|  | //===--- ExceptionAnalyzer.cpp - clang-tidy -------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "ExceptionAnalyzer.h" | 
|  |  | 
|  | namespace clang::tidy::utils { | 
|  |  | 
|  | void ExceptionAnalyzer::ExceptionInfo::registerException( | 
|  | const Type *ExceptionType) { | 
|  | assert(ExceptionType != nullptr && "Only valid types are accepted"); | 
|  | Behaviour = State::Throwing; | 
|  | ThrownExceptions.insert(ExceptionType); | 
|  | } | 
|  |  | 
|  | void ExceptionAnalyzer::ExceptionInfo::registerExceptions( | 
|  | const Throwables &Exceptions) { | 
|  | if (Exceptions.empty()) | 
|  | return; | 
|  | Behaviour = State::Throwing; | 
|  | ThrownExceptions.insert(Exceptions.begin(), Exceptions.end()); | 
|  | } | 
|  |  | 
|  | ExceptionAnalyzer::ExceptionInfo &ExceptionAnalyzer::ExceptionInfo::merge( | 
|  | const ExceptionAnalyzer::ExceptionInfo &Other) { | 
|  | // Only the following two cases require an update to the local | 
|  | // 'Behaviour'. If the local entity is already throwing there will be no | 
|  | // change and if the other entity is throwing the merged entity will throw | 
|  | // as well. | 
|  | // If one of both entities is 'Unknown' and the other one does not throw | 
|  | // the merged entity is 'Unknown' as well. | 
|  | if (Other.Behaviour == State::Throwing) | 
|  | Behaviour = State::Throwing; | 
|  | else if (Other.Behaviour == State::Unknown && Behaviour == State::NotThrowing) | 
|  | Behaviour = State::Unknown; | 
|  |  | 
|  | ContainsUnknown = ContainsUnknown || Other.ContainsUnknown; | 
|  | ThrownExceptions.insert(Other.ThrownExceptions.begin(), | 
|  | Other.ThrownExceptions.end()); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | // FIXME: This could be ported to clang later. | 
|  | namespace { | 
|  |  | 
|  | bool isUnambiguousPublicBaseClass(const Type *DerivedType, | 
|  | const Type *BaseType) { | 
|  | const auto *DerivedClass = | 
|  | DerivedType->getCanonicalTypeUnqualified()->getAsCXXRecordDecl(); | 
|  | const auto *BaseClass = | 
|  | BaseType->getCanonicalTypeUnqualified()->getAsCXXRecordDecl(); | 
|  | if (!DerivedClass || !BaseClass) | 
|  | return false; | 
|  |  | 
|  | CXXBasePaths Paths; | 
|  | Paths.setOrigin(DerivedClass); | 
|  |  | 
|  | bool IsPublicBaseClass = false; | 
|  | DerivedClass->lookupInBases( | 
|  | [&BaseClass, &IsPublicBaseClass](const CXXBaseSpecifier *BS, | 
|  | CXXBasePath &) { | 
|  | if (BS->getType() | 
|  | ->getCanonicalTypeUnqualified() | 
|  | ->getAsCXXRecordDecl() == BaseClass && | 
|  | BS->getAccessSpecifier() == AS_public) { | 
|  | IsPublicBaseClass = true; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | }, | 
|  | Paths); | 
|  |  | 
|  | return !Paths.isAmbiguous(BaseType->getCanonicalTypeUnqualified()) && | 
|  | IsPublicBaseClass; | 
|  | } | 
|  |  | 
|  | inline bool isPointerOrPointerToMember(const Type *T) { | 
|  | return T->isPointerType() || T->isMemberPointerType(); | 
|  | } | 
|  |  | 
|  | std::optional<QualType> getPointeeOrArrayElementQualType(QualType T) { | 
|  | if (T->isAnyPointerType() || T->isMemberPointerType()) | 
|  | return T->getPointeeType(); | 
|  |  | 
|  | if (T->isArrayType()) | 
|  | return T->getAsArrayTypeUnsafe()->getElementType(); | 
|  |  | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | bool isBaseOf(const Type *DerivedType, const Type *BaseType) { | 
|  | const auto *DerivedClass = DerivedType->getAsCXXRecordDecl(); | 
|  | const auto *BaseClass = BaseType->getAsCXXRecordDecl(); | 
|  | if (!DerivedClass || !BaseClass) | 
|  | return false; | 
