. |
| return isAtomicRMWLegalXChgTy(RMW) |
| ? TargetLowering::AtomicExpansionKind::None |
| : TargetLowering::AtomicExpansionKind::CmpXChg; |
| |
| // PCIe supports add and xchg for system atomics. |
| return atomicSupportedIfLegalIntType(RMW); |
| } |
| case AtomicRMWInst::Add: |
| case AtomicRMWInst::And: |
| case AtomicRMWInst::UIncWrap: |
| case AtomicRMWInst::UDecWrap: |
| return atomicSupportedIfLegalIntType(RMW); |
| case AtomicRMWInst::Sub: |
| case AtomicRMWInst::Or: |
| case AtomicRMWInst::Xor: { |
| // Atomic sub/or/xor do not work over PCI express, but atomic add |
| // does. InstCombine transforms these with 0 to or, so undo that. |
| if (HasSystemScope && AMDGPU::isFlatGlobalAddrSpace(AS)) { |
| if (Constant *ConstVal = dyn_cast<Constant>(RMW->getValOperand()); |
| ConstVal && ConstVal->isNullValue()) |
| return AtomicExpansionKind::Expand; |
| } |
| |
| return atomicSupportedIfLegalIntType(RMW); |
| } |
| case AtomicRMWInst::FAdd: { |
| Type *Ty = RMW->getType(); |
| |
| // TODO: Handle REGION_ADDRESS |
| if (AS == AMDGPUAS::LOCAL_ADDRESS) { |
| // DS F32 FP atomics do respect the denormal mode, but the rounding mode |
| // is fixed to round-to-nearest-even. |
| // |
| // F64 / PK_F16 / PK_BF16 never flush and are also fixed to |
| // round-to-nearest-even. |
| // |
| // We ignore the rounding mode problem, even in strictfp. The C++ standard |
| // suggests it is OK if the floating-point mode may not match the calling |
| // thread. |
| if (Ty->isFloatTy()) { |
| return Subtarget->hasLDSFPAtomicAddF32() ? AtomicExpansionKind::None |
| : AtomicExpansionKind::CmpXChg; |
| } |
| |
| if (Ty->isDoubleTy()) { |
| // Ignores denormal mode, but we don't consider flushing mandatory. |
| return Subtarget->hasLDSFPAtomicAddF64() ? AtomicExpansionKind::None |
| : AtomicExpansionKind::CmpXChg; |
| } |
| |
| if (Subtarget->hasAtomicDsPkAdd16Insts() && isV2F16OrV2BF16(Ty)) |
| return AtomicExpansionKind::None; |
| |
| return AtomicExpansionKind::CmpXChg; |
| } |
| |
| // LDS atomics respect the denormal mode from the mode register. |
| // |
| // Traditionally f32 global/buffer memory atomics would unconditionally |
| // flush denormals, but newer targets do not flush. f64/f16/bf16 cases never |
| // flush. |
| // |
| // On targets with flat atomic fadd, denormals would flush depending on |
| // whether the target address resides in LDS or global memory. We consider |
| // this flat-maybe-flush as will-flush. |
| if (Ty->isFloatTy() && |
| !Subtarget->hasMemoryAtomicFaddF32DenormalSupport() && |
| !atomicIgnoresDenormalModeOrFPModeIsFTZ(RMW)) |
| return AtomicExpansionKind::CmpXChg; |
| |
| // FIXME: These ReportUnsafeHWInsts are imprecise. Some of these cases are |
| // safe. The message phrasing also should be better. |
| if (globalMemoryFPAtomicIsLegal(*Subtarget, RMW, HasSystemScope)) { |
| if (AS == AMDGPUAS::FLAT_ADDRESS) { |
| // gfx940, gfx12 |
| if (Subtarget->hasAtomicFlatPkAdd16Insts() && isV2F16OrV2BF16(Ty)) |
| return ReportUnsafeHWInst(AtomicExpansionKind::None); |
| } else if (AMDGPU::isExtendedGlobalAddrSpace(AS)) { |
| // gfx90a, gfx940, gfx12 |
| if (Subtarget->hasAtomicBufferGlobalPkAddF16Insts() && isV2F16(Ty)) |
| return ReportUnsafeHWInst(AtomicExpansionKind::None); |
| |
| // gfx940, gfx12 |
| if (Subtarget->hasAtomicGlobalPkAddBF16Inst() && isV2BF16(Ty)) |
| return ReportUnsafeHWInst(AtomicExpansionKind::None); |
