|  | //===--- RDFDeadCode.cpp --------------------------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // RDF-based generic dead code elimination. | 
|  |  | 
|  | #include "RDFDeadCode.h" | 
|  |  | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/RDFGraph.h" | 
|  | #include "llvm/CodeGen/RDFLiveness.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  |  | 
|  | #include <queue> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace rdf; | 
|  |  | 
|  | // This drastically improves execution time in "collect" over using | 
|  | // SetVector as a work queue, and popping the first element from it. | 
|  | template<typename T> struct DeadCodeElimination::SetQueue { | 
|  | SetQueue() : Set(), Queue() {} | 
|  |  | 
|  | bool empty() const { | 
|  | return Queue.empty(); | 
|  | } | 
|  | T pop_front() { | 
|  | T V = Queue.front(); | 
|  | Queue.pop(); | 
|  | Set.erase(V); | 
|  | return V; | 
|  | } | 
|  | void push_back(T V) { | 
|  | if (Set.count(V)) | 
|  | return; | 
|  | Queue.push(V); | 
|  | Set.insert(V); | 
|  | } | 
|  |  | 
|  | private: | 
|  | DenseSet<T> Set; | 
|  | std::queue<T> Queue; | 
|  | }; | 
|  |  | 
|  |  | 
|  | // Check if the given instruction has observable side-effects, i.e. if | 
|  | // it should be considered "live". It is safe for this function to be | 
|  | // overly conservative (i.e. return "true" for all instructions), but it | 
|  | // is not safe to return "false" for an instruction that should not be | 
|  | // considered removable. | 
|  | bool DeadCodeElimination::isLiveInstr(NodeAddr<StmtNode *> S) const { | 
|  | const MachineInstr *MI = S.Addr->getCode(); | 
|  | if (MI->mayStore() || MI->isBranch() || MI->isCall() || MI->isReturn()) | 
|  | return true; | 
|  | if (MI->hasOrderedMemoryRef() || MI->hasUnmodeledSideEffects() || | 
|  | MI->isPosition()) | 
|  | return true; | 
|  | if (MI->isPHI()) | 
|  | return false; | 
|  | for (auto &Op : MI->operands()) { | 
|  | if (Op.isReg() && MRI.isReserved(Op.getReg())) | 
|  | return true; | 
|  | if (Op.isRegMask()) { | 
|  | const uint32_t *BM = Op.getRegMask(); | 
|  | for (unsigned R = 0, RN = DFG.getTRI().getNumRegs(); R != RN; ++R) { | 
|  | if (BM[R/32] & (1u << (R%32))) | 
|  | continue; | 
|  | if (MRI.isReserved(R)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void DeadCodeElimination::scanInstr(NodeAddr<InstrNode*> IA, | 
|  | SetQueue<NodeId> &WorkQ) { | 
|  | if (!DFG.IsCode<NodeAttrs::Stmt>(IA)) | 
|  | return; | 
|  | if (!isLiveInstr(IA)) | 
|  | return; | 
|  | for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG)) { | 
|  | if (!LiveNodes.count(RA.Id)) | 
|  | WorkQ.push_back(RA.Id); | 
|  | } | 
|  | } | 
|  |  | 
|  | void DeadCodeElimination::processDef(NodeAddr<DefNode*> DA, | 
|  | SetQueue<NodeId> &WorkQ) { | 
|  | NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG); | 
|  | for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) { | 
|  | if (!LiveNodes.count(UA.Id)) | 
|  | WorkQ.push_back(UA.Id); | 
|  | } | 
|  | for (NodeAddr<DefNode*> TA : DFG.getRelatedRefs(IA, DA)) | 
|  | LiveNodes.insert(TA.Id); | 
|  | } | 
|  |  | 
|  | void DeadCodeElimination::processUse(NodeAddr<UseNode*> UA, | 
|  | SetQueue<NodeId> &WorkQ) { | 
|  | for (NodeAddr<DefNode*> DA : LV.getAllReachingDefs(UA)) { | 
|  | if (!LiveNodes.count(DA.Id)) | 
|  | WorkQ.push_back(DA.Id); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Traverse the DFG and collect the set dead RefNodes and the set of | 
|  | // dead instructions. Return "true" if any of these sets is non-empty, | 
|  | // "false" otherwise. | 
|  | bool DeadCodeElimination::collect() { | 
|  | // This function works by first finding all live nodes. The dead nodes | 
|  | // are then the complement of the set of live nodes. | 
|  | // | 
|  | // Assume that all nodes are dead. Identify instructions which must be | 
|  | // considered live, i.e. instructions with observable side-effects, such | 
|  | // as calls and stores. All arguments of such instructions are considered | 
|  | // live. For each live def, all operands used in the corresponding | 
|  | // instruction are considered live. For each live use, all its reaching | 
