blob: 656c3a30dd96b867f1075849584a9f6b41ab4637 [file] [log] [blame]
//===-- GCNSubtarget.cpp - GCN Subtarget Information ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Implements the GCN specific subclass of TargetSubtarget.
//
//===----------------------------------------------------------------------===//
#include "GCNSubtarget.h"
#include "AMDGPUCallLowering.h"
#include "AMDGPUInstructionSelector.h"
#include "AMDGPULegalizerInfo.h"
#include "AMDGPURegisterBankInfo.h"
#include "AMDGPUSelectionDAGInfo.h"
#include "AMDGPUTargetMachine.h"
#include "SIMachineFunctionInfo.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/MDBuilder.h"
#include <algorithm>
using namespace llvm;
#define DEBUG_TYPE "gcn-subtarget"
#define GET_SUBTARGETINFO_TARGET_DESC
#define GET_SUBTARGETINFO_CTOR
#define AMDGPUSubtarget GCNSubtarget
#include "AMDGPUGenSubtargetInfo.inc"
#undef AMDGPUSubtarget
static cl::opt<bool> EnableVGPRIndexMode(
"amdgpu-vgpr-index-mode",
cl::desc("Use GPR indexing mode instead of movrel for vector indexing"),
cl::init(false));
static cl::opt<bool> UseAA("amdgpu-use-aa-in-codegen",
cl::desc("Enable the use of AA during codegen."),
cl::init(true));
static cl::opt<unsigned>
NSAThreshold("amdgpu-nsa-threshold",
cl::desc("Number of addresses from which to enable MIMG NSA."),
cl::init(2), cl::Hidden);
GCNSubtarget::~GCNSubtarget() = default;
GCNSubtarget &GCNSubtarget::initializeSubtargetDependencies(const Triple &TT,
StringRef GPU,
StringRef FS) {
// Determine default and user-specified characteristics
//
// We want to be able to turn these off, but making this a subtarget feature
// for SI has the unhelpful behavior that it unsets everything else if you
// disable it.
//
// Similarly we want enable-prt-strict-null to be on by default and not to
// unset everything else if it is disabled
SmallString<256> FullFS("+promote-alloca,+load-store-opt,+enable-ds128,");
// Turn on features that HSA ABI requires. Also turn on FlatForGlobal by
// default
if (isAmdHsaOS())
FullFS += "+flat-for-global,+unaligned-access-mode,+trap-handler,";
FullFS += "+enable-prt-strict-null,"; // This is overridden by a disable in FS
// Disable mutually exclusive bits.
if (FS.contains_insensitive("+wavefrontsize")) {
if (!FS.contains_insensitive("wavefrontsize16"))
FullFS += "-wavefrontsize16,";
if (!FS.contains_insensitive("wavefrontsize32"))
FullFS += "-wavefrontsize32,";
if (!FS.contains_insensitive("wavefrontsize64"))
FullFS += "-wavefrontsize64,";
}
FullFS += FS;
ParseSubtargetFeatures(GPU, /*TuneCPU*/ GPU, FullFS);
// Implement the "generic" processors, which acts as the default when no
// generation features are enabled (e.g for -mcpu=''). HSA OS defaults to
// the first amdgcn target that supports flat addressing. Other OSes defaults
// to the first amdgcn target.
if (Gen == AMDGPUSubtarget::INVALID) {
Gen = TT.getOS() == Triple::AMDHSA ? AMDGPUSubtarget::SEA_ISLANDS
: AMDGPUSubtarget::SOUTHERN_ISLANDS;
// Assume wave64 for the unknown target, if not explicitly set.
if (getWavefrontSizeLog2() == 0)
WavefrontSizeLog2 = 6;
} else if (!hasFeature(AMDGPU::FeatureWavefrontSize32) &&
!hasFeature(AMDGPU::FeatureWavefrontSize64)) {
// If there is no default wave size it must be a generation before gfx10,
// these have FeatureWavefrontSize64 in their definition already. For gfx10+
// set wave32 as a default.
