| //===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// This file provides a LoopVectorizationPlanner class. |
| /// InnerLoopVectorizer vectorizes loops which contain only one basic |
| /// LoopVectorizationPlanner - drives the vectorization process after having |
| /// passed Legality checks. |
| /// The planner builds and optimizes the Vectorization Plans which record the |
| /// decisions how to vectorize the given loop. In particular, represent the |
| /// control-flow of the vectorized version, the replication of instructions that |
| /// are to be scalarized, and interleave access groups. |
| /// |
| /// Also provides a VPlan-based builder utility analogous to IRBuilder. |
| /// It provides an instruction-level API for generating VPInstructions while |
| /// abstracting away the Recipe manipulation details. |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H |
| #define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H |
| |
| #include "VPlan.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/Support/InstructionCost.h" |
| |
| namespace { |
| class GeneratedRTChecks; |
| } |
| |
| namespace llvm { |
| |
| class LoopInfo; |
| class DominatorTree; |
| class LoopVectorizationLegality; |
| class LoopVectorizationCostModel; |
| class PredicatedScalarEvolution; |
| class LoopVectorizeHints; |
| class LoopVersioning; |
| class OptimizationRemarkEmitter; |
| class TargetTransformInfo; |
| class TargetLibraryInfo; |
| class VPRecipeBuilder; |
| struct VFRange; |
| |
| extern cl::opt<bool> EnableVPlanNativePath; |
| extern cl::opt<unsigned> ForceTargetInstructionCost; |
| |
| /// VPlan-based builder utility analogous to IRBuilder. |
| class VPBuilder { |
| VPBasicBlock *BB = nullptr; |
| VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator(); |
| |
| /// Insert \p VPI in BB at InsertPt if BB is set. |
| template <typename T> T *tryInsertInstruction(T *R) { |
| if (BB) |
| BB->insert(R, InsertPt); |
| return R; |
| } |
| |
| VPInstruction *createInstruction(unsigned Opcode, |
| ArrayRef<VPValue *> Operands, DebugLoc DL, |
| const Twine &Name = "") { |
| return tryInsertInstruction(new VPInstruction(Opcode, Operands, DL, Name)); |
| } |
| |
| public: |
| VPBuilder() = default; |
| VPBuilder(VPBasicBlock *InsertBB) { setInsertPoint(InsertBB); } |
| VPBuilder(VPRecipeBase *InsertPt) { setInsertPoint(InsertPt); } |
| VPBuilder(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) { |
| setInsertPoint(TheBB, IP); |
| } |
| |
| /// Clear the insertion point: created instructions will not be inserted into |
| /// a block. |
| void clearInsertionPoint() { |
| BB = nullptr; |
| InsertPt = VPBasicBlock::iterator(); |
| } |
| |
| VPBasicBlock *getInsertBlock() const { return BB; } |
| VPBasicBlock::iterator getInsertPoint() const { return InsertPt; } |
| |
| /// Create a VPBuilder to insert after \p R. |
| static VPBuilder getToInsertAfter(VPRecipeBase *R) { |
| VPBuilder B; |
| B.setInsertPoint(R->getParent(), std::next(R->getIterator())); |
| return B; |
| } |
| |
| /// InsertPoint - A saved insertion point. |
| class VPInsertPoint { |
| VPBasicBlock *Block = nullptr; |
| VPBasicBlock::iterator Point; |
| |
| public: |
| /// Creates a new insertion point which doesn't point to anything. |
| VPInsertPoint() = default; |
| |
| /// Creates a new insertion point at the given location. |
| VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint) |
| : Block(InsertBlock), Point(InsertPoint) {} |
| |
| /// Returns true if this insert point is set. |
| bool isSet() const { return Block != nullptr; } |
| |
| VPBasicBlock *getBlock() const { return Block; } |
| VPBasicBlock::iterator getPoint() const { return Point; } |
| }; |
| |
| /// Sets the current insert point to a previously-saved location. |
| void restoreIP(VPInsertPoint IP) { |
| if (IP.isSet()) |
| setInsertPoint(IP.getBlock(), IP.getPoint()); |
| else |