|  | // defs are considered live. | 
|  | LiveNodes.clear(); | 
|  | SetQueue<NodeId> WorkQ; | 
|  | for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) | 
|  | for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) | 
|  | scanInstr(IA, WorkQ); | 
|  |  | 
|  | while (!WorkQ.empty()) { | 
|  | NodeId N = WorkQ.pop_front(); | 
|  | LiveNodes.insert(N); | 
|  | auto RA = DFG.addr<RefNode*>(N); | 
|  | if (DFG.IsDef(RA)) | 
|  | processDef(RA, WorkQ); | 
|  | else | 
|  | processUse(RA, WorkQ); | 
|  | } | 
|  |  | 
|  | if (trace()) { | 
|  | dbgs() << "Live nodes:\n"; | 
|  | for (NodeId N : LiveNodes) { | 
|  | auto RA = DFG.addr<RefNode*>(N); | 
|  | dbgs() << PrintNode<RefNode*>(RA, DFG) << "\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | auto IsDead = [this] (NodeAddr<InstrNode*> IA) -> bool { | 
|  | for (NodeAddr<DefNode*> DA : IA.Addr->members_if(DFG.IsDef, DFG)) | 
|  | if (LiveNodes.count(DA.Id)) | 
|  | return false; | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) { | 
|  | for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) { | 
|  | for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG)) | 
|  | if (!LiveNodes.count(RA.Id)) | 
|  | DeadNodes.insert(RA.Id); | 
|  | if (DFG.IsCode<NodeAttrs::Stmt>(IA)) | 
|  | if (isLiveInstr(IA) || DFG.hasUntrackedRef(IA)) | 
|  | continue; | 
|  | if (IsDead(IA)) { | 
|  | DeadInstrs.insert(IA.Id); | 
|  | if (trace()) | 
|  | dbgs() << "Dead instr: " << PrintNode<InstrNode*>(IA, DFG) << "\n"; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return !DeadNodes.empty(); | 
|  | } | 
|  |  | 
|  | // Erase the nodes given in the Nodes set from DFG. In addition to removing | 
|  | // them from the DFG, if a node corresponds to a statement, the corresponding | 
|  | // machine instruction is erased from the function. | 
|  | bool DeadCodeElimination::erase(const SetVector<NodeId> &Nodes) { | 
|  | if (Nodes.empty()) | 
|  | return false; | 
|  |  | 
|  | // Prepare the actual set of ref nodes to remove: ref nodes from Nodes | 
|  | // are included directly, for each InstrNode in Nodes, include the set | 
|  | // of all RefNodes from it. | 
|  | NodeList DRNs, DINs; | 
|  | for (auto I : Nodes) { | 
|  | auto BA = DFG.addr<NodeBase*>(I); | 
|  | uint16_t Type = BA.Addr->getType(); | 
|  | if (Type == NodeAttrs::Ref) { | 
|  | DRNs.push_back(DFG.addr<RefNode*>(I)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If it's a code node, add all ref nodes from it. | 
|  | uint16_t Kind = BA.Addr->getKind(); | 
|  | if (Kind == NodeAttrs::Stmt || Kind == NodeAttrs::Phi) { | 
|  | append_range(DRNs, NodeAddr<CodeNode*>(BA).Addr->members(DFG)); | 
|  | DINs.push_back(DFG.addr<InstrNode*>(I)); | 
|  | } else { | 
|  | llvm_unreachable("Unexpected code node"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Sort the list so that use nodes are removed first. This makes the | 
|  | // "unlink" functions a bit faster. | 
|  | auto UsesFirst = [] (NodeAddr<RefNode*> A, NodeAddr<RefNode*> B) -> bool { | 
|  | uint16_t KindA = A.Addr->getKind(), KindB = B.Addr->getKind(); | 
|  | if (KindA == NodeAttrs::Use && KindB == NodeAttrs::Def) | 
|  | return true; | 
|  | if (KindA == NodeAttrs::Def && KindB == NodeAttrs::Use) | 
|  | return false; | 
|  | return A.Id < B.Id; | 
|  | }; | 
|  | llvm::sort(DRNs, UsesFirst); | 
|  |  | 
|  | if (trace()) | 
|  | dbgs() << "Removing dead ref nodes:\n"; | 
|  | for (NodeAddr<RefNode*> RA : DRNs) { | 
|  | if (trace()) | 
|  | dbgs() << "  " << PrintNode<RefNode*>(RA, DFG) << '\n'; | 
|  | if (DFG.IsUse(RA)) | 
|  | DFG.unlinkUse(RA, true); | 
|  | else if (DFG.IsDef(RA)) | 
|  | DFG.unlinkDef(RA, true); | 
|  | } | 
|  |  | 
|  | // Now, remove all dead instruction nodes. | 
|  | for (NodeAddr<InstrNode*> IA : DINs) { | 
|  | NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG); | 
|  | BA.Addr->removeMember(IA, DFG); | 
|  | if (!DFG.IsCode<NodeAttrs::Stmt>(IA)) | 
|  | continue; | 
|  |  | 
|  | MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode(); | 
|  | if (trace()) | 
|  | dbgs() << "erasing: " << *MI; | 
|  | MI->eraseFromParent(); | 
|  | } | 
|  | return true; | 
|  | } |