ToggleFeature(AMDGPU::FeatureWavefrontSize32);
WavefrontSizeLog2 = getGeneration() >= AMDGPUSubtarget::GFX10 ? 5 : 6;
}
// We don't support FP64 for EG/NI atm.
assert(!hasFP64() || (getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS));
// Targets must either support 64-bit offsets for MUBUF instructions, and/or
// support flat operations, otherwise they cannot access a 64-bit global
// address space
assert(hasAddr64() || hasFlat());
// Unless +-flat-for-global is specified, turn on FlatForGlobal for targets
// that do not support ADDR64 variants of MUBUF instructions. Such targets
// cannot use a 64 bit offset with a MUBUF instruction to access the global
// address space
if (!hasAddr64() && !FS.contains("flat-for-global") && !FlatForGlobal) {
ToggleFeature(AMDGPU::FeatureFlatForGlobal);
FlatForGlobal = true;
}
// Unless +-flat-for-global is specified, use MUBUF instructions for global
// address space access if flat operations are not available.
if (!hasFlat() && !FS.contains("flat-for-global") && FlatForGlobal) {
ToggleFeature(AMDGPU::FeatureFlatForGlobal);
FlatForGlobal = false;
}
// Set defaults if needed.
if (MaxPrivateElementSize == 0)
MaxPrivateElementSize = 4;
if (LDSBankCount == 0)
LDSBankCount = 32;
if (TT.isAMDGCN() && AddressableLocalMemorySize == 0)
AddressableLocalMemorySize = 32768;
LocalMemorySize = AddressableLocalMemorySize;
if (AMDGPU::isGFX10Plus(*this) &&
!getFeatureBits().test(AMDGPU::FeatureCuMode))
LocalMemorySize *= 2;
HasFminFmaxLegacy = getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS;
HasSMulHi = getGeneration() >= AMDGPUSubtarget::GFX9;
TargetID.setTargetIDFromFeaturesString(FS);
LLVM_DEBUG(dbgs() << "xnack setting for subtarget: "
<< TargetID.getXnackSetting() << '\n');
LLVM_DEBUG(dbgs() << "sramecc setting for subtarget: "
<< TargetID.getSramEccSetting() << '\n');
return *this;
}
void GCNSubtarget::checkSubtargetFeatures(const Function &F) const {
LLVMContext &Ctx = F.getContext();
if (hasFeature(AMDGPU::FeatureWavefrontSize32) &&
hasFeature(AMDGPU::FeatureWavefrontSize64)) {
Ctx.diagnose(DiagnosticInfoUnsupported(
F, "must specify exactly one of wavefrontsize32 and wavefrontsize64"));
}
}
GCNSubtarget::GCNSubtarget(const Triple &TT, StringRef GPU, StringRef FS,
const GCNTargetMachine &TM)
: // clang-format off
AMDGPUGenSubtargetInfo(TT, GPU, /*TuneCPU*/ GPU, FS),
AMDGPUSubtarget(TT),
TargetTriple(TT),
TargetID(*this),
InstrItins(getInstrItineraryForCPU(GPU)),
InstrInfo(initializeSubtargetDependencies(TT, GPU, FS)),
TLInfo(TM, *this),
FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0) {
// clang-format on
MaxWavesPerEU = AMDGPU::IsaInfo::getMaxWavesPerEU(this);
EUsPerCU = AMDGPU::IsaInfo::getEUsPerCU(this);
TSInfo = std::make_unique<AMDGPUSelectionDAGInfo>();
CallLoweringInfo = std::make_unique<AMDGPUCallLowering>(*getTargetLowering());
InlineAsmLoweringInfo =
std::make_unique<InlineAsmLowering>(getTargetLowering());
Legalizer = std::make_unique<AMDGPULegalizerInfo>(*this, TM);
RegBankInfo = std::make_unique<AMDGPURegisterBankInfo>(*this);
InstSelector =
std::make_unique<AMDGPUInstructionSelector>(*this, *RegBankInfo, TM);
}
const SelectionDAGTargetInfo *GCNSubtarget::getSelectionDAGInfo() const {
return TSInfo.get();
}
unsigned GCNSubtarget::getConstantBusLimit(unsigned Opcode) const {
if (getGeneration() < GFX10)
return 1;
switch (Opcode) {
case AMDGPU::V_LSHLREV_B64_e64:
case AMDGPU::V_LSHLREV_B64_gfx10:
case AMDGPU::V_LSHLREV_B64_e64_gfx11:
case AMDGPU::V_LSHLREV_B64_e32_gfx12:
case AMDGPU::V_LSHLREV_B64_e64_gfx12:
case AMDGPU::V_LSHL_B64_e64:
case AMDGPU::V_LSHRREV_B64_e64:
case AMDGPU::V_LSHRREV_B64_gfx10:
case AMDGPU::V_LSHRREV_B64_e64_gfx11:
case AMDGPU::V_LSHRREV_B64_e64_gfx12:
case AMDGPU::V_LSHR_B64_e64:
case AMDGPU::V_ASHRREV_I64_e64:
case AMDGPU::V_ASHRREV_I64_gfx10:
case AMDGPU::V_ASHRREV_I64_e64_gfx11:
case AMDGPU::V_ASHRREV_I64_e64_gfx12:
case AMDGPU::V_ASHR_I64_e64:
return 1;
}
return 2;
}
/// This list was mostly derived from experimentation.
