| //===- ComplexToStandard.cpp - conversion from Complex to Standard dialect ===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Conversion/ComplexToStandard/ComplexToStandard.h" |
| |
| #include "mlir/Dialect/Arith/IR/Arith.h" |
| #include "mlir/Dialect/Complex/IR/Complex.h" |
| #include "mlir/Dialect/Math/IR/Math.h" |
| #include "mlir/IR/ImplicitLocOpBuilder.h" |
| #include "mlir/IR/PatternMatch.h" |
| #include "mlir/Pass/Pass.h" |
| #include "mlir/Transforms/DialectConversion.h" |
| #include <memory> |
| #include <type_traits> |
| |
| namespace mlir { |
| #define GEN_PASS_DEF_CONVERTCOMPLEXTOSTANDARD |
| #include "mlir/Conversion/Passes.h.inc" |
| } // namespace mlir |
| |
| using namespace mlir; |
| |
| namespace { |
| struct AbsOpConversion : public OpConversionPattern<complex::AbsOp> { |
| using OpConversionPattern<complex::AbsOp>::OpConversionPattern; |
| |
| LogicalResult |
| matchAndRewrite(complex::AbsOp op, OpAdaptor adaptor, |
| ConversionPatternRewriter &rewriter) const override { |
| auto loc = op.getLoc(); |
| auto type = op.getType(); |
| |
| arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr(); |
| |
| Value real = |
| rewriter.create<complex::ReOp>(loc, type, adaptor.getComplex()); |
| Value imag = |
| rewriter.create<complex::ImOp>(loc, type, adaptor.getComplex()); |
| Value realSqr = |
| rewriter.create<arith::MulFOp>(loc, real, real, fmf.getValue()); |
| Value imagSqr = |
| rewriter.create<arith::MulFOp>(loc, imag, imag, fmf.getValue()); |
| Value sqNorm = |
| rewriter.create<arith::AddFOp>(loc, realSqr, imagSqr, fmf.getValue()); |
| |
| rewriter.replaceOpWithNewOp<math::SqrtOp>(op, sqNorm); |
| return success(); |
| } |
| }; |
| |
| // atan2(y,x) = -i * log((x + i * y)/sqrt(x**2+y**2)) |
| struct Atan2OpConversion : public OpConversionPattern<complex::Atan2Op> { |
| using OpConversionPattern<complex::Atan2Op>::OpConversionPattern; |
| |
| LogicalResult |
| matchAndRewrite(complex::Atan2Op op, OpAdaptor adaptor, |
| ConversionPatternRewriter &rewriter) const override { |
| mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter); |
| |
| auto type = cast<ComplexType>(op.getType()); |
| Type elementType = type.getElementType(); |
| |
| Value lhs = adaptor.getLhs(); |
| Value rhs = adaptor.getRhs(); |
| |
| Value rhsSquared = b.create<complex::MulOp>(type, rhs, rhs); |
| Value lhsSquared = b.create<complex::MulOp>(type, lhs, lhs); |
| Value rhsSquaredPlusLhsSquared = |
| b.create<complex::AddOp>(type, rhsSquared, lhsSquared); |
| Value sqrtOfRhsSquaredPlusLhsSquared = |
| b.create<complex::SqrtOp>(type, rhsSquaredPlusLhsSquared); |
| |
| Value zero = |
| b.create<arith::ConstantOp>(elementType, b.getZeroAttr(elementType)); |
| Value one = b.create<arith::ConstantOp>(elementType, |
| b.getFloatAttr(elementType, 1)); |
| Value i = b.create<complex::CreateOp>(type, zero, one); |
| Value iTimesLhs = b.create<complex::MulOp>(i, lhs); |
| Value rhsPlusILhs = b.create<complex::AddOp>(rhs, iTimesLhs); |
| |
| Value divResult = |
| b.create<complex::DivOp>(rhsPlusILhs, sqrtOfRhsSquaredPlusLhsSquared); |
| Value logResult = b.create<complex::LogOp>(divResult); |
| |
| Value negativeOne = b.create<arith::ConstantOp>( |
| elementType, b.getFloatAttr(elementType, -1)); |
| Value negativeI = b.create<complex::CreateOp>(type, zero, negativeOne); |
