blob: 5c75e985e953de537c4c85f22bcfc0404be8df7f [file] [log] [blame]
//===- SPIR.cpp -----------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ABIInfoImpl.h"
#include "TargetInfo.h"
using namespace clang;
using namespace clang::CodeGen;
//===----------------------------------------------------------------------===//
// Base ABI and target codegen info implementation common between SPIR and
// SPIR-V.
//===----------------------------------------------------------------------===//
namespace {
class CommonSPIRABIInfo : public DefaultABIInfo {
public:
CommonSPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); }
private:
void setCCs();
};
class SPIRVABIInfo : public CommonSPIRABIInfo {
public:
SPIRVABIInfo(CodeGenTypes &CGT) : CommonSPIRABIInfo(CGT) {}
void computeInfo(CGFunctionInfo &FI) const override;
private:
ABIArgInfo classifyReturnType(QualType RetTy) const;
ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
ABIArgInfo classifyArgumentType(QualType Ty) const;
};
} // end anonymous namespace
namespace {
class CommonSPIRTargetCodeGenInfo : public TargetCodeGenInfo {
public:
CommonSPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
: TargetCodeGenInfo(std::make_unique<CommonSPIRABIInfo>(CGT)) {}
CommonSPIRTargetCodeGenInfo(std::unique_ptr<ABIInfo> ABIInfo)
: TargetCodeGenInfo(std::move(ABIInfo)) {}
LangAS getASTAllocaAddressSpace() const override {
return getLangASFromTargetAS(
getABIInfo().getDataLayout().getAllocaAddrSpace());
}
unsigned getOpenCLKernelCallingConv() const override;
llvm::Type *getOpenCLType(CodeGenModule &CGM, const Type *T) const override;
llvm::Type *getHLSLType(CodeGenModule &CGM, const Type *Ty) const override;
llvm::Type *getSPIRVImageTypeFromHLSLResource(
const HLSLAttributedResourceType::Attributes &attributes,
llvm::Type *ElementType, llvm::LLVMContext &Ctx) const;
};
class SPIRVTargetCodeGenInfo : public CommonSPIRTargetCodeGenInfo {
public:
SPIRVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
: CommonSPIRTargetCodeGenInfo(std::make_unique<SPIRVABIInfo>(CGT)) {}
void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
const VarDecl *D) const override;
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
CodeGen::CodeGenModule &M) const override;
llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
SyncScope Scope,
llvm::AtomicOrdering Ordering,
llvm::LLVMContext &Ctx) const override;
};
inline StringRef mapClangSyncScopeToLLVM(SyncScope Scope) {
switch (Scope) {
case SyncScope::HIPSingleThread:
case SyncScope::SingleScope:
return "singlethread";
case SyncScope::HIPWavefront:
case SyncScope::OpenCLSubGroup:
case SyncScope::WavefrontScope:
return "subgroup";
case SyncScope::HIPWorkgroup:
case SyncScope::OpenCLWorkGroup:
case SyncScope::WorkgroupScope:
return "workgroup";
case SyncScope::HIPAgent:
case SyncScope::OpenCLDevice:
case SyncScope::DeviceScope:
return "device";
case SyncScope::SystemScope:
case SyncScope::HIPSystem:
case SyncScope::OpenCLAllSVMDevices:
return "";
}
return "";
}
} // End anonymous namespace.
void CommonSPIRABIInfo::setCCs() {
assert(getRuntimeCC() == llvm::CallingConv::C);
RuntimeCC = llvm::CallingConv::SPIR_FUNC;
}
ABIArgInfo SPIRVABIInfo::classifyReturnType(QualType RetTy) const {
if (getTarget().getTriple().getVendor() != llvm::Triple::AMD)
return DefaultABIInfo::classifyReturnType(RetTy);
if (!isAggregateTypeForABI(RetTy) || getRecordArgABI(RetTy, getCXXABI()))
return DefaultABIInfo::classifyReturnType(RetTy);
if (const RecordType *RT = RetTy->getAs<RecordType>()) {
const RecordDecl *RD = RT->getDecl();
if (RD->hasFlexibleArrayMember())
return DefaultABIInfo::classifyReturnType(RetTy);
}
// TODO: The AMDGPU ABI is non-trivial to represent in SPIR-V; in order to
// avoid encoding various architecture specific bits here we return everything
// as direct to retain type info for things like aggregates, for later perusal
// when translating back to LLVM/lowering in the BE. This is also why we
// disable flattening as the outcomes can mismatch between SPIR-V and AMDGPU.