bool GCNSubtarget::zeroesHigh16BitsOfDest(unsigned Opcode) const {
switch (Opcode) {
case AMDGPU::V_CVT_F16_F32_e32:
case AMDGPU::V_CVT_F16_F32_e64:
case AMDGPU::V_CVT_F16_U16_e32:
case AMDGPU::V_CVT_F16_U16_e64:
case AMDGPU::V_CVT_F16_I16_e32:
case AMDGPU::V_CVT_F16_I16_e64:
case AMDGPU::V_RCP_F16_e64:
case AMDGPU::V_RCP_F16_e32:
case AMDGPU::V_RSQ_F16_e64:
case AMDGPU::V_RSQ_F16_e32:
case AMDGPU::V_SQRT_F16_e64:
case AMDGPU::V_SQRT_F16_e32:
case AMDGPU::V_LOG_F16_e64:
case AMDGPU::V_LOG_F16_e32:
case AMDGPU::V_EXP_F16_e64:
case AMDGPU::V_EXP_F16_e32:
case AMDGPU::V_SIN_F16_e64:
case AMDGPU::V_SIN_F16_e32:
case AMDGPU::V_COS_F16_e64:
case AMDGPU::V_COS_F16_e32:
case AMDGPU::V_FLOOR_F16_e64:
case AMDGPU::V_FLOOR_F16_e32:
case AMDGPU::V_CEIL_F16_e64:
case AMDGPU::V_CEIL_F16_e32:
case AMDGPU::V_TRUNC_F16_e64:
case AMDGPU::V_TRUNC_F16_e32:
case AMDGPU::V_RNDNE_F16_e64:
case AMDGPU::V_RNDNE_F16_e32:
case AMDGPU::V_FRACT_F16_e64:
case AMDGPU::V_FRACT_F16_e32:
case AMDGPU::V_FREXP_MANT_F16_e64:
case AMDGPU::V_FREXP_MANT_F16_e32:
case AMDGPU::V_FREXP_EXP_I16_F16_e64:
case AMDGPU::V_FREXP_EXP_I16_F16_e32:
case AMDGPU::V_LDEXP_F16_e64:
case AMDGPU::V_LDEXP_F16_e32:
case AMDGPU::V_LSHLREV_B16_e64:
case AMDGPU::V_LSHLREV_B16_e32:
case AMDGPU::V_LSHRREV_B16_e64:
case AMDGPU::V_LSHRREV_B16_e32:
case AMDGPU::V_ASHRREV_I16_e64:
case AMDGPU::V_ASHRREV_I16_e32:
case AMDGPU::V_ADD_U16_e64:
case AMDGPU::V_ADD_U16_e32:
case AMDGPU::V_SUB_U16_e64:
case AMDGPU::V_SUB_U16_e32:
case AMDGPU::V_SUBREV_U16_e64:
case AMDGPU::V_SUBREV_U16_e32:
case AMDGPU::V_MUL_LO_U16_e64:
case AMDGPU::V_MUL_LO_U16_e32:
case AMDGPU::V_ADD_F16_e64:
case AMDGPU::V_ADD_F16_e32:
case AMDGPU::V_SUB_F16_e64:
case AMDGPU::V_SUB_F16_e32:
case AMDGPU::V_SUBREV_F16_e64:
case AMDGPU::V_SUBREV_F16_e32:
case AMDGPU::V_MUL_F16_e64:
case AMDGPU::V_MUL_F16_e32:
case AMDGPU::V_MAX_F16_e64:
case AMDGPU::V_MAX_F16_e32:
case AMDGPU::V_MIN_F16_e64:
case AMDGPU::V_MIN_F16_e32:
case AMDGPU::V_MAX_U16_e64:
case AMDGPU::V_MAX_U16_e32:
case AMDGPU::V_MIN_U16_e64:
case AMDGPU::V_MIN_U16_e32:
case AMDGPU::V_MAX_I16_e64:
case AMDGPU::V_MAX_I16_e32:
case AMDGPU::V_MIN_I16_e64:
case AMDGPU::V_MIN_I16_e32:
case AMDGPU::V_MAD_F16_e64:
case AMDGPU::V_MAD_U16_e64:
case AMDGPU::V_MAD_I16_e64:
case AMDGPU::V_FMA_F16_e64:
case AMDGPU::V_DIV_FIXUP_F16_e64:
// On gfx10, all 16-bit instructions preserve the high bits.
return getGeneration() <= AMDGPUSubtarget::GFX9;
case AMDGPU::V_MADAK_F16:
case AMDGPU::V_MADMK_F16:
case AMDGPU::V_MAC_F16_e64:
case AMDGPU::V_MAC_F16_e32:
case AMDGPU::V_FMAMK_F16:
case AMDGPU::V_FMAAK_F16:
case AMDGPU::V_FMAC_F16_e64:
case AMDGPU::V_FMAC_F16_e32:
// In gfx9, the preferred handling of the unused high 16-bits changed. Most
// instructions maintain the legacy behavior of 0ing. Some instructions
// changed to preserving the high bits.
return getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS;
case AMDGPU::V_MAD_MIXLO_F16:
case AMDGPU::V_MAD_MIXHI_F16:
default:
return false;
}
}
void GCNSubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy,
unsigned NumRegionInstrs) const {
// Track register pressure so the scheduler can try to decrease
// pressure once register usage is above the threshold defined by
// SIRegisterInfo::getRegPressureSetLimit()
Policy.ShouldTrackPressure = true;
// Enabling both top down and bottom up scheduling seems to give us less
// register spills than just using one of these approaches on its own.
Policy.OnlyTopDown = false;
Policy.OnlyBottomUp = false;
// Enabling ShouldTrackLaneMasks crashes the SI Machine Scheduler.
if (!enableSIScheduler())
Policy.ShouldTrackLaneMasks = true;
}
void GCNSubtarget::mirFileLoaded(MachineFunction &MF) const {
if (isWave32()) {
// Fix implicit $vcc operands after MIParser has verified that they match
// the instruction definitions.
for (auto &MBB : MF) {
for (auto &MI : MBB)
InstrInfo.fixImplicitOperands(MI);
}
}
}
bool GCNSubtarget::hasMadF16() const {
return InstrInfo.pseudoToMCOpcode(AMDGPU::V_MAD_F16_e64) != -1;
}
bool GCNSubtarget::useVGPRIndexMode() const {
return hasVGPRIndexMode() && (!hasMovrel() || EnableVGPRIndexMode);
}
bool GCNSubtarget::useAA() const { return UseAA; }
unsigned GCNSubtarget::getOccupancyWithNumSGPRs(unsigned SGPRs) const {
return AMDGPU::IsaInfo::getOccupancyWithNumSGPRs(SGPRs, getMaxWavesPerEU(),
getGeneration());
}
unsigned GCNSubtarget::getOccupancyWithNumVGPRs(unsigned NumVGPRs) const {
return AMDGPU::IsaInfo::getNumWavesPerEUWithNumVGPRs(this, NumVGPRs);
}
unsigned
GCNSubtarget::getBaseReservedNumSGPRs(const bool HasFlatScratch) const {
if (getGeneration() >= AMDGPUSubtarget::GFX10)
return 2; // VCC. FLAT_SCRATCH and XNACK are no longer in SGPRs.
if (HasFlatScratch || HasArchitectedFlatScratch) {
if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
return 6; // FLAT_SCRATCH, XNACK, VCC (in that order).
if (getGeneration() == AMDGPUSubtarget::SEA_ISLANDS)
return 4; // FLAT_SCRATCH, VCC (in that order).
