blob: eaef14574385ab1a5f013927a8e114ff0eea37f3 [file] [log] [blame]
//===------ CFIFixup.cpp - Insert CFI remember/restore instructions -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass inserts the necessary instructions to adjust for the inconsistency
// of the call-frame information caused by final machine basic block layout.
// The pass relies in constraints LLVM imposes on the placement of
// save/restore points (cf. ShrinkWrap) and has certain preconditions about
// placement of CFI instructions:
// * For any two CFI instructions of the function prologue one dominates
// and is post-dominated by the other.
// * The function possibly contains multiple epilogue blocks, where each
// epilogue block is complete and self-contained, i.e. CSR restore
// instructions (and the corresponding CFI instructions)
// are not split across two or more blocks.
// * CFI instructions are not contained in any loops.
// Thus, during execution, at the beginning and at the end of each basic block,
// following the prologue, the function can be in one of two states:
// - "has a call frame", if the function has executed the prologue, and
// has not executed any epilogue
// - "does not have a call frame", if the function has not executed the
// prologue, or has executed an epilogue
// which can be computed by a single RPO traversal.
// The location of the prologue is determined by finding the first block in the
// reverse traversal which contains CFI instructions.
// In order to accommodate backends which do not generate unwind info in
// epilogues we compute an additional property "strong no call frame on entry",
// which is set for the entry point of the function and for every block
// reachable from the entry along a path that does not execute the prologue. If
// this property holds, it takes precedence over the "has a call frame"
// property.
// From the point of view of the unwind tables, the "has/does not have call
// frame" state at beginning of each block is determined by the state at the end
// of the previous block, in layout order. Where these states differ, we insert
// compensating CFI instructions, which come in two flavours:
// - CFI instructions, which reset the unwind table state to the initial one.
// This is done by a target specific hook and is expected to be trivial
// to implement, for example it could be:
// .cfi_def_cfa <sp>, 0
// .cfi_same_value <rN>
// .cfi_same_value <rN-1>
// ...
// where <rN> are the callee-saved registers.
// - CFI instructions, which reset the unwind table state to the one
// created by the function prologue. These are
// .cfi_restore_state
// .cfi_remember_state
// In this case we also insert a `.cfi_remember_state` after the last CFI
// instruction in the function prologue.
//
// Known limitations:
// * the pass cannot handle an epilogue preceding the prologue in the basic
// block layout
// * the pass does not handle functions where SP is used as a frame pointer and
// SP adjustments up and down are done in different basic blocks (TODO)
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/CFIFixup.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Target/TargetMachine.h"
#include <iterator>
using namespace llvm;
#define DEBUG_TYPE "cfi-fixup"
char CFIFixup::ID = 0;
INITIALIZE_PASS(CFIFixup, "cfi-fixup",
"Insert CFI remember/restore state instructions", false, false)
FunctionPass *llvm::createCFIFixup() { return new CFIFixup(); }
static bool isPrologueCFIInstruction(const MachineInstr &MI) {
return MI.getOpcode() == TargetOpcode::CFI_INSTRUCTION &&
MI.getFlag(MachineInstr::FrameSetup);
}
static bool containsEpilogue(const MachineBasicBlock &MBB) {
return llvm::any_of(llvm::reverse(MBB), [](const auto &MI) {
return MI.getOpcode() == TargetOpcode::CFI_INSTRUCTION &&
MI.getFlag(MachineInstr::FrameDestroy);
});
}
static MachineBasicBlock *
findPrologueEnd(MachineFunction &MF, MachineBasicBlock::iterator &PrologueEnd) {
// Even though we should theoretically traverse the blocks in post-order, we
// can't encode correctly cases where prologue blocks are not laid out in
// topological order. Then, assuming topological order, we can just traverse
// the function in reverse.
for (MachineBasicBlock &MBB : reverse(MF)) {
for (MachineInstr &MI : reverse(MBB.instrs())) {
if (!isPrologueCFIInstruction(MI))
continue;
PrologueEnd = std::next(MI.getIterator());
return &MBB;
}
}
return nullptr;
}
// Represents a basic block's relationship to the call frame. This metadata
// reflects what the state *should* be, which may differ from the actual state
// after final machine basic block layout.