| |
| rewriter.replaceOpWithNewOp<complex::MulOp>(op, negativeI, logResult); |
| return success(); |
| } |
| }; |
| |
| template <typename ComparisonOp, arith::CmpFPredicate p> |
| struct ComparisonOpConversion : public OpConversionPattern<ComparisonOp> { |
| using OpConversionPattern<ComparisonOp>::OpConversionPattern; |
| using ResultCombiner = |
| std::conditional_t<std::is_same<ComparisonOp, complex::EqualOp>::value, |
| arith::AndIOp, arith::OrIOp>; |
| |
| LogicalResult |
| matchAndRewrite(ComparisonOp op, typename ComparisonOp::Adaptor adaptor, |
| ConversionPatternRewriter &rewriter) const override { |
| auto loc = op.getLoc(); |
| auto type = cast<ComplexType>(adaptor.getLhs().getType()).getElementType(); |
| |
| Value realLhs = rewriter.create<complex::ReOp>(loc, type, adaptor.getLhs()); |
| Value imagLhs = rewriter.create<complex::ImOp>(loc, type, adaptor.getLhs()); |
| Value realRhs = rewriter.create<complex::ReOp>(loc, type, adaptor.getRhs()); |
| Value imagRhs = rewriter.create<complex::ImOp>(loc, type, adaptor.getRhs()); |
| Value realComparison = |
| rewriter.create<arith::CmpFOp>(loc, p, realLhs, realRhs); |
| Value imagComparison = |
| rewriter.create<arith::CmpFOp>(loc, p, imagLhs, imagRhs); |
| |
| rewriter.replaceOpWithNewOp<ResultCombiner>(op, realComparison, |
| imagComparison); |
| return success(); |
| } |
| }; |
| |
| // Default conversion which applies the BinaryStandardOp separately on the real |
| // and imaginary parts. Can for example be used for complex::AddOp and |
| // complex::SubOp. |
| template <typename BinaryComplexOp, typename BinaryStandardOp> |
| struct BinaryComplexOpConversion : public OpConversionPattern<BinaryComplexOp> { |
| using OpConversionPattern<BinaryComplexOp>::OpConversionPattern; |
| |
| LogicalResult |
| matchAndRewrite(BinaryComplexOp op, typename BinaryComplexOp::Adaptor adaptor, |
| ConversionPatternRewriter &rewriter) const override { |
| auto type = cast<ComplexType>(adaptor.getLhs().getType()); |
| auto elementType = cast<FloatType>(type.getElementType()); |
| mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter); |
| arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr(); |
| |
| Value realLhs = b.create<complex::ReOp>(elementType, adaptor.getLhs()); |
| Value realRhs = b.create<complex::ReOp>(elementType, adaptor.getRhs()); |
| Value resultReal = b.create<BinaryStandardOp>(elementType, realLhs, realRhs, |
| fmf.getValue()); |
| Value imagLhs = b.create<complex::ImOp>(elementType, adaptor.getLhs()); |
| Value imagRhs = b.create<complex::ImOp>(elementType, adaptor.getRhs()); |
| Value resultImag = b.create<BinaryStandardOp>(elementType, imagLhs, imagRhs, |
| fmf.getValue()); |
| rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal, |
| resultImag); |
| return success(); |
| } |
| }; |
| |
| template <typename TrigonometricOp> |
| struct TrigonometricOpConversion : public OpConversionPattern<TrigonometricOp> { |
| using OpAdaptor = typename OpConversionPattern<TrigonometricOp>::OpAdaptor; |
| |
| using OpConversionPattern<TrigonometricOp>::OpConversionPattern; |
| |
| LogicalResult |
| matchAndRewrite(TrigonometricOp op, OpAdaptor adaptor, |
| ConversionPatternRewriter &rewriter) const override { |
| auto loc = op.getLoc(); |
| auto type = cast<ComplexType>(adaptor.getComplex().getType()); |