}
if (isXNACKEnabled())
return 4; // XNACK, VCC (in that order).
return 2; // VCC.
}
unsigned GCNSubtarget::getReservedNumSGPRs(const MachineFunction &MF) const {
const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
return getBaseReservedNumSGPRs(MFI.getUserSGPRInfo().hasFlatScratchInit());
}
unsigned GCNSubtarget::getReservedNumSGPRs(const Function &F) const {
// In principle we do not need to reserve SGPR pair used for flat_scratch if
// we know flat instructions do not access the stack anywhere in the
// program. For now assume it's needed if we have flat instructions.
const bool KernelUsesFlatScratch = hasFlatAddressSpace();
return getBaseReservedNumSGPRs(KernelUsesFlatScratch);
}
std::pair<unsigned, unsigned>
GCNSubtarget::computeOccupancy(const Function &F, unsigned LDSSize,
unsigned NumSGPRs, unsigned NumVGPRs) const {
auto [MinOcc, MaxOcc] = getOccupancyWithWorkGroupSizes(LDSSize, F);
unsigned SGPROcc = getOccupancyWithNumSGPRs(NumSGPRs);
unsigned VGPROcc = getOccupancyWithNumVGPRs(NumVGPRs);
// Maximum occupancy may be further limited by high SGPR/VGPR usage.
MaxOcc = std::min(MaxOcc, std::min(SGPROcc, VGPROcc));
return {std::min(MinOcc, MaxOcc), MaxOcc};
}
unsigned GCNSubtarget::getBaseMaxNumSGPRs(
const Function &F, std::pair<unsigned, unsigned> WavesPerEU,
unsigned PreloadedSGPRs, unsigned ReservedNumSGPRs) const {
// Compute maximum number of SGPRs function can use using default/requested
// minimum number of waves per execution unit.
unsigned MaxNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, false);
unsigned MaxAddressableNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, true);
// Check if maximum number of SGPRs was explicitly requested using
// "amdgpu-num-sgpr" attribute.
unsigned Requested =
F.getFnAttributeAsParsedInteger("amdgpu-num-sgpr", MaxNumSGPRs);
if (Requested != MaxNumSGPRs) {
// Make sure requested value does not violate subtarget's specifications.
if (Requested && (Requested <= ReservedNumSGPRs))
Requested = 0;
// If more SGPRs are required to support the input user/system SGPRs,
// increase to accommodate them.
//
// FIXME: This really ends up using the requested number of SGPRs + number
// of reserved special registers in total. Theoretically you could re-use
// the last input registers for these special registers, but this would
// require a lot of complexity to deal with the weird aliasing.
unsigned InputNumSGPRs = PreloadedSGPRs;
if (Requested && Requested < InputNumSGPRs)
Requested = InputNumSGPRs;
// Make sure requested value is compatible with values implied by
// default/requested minimum/maximum number of waves per execution unit.