| } else if (AS == AMDGPUAS::BUFFER_FAT_POINTER) { |
| // gfx90a, gfx940, gfx12 |
| if (Subtarget->hasAtomicBufferGlobalPkAddF16Insts() && isV2F16(Ty)) |
| return ReportUnsafeHWInst(AtomicExpansionKind::None); |
| |
| // While gfx90a/gfx940 supports v2bf16 for global/flat, it does not for |
| // buffer. gfx12 does have the buffer version. |
| if (Subtarget->hasAtomicBufferPkAddBF16Inst() && isV2BF16(Ty)) |
| return ReportUnsafeHWInst(AtomicExpansionKind::None); |
| } |
| |
| // global and flat atomic fadd f64: gfx90a, gfx940. |
| if (Subtarget->hasFlatBufferGlobalAtomicFaddF64Inst() && Ty->isDoubleTy()) |
| return ReportUnsafeHWInst(AtomicExpansionKind::None); |
| |
| if (AS != AMDGPUAS::FLAT_ADDRESS) { |
| if (Ty->isFloatTy()) { |
| // global/buffer atomic fadd f32 no-rtn: gfx908, gfx90a, gfx940, |
| // gfx11+. |
| if (RMW->use_empty() && Subtarget->hasAtomicFaddNoRtnInsts()) |
| return ReportUnsafeHWInst(AtomicExpansionKind::None); |
| // global/buffer atomic fadd f32 rtn: gfx90a, gfx940, gfx11+. |
| if (!RMW->use_empty() && Subtarget->hasAtomicFaddRtnInsts()) |
| return ReportUnsafeHWInst(AtomicExpansionKind::None); |
| } else { |
| // gfx908 |
| if (RMW->use_empty() && |
| Subtarget->hasAtomicBufferGlobalPkAddF16NoRtnInsts() && |
| isV2F16(Ty)) |
| return ReportUnsafeHWInst(AtomicExpansionKind::None); |
| } |
| } |
| |
| // flat atomic fadd f32: gfx940, gfx11+. |
| if (AS == AMDGPUAS::FLAT_ADDRESS && Ty->isFloatTy()) { |
| if (Subtarget->hasFlatAtomicFaddF32Inst()) |
| return ReportUnsafeHWInst(AtomicExpansionKind::None); |
| |
| // If it is in flat address space, and the type is float, we will try to |
| // expand it, if the target supports global and lds atomic fadd. The |
| // reason we need that is, in the expansion, we emit the check of |
| // address space. If it is in global address space, we emit the global |
| // atomic fadd; if it is in shared address space, we emit the LDS atomic |
| // fadd. |
| if (Subtarget->hasLDSFPAtomicAddF32()) { |
| if (RMW->use_empty() && Subtarget->hasAtomicFaddNoRtnInsts()) |
| return AtomicExpansionKind::Expand; |
| if (!RMW->use_empty() && Subtarget->hasAtomicFaddRtnInsts()) |
| return AtomicExpansionKind::Expand; |
| } |
| } |
| } |
| |
| return AtomicExpansionKind::CmpXChg; |
| } |
| case AtomicRMWInst::FMin: |
| case AtomicRMWInst::FMax: { |
| Type *Ty = RMW->getType(); |
| |
| // LDS float and double fmin/fmax were always supported. |
| if (AS == AMDGPUAS::LOCAL_ADDRESS) { |
| return Ty->isFloatTy() || Ty->isDoubleTy() ? AtomicExpansionKind::None |
| : AtomicExpansionKind::CmpXChg; |
| } |
| |
| if (globalMemoryFPAtomicIsLegal(*Subtarget, RMW, HasSystemScope)) { |
| // For flat and global cases: |
| // float, double in gfx7. Manual claims denormal support. |
| // Removed in gfx8. |
| // float, double restored in gfx10. |
| // double removed again in gfx11, so only f32 for gfx11/gfx12. |
| // |
| // For gfx9, gfx90a and gfx940 support f64 for global (same as fadd), but |
| // no f32. |
| if (AS == AMDGPUAS::FLAT_ADDRESS) { |
| if (Subtarget->hasAtomicFMinFMaxF32FlatInsts() && Ty->isFloatTy()) |
| return ReportUnsafeHWInst(AtomicExpansionKind::None); |
| if (Subtarget->hasAtomicFMinFMaxF64FlatInsts() && Ty->isDoubleTy()) |
| return ReportUnsafeHWInst(AtomicExpansionKind::None); |
| } else if (AMDGPU::isExtendedGlobalAddrSpace(AS) || |