|  |  | 
|  | return !DerivedClass->forallBases( | 
|  | [BaseClass](const CXXRecordDecl *Cur) { return Cur != BaseClass; }); | 
|  | } | 
|  |  | 
|  | // Check if T1 is more or Equally qualified than T2. | 
|  | bool moreOrEquallyQualified(QualType T1, QualType T2) { | 
|  | return T1.getQualifiers().isStrictSupersetOf(T2.getQualifiers()) || | 
|  | T1.getQualifiers() == T2.getQualifiers(); | 
|  | } | 
|  |  | 
|  | bool isStandardPointerConvertible(QualType From, QualType To) { | 
|  | assert((From->isPointerType() || From->isMemberPointerType()) && | 
|  | (To->isPointerType() || To->isMemberPointerType()) && | 
|  | "Pointer conversion should be performed on pointer types only."); | 
|  |  | 
|  | if (!moreOrEquallyQualified(To->getPointeeType(), From->getPointeeType())) | 
|  | return false; | 
|  |  | 
|  | // (1) | 
|  | // A null pointer constant can be converted to a pointer type ... | 
|  | // The conversion of a null pointer constant to a pointer to cv-qualified type | 
|  | // is a single conversion, and not the sequence of a pointer conversion | 
|  | // followed by a qualification conversion. A null pointer constant of integral | 
|  | // type can be converted to a prvalue of type std::nullptr_t | 
|  | if (To->isPointerType() && From->isNullPtrType()) | 
|  | return true; | 
|  |  | 
|  | // (2) | 
|  | // A prvalue of type “pointer to cv T”, where T is an object type, can be | 
|  | // converted to a prvalue of type “pointer to cv void”. | 
|  | if (To->isVoidPointerType() && From->isObjectPointerType()) | 
|  | return true; | 
|  |  | 
|  | // (3) | 
|  | // A prvalue of type “pointer to cv D”, where D is a complete class type, can | 
|  | // be converted to a prvalue of type “pointer to cv B”, where B is a base | 
|  | // class of D. If B is an inaccessible or ambiguous base class of D, a program | 
|  | // that necessitates this conversion is ill-formed. | 
|  | if (const auto *RD = From->getPointeeCXXRecordDecl()) { | 
|  | if (RD->isCompleteDefinition() && | 
|  | isBaseOf(From->getPointeeType().getTypePtr(), | 
|  | To->getPointeeType().getTypePtr())) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool isFunctionPointerConvertible(QualType From, QualType To) { | 
|  | if (!From->isFunctionPointerType() && !From->isFunctionType() && | 
|  | !From->isMemberFunctionPointerType()) | 
|  | return false; | 
|  |  | 
|  | if (!To->isFunctionPointerType() && !To->isMemberFunctionPointerType()) | 
|  | return false; | 
|  |  | 
|  | if (To->isFunctionPointerType()) { | 
|  | if (From->isFunctionPointerType()) | 
|  | return To->getPointeeType() == From->getPointeeType(); | 
|  |  | 
|  | if (From->isFunctionType()) | 
|  | return To->getPointeeType() == From; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (To->isMemberFunctionPointerType()) { | 
|  | if (!From->isMemberFunctionPointerType()) | 
|  | return false; | 
|  |  | 
|  | const auto *FromMember = cast<MemberPointerType>(From); | 
|  | const auto *ToMember = cast<MemberPointerType>(To); | 
|  |  | 
|  | // Note: converting Derived::* to Base::* is a different kind of conversion, | 
|  | // called Pointer-to-member conversion. | 
|  | return FromMember->getClass() == ToMember->getClass() && | 
|  | FromMember->getPointeeType() == ToMember->getPointeeType(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Checks if From is qualification convertible to To based on the current | 
|  | // LangOpts. If From is any array, we perform the array to pointer conversion | 
|  | // first. The function only performs checks based on C++ rules, which can differ | 