// This will be revisited / optimised in the future.
return ABIArgInfo::getDirect(CGT.ConvertType(RetTy), 0u, nullptr, false);
}
ABIArgInfo SPIRVABIInfo::classifyKernelArgumentType(QualType Ty) const {
if (getContext().getLangOpts().CUDAIsDevice) {
// Coerce pointer arguments with default address space to CrossWorkGroup
// pointers for HIPSPV/CUDASPV. When the language mode is HIP/CUDA, the
// SPIRTargetInfo maps cuda_device to SPIR-V's CrossWorkGroup address space.
llvm::Type *LTy = CGT.ConvertType(Ty);
auto DefaultAS = getContext().getTargetAddressSpace(LangAS::Default);
auto GlobalAS = getContext().getTargetAddressSpace(LangAS::cuda_device);
auto *PtrTy = llvm::dyn_cast<llvm::PointerType>(LTy);
if (PtrTy && PtrTy->getAddressSpace() == DefaultAS) {
LTy = llvm::PointerType::get(PtrTy->getContext(), GlobalAS);
return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
}
if (isAggregateTypeForABI(Ty)) {
if (getTarget().getTriple().getVendor() == llvm::Triple::AMD)
// TODO: The AMDGPU kernel ABI passes aggregates byref, which is not
// currently expressible in SPIR-V; SPIR-V passes aggregates byval,
// which the AMDGPU kernel ABI does not allow. Passing aggregates as
// direct works around this impedance mismatch, as it retains type info
// and can be correctly handled, post reverse-translation, by the AMDGPU
// BE, which has to support this CC for legacy OpenCL purposes. It can
// be brittle and does lead to performance degradation in certain
// pathological cases. This will be revisited / optimised in the future,
// once a way to deal with the byref/byval impedance mismatch is
// identified.
return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
// Force copying aggregate type in kernel arguments by value when
// compiling CUDA targeting SPIR-V. This is required for the object
// copied to be valid on the device.
// This behavior follows the CUDA spec
// https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#global-function-argument-processing,
// and matches the NVPTX implementation.
return getNaturalAlignIndirect(Ty, /* byval */ true);
}
}
return classifyArgumentType(Ty);
}
ABIArgInfo SPIRVABIInfo::classifyArgumentType(QualType Ty) const {
if (getTarget().getTriple().getVendor() != llvm::Triple::AMD)
return DefaultABIInfo::classifyArgumentType(Ty);
if (!isAggregateTypeForABI(Ty))
return DefaultABIInfo::classifyArgumentType(Ty);
// Records with non-trivial destructors/copy-constructors should not be
// passed by value.
if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
if (const RecordType *RT = Ty->getAs<RecordType>()) {
const RecordDecl *RD = RT->getDecl();
if (RD->hasFlexibleArrayMember())
return DefaultABIInfo::classifyArgumentType(Ty);
}
return ABIArgInfo::getDirect(CGT.ConvertType(Ty), 0u, nullptr, false);
}
void SPIRVABIInfo::computeInfo(CGFunctionInfo &FI) const {
// The logic is same as in DefaultABIInfo with an exception on the kernel
// arguments handling.
llvm::CallingConv::ID CC = FI.getCallingConvention();
if (!getCXXABI().classifyReturnType(FI))
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
for (auto &I : FI.arguments()) {
if (CC == llvm::CallingConv::SPIR_KERNEL) {
I.info = classifyKernelArgumentType(I.type);
} else {
I.info = classifyArgumentType(I.type);
}
}
}
namespace clang {
namespace CodeGen {
void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
if (CGM.getTarget().getTriple().isSPIRV())
SPIRVABIInfo(CGM.getTypes()).computeInfo(FI);
else
CommonSPIRABIInfo(CGM.getTypes()).computeInfo(FI);
}
}
}
unsigned CommonSPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
return llvm::CallingConv::SPIR_KERNEL;
}
void SPIRVTargetCodeGenInfo::setCUDAKernelCallingConvention(
const FunctionType *&FT) const {
// Convert HIP kernels to SPIR-V kernels.
if (getABIInfo().getContext().getLangOpts().HIP) {
FT = getABIInfo().getContext().adjustFunctionType(
FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
return;
}
}
LangAS
SPIRVTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
const VarDecl *D) const {
assert(!CGM.getLangOpts().OpenCL &&
!(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
"Address space agnostic languages only");
// If we're here it means that we're using the SPIRDefIsGen ASMap, hence for
// the global AS we can rely on either cuda_device or sycl_global to be
// correct; however, since this is not a CUDA Device context, we use
// sycl_global to prevent confusion with the assertion.