| AS == AMDGPUAS::BUFFER_FAT_POINTER) { |
| if (Subtarget->hasAtomicFMinFMaxF32GlobalInsts() && Ty->isFloatTy()) |
| return ReportUnsafeHWInst(AtomicExpansionKind::None); |
| if (Subtarget->hasAtomicFMinFMaxF64GlobalInsts() && Ty->isDoubleTy()) |
| return ReportUnsafeHWInst(AtomicExpansionKind::None); |
| } |
| } |
| |
| return AtomicExpansionKind::CmpXChg; |
| } |
| case AtomicRMWInst::Min: |
| case AtomicRMWInst::Max: |
| case AtomicRMWInst::UMin: |
| case AtomicRMWInst::UMax: { |
| if (AMDGPU::isFlatGlobalAddrSpace(AS) || |
| AS == AMDGPUAS::BUFFER_FAT_POINTER) { |
| // Always expand system scope min/max atomics. |
| if (HasSystemScope) |
| return AtomicExpansionKind::CmpXChg; |
| } |
| |
| return atomicSupportedIfLegalIntType(RMW); |
| } |
| case AtomicRMWInst::Nand: |
| case AtomicRMWInst::FSub: |
| default: |
| return AtomicExpansionKind::CmpXChg; |
| } |
| |
| llvm_unreachable("covered atomicrmw op switch"); |
| } |
| |
| TargetLowering::AtomicExpansionKind |
| SITargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { |
| return LI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS |
| ? AtomicExpansionKind::NotAtomic |
| : AtomicExpansionKind::None; |
| } |
| |
| TargetLowering::AtomicExpansionKind |
| SITargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { |
| return SI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS |
| ? AtomicExpansionKind::NotAtomic |
| : AtomicExpansionKind::None; |
| } |
| |
| TargetLowering::AtomicExpansionKind |
| SITargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *CmpX) const { |
| return CmpX->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS |
| ? AtomicExpansionKind::NotAtomic |
| : AtomicExpansionKind::None; |
| } |
| |
| const TargetRegisterClass * |
| SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const { |
| const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false); |
| const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); |
| if (RC == &AMDGPU::VReg_1RegClass && !isDivergent) |
| return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass |
| : &AMDGPU::SReg_32RegClass; |
| if (!TRI->isSGPRClass(RC) && !isDivergent) |
| return TRI->getEquivalentSGPRClass(RC); |
| if (TRI->isSGPRClass(RC) && isDivergent) |
| return TRI->getEquivalentVGPRClass(RC); |
| |
| return RC; |
| } |
| |
| // FIXME: This is a workaround for DivergenceAnalysis not understanding always |
| // uniform values (as produced by the mask results of control flow intrinsics) |
| // used outside of divergent blocks. The phi users need to also be treated as |
| // always uniform. |
| // |
| // FIXME: DA is no longer in-use. Does this still apply to UniformityAnalysis? |
| static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited, |
| unsigned WaveSize) { |
| // FIXME: We assume we never cast the mask results of a control flow |
| // intrinsic. |
| // Early exit if the type won't be consistent as a compile time hack. |
| IntegerType *IT = dyn_cast<IntegerType>(V->getType()); |
| if (!IT || IT->getBitWidth() != WaveSize) |
| return false; |
| |
| if (!isa<Instruction>(V)) |
| return false; |
| if (!Visited.insert(V).second) |
| return false; |
| bool Result = false; |
| for (const auto *U : V->users()) { |
| if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) { |
| if (V == U->getOperand(1)) { |
| switch (Intrinsic->getIntrinsicID()) { |
| default: |
