| //===- LowerVectorGather.cpp - Lower 'vector.gather' operation ------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements target-independent rewrites and utilities to lower the |
| // 'vector.gather' operation. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| #include "mlir/Dialect/Arith/IR/Arith.h" |
| #include "mlir/Dialect/Arith/Utils/Utils.h" |
| #include "mlir/Dialect/Linalg/IR/Linalg.h" |
| #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| #include "mlir/Dialect/SCF/IR/SCF.h" |
| #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| #include "mlir/Dialect/Utils/IndexingUtils.h" |
| #include "mlir/Dialect/Utils/StructuredOpsUtils.h" |
| #include "mlir/Dialect/Vector/IR/VectorOps.h" |
| #include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h" |
| #include "mlir/Dialect/Vector/Utils/VectorUtils.h" |
| #include "mlir/IR/BuiltinAttributeInterfaces.h" |
| #include "mlir/IR/BuiltinTypes.h" |
| #include "mlir/IR/ImplicitLocOpBuilder.h" |
| #include "mlir/IR/Location.h" |
| #include "mlir/IR/Matchers.h" |
| #include "mlir/IR/PatternMatch.h" |
| #include "mlir/IR/TypeUtilities.h" |
| #include "mlir/Interfaces/VectorInterfaces.h" |
| |
| #define DEBUG_TYPE "vector-broadcast-lowering" |
| |
| using namespace mlir; |
| using namespace mlir::vector; |
| |
| namespace { |
| /// Flattens 2 or more dimensional `vector.gather` ops by unrolling the |
| /// outermost dimension. For example: |
| /// ``` |
| /// %g = vector.gather %base[%c0][%v], %mask, %pass_thru : |
| /// ... into vector<2x3xf32> |
| /// |
| /// ==> |
| /// |
| /// %0 = arith.constant dense<0.0> : vector<2x3xf32> |
| /// %g0 = vector.gather %base[%c0][%v0], %mask0, %pass_thru0 : ... |
| /// %1 = vector.insert %g0, %0 [0] : vector<3xf32> into vector<2x3xf32> |
| /// %g1 = vector.gather %base[%c0][%v1], %mask1, %pass_thru1 : ... |
| /// %g = vector.insert %g1, %1 [1] : vector<3xf32> into vector<2x3xf32> |
| /// ``` |
| /// |
| /// When applied exhaustively, this will produce a sequence of 1-d gather ops. |
| /// |
| /// Supports vector types with a fixed leading dimension. |
| struct FlattenGather : OpRewritePattern<vector::GatherOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::GatherOp op, |
| PatternRewriter &rewriter) const override { |
| VectorType resultTy = op.getType(); |
| if (resultTy.getRank() < 2) |
| return rewriter.notifyMatchFailure(op, "already flat"); |
| |
| // Unrolling doesn't take vscale into account. Pattern is disabled for |
| // vectors with leading scalable dim(s). |
| if (resultTy.getScalableDims().front()) |
| return rewriter.notifyMatchFailure(op, "cannot unroll scalable dim"); |
| |
| Location loc = op.getLoc(); |
| Value indexVec = op.getIndexVec(); |
| Value maskVec = op.getMask(); |
| Value passThruVec = op.getPassThru(); |
| |
| Value result = rewriter.create<arith::ConstantOp>( |
| loc, resultTy, rewriter.getZeroAttr(resultTy)); |
| |
| VectorType subTy = VectorType::Builder(resultTy).dropDim(0); |
| |
| for (int64_t i = 0, e = resultTy.getShape().front(); i < e; ++i) { |
| int64_t thisIdx[1] = {i}; |
| |
| Value indexSubVec = |
| rewriter.create<vector::ExtractOp>(loc, indexVec, thisIdx); |
| Value maskSubVec = |
| rewriter.create<vector::ExtractOp>(loc, maskVec, thisIdx); |
| Value passThruSubVec = |
| rewriter.create<vector::ExtractOp>(loc, passThruVec, thisIdx); |