| clearInsertionPoint(); |
| } |
| |
| /// This specifies that created VPInstructions should be appended to the end |
| /// of the specified block. |
| void setInsertPoint(VPBasicBlock *TheBB) { |
| assert(TheBB && "Attempting to set a null insert point"); |
| BB = TheBB; |
| InsertPt = BB->end(); |
| } |
| |
| /// This specifies that created instructions should be inserted at the |
| /// specified point. |
| void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) { |
| BB = TheBB; |
| InsertPt = IP; |
| } |
| |
| /// This specifies that created instructions should be inserted at the |
| /// specified point. |
| void setInsertPoint(VPRecipeBase *IP) { |
| BB = IP->getParent(); |
| InsertPt = IP->getIterator(); |
| } |
| |
| /// Insert \p R at the current insertion point. |
| void insert(VPRecipeBase *R) { BB->insert(R, InsertPt); } |
| |
| /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as |
| /// its underlying Instruction. |
| VPInstruction *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands, |
| Instruction *Inst = nullptr, |
| const Twine &Name = "") { |
| DebugLoc DL = DebugLoc::getUnknown(); |
| if (Inst) |
| DL = Inst->getDebugLoc(); |
| VPInstruction *NewVPInst = createInstruction(Opcode, Operands, DL, Name); |
| NewVPInst->setUnderlyingValue(Inst); |
| return NewVPInst; |
| } |
| VPInstruction *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands, |
| DebugLoc DL, const Twine &Name = "") { |
| return createInstruction(Opcode, Operands, DL, Name); |
| } |
| VPInstruction *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands, |
| const VPIRFlags &Flags, |
| DebugLoc DL = DebugLoc::getUnknown(), |
| const Twine &Name = "") { |
| return tryInsertInstruction( |
| new VPInstruction(Opcode, Operands, Flags, DL, Name)); |
| } |
| |
| VPInstruction *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands, |
| Type *ResultTy, const VPIRFlags &Flags = {}, |
| DebugLoc DL = DebugLoc::getUnknown(), |
| const Twine &Name = "") { |
| return tryInsertInstruction( |
| new VPInstructionWithType(Opcode, Operands, ResultTy, Flags, DL, Name)); |
| } |
| |
| VPInstruction *createOverflowingOp(unsigned Opcode, |
| ArrayRef<VPValue *> Operands, |
| VPRecipeWithIRFlags::WrapFlagsTy WrapFlags, |
| DebugLoc DL = DebugLoc::getUnknown(), |
| const Twine &Name = "") { |
| return tryInsertInstruction( |
| new VPInstruction(Opcode, Operands, WrapFlags, DL, Name)); |
| } |
| |
| VPInstruction *createNot(VPValue *Operand, |
| DebugLoc DL = DebugLoc::getUnknown(), |
| const Twine &Name = "") { |
| return createInstruction(VPInstruction::Not, {Operand}, DL, Name); |
| } |
| |
| VPInstruction *createAnd(VPValue *LHS, VPValue *RHS, |
| DebugLoc DL = DebugLoc::getUnknown(), |
| const Twine &Name = "") { |
| return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}, DL, Name); |
| } |
| |
| VPInstruction *createOr(VPValue *LHS, VPValue *RHS, |
| DebugLoc DL = DebugLoc::getUnknown(), |
| const Twine &Name = "") { |
| |
| return tryInsertInstruction(new VPInstruction( |
| Instruction::BinaryOps::Or, {LHS, RHS}, |
| VPRecipeWithIRFlags::DisjointFlagsTy(false), DL, Name)); |
| } |
| |
| VPInstruction *createLogicalAnd(VPValue *LHS, VPValue *RHS, |
| DebugLoc DL = DebugLoc::getUnknown(), |
| const Twine &Name = "") { |
| return tryInsertInstruction( |
| new VPInstruction(VPInstruction::LogicalAnd, {LHS, RHS}, DL, Name)); |
| } |
| |
| VPInstruction * |
| createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal, |
| DebugLoc DL = DebugLoc::getUnknown(), const Twine &Name = "", |
| std::optional<FastMathFlags> FMFs = std::nullopt) { |
| auto *Select = |
| FMFs ? new VPInstruction(Instruction::Select, {Cond, TrueVal, FalseVal}, |
| *FMFs, DL, Name) |
| : new VPInstruction(Instruction::Select, {Cond, TrueVal, FalseVal}, |
| DL, Name); |
| return tryInsertInstruction(Select); |
| } |
| |
| /// Create a new ICmp VPInstruction with predicate \p Pred and operands \p A |