| Result = false; |
| break; |
| case Intrinsic::amdgcn_if_break: |
| case Intrinsic::amdgcn_if: |
| case Intrinsic::amdgcn_else: |
| Result = true; |
| break; |
| } |
| } |
| if (V == U->getOperand(0)) { |
| switch (Intrinsic->getIntrinsicID()) { |
| default: |
| Result = false; |
| break; |
| case Intrinsic::amdgcn_end_cf: |
| case Intrinsic::amdgcn_loop: |
| Result = true; |
| break; |
| } |
| } |
| } else { |
| Result = hasCFUser(U, Visited, WaveSize); |
| } |
| if (Result) |
| break; |
| } |
| return Result; |
| } |
| |
| bool SITargetLowering::requiresUniformRegister(MachineFunction &MF, |
| const Value *V) const { |
| if (const CallInst *CI = dyn_cast<CallInst>(V)) { |
| if (CI->isInlineAsm()) { |
| // FIXME: This cannot give a correct answer. This should only trigger in |
| // the case where inline asm returns mixed SGPR and VGPR results, used |
| // outside the defining block. We don't have a specific result to |
| // consider, so this assumes if any value is SGPR, the overall register |
| // also needs to be SGPR. |
| const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo(); |
| TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints( |
| MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI); |
| for (auto &TC : TargetConstraints) { |
| if (TC.Type == InlineAsm::isOutput) { |
| ComputeConstraintToUse(TC, SDValue()); |
| const TargetRegisterClass *RC = getRegForInlineAsmConstraint( |
| SIRI, TC.ConstraintCode, TC.ConstraintVT).second; |
| if (RC && SIRI->isSGPRClass(RC)) |
| return true; |
| } |
| } |
| } |
| } |
| SmallPtrSet<const Value *, 16> Visited; |
| return hasCFUser(V, Visited, Subtarget->getWavefrontSize()); |
| } |
| |
| bool SITargetLowering::hasMemSDNodeUser(SDNode *N) const { |
| SDNode::use_iterator I = N->use_begin(), E = N->use_end(); |
| for (; I != E; ++I) { |
| if (MemSDNode *M = dyn_cast<MemSDNode>(*I)) { |
| if (getBasePtrIndex(M) == I.getOperandNo()) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool SITargetLowering::isReassocProfitable(SelectionDAG &DAG, SDValue N0, |
| SDValue N1) const { |
| if (!N0.hasOneUse()) |
| return false; |
| // Take care of the opportunity to keep N0 uniform |
| if (N0->isDivergent() || !N1->isDivergent()) |
| return true; |
| // Check if we have a good chance to form the memory access pattern with the |
| // base and offset |
| return (DAG.isBaseWithConstantOffset(N0) && |
| hasMemSDNodeUser(*N0->use_begin())); |
| } |
| |
| bool SITargetLowering::isReassocProfitable(MachineRegisterInfo &MRI, |
| Register N0, Register N1) const { |
| return MRI.hasOneNonDBGUse(N0); // FIXME: handle regbanks |
| } |
| |
| MachineMemOperand::Flags |
| SITargetLowering::getTargetMMOFlags(const Instruction &I) const { |
| // Propagate metadata set by AMDGPUAnnotateUniformValues to the MMO of a load. |
| MachineMemOperand::Flags Flags = MachineMemOperand::MONone; |
| if (I.getMetadata("amdgpu.noclobber")) |
| Flags |= MONoClobber; |
| if (I.getMetadata("amdgpu.last.use")) |
| Flags |= MOLastUse; |
| return Flags; |
| } |
| |
| bool SITargetLowering::checkForPhysRegDependency( |
| SDNode *Def, SDNode *User, unsigned Op, const TargetRegisterInfo *TRI, |
| const TargetInstrInfo *TII, unsigned &PhysReg, int &Cost) const { |
| if (User->getOpcode() != ISD::CopyToReg) |
| return false; |
| if (!Def->isMachineOpcode()) |
| return false; |