|  | // from the C rules. | 
|  | // | 
|  | // The function should only be called in C++ mode. | 
|  | bool isQualificationConvertiblePointer(QualType From, QualType To, | 
|  | LangOptions LangOpts) { | 
|  |  | 
|  | // [N4659 7.5 (1)] | 
|  | // A cv-decomposition of a type T is a sequence of cv_i and P_i such that T is | 
|  | //    cv_0 P_0 cv_1 P_1 ... cv_n−1 P_n−1 cv_n U” for n > 0, | 
|  | // where each cv_i is a set of cv-qualifiers, and each P_i is “pointer to”, | 
|  | // “pointer to member of class C_i of type”, “array of N_i”, or | 
|  | // “array of unknown bound of”. | 
|  | // | 
|  | // If P_i designates an array, the cv-qualifiers cv_i+1 on the element type | 
|  | // are also taken as the cv-qualifiers cvi of the array. | 
|  | // | 
|  | // The n-tuple of cv-qualifiers after the first one in the longest | 
|  | // cv-decomposition of T, that is, cv_1, cv_2, ... , cv_n, is called the | 
|  | // cv-qualification signature of T. | 
|  |  | 
|  | auto isValidP_i = [](QualType P) { | 
|  | return P->isPointerType() || P->isMemberPointerType() || | 
|  | P->isConstantArrayType() || P->isIncompleteArrayType(); | 
|  | }; | 
|  |  | 
|  | auto isSameP_i = [](QualType P1, QualType P2) { | 
|  | if (P1->isPointerType()) | 
|  | return P2->isPointerType(); | 
|  |  | 
|  | if (P1->isMemberPointerType()) | 
|  | return P2->isMemberPointerType() && | 
|  | P1->getAs<MemberPointerType>()->getClass() == | 
|  | P2->getAs<MemberPointerType>()->getClass(); | 
|  |  | 
|  | if (P1->isConstantArrayType()) | 
|  | return P2->isConstantArrayType() && | 
|  | cast<ConstantArrayType>(P1)->getSize() == | 
|  | cast<ConstantArrayType>(P2)->getSize(); | 
|  |  | 
|  | if (P1->isIncompleteArrayType()) | 
|  | return P2->isIncompleteArrayType(); | 
|  |  | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | // (2) | 
|  | // Two types From and To are similar if they have cv-decompositions with the | 
|  | // same n such that corresponding P_i components are the same [(added by | 
|  | // N4849 7.3.5) or one is “array of N_i” and the other is “array of unknown | 
|  | // bound of”], and the types denoted by U are the same. | 
|  | // | 
|  | // (3) | 
|  | // A prvalue expression of type From can be converted to type To if the | 
|  | // following conditions are satisfied: | 
|  | //  - From and To are similar | 
|  | //  - For every i > 0, if const is in cv_i of From then const is in cv_i of | 
|  | //  To, and similarly for volatile. | 
|  | //  - [(derived from addition by N4849 7.3.5) If P_i of From is “array of | 
|  | //  unknown bound of”, P_i of To is “array of unknown bound of”.] | 
|  | //  - If the cv_i of From and cv_i of To are different, then const is in every | 
|  | //  cv_k of To for 0 < k < i. | 
|  |  | 
|  | int I = 0; | 
|  | bool ConstUntilI = true; | 
|  | auto SatisfiesCVRules = [&I, &ConstUntilI](const QualType &From, | 
|  | const QualType &To) { | 
|  | if (I > 1) { | 
|  | if (From.getQualifiers() != To.getQualifiers() && !ConstUntilI) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (I > 0) { | 
|  | if (From.isConstQualified() && !To.isConstQualified()) | 
|  | return false; | 
|  |  | 
|  | if (From.isVolatileQualified() && !To.isVolatileQualified()) | 
|  | return false; | 
|  |  | 
|  | ConstUntilI = To.isConstQualified(); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | while (isValidP_i(From) && isValidP_i(To)) { | 
|  | // Remove every sugar. | 
|  | From = From.getCanonicalType(); | 
|  | To = To.getCanonicalType(); | 
|  |  | 
|  | if (!SatisfiesCVRules(From, To)) | 