struct BlockFlags {
bool Reachable : 1;
bool StrongNoFrameOnEntry : 1;
bool HasFrameOnEntry : 1;
bool HasFrameOnExit : 1;
BlockFlags()
: Reachable(false), StrongNoFrameOnEntry(false), HasFrameOnEntry(false),
HasFrameOnExit(false) {}
};
// Most functions will have <= 32 basic blocks.
using BlockFlagsVector = SmallVector<BlockFlags, 32>;
// Computes the frame information for each block in the function. Frame info
// for a block is inferred from its predecessors.
static BlockFlagsVector
computeBlockInfo(const MachineFunction &MF,
const MachineBasicBlock *PrologueBlock) {
BlockFlagsVector BlockInfo(MF.getNumBlockIDs());
BlockInfo[0].Reachable = true;
BlockInfo[0].StrongNoFrameOnEntry = true;
// Compute the presence/absence of frame at each basic block.
ReversePostOrderTraversal<const MachineBasicBlock *> RPOT(&*MF.begin());
for (const MachineBasicBlock *MBB : RPOT) {
BlockFlags &Info = BlockInfo[MBB->getNumber()];
// Set to true if the current block contains the prologue or the epilogue,
// respectively.
bool HasPrologue = MBB == PrologueBlock;
bool HasEpilogue = false;
if (Info.HasFrameOnEntry || HasPrologue)
HasEpilogue = containsEpilogue(*MBB);
// If the function has a call frame at the entry of the current block or the
// current block contains the prologue, then the function has a call frame
// at the exit of the block, unless the block contains the epilogue.
Info.HasFrameOnExit = (Info.HasFrameOnEntry || HasPrologue) && !HasEpilogue;
// Set the successors' state on entry.
for (MachineBasicBlock *Succ : MBB->successors()) {
BlockFlags &SuccInfo = BlockInfo[Succ->getNumber()];
SuccInfo.Reachable = true;
SuccInfo.StrongNoFrameOnEntry |=
Info.StrongNoFrameOnEntry && !HasPrologue;
SuccInfo.HasFrameOnEntry = Info.HasFrameOnExit;
}
}
return BlockInfo;
}
// Represents the point within a basic block where we can insert an instruction.
// Note that we need the MachineBasicBlock* as well as the iterator since the
// iterator can point to the end of the block. Instructions are inserted
// *before* the iterator.
struct InsertionPoint {
MachineBasicBlock *MBB = nullptr;
MachineBasicBlock::iterator Iterator;
};
// Inserts a `.cfi_remember_state` instruction before PrologueEnd and a
// `.cfi_restore_state` instruction before DstInsertPt. Returns an iterator
// to the first instruction after the inserted `.cfi_restore_state` instruction.
static InsertionPoint
insertRememberRestorePair(const InsertionPoint &RememberInsertPt,
const InsertionPoint &RestoreInsertPt) {
MachineFunction &MF = *RememberInsertPt.MBB->getParent();
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
// Insert the `.cfi_remember_state` instruction.
unsigned CFIIndex =
MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
BuildMI(*RememberInsertPt.MBB, RememberInsertPt.Iterator, DebugLoc(),
TII.get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex);
// Insert the `.cfi_restore_state` instruction.
CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
return {RestoreInsertPt.MBB,
std::next(BuildMI(*RestoreInsertPt.MBB, RestoreInsertPt.Iterator,
DebugLoc(), TII.get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
->getIterator())};
}
// Copies all CFI instructions before PrologueEnd and inserts them before
// DstInsertPt. Returns the iterator to the first instruction after the
// inserted instructions.
static InsertionPoint cloneCfiPrologue(const InsertionPoint &PrologueEnd,
const InsertionPoint &DstInsertPt) {
MachineFunction &MF = *DstInsertPt.MBB->getParent();
auto cloneCfiInstructions = [&](MachineBasicBlock::iterator Begin,
MachineBasicBlock::iterator End) {
auto ToClone = map_range(
make_filter_range(make_range(Begin, End), isPrologueCFIInstruction),
[&](const MachineInstr &MI) { return MF.CloneMachineInstr(&MI); });
DstInsertPt.MBB->insert(DstInsertPt.Iterator, ToClone.begin(),
ToClone.end());
};
// Clone all CFI instructions from previous blocks.
for (auto &MBB : make_range(MF.begin(), PrologueEnd.MBB->getIterator()))
cloneCfiInstructions(MBB.begin(), MBB.end());
// Clone all CFI instructions from the final prologue block.
cloneCfiInstructions(PrologueEnd.MBB->begin(), PrologueEnd.Iterator);
return DstInsertPt;
}
// Fixes up the CFI instructions in a basic block to be consistent with the
// intended frame state, adding or removing CFI instructions as necessary.