| /// and \p B. |
| VPInstruction *createICmp(CmpInst::Predicate Pred, VPValue *A, VPValue *B, |
| DebugLoc DL = DebugLoc::getUnknown(), |
| const Twine &Name = "") { |
| assert(Pred >= CmpInst::FIRST_ICMP_PREDICATE && |
| Pred <= CmpInst::LAST_ICMP_PREDICATE && "invalid predicate"); |
| return tryInsertInstruction( |
| new VPInstruction(Instruction::ICmp, {A, B}, Pred, DL, Name)); |
| } |
| |
| /// Create a new FCmp VPInstruction with predicate \p Pred and operands \p A |
| /// and \p B. |
| VPInstruction *createFCmp(CmpInst::Predicate Pred, VPValue *A, VPValue *B, |
| DebugLoc DL = DebugLoc::getUnknown(), |
| const Twine &Name = "") { |
| assert(Pred >= CmpInst::FIRST_FCMP_PREDICATE && |
| Pred <= CmpInst::LAST_FCMP_PREDICATE && "invalid predicate"); |
| return tryInsertInstruction( |
| new VPInstruction(Instruction::FCmp, {A, B}, Pred, DL, Name)); |
| } |
| |
| VPInstruction *createPtrAdd(VPValue *Ptr, VPValue *Offset, |
| DebugLoc DL = DebugLoc::getUnknown(), |
| const Twine &Name = "") { |
| return tryInsertInstruction( |
| new VPInstruction(VPInstruction::PtrAdd, {Ptr, Offset}, |
| GEPNoWrapFlags::none(), DL, Name)); |
| } |
| VPInstruction *createInBoundsPtrAdd(VPValue *Ptr, VPValue *Offset, |
| DebugLoc DL = DebugLoc::getUnknown(), |
| const Twine &Name = "") { |
| return tryInsertInstruction( |
| new VPInstruction(VPInstruction::PtrAdd, {Ptr, Offset}, |
| GEPNoWrapFlags::inBounds(), DL, Name)); |
| } |
| VPInstruction *createWidePtrAdd(VPValue *Ptr, VPValue *Offset, |
| DebugLoc DL = DebugLoc::getUnknown(), |
| const Twine &Name = "") { |
| return tryInsertInstruction( |
| new VPInstruction(VPInstruction::WidePtrAdd, {Ptr, Offset}, |
| GEPNoWrapFlags::none(), DL, Name)); |
| } |
| |
| VPPhi *createScalarPhi(ArrayRef<VPValue *> IncomingValues, DebugLoc DL, |
| const Twine &Name = "") { |
| return tryInsertInstruction(new VPPhi(IncomingValues, DL, Name)); |
| } |
| |
| /// Convert the input value \p Current to the corresponding value of an |
| /// induction with \p Start and \p Step values, using \p Start + \p Current * |
| /// \p Step. |
| VPDerivedIVRecipe *createDerivedIV(InductionDescriptor::InductionKind Kind, |
| FPMathOperator *FPBinOp, VPValue *Start, |
| VPValue *Current, VPValue *Step, |
| const Twine &Name = "") { |
| return tryInsertInstruction( |
| new VPDerivedIVRecipe(Kind, FPBinOp, Start, Current, Step, Name)); |
| } |
| |
| VPInstruction *createScalarCast(Instruction::CastOps Opcode, VPValue *Op, |
| Type *ResultTy, DebugLoc DL) { |
| return tryInsertInstruction( |
| new VPInstructionWithType(Opcode, Op, ResultTy, {}, DL)); |
| } |
| |
| VPValue *createScalarZExtOrTrunc(VPValue *Op, Type *ResultTy, Type *SrcTy, |
| DebugLoc DL) { |
| if (ResultTy == SrcTy) |
| return Op; |
| Instruction::CastOps CastOp = |
| ResultTy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits() |
| ? Instruction::Trunc |
| : Instruction::ZExt; |
| return createScalarCast(CastOp, Op, ResultTy, DL); |
| } |
| |
| VPWidenCastRecipe *createWidenCast(Instruction::CastOps Opcode, VPValue *Op, |
| Type *ResultTy) { |
| return tryInsertInstruction(new VPWidenCastRecipe(Opcode, Op, ResultTy)); |
| } |
| |
| VPScalarIVStepsRecipe * |
| createScalarIVSteps(Instruction::BinaryOps InductionOpcode, |
| FPMathOperator *FPBinOp, VPValue *IV, VPValue *Step, |
| VPValue *VF, DebugLoc DL) { |
| return tryInsertInstruction(new VPScalarIVStepsRecipe( |
| IV, Step, VF, InductionOpcode, |
| FPBinOp ? FPBinOp->getFastMathFlags() : FastMathFlags(), DL)); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // RAII helpers. |
| //===--------------------------------------------------------------------===// |
| |
| /// RAII object that stores the current insertion point and restores it when |
| /// the object is destroyed. |
| class InsertPointGuard { |
| VPBuilder &Builder; |
| VPBasicBlock *Block; |