| MachineSDNode *MDef = dyn_cast<MachineSDNode>(Def); |
| if (!MDef) |
| return false; |
| |
| unsigned ResNo = User->getOperand(Op).getResNo(); |
| if (User->getOperand(Op)->getValueType(ResNo) != MVT::i1) |
| return false; |
| const MCInstrDesc &II = TII->get(MDef->getMachineOpcode()); |
| if (II.isCompare() && II.hasImplicitDefOfPhysReg(AMDGPU::SCC)) { |
| PhysReg = AMDGPU::SCC; |
| const TargetRegisterClass *RC = |
| TRI->getMinimalPhysRegClass(PhysReg, Def->getSimpleValueType(ResNo)); |
| Cost = RC->getCopyCost(); |
| return true; |
| } |
| return false; |
| } |
| |
| void SITargetLowering::emitExpandAtomicRMW(AtomicRMWInst *AI) const { |
| AtomicRMWInst::BinOp Op = AI->getOperation(); |
| |
| if (Op == AtomicRMWInst::Sub || Op == AtomicRMWInst::Or || |
| Op == AtomicRMWInst::Xor) { |
| // atomicrmw or %ptr, 0 -> atomicrmw add %ptr, 0 |
| assert(cast<Constant>(AI->getValOperand())->isNullValue() && |
| "this cannot be replaced with add"); |
| AI->setOperation(AtomicRMWInst::Add); |
| return; |
| } |
| |
| assert(Subtarget->hasAtomicFaddInsts() && |
| "target should have atomic fadd instructions"); |
| assert(AI->getType()->isFloatTy() && |
| AI->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS && |
| "generic atomicrmw expansion only supports FP32 operand in flat " |
| "address space"); |
| assert(Op == AtomicRMWInst::FAdd && "only fadd is supported for now"); |
| |
| // Given: atomicrmw fadd ptr %addr, float %val ordering |
| // |
| // With this expansion we produce the following code: |
| // [...] |
| // %is.shared = call i1 @llvm.amdgcn.is.shared(ptr %addr) |
| // br i1 %is.shared, label %atomicrmw.shared, label %atomicrmw.check.private |
| // |
| // atomicrmw.shared: |
| // %cast.shared = addrspacecast ptr %addr to ptr addrspace(3) |
| // %loaded.shared = atomicrmw fadd ptr addrspace(3) %cast.shared, |
| // float %val ordering |
| // br label %atomicrmw.phi |
| // |
| // atomicrmw.check.private: |
| // %is.private = call i1 @llvm.amdgcn.is.private(ptr %int8ptr) |
| // br i1 %is.private, label %atomicrmw.private, label %atomicrmw.global |
| // |
| // atomicrmw.private: |
| // %cast.private = addrspacecast ptr %addr to ptr addrspace(5) |
| // %loaded.private = load float, ptr addrspace(5) %cast.private |
| // %val.new = fadd float %loaded.private, %val |
| // store float %val.new, ptr addrspace(5) %cast.private |
| // br label %atomicrmw.phi |
| // |
| // atomicrmw.global: |
| // %cast.global = addrspacecast ptr %addr to ptr addrspace(1) |
| // %loaded.global = atomicrmw fadd ptr addrspace(1) %cast.global, |
| // float %val ordering |
| // br label %atomicrmw.phi |
| // |
| // atomicrmw.phi: |
| // %loaded.phi = phi float [ %loaded.shared, %atomicrmw.shared ], |
| // [ %loaded.private, %atomicrmw.private ], |
| // [ %loaded.global, %atomicrmw.global ] |
| // br label %atomicrmw.end |
| // |
| // atomicrmw.end: |
| // [...] |
| |
| IRBuilder<> Builder(AI); |
| LLVMContext &Ctx = Builder.getContext(); |
| |
| // If the return value isn't used, do not introduce a false use in the phi. |
| bool ReturnValueIsUsed = !AI->use_empty(); |
| |
| BasicBlock *BB = Builder.GetInsertBlock(); |
| Function *F = BB->getParent(); |
| BasicBlock *ExitBB = |
| BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); |
| BasicBlock *SharedBB = BasicBlock::Create(Ctx, "atomicrmw.shared", F, ExitBB); |
| BasicBlock *CheckPrivateBB = |