| auto elementType = cast<FloatType>(type.getElementType()); |
| |
| Value real = |
| rewriter.create<complex::ReOp>(loc, elementType, adaptor.getComplex()); |
| Value imag = |
| rewriter.create<complex::ImOp>(loc, elementType, adaptor.getComplex()); |
| |
| // Trigonometric ops use a set of common building blocks to convert to real |
| // ops. Here we create these building blocks and call into an op-specific |
| // implementation in the subclass to combine them. |
| Value half = rewriter.create<arith::ConstantOp>( |
| loc, elementType, rewriter.getFloatAttr(elementType, 0.5)); |
| Value exp = rewriter.create<math::ExpOp>(loc, imag); |
| Value scaledExp = rewriter.create<arith::MulFOp>(loc, half, exp); |
| Value reciprocalExp = rewriter.create<arith::DivFOp>(loc, half, exp); |
| Value sin = rewriter.create<math::SinOp>(loc, real); |
| Value cos = rewriter.create<math::CosOp>(loc, real); |
| |
| auto resultPair = |
| combine(loc, scaledExp, reciprocalExp, sin, cos, rewriter); |
| |
| rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultPair.first, |
| resultPair.second); |
| return success(); |
| } |
| |
| virtual std::pair<Value, Value> |
| combine(Location loc, Value scaledExp, Value reciprocalExp, Value sin, |
| Value cos, ConversionPatternRewriter &rewriter) const = 0; |
| }; |
| |
| struct CosOpConversion : public TrigonometricOpConversion<complex::CosOp> { |
| using TrigonometricOpConversion<complex::CosOp>::TrigonometricOpConversion; |
| |
| std::pair<Value, Value> |
| combine(Location loc, Value scaledExp, Value reciprocalExp, Value sin, |
| Value cos, ConversionPatternRewriter &rewriter) const override { |
| // Complex cosine is defined as; |
| // cos(x + iy) = 0.5 * (exp(i(x + iy)) + exp(-i(x + iy))) |
| // Plugging in: |
| // exp(i(x+iy)) = exp(-y + ix) = exp(-y)(cos(x) + i sin(x)) |
| // exp(-i(x+iy)) = exp(y + i(-x)) = exp(y)(cos(x) + i (-sin(x))) |
| // and defining t := exp(y) |
| // We get: |
| // Re(cos(x + iy)) = (0.5/t + 0.5*t) * cos x |
| // Im(cos(x + iy)) = (0.5/t - 0.5*t) * sin x |
| Value sum = rewriter.create<arith::AddFOp>(loc, reciprocalExp, scaledExp); |
| Value resultReal = rewriter.create<arith::MulFOp>(loc, sum, cos); |
| Value diff = rewriter.create<arith::SubFOp>(loc, reciprocalExp, scaledExp); |
| Value resultImag = rewriter.create<arith::MulFOp>(loc, diff, sin); |
| return {resultReal, resultImag}; |
| } |
| }; |
| |
| struct DivOpConversion : public OpConversionPattern<complex::DivOp> { |
| using OpConversionPattern<complex::DivOp>::OpConversionPattern; |
| |
| LogicalResult |
| matchAndRewrite(complex::DivOp op, OpAdaptor adaptor, |
| ConversionPatternRewriter &rewriter) const override { |
| auto loc = op.getLoc(); |
| auto type = cast<ComplexType>(adaptor.getLhs().getType()); |
| auto elementType = cast<FloatType>(type.getElementType()); |
| |
| Value lhsReal = |
| rewriter.create<complex::ReOp>(loc, elementType, adaptor.getLhs()); |
| Value lhsImag = |
| rewriter.create<complex::ImOp>(loc, elementType, adaptor.getLhs()); |
| Value rhsReal = |
| rewriter.create<complex::ReOp>(loc, elementType, adaptor.getRhs()); |
| Value rhsImag = |
| rewriter.create<complex::ImOp>(loc, elementType, adaptor.getRhs()); |
| |
| // Smith's algorithm to divide complex numbers. It is just a bit smarter |