| VPBasicBlock::iterator Point; |
| |
| public: |
| InsertPointGuard(VPBuilder &B) |
| : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {} |
| |
| InsertPointGuard(const InsertPointGuard &) = delete; |
| InsertPointGuard &operator=(const InsertPointGuard &) = delete; |
| |
| ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); } |
| }; |
| }; |
| |
| /// TODO: The following VectorizationFactor was pulled out of |
| /// LoopVectorizationCostModel class. LV also deals with |
| /// VectorizerParams::VectorizationFactor. |
| /// We need to streamline them. |
| |
| /// Information about vectorization costs. |
| struct VectorizationFactor { |
| /// Vector width with best cost. |
| ElementCount Width; |
| |
| /// Cost of the loop with that width. |
| InstructionCost Cost; |
| |
| /// Cost of the scalar loop. |
| InstructionCost ScalarCost; |
| |
| /// The minimum trip count required to make vectorization profitable, e.g. due |
| /// to runtime checks. |
| ElementCount MinProfitableTripCount; |
| |
| VectorizationFactor(ElementCount Width, InstructionCost Cost, |
| InstructionCost ScalarCost) |
| : Width(Width), Cost(Cost), ScalarCost(ScalarCost) {} |
| |
| /// Width 1 means no vectorization, cost 0 means uncomputed cost. |
| static VectorizationFactor Disabled() { |
| return {ElementCount::getFixed(1), 0, 0}; |
| } |
| |
| bool operator==(const VectorizationFactor &rhs) const { |
| return Width == rhs.Width && Cost == rhs.Cost; |
| } |
| |
| bool operator!=(const VectorizationFactor &rhs) const { |
| return !(*this == rhs); |
| } |
| }; |
| |
| /// A class that represents two vectorization factors (initialized with 0 by |
| /// default). One for fixed-width vectorization and one for scalable |
| /// vectorization. This can be used by the vectorizer to choose from a range of |
| /// fixed and/or scalable VFs in order to find the most cost-effective VF to |
| /// vectorize with. |
| struct FixedScalableVFPair { |
| ElementCount FixedVF; |
| ElementCount ScalableVF; |
| |
| FixedScalableVFPair() |
| : FixedVF(ElementCount::getFixed(0)), |
| ScalableVF(ElementCount::getScalable(0)) {} |
| FixedScalableVFPair(const ElementCount &Max) : FixedScalableVFPair() { |
| *(Max.isScalable() ? &ScalableVF : &FixedVF) = Max; |
| } |
| FixedScalableVFPair(const ElementCount &FixedVF, |
| const ElementCount &ScalableVF) |
| : FixedVF(FixedVF), ScalableVF(ScalableVF) { |
| assert(!FixedVF.isScalable() && ScalableVF.isScalable() && |
| "Invalid scalable properties"); |
| } |
| |
| static FixedScalableVFPair getNone() { return FixedScalableVFPair(); } |
| |
| /// \return true if either fixed- or scalable VF is non-zero. |
| explicit operator bool() const { return FixedVF || ScalableVF; } |
| |
| /// \return true if either fixed- or scalable VF is a valid vector VF. |
| bool hasVector() const { return FixedVF.isVector() || ScalableVF.isVector(); } |
| }; |
| |
| /// Planner drives the vectorization process after having passed |
| /// Legality checks. |
| class LoopVectorizationPlanner { |
| /// The loop that we evaluate. |
| Loop *OrigLoop; |
| |
| /// Loop Info analysis. |
| LoopInfo *LI; |
| |
| /// The dominator tree. |
| DominatorTree *DT; |
| |
| /// Target Library Info. |
| const TargetLibraryInfo *TLI; |
| |
| /// Target Transform Info. |
| const TargetTransformInfo &TTI; |
| |
| /// The legality analysis. |
| LoopVectorizationLegality *Legal; |
| |
| /// The profitability analysis. |
| LoopVectorizationCostModel &CM; |
| |
| /// The interleaved access analysis. |
| InterleavedAccessInfo &IAI; |
| |
| PredicatedScalarEvolution &PSE; |
| |
| const LoopVectorizeHints &Hints; |
| |
| OptimizationRemarkEmitter *ORE; |
| |
| SmallVector<VPlanPtr, 4> VPlans; |
| |
| /// Profitable vector factors. |
| SmallVector<VectorizationFactor, 8> ProfitableVFs; |
| |
| /// A builder used to construct the current plan. |
| VPBuilder Builder; |
| |