|  | return false; | 
|  |  | 
|  | if (!isSameP_i(From, To)) { | 
|  | if (LangOpts.CPlusPlus20) { | 
|  | if (From->isConstantArrayType() && !To->isIncompleteArrayType()) | 
|  | return false; | 
|  |  | 
|  | if (From->isIncompleteArrayType() && !To->isIncompleteArrayType()) | 
|  | return false; | 
|  |  | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | ++I; | 
|  | std::optional<QualType> FromPointeeOrElem = | 
|  | getPointeeOrArrayElementQualType(From); | 
|  | std::optional<QualType> ToPointeeOrElem = | 
|  | getPointeeOrArrayElementQualType(To); | 
|  |  | 
|  | assert(FromPointeeOrElem && | 
|  | "From pointer or array has no pointee or element!"); | 
|  | assert(ToPointeeOrElem && "To pointer or array has no pointee or element!"); | 
|  |  | 
|  | From = *FromPointeeOrElem; | 
|  | To = *ToPointeeOrElem; | 
|  | } | 
|  |  | 
|  | // In this case the length (n) of From and To are not the same. | 
|  | if (isValidP_i(From) || isValidP_i(To)) | 
|  | return false; | 
|  |  | 
|  | // We hit U. | 
|  | if (!SatisfiesCVRules(From, To)) | 
|  | return false; | 
|  |  | 
|  | return From.getTypePtr() == To.getTypePtr(); | 
|  | } | 
|  | } // namespace | 
|  |  | 
|  | static bool canThrow(const FunctionDecl *Func) { | 
|  | const auto *FunProto = Func->getType()->getAs<FunctionProtoType>(); | 
|  | if (!FunProto) | 
|  | return true; | 
|  |  | 
|  | switch (FunProto->canThrow()) { | 
|  | case CT_Cannot: | 
|  | return false; | 
|  | case CT_Dependent: { | 
|  | const Expr *NoexceptExpr = FunProto->getNoexceptExpr(); | 
|  | if (!NoexceptExpr) | 
|  | return true; // no noexept - can throw | 
|  |  | 
|  | if (NoexceptExpr->isValueDependent()) | 
|  | return true; // depend on template - some instance can throw | 
|  |  | 
|  | bool Result = false; | 
|  | if (!NoexceptExpr->EvaluateAsBooleanCondition(Result, Func->getASTContext(), | 
|  | /*InConstantContext=*/true)) | 
|  | return true;  // complex X condition in noexcept(X), cannot validate, | 
|  | // assume that may throw | 
|  | return !Result; // noexcept(false) - can throw | 
|  | } | 
|  | default: | 
|  | return true; | 
|  | }; | 
|  | } | 
|  |  | 
|  | bool ExceptionAnalyzer::ExceptionInfo::filterByCatch( | 
|  | const Type *HandlerTy, const ASTContext &Context) { | 
|  | llvm::SmallVector<const Type *, 8> TypesToDelete; | 
|  | for (const Type *ExceptionTy : ThrownExceptions) { | 
|  | CanQualType ExceptionCanTy = ExceptionTy->getCanonicalTypeUnqualified(); | 
|  | CanQualType HandlerCanTy = HandlerTy->getCanonicalTypeUnqualified(); | 
|  |  | 
|  | // The handler is of type cv T or cv T& and E and T are the same type | 
|  | // (ignoring the top-level cv-qualifiers) ... | 
|  | if (ExceptionCanTy == HandlerCanTy) { | 
|  | TypesToDelete.push_back(ExceptionTy); | 
|  | } | 
|  |  | 
|  | // The handler is of type cv T or cv T& and T is an unambiguous public base | 
|  | // class of E ... | 
|  | else if (isUnambiguousPublicBaseClass(ExceptionCanTy->getTypePtr(), | 
|  | HandlerCanTy->getTypePtr())) { | 
|  | TypesToDelete.push_back(ExceptionTy); | 
|  | } | 
|  |  | 
|  | if (HandlerCanTy->getTypeClass() == Type::RValueReference || | 
|  | (HandlerCanTy->getTypeClass() == Type::LValueReference && | 
|  | !HandlerCanTy->getTypePtr()->getPointeeType().isConstQualified())) | 
|  | continue; | 
|  | // The handler is of type cv T or const T& where T is a pointer or | 
|  | // pointer-to-member type and E is a pointer or pointer-to-member type that | 
|  | // can be converted to T by one or more of ... | 