if (Requested && Requested > getMaxNumSGPRs(WavesPerEU.first, false))
Requested = 0;
if (WavesPerEU.second && Requested &&
Requested < getMinNumSGPRs(WavesPerEU.second))
Requested = 0;
if (Requested)
MaxNumSGPRs = Requested;
}
if (hasSGPRInitBug())
MaxNumSGPRs = AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG;
return std::min(MaxNumSGPRs - ReservedNumSGPRs, MaxAddressableNumSGPRs);
}
unsigned GCNSubtarget::getMaxNumSGPRs(const MachineFunction &MF) const {
const Function &F = MF.getFunction();
const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
return getBaseMaxNumSGPRs(F, MFI.getWavesPerEU(), MFI.getNumPreloadedSGPRs(),
getReservedNumSGPRs(MF));
}
unsigned GCNSubtarget::getMaxNumPreloadedSGPRs() const {
using USI = GCNUserSGPRUsageInfo;
// Max number of user SGPRs
const unsigned MaxUserSGPRs =
USI::getNumUserSGPRForField(USI::PrivateSegmentBufferID) +
USI::getNumUserSGPRForField(USI::DispatchPtrID) +
USI::getNumUserSGPRForField(USI::QueuePtrID) +
USI::getNumUserSGPRForField(USI::KernargSegmentPtrID) +
USI::getNumUserSGPRForField(USI::DispatchIdID) +
USI::getNumUserSGPRForField(USI::FlatScratchInitID) +
USI::getNumUserSGPRForField(USI::ImplicitBufferPtrID);
// Max number of system SGPRs
const unsigned MaxSystemSGPRs = 1 + // WorkGroupIDX
1 + // WorkGroupIDY
1 + // WorkGroupIDZ
1 + // WorkGroupInfo
1; // private segment wave byte offset
// Max number of synthetic SGPRs
const unsigned SyntheticSGPRs = 1; // LDSKernelId
return MaxUserSGPRs + MaxSystemSGPRs + SyntheticSGPRs;
}
unsigned GCNSubtarget::getMaxNumSGPRs(const Function &F) const {
return getBaseMaxNumSGPRs(F, getWavesPerEU(F), getMaxNumPreloadedSGPRs(),
getReservedNumSGPRs(F));
}
unsigned GCNSubtarget::getBaseMaxNumVGPRs(
const Function &F, std::pair<unsigned, unsigned> NumVGPRBounds) const {
const auto &[Min, Max] = NumVGPRBounds;
// Check if maximum number of VGPRs was explicitly requested using
// "amdgpu-num-vgpr" attribute.
unsigned Requested = F.getFnAttributeAsParsedInteger("amdgpu-num-vgpr", Max);
if (Requested != Max && hasGFX90AInsts())
Requested *= 2;
// Make sure requested value is inside the range of possible VGPR usage.
return std::clamp(Requested, Min, Max);
}
unsigned GCNSubtarget::getMaxNumVGPRs(const Function &F) const {
std::pair<unsigned, unsigned> Waves = getWavesPerEU(F);
return getBaseMaxNumVGPRs(
F, {getMinNumVGPRs(Waves.second), getMaxNumVGPRs(Waves.first)});
}
unsigned GCNSubtarget::getMaxNumVGPRs(const MachineFunction &MF) const {
return getMaxNumVGPRs(MF.getFunction());
}
void GCNSubtarget::adjustSchedDependency(
SUnit *Def, int DefOpIdx, SUnit *Use, int UseOpIdx, SDep &Dep,
const TargetSchedModel *SchedModel) const {
if (Dep.getKind() != SDep::Kind::Data || !Dep.getReg() || !Def->isInstr() ||
!Use->isInstr())
return;
MachineInstr *DefI = Def->getInstr();
MachineInstr *UseI = Use->getInstr();
if (DefI->isBundle()) {
const SIRegisterInfo *TRI = getRegisterInfo();
auto Reg = Dep.getReg();
MachineBasicBlock::const_instr_iterator I(DefI->getIterator());
MachineBasicBlock::const_instr_iterator E(DefI->getParent()->instr_end());
unsigned Lat = 0;
for (++I; I != E && I->isBundledWithPred(); ++I) {
if (I->modifiesRegister(Reg, TRI))
Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *I);
else if (Lat)
--Lat;
}
Dep.setLatency(Lat);
} else if (UseI->isBundle()) {
const SIRegisterInfo *TRI = getRegisterInfo();
auto Reg = Dep.getReg();
MachineBasicBlock::const_instr_iterator I(UseI->getIterator());
MachineBasicBlock::const_instr_iterator E(UseI->getParent()->instr_end());
unsigned Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *DefI);
for (++I; I != E && I->isBundledWithPred() && Lat; ++I) {
if (I->readsRegister(Reg, TRI))
break;
--Lat;
}
Dep.setLatency(Lat);
} else if (Dep.getLatency() == 0 && Dep.getReg() == AMDGPU::VCC_LO) {
// Work around the fact that SIInstrInfo::fixImplicitOperands modifies
// implicit operands which come from the MCInstrDesc, which can fool
// ScheduleDAGInstrs::addPhysRegDataDeps into treating them as implicit
// pseudo operands.
