| // RUN: mlir-opt %s | FileCheck %s |
| |
| // This simply tests for syntax. |
| |
| #my_poly = #polynomial.int_polynomial<1 + x**1024> |
| #my_poly_2 = #polynomial.int_polynomial<2> |
| #my_poly_3 = #polynomial.int_polynomial<3x> |
| #my_poly_4 = #polynomial.int_polynomial<t**3 + 4t + 2> |
| #ring1 = #polynomial.ring<coefficientType=i32, coefficientModulus=2837465, polynomialModulus=#my_poly> |
| #ring2 = #polynomial.ring<coefficientType=f32> |
| #one_plus_x_squared = #polynomial.int_polynomial<1 + x**2> |
| |
| #ideal = #polynomial.int_polynomial<-1 + x**1024> |
| #ring = #polynomial.ring<coefficientType=i32, coefficientModulus=256, polynomialModulus=#ideal> |
| !poly_ty = !polynomial.polynomial<ring=#ring> |
| |
| #ntt_poly = #polynomial.int_polynomial<-1 + x**8> |
| #ntt_ring = #polynomial.ring<coefficientType=i32, coefficientModulus=256, polynomialModulus=#ntt_poly> |
| !ntt_poly_ty = !polynomial.polynomial<ring=#ntt_ring> |
| |
| #ntt_poly_2 = #polynomial.int_polynomial<1 + x**65536> |
| #ntt_ring_2 = #polynomial.ring<coefficientType = i32, coefficientModulus = 786433 : i32, polynomialModulus=#ntt_poly_2> |
| #ntt_ring_2_root = #polynomial.primitive_root<value=283965:i32, degree=131072:i32> |
| !ntt_poly_ty_2 = !polynomial.polynomial<ring=#ntt_ring_2> |
| |
| module { |
| func.func @test_multiply() -> !polynomial.polynomial<ring=#ring1> { |
| %c0 = arith.constant 0 : index |
| %two = arith.constant 2 : i16 |
| %five = arith.constant 5 : i16 |
| %coeffs1 = tensor.from_elements %two, %two, %five : tensor<3xi16> |
| %coeffs2 = tensor.from_elements %five, %five, %two : tensor<3xi16> |
| |
| %poly1 = polynomial.from_tensor %coeffs1 : tensor<3xi16> -> !polynomial.polynomial<ring=#ring1> |
| %poly2 = polynomial.from_tensor %coeffs2 : tensor<3xi16> -> !polynomial.polynomial<ring=#ring1> |
| |
| %3 = polynomial.mul %poly1, %poly2 : !polynomial.polynomial<ring=#ring1> |
| |
| return %3 : !polynomial.polynomial<ring=#ring1> |
| } |
| |
| func.func @test_elementwise(%p0 : !polynomial.polynomial<ring=#ring1>, %p1: !polynomial.polynomial<ring=#ring1>) { |
| %tp0 = tensor.from_elements %p0, %p1 : tensor<2x!polynomial.polynomial<ring=#ring1>> |
| %tp1 = tensor.from_elements %p1, %p0 : tensor<2x!polynomial.polynomial<ring=#ring1>> |
| |
| %c = arith.constant 2 : i32 |
| %mul_const_sclr = polynomial.mul_scalar %tp0, %c : tensor<2x!polynomial.polynomial<ring=#ring1>>, i32 |
| |
| %add = polynomial.add %tp0, %tp1 : tensor<2x!polynomial.polynomial<ring=#ring1>> |
| %sub = polynomial.sub %tp0, %tp1 : tensor<2x!polynomial.polynomial<ring=#ring1>> |
| %mul = polynomial.mul %tp0, %tp1 : tensor<2x!polynomial.polynomial<ring=#ring1>> |
| |
| return |
| } |
| |
| func.func @test_to_from_tensor(%p0 : !polynomial.polynomial<ring=#ring1>) { |
| %c0 = arith.constant 0 : index |
| %two = arith.constant 2 : i16 |
| %coeffs1 = tensor.from_elements %two, %two : tensor<2xi16> |
| // CHECK: from_tensor |
| %poly = polynomial.from_tensor %coeffs1 : tensor<2xi16> -> !polynomial.polynomial<ring=#ring1> |
| // CHECK: to_tensor |
| %tensor = polynomial.to_tensor %poly : !polynomial.polynomial<ring=#ring1> -> tensor<1024xi16> |
| |
| return |
| } |
| |
| func.func @test_degree(%p0 : !polynomial.polynomial<ring=#ring1>) { |
| %0, %1 = polynomial.leading_term %p0 : !polynomial.polynomial<ring=#ring1> -> (index, i32) |
| return |
| } |
| |
| func.func @test_monomial() { |
| %deg = arith.constant 1023 : index |
| %five = arith.constant 5 : i16 |
| %0 = polynomial.monomial %five, %deg : (i16, index) -> !polynomial.polynomial<ring=#ring1> |
| return |
| } |
| |
| func.func @test_monic_monomial_mul() { |
| %five = arith.constant 5 : index |
| %0 = polynomial.constant int<1 + x**2> : !polynomial.polynomial<ring=#ring1> |
| %1 = polynomial.monic_monomial_mul %0, %five : (!polynomial.polynomial<ring=#ring1>, index) -> !polynomial.polynomial<ring=#ring1> |
| return |
| } |
| |
| func.func @test_constant() { |
| %0 = polynomial.constant int<1 + x**2> : !polynomial.polynomial<ring=#ring1> |
| %1 = polynomial.constant int<1 + x**2> : !polynomial.polynomial<ring=#ring1> |
| %2 = polynomial.constant float<1.5 + 0.5 x**2> : !polynomial.polynomial<ring=#ring2> |
| |
| // Test verbose fallbacks |
| %verb0 = polynomial.constant #polynomial.typed_int_polynomial<1 + x**2> : !polynomial.polynomial<ring=#ring1> |
| %verb2 = polynomial.constant #polynomial.typed_float_polynomial<1.5 + 0.5 x**2> : !polynomial.polynomial<ring=#ring2> |
| return |
| } |
| |
| func.func @test_ntt(%0 : !ntt_poly_ty) { |
| %1 = polynomial.ntt %0 {root=#polynomial.primitive_root<value=31:i32, degree=8:index>} : !ntt_poly_ty -> tensor<8xi32, #ntt_ring> |
| return |
| } |
| |
| func.func @test_ntt_with_overflowing_root(%0 : !ntt_poly_ty_2) { |
| %1 = polynomial.ntt %0 {root=#ntt_ring_2_root} : !ntt_poly_ty_2 -> tensor<65536xi32, #ntt_ring_2> |
| return |
| } |
| |
| func.func @test_intt(%0 : tensor<8xi32, #ntt_ring>) { |
| %1 = polynomial.intt %0 {root=#polynomial.primitive_root<value=31:i32, degree=8:index>} : tensor<8xi32, #ntt_ring> -> !ntt_poly_ty |
| return |
| } |
| } |