| Value subGather = rewriter.create<vector::GatherOp>( |
| loc, subTy, op.getBase(), op.getIndices(), indexSubVec, maskSubVec, |
| passThruSubVec); |
| result = |
| rewriter.create<vector::InsertOp>(loc, subGather, result, thisIdx); |
| } |
| |
| rewriter.replaceOp(op, result); |
| return success(); |
| } |
| }; |
| |
| /// Rewrites a vector.gather of a strided MemRef as a gather of a non-strided |
| /// MemRef with updated indices that model the strided access. |
| /// |
| /// ```mlir |
| /// %subview = memref.subview %M (...) |
| /// : memref<100x3xf32> to memref<100xf32, strided<[3]>> |
| /// %gather = vector.gather %subview[%idxs] (...) : memref<100xf32, strided<[3]>> |
| /// ``` |
| /// ==> |
| /// ```mlir |
| /// %collapse_shape = memref.collapse_shape %M (...) |
| /// : memref<100x3xf32> into memref<300xf32> |
| /// %new_idxs = arith.muli %idxs, %c3 : vector<4xindex> |
| /// %gather = vector.gather %collapse_shape[%new_idxs] (...) |
| /// : memref<300xf32> (...) |
| /// ``` |
| /// |
| /// ATM this is effectively limited to reading a 1D Vector from a 2D MemRef, |
| /// but should be fairly straightforward to extend beyond that. |
| struct RemoveStrideFromGatherSource : OpRewritePattern<vector::GatherOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::GatherOp op, |
| PatternRewriter &rewriter) const override { |
| Value base = op.getBase(); |
| |
| // TODO: Strided accesses might be coming from other ops as well |
| auto subview = base.getDefiningOp<memref::SubViewOp>(); |
| if (!subview) |
| return failure(); |
| |
| auto sourceType = subview.getSource().getType(); |
| |
| // TODO: Allow ranks > 2. |
| if (sourceType.getRank() != 2) |
| return failure(); |
| |
| // Get strides |
| auto layout = subview.getResult().getType().getLayout(); |
| auto stridedLayoutAttr = llvm::dyn_cast<StridedLayoutAttr>(layout); |
| if (!stridedLayoutAttr) |
| return failure(); |
| |
| // TODO: Allow the access to be strided in multiple dimensions. |
| if (stridedLayoutAttr.getStrides().size() != 1) |
| return failure(); |
| |
| int64_t srcTrailingDim = sourceType.getShape().back(); |
| |
| // Assume that the stride matches the trailing dimension of the source |
| // memref. |
| // TODO: Relax this assumption. |
| if (stridedLayoutAttr.getStrides()[0] != srcTrailingDim) |
| return failure(); |
| |
| // 1. Collapse the input memref so that it's "flat". |
| SmallVector<ReassociationIndices> reassoc = {{0, 1}}; |
| Value collapsed = rewriter.create<memref::CollapseShapeOp>( |
| op.getLoc(), subview.getSource(), reassoc); |
| |
| // 2. Generate new gather indices that will model the |
| // strided access. |
| IntegerAttr stride = rewriter.getIndexAttr(srcTrailingDim); |
| VectorType vType = op.getIndexVec().getType(); |
| Value mulCst = rewriter.create<arith::ConstantOp>( |
| op.getLoc(), vType, DenseElementsAttr::get(vType, stride)); |
| |
| Value newIdxs = |
| rewriter.create<arith::MulIOp>(op.getLoc(), op.getIndexVec(), mulCst); |
| |
| // 3. Create an updated gather op with the collapsed input memref and the |
| // updated indices. |
| Value newGather = rewriter.create<vector::GatherOp>( |
| op.getLoc(), op.getResult().getType(), collapsed, op.getIndices(), |
| newIdxs, op.getMask(), op.getPassThru()); |
| rewriter.replaceOp(op, newGather); |
| |
| return success(); |
| } |
| }; |
| |