|  | if (isPointerOrPointerToMember(HandlerCanTy->getTypePtr()) && | 
|  | isPointerOrPointerToMember(ExceptionCanTy->getTypePtr())) { | 
|  | // A standard pointer conversion not involving conversions to pointers to | 
|  | // private or protected or ambiguous classes ... | 
|  | if (isStandardPointerConvertible(ExceptionCanTy, HandlerCanTy) && | 
|  | isUnambiguousPublicBaseClass( | 
|  | ExceptionCanTy->getTypePtr()->getPointeeType().getTypePtr(), | 
|  | HandlerCanTy->getTypePtr()->getPointeeType().getTypePtr())) { | 
|  | TypesToDelete.push_back(ExceptionTy); | 
|  | } | 
|  | // A function pointer conversion ... | 
|  | else if (isFunctionPointerConvertible(ExceptionCanTy, HandlerCanTy)) { | 
|  | TypesToDelete.push_back(ExceptionTy); | 
|  | } | 
|  | // A a qualification conversion ... | 
|  | else if (isQualificationConvertiblePointer(ExceptionCanTy, HandlerCanTy, | 
|  | Context.getLangOpts())) { | 
|  | TypesToDelete.push_back(ExceptionTy); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The handler is of type cv T or const T& where T is a pointer or | 
|  | // pointer-to-member type and E is std::nullptr_t. | 
|  | else if (isPointerOrPointerToMember(HandlerCanTy->getTypePtr()) && | 
|  | ExceptionCanTy->isNullPtrType()) { | 
|  | TypesToDelete.push_back(ExceptionTy); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (const Type *T : TypesToDelete) | 
|  | ThrownExceptions.erase(T); | 
|  |  | 
|  | reevaluateBehaviour(); | 
|  | return !TypesToDelete.empty(); | 
|  | } | 
|  |  | 
|  | ExceptionAnalyzer::ExceptionInfo & | 
|  | ExceptionAnalyzer::ExceptionInfo::filterIgnoredExceptions( | 
|  | const llvm::StringSet<> &IgnoredTypes, bool IgnoreBadAlloc) { | 
|  | llvm::SmallVector<const Type *, 8> TypesToDelete; | 
|  | // Note: Using a 'SmallSet' with 'llvm::remove_if()' is not possible. | 
|  | // Therefore this slightly hacky implementation is required. | 
|  | for (const Type *T : ThrownExceptions) { | 
|  | if (const auto *TD = T->getAsTagDecl()) { | 
|  | if (TD->getDeclName().isIdentifier()) { | 
|  | if ((IgnoreBadAlloc && | 
|  | (TD->getName() == "bad_alloc" && TD->isInStdNamespace())) || | 
|  | (IgnoredTypes.count(TD->getName()) > 0)) | 
|  | TypesToDelete.push_back(T); | 
|  | } | 
|  | } | 
|  | } | 
|  | for (const Type *T : TypesToDelete) | 
|  | ThrownExceptions.erase(T); | 
|  |  | 
|  | reevaluateBehaviour(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | void ExceptionAnalyzer::ExceptionInfo::clear() { | 
|  | Behaviour = State::NotThrowing; | 
|  | ContainsUnknown = false; | 
|  | ThrownExceptions.clear(); | 
|  | } | 
|  |  | 
|  | void ExceptionAnalyzer::ExceptionInfo::reevaluateBehaviour() { | 
|  | if (ThrownExceptions.empty()) | 
|  | if (ContainsUnknown) | 
|  | Behaviour = State::Unknown; | 
|  | else | 
|  | Behaviour = State::NotThrowing; | 
|  | else | 
|  | Behaviour = State::Throwing; | 
|  | } | 
|  |  | 
|  | ExceptionAnalyzer::ExceptionInfo ExceptionAnalyzer::throwsException( | 
|  | const FunctionDecl *Func, const ExceptionInfo::Throwables &Caught, | 
|  | llvm::SmallSet<const FunctionDecl *, 32> &CallStack) { | 
|  | if (!Func || CallStack.count(Func) || (!CallStack.empty() && !canThrow(Func))) | 
|  | return ExceptionInfo::createNonThrowing(); | 
|  |  | 
|  | if (const Stmt *Body = Func->getBody()) { | 
|  | CallStack.insert(Func); | 
|  | ExceptionInfo Result = throwsException(Body, Caught, CallStack); | 
|  |  | 
|  | // For a constructor, we also have to check the initializers. | 
|  | if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(Func)) { | 