LangAS DefaultGlobalAS = getLangASFromTargetAS(
CGM.getContext().getTargetAddressSpace(LangAS::sycl_global));
if (!D)
return DefaultGlobalAS;
LangAS AddrSpace = D->getType().getAddressSpace();
if (AddrSpace != LangAS::Default)
return AddrSpace;
return DefaultGlobalAS;
}
void SPIRVTargetCodeGenInfo::setTargetAttributes(
const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
if (!M.getLangOpts().HIP ||
M.getTarget().getTriple().getVendor() != llvm::Triple::AMD)
return;
if (GV->isDeclaration())
return;
auto F = dyn_cast<llvm::Function>(GV);
if (!F)
return;
auto FD = dyn_cast_or_null<FunctionDecl>(D);
if (!FD)
return;
if (!FD->hasAttr<CUDAGlobalAttr>())
return;
unsigned N = M.getLangOpts().GPUMaxThreadsPerBlock;
if (auto FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>())
N = FlatWGS->getMax()->EvaluateKnownConstInt(M.getContext()).getExtValue();
// We encode the maximum flat WG size in the first component of the 3D
// max_work_group_size attribute, which will get reverse translated into the
// original AMDGPU attribute when targeting AMDGPU.
auto Int32Ty = llvm::IntegerType::getInt32Ty(M.getLLVMContext());
llvm::Metadata *AttrMDArgs[] = {
llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, N)),
llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 1)),
llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int32Ty, 1))};
F->setMetadata("max_work_group_size",
llvm::MDNode::get(M.getLLVMContext(), AttrMDArgs));
}
llvm::SyncScope::ID
SPIRVTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &, SyncScope Scope,
llvm::AtomicOrdering,
llvm::LLVMContext &Ctx) const {
return Ctx.getOrInsertSyncScopeID(mapClangSyncScopeToLLVM(Scope));
}
/// Construct a SPIR-V target extension type for the given OpenCL image type.
static llvm::Type *getSPIRVImageType(llvm::LLVMContext &Ctx, StringRef BaseType,
StringRef OpenCLName,
unsigned AccessQualifier) {
// These parameters compare to the operands of OpTypeImage (see
// https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#OpTypeImage
// for more details). The first 6 integer parameters all default to 0, and
// will be changed to 1 only for the image type(s) that set the parameter to
// one. The 7th integer parameter is the access qualifier, which is tacked on
// at the end.
SmallVector<unsigned, 7> IntParams = {0, 0, 0, 0, 0, 0};
// Choose the dimension of the image--this corresponds to the Dim enum in
// SPIR-V (first integer parameter of OpTypeImage).
if (OpenCLName.starts_with("image2d"))
IntParams[0] = 1; // 1D
else if (OpenCLName.starts_with("image3d"))
IntParams[0] = 2; // 2D
else if (OpenCLName == "image1d_buffer")
IntParams[0] = 5; // Buffer
else
assert(OpenCLName.starts_with("image1d") && "Unknown image type");
// Set the other integer parameters of OpTypeImage if necessary. Note that the
// OpenCL image types don't provide any information for the Sampled or
// Image Format parameters.