| /// Turns 1-d `vector.gather` into a scalarized sequence of `vector.loads` or |
| /// `tensor.extract`s. To avoid out-of-bounds memory accesses, these |
| /// loads/extracts are made conditional using `scf.if` ops. |
| struct Gather1DToConditionalLoads : OpRewritePattern<vector::GatherOp> { |
| using OpRewritePattern::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(vector::GatherOp op, |
| PatternRewriter &rewriter) const override { |
| VectorType resultTy = op.getType(); |
| if (resultTy.getRank() != 1) |
| return rewriter.notifyMatchFailure(op, "unsupported rank"); |
| |
| if (resultTy.isScalable()) |
| return rewriter.notifyMatchFailure(op, "not a fixed-width vector"); |
| |
| Location loc = op.getLoc(); |
| Type elemTy = resultTy.getElementType(); |
| // Vector type with a single element. Used to generate `vector.loads`. |
| VectorType elemVecTy = VectorType::get({1}, elemTy); |
| |
| Value condMask = op.getMask(); |
| Value base = op.getBase(); |
| |
| // vector.load requires the most minor memref dim to have unit stride |
| // (unless reading exactly 1 element) |
| if (auto memType = dyn_cast<MemRefType>(base.getType())) { |
| if (auto stridesAttr = |
| dyn_cast_if_present<StridedLayoutAttr>(memType.getLayout())) { |
| if (stridesAttr.getStrides().back() != 1 && |
| resultTy.getNumElements() != 1) |
| return failure(); |
| } |
| } |
| |
| Value indexVec = rewriter.createOrFold<arith::IndexCastOp>( |
| loc, op.getIndexVectorType().clone(rewriter.getIndexType()), |
| op.getIndexVec()); |
| auto baseOffsets = llvm::to_vector(op.getIndices()); |
| Value lastBaseOffset = baseOffsets.back(); |
| |
| Value result = op.getPassThru(); |
| |
| // Emit a conditional access for each vector element. |
| for (int64_t i = 0, e = resultTy.getNumElements(); i < e; ++i) { |
| int64_t thisIdx[1] = {i}; |
| Value condition = |
| rewriter.create<vector::ExtractOp>(loc, condMask, thisIdx); |
| Value index = rewriter.create<vector::ExtractOp>(loc, indexVec, thisIdx); |
| baseOffsets.back() = |
| rewriter.createOrFold<arith::AddIOp>(loc, lastBaseOffset, index); |
| |
| auto loadBuilder = [&](OpBuilder &b, Location loc) { |
| Value extracted; |
| if (isa<MemRefType>(base.getType())) { |
| // `vector.load` does not support scalar result; emit a vector load |
| // and extract the single result instead. |
| Value load = |
| b.create<vector::LoadOp>(loc, elemVecTy, base, baseOffsets); |
| int64_t zeroIdx[1] = {0}; |
| extracted = b.create<vector::ExtractOp>(loc, load, zeroIdx); |
| } else { |
| extracted = b.create<tensor::ExtractOp>(loc, base, baseOffsets); |
| } |
| |
| Value newResult = |
| b.create<vector::InsertOp>(loc, extracted, result, thisIdx); |
| b.create<scf::YieldOp>(loc, newResult); |
| }; |
| auto passThruBuilder = [result](OpBuilder &b, Location loc) { |
| b.create<scf::YieldOp>(loc, result); |
| }; |
| |
| result = |
| rewriter |
| .create<scf::IfOp>(loc, condition, /*thenBuilder=*/loadBuilder, |
| /*elseBuilder=*/passThruBuilder) |
| .getResult(0); |
| } |
| |
| rewriter.replaceOp(op, result); |
| return success(); |
| } |
| }; |
| } // namespace |
| |
| void mlir::vector::populateVectorGatherLoweringPatterns( |
| RewritePatternSet &patterns, PatternBenefit benefit) { |
| patterns.add<FlattenGather, RemoveStrideFromGatherSource, |
| Gather1DToConditionalLoads>(patterns.getContext(), benefit); |
| } |