|  | for (const CXXCtorInitializer *Init : Ctor->inits()) { | 
|  | ExceptionInfo Excs = | 
|  | throwsException(Init->getInit(), Caught, CallStack); | 
|  | Result.merge(Excs); | 
|  | } | 
|  | } | 
|  |  | 
|  | CallStack.erase(Func); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | auto Result = ExceptionInfo::createUnknown(); | 
|  | if (const auto *FPT = Func->getType()->getAs<FunctionProtoType>()) { | 
|  | for (const QualType &Ex : FPT->exceptions()) | 
|  | Result.registerException(Ex.getTypePtr()); | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// Analyzes a single statement on it's throwing behaviour. This is in principle | 
|  | /// possible except some 'Unknown' functions are called. | 
|  | ExceptionAnalyzer::ExceptionInfo ExceptionAnalyzer::throwsException( | 
|  | const Stmt *St, const ExceptionInfo::Throwables &Caught, | 
|  | llvm::SmallSet<const FunctionDecl *, 32> &CallStack) { | 
|  | auto Results = ExceptionInfo::createNonThrowing(); | 
|  | if (!St) | 
|  | return Results; | 
|  |  | 
|  | if (const auto *Throw = dyn_cast<CXXThrowExpr>(St)) { | 
|  | if (const auto *ThrownExpr = Throw->getSubExpr()) { | 
|  | const auto *ThrownType = | 
|  | ThrownExpr->getType()->getUnqualifiedDesugaredType(); | 
|  | if (ThrownType->isReferenceType()) | 
|  | ThrownType = ThrownType->castAs<ReferenceType>() | 
|  | ->getPointeeType() | 
|  | ->getUnqualifiedDesugaredType(); | 
|  | Results.registerException( | 
|  | ThrownExpr->getType()->getUnqualifiedDesugaredType()); | 
|  | } else | 
|  | // A rethrow of a caught exception happens which makes it possible | 
|  | // to throw all exception that are caught in the 'catch' clause of | 
|  | // the parent try-catch block. | 
|  | Results.registerExceptions(Caught); | 
|  | } else if (const auto *Try = dyn_cast<CXXTryStmt>(St)) { | 
|  | ExceptionInfo Uncaught = | 
|  | throwsException(Try->getTryBlock(), Caught, CallStack); | 
|  | for (unsigned I = 0; I < Try->getNumHandlers(); ++I) { | 
|  | const CXXCatchStmt *Catch = Try->getHandler(I); | 
|  |  | 
|  | // Everything is catched through 'catch(...)'. | 
|  | if (!Catch->getExceptionDecl()) { | 
|  | ExceptionInfo Rethrown = throwsException( | 
|  | Catch->getHandlerBlock(), Uncaught.getExceptionTypes(), CallStack); | 
|  | Results.merge(Rethrown); | 
|  | Uncaught.clear(); | 
|  | } else { | 
|  | const auto *CaughtType = | 
|  | Catch->getCaughtType()->getUnqualifiedDesugaredType(); | 
|  | if (CaughtType->isReferenceType()) { | 
|  | CaughtType = CaughtType->castAs<ReferenceType>() | 
|  | ->getPointeeType() | 
|  | ->getUnqualifiedDesugaredType(); | 
|  | } | 
|  |  | 
|  | // If the caught exception will catch multiple previously potential | 
|  | // thrown types (because it's sensitive to inheritance) the throwing | 
|  | // situation changes. First of all filter the exception types and | 
|  | // analyze if the baseclass-exception is rethrown. | 
|  | if (Uncaught.filterByCatch( | 
|  | CaughtType, Catch->getExceptionDecl()->getASTContext())) { | 
|  | ExceptionInfo::Throwables CaughtExceptions; | 
|  | CaughtExceptions.insert(CaughtType); | 
|  | ExceptionInfo Rethrown = throwsException(Catch->getHandlerBlock(), | 
|  | CaughtExceptions, CallStack); | 
|  | Results.merge(Rethrown); | 
|  | } | 
|  | } | 
|  | } | 
|  | Results.merge(Uncaught); | 
|  | } else if (const auto *Call = dyn_cast<CallExpr>(St)) { | 
|  | if (const FunctionDecl *Func = Call->getDirectCallee()) { | 
|  | ExceptionInfo Excs = throwsException(Func, Caught, CallStack); | 
|  | Results.merge(Excs); | 
|  | } | 