Dep.setLatency(InstrInfo.getSchedModel().computeOperandLatency(
DefI, DefOpIdx, UseI, UseOpIdx));
}
}
unsigned GCNSubtarget::getNSAThreshold(const MachineFunction &MF) const {
if (getGeneration() >= AMDGPUSubtarget::GFX12)
return 0; // Not MIMG encoding.
if (NSAThreshold.getNumOccurrences() > 0)
return std::max(NSAThreshold.getValue(), 2u);
int Value = MF.getFunction().getFnAttributeAsParsedInteger(
"amdgpu-nsa-threshold", -1);
if (Value > 0)
return std::max(Value, 2);
return NSAThreshold;
}
GCNUserSGPRUsageInfo::GCNUserSGPRUsageInfo(const Function &F,
const GCNSubtarget &ST)
: ST(ST) {
const CallingConv::ID CC = F.getCallingConv();
const bool IsKernel =
CC == CallingConv::AMDGPU_KERNEL || CC == CallingConv::SPIR_KERNEL;
if (IsKernel && (!F.arg_empty() || ST.getImplicitArgNumBytes(F) != 0))
KernargSegmentPtr = true;
bool IsAmdHsaOrMesa = ST.isAmdHsaOrMesa(F);
if (IsAmdHsaOrMesa && !ST.enableFlatScratch())
PrivateSegmentBuffer = true;
else if (ST.isMesaGfxShader(F))
ImplicitBufferPtr = true;
if (!AMDGPU::isGraphics(CC)) {
if (!F.hasFnAttribute("amdgpu-no-dispatch-ptr"))
DispatchPtr = true;
// FIXME: Can this always be disabled with < COv5?
if (!F.hasFnAttribute("amdgpu-no-queue-ptr"))
QueuePtr = true;
if (!F.hasFnAttribute("amdgpu-no-dispatch-id"))
DispatchID = true;
}
if (ST.hasFlatAddressSpace() && AMDGPU::isEntryFunctionCC(CC) &&
(IsAmdHsaOrMesa || ST.enableFlatScratch()) &&
// FlatScratchInit cannot be true for graphics CC if enableFlatScratch()
// is false.
(ST.enableFlatScratch() ||
(!AMDGPU::isGraphics(CC) &&
!F.hasFnAttribute("amdgpu-no-flat-scratch-init"))) &&
!ST.flatScratchIsArchitected()) {
FlatScratchInit = true;
}
if (hasImplicitBufferPtr())
NumUsedUserSGPRs += getNumUserSGPRForField(ImplicitBufferPtrID);
if (hasPrivateSegmentBuffer())
NumUsedUserSGPRs += getNumUserSGPRForField(PrivateSegmentBufferID);
if (hasDispatchPtr())
NumUsedUserSGPRs += getNumUserSGPRForField(DispatchPtrID);
if (hasQueuePtr())
NumUsedUserSGPRs += getNumUserSGPRForField(QueuePtrID);
if (hasKernargSegmentPtr())
NumUsedUserSGPRs += getNumUserSGPRForField(KernargSegmentPtrID);
if (hasDispatchID())
NumUsedUserSGPRs += getNumUserSGPRForField(DispatchIdID);
if (hasFlatScratchInit())
NumUsedUserSGPRs += getNumUserSGPRForField(FlatScratchInitID);
if (hasPrivateSegmentSize())
NumUsedUserSGPRs += getNumUserSGPRForField(PrivateSegmentSizeID);
}
void GCNUserSGPRUsageInfo::allocKernargPreloadSGPRs(unsigned NumSGPRs) {
assert(NumKernargPreloadSGPRs + NumSGPRs <= AMDGPU::getMaxNumUserSGPRs(ST));
NumKernargPreloadSGPRs += NumSGPRs;
NumUsedUserSGPRs += NumSGPRs;
}
unsigned GCNUserSGPRUsageInfo::getNumFreeUserSGPRs() {
return AMDGPU::getMaxNumUserSGPRs(ST) - NumUsedUserSGPRs;
}