| // way to compute the following formula: |
| // (lhsReal + lhsImag * i) / (rhsReal + rhsImag * i) |
| // = (lhsReal + lhsImag * i) (rhsReal - rhsImag * i) / |
| // ((rhsReal + rhsImag * i)(rhsReal - rhsImag * i)) |
| // = ((lhsReal * rhsReal + lhsImag * rhsImag) + |
| // (lhsImag * rhsReal - lhsReal * rhsImag) * i) / ||rhs||^2 |
| // |
| // Depending on whether |rhsReal| < |rhsImag| we compute either |
| // rhsRealImagRatio = rhsReal / rhsImag |
| // rhsRealImagDenom = rhsImag + rhsReal * rhsRealImagRatio |
| // resultReal = (lhsReal * rhsRealImagRatio + lhsImag) / rhsRealImagDenom |
| // resultImag = (lhsImag * rhsRealImagRatio - lhsReal) / rhsRealImagDenom |
| // |
| // or |
| // |
| // rhsImagRealRatio = rhsImag / rhsReal |
| // rhsImagRealDenom = rhsReal + rhsImag * rhsImagRealRatio |
| // resultReal = (lhsReal + lhsImag * rhsImagRealRatio) / rhsImagRealDenom |
| // resultImag = (lhsImag - lhsReal * rhsImagRealRatio) / rhsImagRealDenom |
| // |
| // See https://dl.acm.org/citation.cfm?id=368661 for more details. |
| Value rhsRealImagRatio = |
| rewriter.create<arith::DivFOp>(loc, rhsReal, rhsImag); |
| Value rhsRealImagDenom = rewriter.create<arith::AddFOp>( |
| loc, rhsImag, |
| rewriter.create<arith::MulFOp>(loc, rhsRealImagRatio, rhsReal)); |
| Value realNumerator1 = rewriter.create<arith::AddFOp>( |
| loc, rewriter.create<arith::MulFOp>(loc, lhsReal, rhsRealImagRatio), |
| lhsImag); |
| Value resultReal1 = |
| rewriter.create<arith::DivFOp>(loc, realNumerator1, rhsRealImagDenom); |
| Value imagNumerator1 = rewriter.create<arith::SubFOp>( |
| loc, rewriter.create<arith::MulFOp>(loc, lhsImag, rhsRealImagRatio), |
| lhsReal); |
| Value resultImag1 = |
| rewriter.create<arith::DivFOp>(loc, imagNumerator1, rhsRealImagDenom); |
| |
| Value rhsImagRealRatio = |
| rewriter.create<arith::DivFOp>(loc, rhsImag, rhsReal); |
| Value rhsImagRealDenom = rewriter.create<arith::AddFOp>( |
| loc, rhsReal, |
| rewriter.create<arith::MulFOp>(loc, rhsImagRealRatio, rhsImag)); |
| Value realNumerator2 = rewriter.create<arith::AddFOp>( |
| loc, lhsReal, |
| rewriter.create<arith::MulFOp>(loc, lhsImag, rhsImagRealRatio)); |
| Value resultReal2 = |
| rewriter.create<arith::DivFOp>(loc, realNumerator2, rhsImagRealDenom); |
| Value imagNumerator2 = rewriter.create<arith::SubFOp>( |
| loc, lhsImag, |
| rewriter.create<arith::MulFOp>(loc, lhsReal, rhsImagRealRatio)); |
| Value resultImag2 = |
| rewriter.create<arith::DivFOp>(loc, imagNumerator2, rhsImagRealDenom); |
| |
| // Consider corner cases. |
| // Case 1. Zero denominator, numerator contains at most one NaN value. |
| Value zero = rewriter.create<arith::ConstantOp>( |
| loc, elementType, rewriter.getZeroAttr(elementType)); |
| Value rhsRealAbs = rewriter.create<math::AbsFOp>(loc, rhsReal); |
| Value rhsRealIsZero = rewriter.create<arith::CmpFOp>( |
| loc, arith::CmpFPredicate::OEQ, rhsRealAbs, zero); |
| Value rhsImagAbs = rewriter.create<math::AbsFOp>(loc, rhsImag); |
| Value rhsImagIsZero = rewriter.create<arith::CmpFOp>( |
| loc, arith::CmpFPredicate::OEQ, rhsImagAbs, zero); |
| Value lhsRealIsNotNaN = rewriter.create<arith::CmpFOp>( |
| loc, arith::CmpFPredicate::ORD, lhsReal, zero); |
| Value lhsImagIsNotNaN = rewriter.create<arith::CmpFOp>( |
| loc, arith::CmpFPredicate::ORD, lhsImag, zero); |
| Value lhsContainsNotNaNValue = |