|  | } else if (const auto *Construct = dyn_cast<CXXConstructExpr>(St)) { | 
|  | ExceptionInfo Excs = | 
|  | throwsException(Construct->getConstructor(), Caught, CallStack); | 
|  | Results.merge(Excs); | 
|  | } else if (const auto *DefaultInit = dyn_cast<CXXDefaultInitExpr>(St)) { | 
|  | ExceptionInfo Excs = | 
|  | throwsException(DefaultInit->getExpr(), Caught, CallStack); | 
|  | Results.merge(Excs); | 
|  | } else if (const auto *Coro = dyn_cast<CoroutineBodyStmt>(St)) { | 
|  | for (const Stmt *Child : Coro->childrenExclBody()) { | 
|  | if (Child != Coro->getExceptionHandler()) { | 
|  | ExceptionInfo Excs = throwsException(Child, Caught, CallStack); | 
|  | Results.merge(Excs); | 
|  | } | 
|  | } | 
|  | ExceptionInfo Excs = throwsException(Coro->getBody(), Caught, CallStack); | 
|  | Results.merge(throwsException(Coro->getExceptionHandler(), | 
|  | Excs.getExceptionTypes(), CallStack)); | 
|  | for (const Type *Throwable : Excs.getExceptionTypes()) { | 
|  | if (const auto ThrowableRec = Throwable->getAsCXXRecordDecl()) { | 
|  | ExceptionInfo DestructorExcs = | 
|  | throwsException(ThrowableRec->getDestructor(), Caught, CallStack); | 
|  | Results.merge(DestructorExcs); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | for (const Stmt *Child : St->children()) { | 
|  | ExceptionInfo Excs = throwsException(Child, Caught, CallStack); | 
|  | Results.merge(Excs); | 
|  | } | 
|  | } | 
|  | return Results; | 
|  | } | 
|  |  | 
|  | ExceptionAnalyzer::ExceptionInfo | 
|  | ExceptionAnalyzer::analyzeImpl(const FunctionDecl *Func) { | 
|  | ExceptionInfo ExceptionList; | 
|  |  | 
|  | // Check if the function has already been analyzed and reuse that result. | 
|  | const auto CacheEntry = FunctionCache.find(Func); | 
|  | if (CacheEntry == FunctionCache.end()) { | 
|  | llvm::SmallSet<const FunctionDecl *, 32> CallStack; | 
|  | ExceptionList = | 
|  | throwsException(Func, ExceptionInfo::Throwables(), CallStack); | 
|  |  | 
|  | // Cache the result of the analysis. This is done prior to filtering | 
|  | // because it is best to keep as much information as possible. | 
|  | // The results here might be relevant to different analysis passes | 
|  | // with different needs as well. | 
|  | FunctionCache.try_emplace(Func, ExceptionList); | 
|  | } else | 
|  | ExceptionList = CacheEntry->getSecond(); | 
|  |  | 
|  | return ExceptionList; | 
|  | } | 
|  |  | 
|  | ExceptionAnalyzer::ExceptionInfo | 
|  | ExceptionAnalyzer::analyzeImpl(const Stmt *Stmt) { | 
|  | llvm::SmallSet<const FunctionDecl *, 32> CallStack; | 
|  | return throwsException(Stmt, ExceptionInfo::Throwables(), CallStack); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | ExceptionAnalyzer::ExceptionInfo | 
|  | ExceptionAnalyzer::analyzeDispatch(const T *Node) { | 
|  | ExceptionInfo ExceptionList = analyzeImpl(Node); | 
|  |  | 
|  | if (ExceptionList.getBehaviour() == State::NotThrowing || | 
|  | ExceptionList.getBehaviour() == State::Unknown) | 
|  | return ExceptionList; | 
|  |  | 
|  | // Remove all ignored exceptions from the list of exceptions that can be | 
|  | // thrown. | 
|  | ExceptionList.filterIgnoredExceptions(IgnoredExceptions, IgnoreBadAlloc); | 
|  |  | 
|  | return ExceptionList; | 
|  | } | 
|  |  | 
|  | ExceptionAnalyzer::ExceptionInfo | 
|  | ExceptionAnalyzer::analyze(const FunctionDecl *Func) { | 
|  | return analyzeDispatch(Func); | 
|  | } | 
|  |  | 
|  | ExceptionAnalyzer::ExceptionInfo ExceptionAnalyzer::analyze(const Stmt *Stmt) { | 
|  | return analyzeDispatch(Stmt); | 
|  | } | 
|  |  | 
|  | } // namespace clang::tidy::utils |