if (OpenCLName.contains("_depth"))
IntParams[1] = 1;
if (OpenCLName.contains("_array"))
IntParams[2] = 1;
if (OpenCLName.contains("_msaa"))
IntParams[3] = 1;
// Access qualifier
IntParams.push_back(AccessQualifier);
return llvm::TargetExtType::get(Ctx, BaseType, {llvm::Type::getVoidTy(Ctx)},
IntParams);
}
llvm::Type *CommonSPIRTargetCodeGenInfo::getOpenCLType(CodeGenModule &CGM,
const Type *Ty) const {
llvm::LLVMContext &Ctx = CGM.getLLVMContext();
if (auto *PipeTy = dyn_cast<PipeType>(Ty))
return llvm::TargetExtType::get(Ctx, "spirv.Pipe", {},
{!PipeTy->isReadOnly()});
if (auto *BuiltinTy = dyn_cast<BuiltinType>(Ty)) {
enum AccessQualifier : unsigned { AQ_ro = 0, AQ_wo = 1, AQ_rw = 2 };
switch (BuiltinTy->getKind()) {
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
case BuiltinType::Id: \
return getSPIRVImageType(Ctx, "spirv.Image", #ImgType, AQ_##Suffix);
#include "clang/Basic/OpenCLImageTypes.def"
case BuiltinType::OCLSampler:
return llvm::TargetExtType::get(Ctx, "spirv.Sampler");
case BuiltinType::OCLEvent:
return llvm::TargetExtType::get(Ctx, "spirv.Event");
case BuiltinType::OCLClkEvent:
return llvm::TargetExtType::get(Ctx, "spirv.DeviceEvent");
case BuiltinType::OCLQueue:
return llvm::TargetExtType::get(Ctx, "spirv.Queue");
case BuiltinType::OCLReserveID:
return llvm::TargetExtType::get(Ctx, "spirv.ReserveId");
#define INTEL_SUBGROUP_AVC_TYPE(Name, Id) \
case BuiltinType::OCLIntelSubgroupAVC##Id: \
return llvm::TargetExtType::get(Ctx, "spirv.Avc" #Id "INTEL");
#include "clang/Basic/OpenCLExtensionTypes.def"
default:
return nullptr;
}
}
return nullptr;
}
llvm::Type *CommonSPIRTargetCodeGenInfo::getHLSLType(CodeGenModule &CGM,
const Type *Ty) const {
auto *ResType = dyn_cast<HLSLAttributedResourceType>(Ty);
if (!ResType)
return nullptr;
llvm::LLVMContext &Ctx = CGM.getLLVMContext();
const HLSLAttributedResourceType::Attributes &ResAttrs = ResType->getAttrs();
switch (ResAttrs.ResourceClass) {
case llvm::dxil::ResourceClass::UAV:
case llvm::dxil::ResourceClass::SRV: {
// TypedBuffer and RawBuffer both need element type
QualType ContainedTy = ResType->getContainedType();
if (ContainedTy.isNull())
return nullptr;
assert(!ResAttrs.RawBuffer &&
"Raw buffers handles are not implemented for SPIR-V yet");
assert(!ResAttrs.IsROV &&
"Rasterizer order views not implemented for SPIR-V yet");
// convert element type
llvm::Type *ElemType = CGM.getTypes().ConvertType(ContainedTy);
return getSPIRVImageTypeFromHLSLResource(ResAttrs, ElemType, Ctx);
}
case llvm::dxil::ResourceClass::CBuffer:
llvm_unreachable("CBuffer handles are not implemented for SPIR-V yet");
break;
case llvm::dxil::ResourceClass::Sampler:
return llvm::TargetExtType::get(Ctx, "spirv.Sampler");
}
return nullptr;
}
llvm::Type *CommonSPIRTargetCodeGenInfo::getSPIRVImageTypeFromHLSLResource(
const HLSLAttributedResourceType::Attributes &attributes,
llvm::Type *ElementType, llvm::LLVMContext &Ctx) const {
if (ElementType->isVectorTy())
ElementType = ElementType->getScalarType();
assert((ElementType->isIntegerTy() || ElementType->isFloatingPointTy()) &&
"The element type for a SPIR-V resource must be a scalar integer or "
"floating point type.");
// These parameters correspond to the operands to the OpTypeImage SPIR-V
// instruction. See
// https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#OpTypeImage.
SmallVector<unsigned, 6> IntParams(6, 0);
// Dim
// For now we assume everything is a buffer.
IntParams[0] = 5;
// Depth
// HLSL does not indicate if it is a depth texture or not, so we use unknown.
IntParams[1] = 2;
// Arrayed
IntParams[2] = 0;
// MS
IntParams[3] = 0;
// Sampled
IntParams[4] =
attributes.ResourceClass == llvm::dxil::ResourceClass::UAV ? 2 : 1;
// Image format.
// Setting to unknown for now.
IntParams[5] = 0;
return llvm::TargetExtType::get(Ctx, "spirv.Image", {ElementType}, IntParams);
}
std::unique_ptr<TargetCodeGenInfo>
CodeGen::createCommonSPIRTargetCodeGenInfo(CodeGenModule &CGM) {
return std::make_unique<CommonSPIRTargetCodeGenInfo>(CGM.getTypes());
}
std::unique_ptr<TargetCodeGenInfo>
CodeGen::createSPIRVTargetCodeGenInfo(CodeGenModule &CGM) {
return std::make_unique<SPIRVTargetCodeGenInfo>(CGM.getTypes());
}