| rewriter.create<arith::OrIOp>(loc, lhsRealIsNotNaN, lhsImagIsNotNaN); |
| Value resultIsInfinity = rewriter.create<arith::AndIOp>( |
| loc, lhsContainsNotNaNValue, |
| rewriter.create<arith::AndIOp>(loc, rhsRealIsZero, rhsImagIsZero)); |
| Value inf = rewriter.create<arith::ConstantOp>( |
| loc, elementType, |
| rewriter.getFloatAttr( |
| elementType, APFloat::getInf(elementType.getFloatSemantics()))); |
| Value infWithSignOfRhsReal = |
| rewriter.create<math::CopySignOp>(loc, inf, rhsReal); |
| Value infinityResultReal = |
| rewriter.create<arith::MulFOp>(loc, infWithSignOfRhsReal, lhsReal); |
| Value infinityResultImag = |
| rewriter.create<arith::MulFOp>(loc, infWithSignOfRhsReal, lhsImag); |
| |
| // Case 2. Infinite numerator, finite denominator. |
| Value rhsRealFinite = rewriter.create<arith::CmpFOp>( |
| loc, arith::CmpFPredicate::ONE, rhsRealAbs, inf); |
| Value rhsImagFinite = rewriter.create<arith::CmpFOp>( |
| loc, arith::CmpFPredicate::ONE, rhsImagAbs, inf); |
| Value rhsFinite = |
| rewriter.create<arith::AndIOp>(loc, rhsRealFinite, rhsImagFinite); |
| Value lhsRealAbs = rewriter.create<math::AbsFOp>(loc, lhsReal); |
| Value lhsRealInfinite = rewriter.create<arith::CmpFOp>( |
| loc, arith::CmpFPredicate::OEQ, lhsRealAbs, inf); |
| Value lhsImagAbs = rewriter.create<math::AbsFOp>(loc, lhsImag); |
| Value lhsImagInfinite = rewriter.create<arith::CmpFOp>( |
| loc, arith::CmpFPredicate::OEQ, lhsImagAbs, inf); |
| Value lhsInfinite = |
| rewriter.create<arith::OrIOp>(loc, lhsRealInfinite, lhsImagInfinite); |
| Value infNumFiniteDenom = |
| rewriter.create<arith::AndIOp>(loc, lhsInfinite, rhsFinite); |
| Value one = rewriter.create<arith::ConstantOp>( |
| loc, elementType, rewriter.getFloatAttr(elementType, 1)); |
| Value lhsRealIsInfWithSign = rewriter.create<math::CopySignOp>( |
| loc, rewriter.create<arith::SelectOp>(loc, lhsRealInfinite, one, zero), |
| lhsReal); |
| Value lhsImagIsInfWithSign = rewriter.create<math::CopySignOp>( |
| loc, rewriter.create<arith::SelectOp>(loc, lhsImagInfinite, one, zero), |
| lhsImag); |
| Value lhsRealIsInfWithSignTimesRhsReal = |
| rewriter.create<arith::MulFOp>(loc, lhsRealIsInfWithSign, rhsReal); |
| Value lhsImagIsInfWithSignTimesRhsImag = |
| rewriter.create<arith::MulFOp>(loc, lhsImagIsInfWithSign, rhsImag); |
| Value resultReal3 = rewriter.create<arith::MulFOp>( |
| loc, inf, |
| rewriter.create<arith::AddFOp>(loc, lhsRealIsInfWithSignTimesRhsReal, |
| lhsImagIsInfWithSignTimesRhsImag)); |
| Value lhsRealIsInfWithSignTimesRhsImag = |
| rewriter.create<arith::MulFOp>(loc, lhsRealIsInfWithSign, rhsImag); |
| Value lhsImagIsInfWithSignTimesRhsReal = |
| rewriter.create<arith::MulFOp>(loc, lhsImagIsInfWithSign, rhsReal); |
| Value resultImag3 = rewriter.create<arith::MulFOp>( |
| loc, inf, |
| rewriter.create<arith::SubFOp>(loc, lhsImagIsInfWithSignTimesRhsReal, |
| lhsRealIsInfWithSignTimesRhsImag)); |
| |
| // Case 3: Finite numerator, infinite denominator. |
| Value lhsRealFinite = rewriter.create<arith::CmpFOp>( |
| loc, arith::CmpFPredicate::ONE, lhsRealAbs, inf); |
| Value lhsImagFinite = rewriter.create<arith::CmpFOp>( |
| loc, arith::CmpFPredicate::ONE, lhsImagAbs, inf); |
| Value lhsFinite = |
| rewriter.create<arith::AndIOp>(loc, lhsRealFinite, lhsImagFinite); |