| BasicBlock::Create(Ctx, "atomicrmw.check.private", F, ExitBB); |
| BasicBlock *PrivateBB = |
| BasicBlock::Create(Ctx, "atomicrmw.private", F, ExitBB); |
| BasicBlock *GlobalBB = BasicBlock::Create(Ctx, "atomicrmw.global", F, ExitBB); |
| BasicBlock *PhiBB = BasicBlock::Create(Ctx, "atomicrmw.phi", F, ExitBB); |
| |
| Value *Val = AI->getValOperand(); |
| Type *ValTy = Val->getType(); |
| Value *Addr = AI->getPointerOperand(); |
| Align Alignment = AI->getAlign(); |
| |
| std::prev(BB->end())->eraseFromParent(); |
| Builder.SetInsertPoint(BB); |
| CallInst *IsShared = Builder.CreateIntrinsic(Intrinsic::amdgcn_is_shared, {}, |
| {Addr}, nullptr, "is.shared"); |
| Builder.CreateCondBr(IsShared, SharedBB, CheckPrivateBB); |
| |
| Builder.SetInsertPoint(SharedBB); |
| Value *CastToLocal = Builder.CreateAddrSpaceCast( |
| Addr, PointerType::get(Ctx, AMDGPUAS::LOCAL_ADDRESS)); |
| |
| Instruction *Clone = AI->clone(); |
| Clone->insertInto(SharedBB, SharedBB->end()); |
| Clone->getOperandUse(AtomicRMWInst::getPointerOperandIndex()) |
| .set(CastToLocal); |
| Instruction *LoadedShared = Clone; |
| |
| Builder.CreateBr(PhiBB); |
| |
| Builder.SetInsertPoint(CheckPrivateBB); |
| CallInst *IsPrivate = Builder.CreateIntrinsic( |
| Intrinsic::amdgcn_is_private, {}, {Addr}, nullptr, "is.private"); |
| Builder.CreateCondBr(IsPrivate, PrivateBB, GlobalBB); |
| |
| Builder.SetInsertPoint(PrivateBB); |
| Value *CastToPrivate = Builder.CreateAddrSpaceCast( |
| Addr, PointerType::get(Ctx, AMDGPUAS::PRIVATE_ADDRESS)); |
| Value *LoadedPrivate = Builder.CreateAlignedLoad(ValTy, CastToPrivate, |
| Alignment, "loaded.private"); |
| |
| Value *NewVal = buildAtomicRMWValue(Op, Builder, LoadedPrivate, Val); |
| |
| Builder.CreateAlignedStore(NewVal, CastToPrivate, Alignment); |
| Builder.CreateBr(PhiBB); |
| |
| Builder.SetInsertPoint(GlobalBB); |
| Value *CastToGlobal = Builder.CreateAddrSpaceCast( |
| Addr, PointerType::get(Ctx, AMDGPUAS::GLOBAL_ADDRESS)); |
| Value *LoadedGlobal = AI; |
| |
| AI->getOperandUse(AtomicRMWInst::getPointerOperandIndex()).set(CastToGlobal); |
| |
| AI->removeFromParent(); |
| AI->insertInto(GlobalBB, GlobalBB->end()); |
| |
| Builder.CreateBr(PhiBB); |
| |
| Builder.SetInsertPoint(PhiBB); |
| |
| if (ReturnValueIsUsed) { |
| PHINode *Loaded = Builder.CreatePHI(ValTy, 3); |
| AI->replaceAllUsesWith(Loaded); |
| Loaded->addIncoming(LoadedShared, SharedBB); |
| Loaded->addIncoming(LoadedPrivate, PrivateBB); |
| Loaded->addIncoming(LoadedGlobal, GlobalBB); |
| Loaded->takeName(AI); |
| } |
| |
| Builder.CreateBr(ExitBB); |
| } |
| |
| LoadInst * |
| SITargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const { |
| IRBuilder<> Builder(AI); |
| auto Order = AI->getOrdering(); |
| |
| // The optimization removes store aspect of the atomicrmw. Therefore, cache |
| // must be flushed if the atomic ordering had a release semantics. This is |
| // not necessary a fence, a release fence just coincides to do that flush. |
| // Avoid replacing of an atomicrmw with a release semantics. |
| if (isReleaseOrStronger(Order)) |
| return nullptr; |
| |
| LoadInst *LI = Builder.CreateAlignedLoad( |
| AI->getType(), AI->getPointerOperand(), AI->getAlign()); |
| LI->setAtomic(Order, AI->getSyncScopeID()); |
| LI->copyMetadata(*AI); |
| LI->takeName(AI); |
| AI->replaceAllUsesWith(LI); |
| AI->eraseFromParent(); |
| return LI; |
| } |