| /// Computes the cost of \p Plan for vectorization factor \p VF. |
| /// |
| /// The current implementation requires access to the |
| /// LoopVectorizationLegality to handle inductions and reductions, which is |
| /// why it is kept separate from the VPlan-only cost infrastructure. |
| /// |
| /// TODO: Move to VPlan::cost once the use of LoopVectorizationLegality has |
| /// been retired. |
| InstructionCost cost(VPlan &Plan, ElementCount VF) const; |
| |
| /// Precompute costs for certain instructions using the legacy cost model. The |
| /// function is used to bring up the VPlan-based cost model to initially avoid |
| /// taking different decisions due to inaccuracies in the legacy cost model. |
| InstructionCost precomputeCosts(VPlan &Plan, ElementCount VF, |
| VPCostContext &CostCtx) const; |
| |
| public: |
| LoopVectorizationPlanner( |
| Loop *L, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, |
| const TargetTransformInfo &TTI, LoopVectorizationLegality *Legal, |
| LoopVectorizationCostModel &CM, InterleavedAccessInfo &IAI, |
| PredicatedScalarEvolution &PSE, const LoopVectorizeHints &Hints, |
| OptimizationRemarkEmitter *ORE) |
| : OrigLoop(L), LI(LI), DT(DT), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM), |
| IAI(IAI), PSE(PSE), Hints(Hints), ORE(ORE) {} |
| |
| /// Build VPlans for the specified \p UserVF and \p UserIC if they are |
| /// non-zero or all applicable candidate VFs otherwise. If vectorization and |
| /// interleaving should be avoided up-front, no plans are generated. |
| void plan(ElementCount UserVF, unsigned UserIC); |
| |
| /// Use the VPlan-native path to plan how to best vectorize, return the best |
| /// VF and its cost. |
| VectorizationFactor planInVPlanNativePath(ElementCount UserVF); |
| |
| /// Return the VPlan for \p VF. At the moment, there is always a single VPlan |
| /// for each VF. |
| VPlan &getPlanFor(ElementCount VF) const; |
| |
| /// Compute and return the most profitable vectorization factor. Also collect |
| /// all profitable VFs in ProfitableVFs. |
| VectorizationFactor computeBestVF(); |
| |
| /// \return The desired interleave count. |
| /// If interleave count has been specified by metadata it will be returned. |
| /// Otherwise, the interleave count is computed and returned. VF and LoopCost |
| /// are the selected vectorization factor and the cost of the selected VF. |
| unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, |
| InstructionCost LoopCost); |
| |
| /// Generate the IR code for the vectorized loop captured in VPlan \p BestPlan |
| /// according to the best selected \p VF and \p UF. |
| /// |
| /// TODO: \p VectorizingEpilogue indicates if the executed VPlan is for the |
| /// epilogue vector loop. It should be removed once the re-use issue has been |
| /// fixed. |
| /// |
| /// Returns a mapping of SCEVs to their expanded IR values. |
| /// Note that this is a temporary workaround needed due to the current |
| /// epilogue handling. |
| DenseMap<const SCEV *, Value *> executePlan(ElementCount VF, unsigned UF, |
| VPlan &BestPlan, |
| InnerLoopVectorizer &LB, |
| DominatorTree *DT, |
| bool VectorizingEpilogue); |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void printPlans(raw_ostream &O); |
| #endif |
| |
| /// Look through the existing plans and return true if we have one with |
| /// vectorization factor \p VF. |
| bool hasPlanWithVF(ElementCount VF) const { |
| return any_of(VPlans, |
| [&](const VPlanPtr &Plan) { return Plan->hasVF(VF); }); |
| } |
| |
| /// Test a \p Predicate on a \p Range of VF's. Return the value of applying |
| /// \p Predicate on Range.Start, possibly decreasing Range.End such that the |
| /// returned value holds for the entire \p Range. |
| static bool |
| getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate, |
| VFRange &Range); |
| |
| /// \return The most profitable vectorization factor and the cost of that VF |