| Value rhsRealInfinite = rewriter.create<arith::CmpFOp>( |
| loc, arith::CmpFPredicate::OEQ, rhsRealAbs, inf); |
| Value rhsImagInfinite = rewriter.create<arith::CmpFOp>( |
| loc, arith::CmpFPredicate::OEQ, rhsImagAbs, inf); |
| Value rhsInfinite = |
| rewriter.create<arith::OrIOp>(loc, rhsRealInfinite, rhsImagInfinite); |
| Value finiteNumInfiniteDenom = |
| rewriter.create<arith::AndIOp>(loc, lhsFinite, rhsInfinite); |
| Value rhsRealIsInfWithSign = rewriter.create<math::CopySignOp>( |
| loc, rewriter.create<arith::SelectOp>(loc, rhsRealInfinite, one, zero), |
| rhsReal); |
| Value rhsImagIsInfWithSign = rewriter.create<math::CopySignOp>( |
| loc, rewriter.create<arith::SelectOp>(loc, rhsImagInfinite, one, zero), |
| rhsImag); |
| Value rhsRealIsInfWithSignTimesLhsReal = |
| rewriter.create<arith::MulFOp>(loc, lhsReal, rhsRealIsInfWithSign); |
| Value rhsImagIsInfWithSignTimesLhsImag = |
| rewriter.create<arith::MulFOp>(loc, lhsImag, rhsImagIsInfWithSign); |
| Value resultReal4 = rewriter.create<arith::MulFOp>( |
| loc, zero, |
| rewriter.create<arith::AddFOp>(loc, rhsRealIsInfWithSignTimesLhsReal, |
| rhsImagIsInfWithSignTimesLhsImag)); |
| Value rhsRealIsInfWithSignTimesLhsImag = |
| rewriter.create<arith::MulFOp>(loc, lhsImag, rhsRealIsInfWithSign); |
| Value rhsImagIsInfWithSignTimesLhsReal = |
| rewriter.create<arith::MulFOp>(loc, lhsReal, rhsImagIsInfWithSign); |
| Value resultImag4 = rewriter.create<arith::MulFOp>( |
| loc, zero, |
| rewriter.create<arith::SubFOp>(loc, rhsRealIsInfWithSignTimesLhsImag, |
| rhsImagIsInfWithSignTimesLhsReal)); |
| |
| Value realAbsSmallerThanImagAbs = rewriter.create<arith::CmpFOp>( |
| loc, arith::CmpFPredicate::OLT, rhsRealAbs, rhsImagAbs); |
| Value resultReal = rewriter.create<arith::SelectOp>( |
| loc, realAbsSmallerThanImagAbs, resultReal1, resultReal2); |
| Value resultImag = rewriter.create<arith::SelectOp>( |
| loc, realAbsSmallerThanImagAbs, resultImag1, resultImag2); |
| Value resultRealSpecialCase3 = rewriter.create<arith::SelectOp>( |
| loc, finiteNumInfiniteDenom, resultReal4, resultReal); |
| Value resultImagSpecialCase3 = rewriter.create<arith::SelectOp>( |
| loc, finiteNumInfiniteDenom, resultImag4, resultImag); |
| Value resultRealSpecialCase2 = rewriter.create<arith::SelectOp>( |
| loc, infNumFiniteDenom, resultReal3, resultRealSpecialCase3); |
| Value resultImagSpecialCase2 = rewriter.create<arith::SelectOp>( |
| loc, infNumFiniteDenom, resultImag3, resultImagSpecialCase3); |
| Value resultRealSpecialCase1 = rewriter.create<arith::SelectOp>( |
| loc, resultIsInfinity, infinityResultReal, resultRealSpecialCase2); |
| Value resultImagSpecialCase1 = rewriter.create<arith::SelectOp>( |
| loc, resultIsInfinity, infinityResultImag, resultImagSpecialCase2); |
| |
| Value resultRealIsNaN = rewriter.create<arith::CmpFOp>( |
| loc, arith::CmpFPredicate::UNO, resultReal, zero); |
| Value resultImagIsNaN = rewriter.create<arith::CmpFOp>( |
| loc, arith::CmpFPredicate::UNO, resultImag, zero); |
| Value resultIsNaN = |
| rewriter.create<arith::AndIOp>(loc, resultRealIsNaN, resultImagIsNaN); |
| Value resultRealWithSpecialCases = rewriter.create<arith::SelectOp>( |
| loc, resultIsNaN, resultRealSpecialCase1, resultReal); |
| Value resultImagWithSpecialCases = rewriter.create<arith::SelectOp>( |
| loc, resultIsNaN, resultImagSpecialCase1, resultImag); |