// Returns true if a change was made and false otherwise.
static bool
fixupBlock(MachineBasicBlock &CurrBB, const BlockFlagsVector &BlockInfo,
SmallDenseMap<MBBSectionID, InsertionPoint> &InsertionPts,
const InsertionPoint &Prologue) {
const MachineFunction &MF = *CurrBB.getParent();
const TargetFrameLowering &TFL = *MF.getSubtarget().getFrameLowering();
const BlockFlags &Info = BlockInfo[CurrBB.getNumber()];
if (!Info.Reachable)
return false;
// If we don't need to perform full CFI fix up, we only need to fix up the
// first basic block in the section.
if (!TFL.enableFullCFIFixup(MF) && !CurrBB.isBeginSection())
return false;
// If the previous block and the current block are in the same section,
// the frame info will propagate from the previous block to the current one.
const BlockFlags &PrevInfo =
BlockInfo[std::prev(CurrBB.getIterator())->getNumber()];
bool HasFrame = PrevInfo.HasFrameOnExit && !CurrBB.isBeginSection();
bool NeedsFrame = Info.HasFrameOnEntry && !Info.StrongNoFrameOnEntry;
#ifndef NDEBUG
if (!Info.StrongNoFrameOnEntry) {
for (auto *Pred : CurrBB.predecessors()) {
const BlockFlags &PredInfo = BlockInfo[Pred->getNumber()];
assert((!PredInfo.Reachable ||
Info.HasFrameOnEntry == PredInfo.HasFrameOnExit) &&
"Inconsistent call frame state");
}
}
#endif
if (HasFrame == NeedsFrame)
return false;
if (!NeedsFrame) {
// Reset to the state upon function entry.
TFL.resetCFIToInitialState(CurrBB);
return true;
}
// Reset to the "after prologue" state.
InsertionPoint &InsertPt = InsertionPts[CurrBB.getSectionID()];
if (InsertPt.MBB == nullptr) {
// CurBB is the first block in its section, so there is no "after
// prologue" state. Clone the CFI instructions from the prologue block
// to create it.
InsertPt = cloneCfiPrologue(Prologue, {&CurrBB, CurrBB.begin()});
} else {
// There's an earlier block known to have a stack frame. Insert a
// `.cfi_remember_state` instruction into that block and a
// `.cfi_restore_state` instruction at the beginning of the current
// block.
InsertPt = insertRememberRestorePair(InsertPt, {&CurrBB, CurrBB.begin()});
}
return true;
}
bool CFIFixup::runOnMachineFunction(MachineFunction &MF) {
if (!MF.getSubtarget().getFrameLowering()->enableCFIFixup(MF))
return false;
if (MF.getNumBlockIDs() < 2)
return false;
// Find the prologue and the point where we can issue the first
// `.cfi_remember_state`.
MachineBasicBlock::iterator PrologueEnd;
MachineBasicBlock *PrologueBlock = findPrologueEnd(MF, PrologueEnd);
if (PrologueBlock == nullptr)
return false;
BlockFlagsVector BlockInfo = computeBlockInfo(MF, PrologueBlock);
// Walk the blocks of the function in "physical" order.
// Every block inherits the frame state (as recorded in the unwind tables)
// of the previous block. If the intended frame state is different, insert
// compensating CFI instructions.
bool Change = false;
// `InsertPt[sectionID]` always points to the point in a preceding block where
// we have to insert a `.cfi_remember_state`, in the case that the current
// block needs a `.cfi_restore_state`.
SmallDenseMap<MBBSectionID, InsertionPoint> InsertionPts;
InsertionPts[PrologueBlock->getSectionID()] = {PrologueBlock, PrologueEnd};
assert(PrologueEnd != PrologueBlock->begin() &&
"Inconsistent notion of \"prologue block\"");
// No point starting before the prologue block.
// TODO: the unwind tables will still be incorrect if an epilogue physically
// preceeds the prologue.
for (MachineBasicBlock &MBB :
make_range(std::next(PrologueBlock->getIterator()), MF.end())) {
Change |=
fixupBlock(MBB, BlockInfo, InsertionPts, {PrologueBlock, PrologueEnd});
}
return Change;
}