| /// for vectorizing the epilogue. Returns VectorizationFactor::Disabled if |
| /// epilogue vectorization is not supported for the loop. |
| VectorizationFactor |
| selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC); |
| |
| /// Emit remarks for recipes with invalid costs in the available VPlans. |
| void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE); |
| |
| protected: |
| /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, |
| /// according to the information gathered by Legal when it checked if it is |
| /// legal to vectorize the loop. |
| void buildVPlans(ElementCount MinVF, ElementCount MaxVF); |
| |
| private: |
| /// Build a VPlan according to the information gathered by Legal. \return a |
| /// VPlan for vectorization factors \p Range.Start and up to \p Range.End |
| /// exclusive, possibly decreasing \p Range.End. If no VPlan can be built for |
| /// the input range, set the largest included VF to the maximum VF for which |
| /// no plan could be built. |
| VPlanPtr tryToBuildVPlan(VFRange &Range); |
| |
| /// Build a VPlan using VPRecipes according to the information gather by |
| /// Legal. This method is only used for the legacy inner loop vectorizer. |
| /// \p Range's largest included VF is restricted to the maximum VF the |
| /// returned VPlan is valid for. If no VPlan can be built for the input range, |
| /// set the largest included VF to the maximum VF for which no plan could be |
| /// built. Each VPlan is built starting from a copy of \p InitialPlan, which |
| /// is a plain CFG VPlan wrapping the original scalar loop. |
| VPlanPtr tryToBuildVPlanWithVPRecipes(VPlanPtr InitialPlan, VFRange &Range, |
| LoopVersioning *LVer); |
| |
| /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, |
| /// according to the information gathered by Legal when it checked if it is |
| /// legal to vectorize the loop. This method creates VPlans using VPRecipes. |
| void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF); |
| |
| // Adjust the recipes for reductions. For in-loop reductions the chain of |
| // instructions leading from the loop exit instr to the phi need to be |
| // converted to reductions, with one operand being vector and the other being |
| // the scalar reduction chain. For other reductions, a select is introduced |
| // between the phi and users outside the vector region when folding the tail. |
| void adjustRecipesForReductions(VPlanPtr &Plan, |
| VPRecipeBuilder &RecipeBuilder, |
| ElementCount MinVF); |
| |
| /// Attach the runtime checks of \p RTChecks to \p Plan. |
| void attachRuntimeChecks(VPlan &Plan, GeneratedRTChecks &RTChecks, |
| bool HasBranchWeights) const; |
| |
| #ifndef NDEBUG |
| /// \return The most profitable vectorization factor for the available VPlans |
| /// and the cost of that VF. |
| /// This is now only used to verify the decisions by the new VPlan-based |
| /// cost-model and will be retired once the VPlan-based cost-model is |
| /// stabilized. |
| VectorizationFactor selectVectorizationFactor(); |
| #endif |
| |
| /// Returns true if the per-lane cost of VectorizationFactor A is lower than |
| /// that of B. |
| bool isMoreProfitable(const VectorizationFactor &A, |
| const VectorizationFactor &B, bool HasTail) const; |
| |
| /// Returns true if the per-lane cost of VectorizationFactor A is lower than |
| /// that of B in the context of vectorizing a loop with known \p MaxTripCount. |
| bool isMoreProfitable(const VectorizationFactor &A, |
| const VectorizationFactor &B, |
| const unsigned MaxTripCount, bool HasTail) const; |
| |
| /// Determines if we have the infrastructure to vectorize the loop and its |
| /// epilogue, assuming the main loop is vectorized by \p VF. |
| bool isCandidateForEpilogueVectorization(const ElementCount VF) const; |
| }; |
| |
| } // namespace llvm |
| |
| #endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H |