| |
| rewriter.replaceOpWithNewOp<complex::CreateOp>( |
| op, type, resultRealWithSpecialCases, resultImagWithSpecialCases); |
| return success(); |
| } |
| }; |
| |
| struct ExpOpConversion : public OpConversionPattern<complex::ExpOp> { |
| using OpConversionPattern<complex::ExpOp>::OpConversionPattern; |
| |
| LogicalResult |
| matchAndRewrite(complex::ExpOp op, OpAdaptor adaptor, |
| ConversionPatternRewriter &rewriter) const override { |
| auto loc = op.getLoc(); |
| auto type = cast<ComplexType>(adaptor.getComplex().getType()); |
| auto elementType = cast<FloatType>(type.getElementType()); |
| arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr(); |
| |
| Value real = |
| rewriter.create<complex::ReOp>(loc, elementType, adaptor.getComplex()); |
| Value imag = |
| rewriter.create<complex::ImOp>(loc, elementType, adaptor.getComplex()); |
| Value expReal = rewriter.create<math::ExpOp>(loc, real, fmf.getValue()); |
| Value cosImag = rewriter.create<math::CosOp>(loc, imag, fmf.getValue()); |
| Value resultReal = |
| rewriter.create<arith::MulFOp>(loc, expReal, cosImag, fmf.getValue()); |
| Value sinImag = rewriter.create<math::SinOp>(loc, imag, fmf.getValue()); |
| Value resultImag = |
| rewriter.create<arith::MulFOp>(loc, expReal, sinImag, fmf.getValue()); |
| |
| rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal, |
| resultImag); |
| return success(); |
| } |
| }; |
| |
| struct Expm1OpConversion : public OpConversionPattern<complex::Expm1Op> { |
| using OpConversionPattern<complex::Expm1Op>::OpConversionPattern; |
| |
| LogicalResult |
| matchAndRewrite(complex::Expm1Op op, OpAdaptor adaptor, |
| ConversionPatternRewriter &rewriter) const override { |
| auto type = cast<ComplexType>(adaptor.getComplex().getType()); |
| auto elementType = cast<FloatType>(type.getElementType()); |
| arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr(); |
| |
| mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter); |
| Value exp = b.create<complex::ExpOp>(adaptor.getComplex(), fmf.getValue()); |
| |
| Value real = b.create<complex::ReOp>(elementType, exp); |
| Value one = b.create<arith::ConstantOp>(elementType, |
| b.getFloatAttr(elementType, 1)); |
| Value realMinusOne = b.create<arith::SubFOp>(real, one, fmf.getValue()); |
| Value imag = b.create<complex::ImOp>(elementType, exp); |
| |
| rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, realMinusOne, |
| imag); |
| return success(); |
| } |
| }; |
| |
| struct LogOpConversion : public OpConversionPattern<complex::LogOp> { |
| using OpConversionPattern<complex::LogOp>::OpConversionPattern; |
| |
| LogicalResult |
| matchAndRewrite(complex::LogOp op, OpAdaptor adaptor, |
| ConversionPatternRewriter &rewriter) const override { |
| auto type = cast<ComplexType>(adaptor.getComplex().getType()); |
| auto elementType = cast<FloatType>(type.getElementType()); |
| arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr(); |
| mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter); |
| |
| Value abs = b.create<complex::AbsOp>(elementType, adaptor.getComplex(), |
| fmf.getValue()); |
| Value resultReal = b.create<math::LogOp>(elementType, abs, fmf.getValue()); |
| Value real = b.create<complex::ReOp>(elementType, adaptor.getComplex()); |
| Value imag = b.create<complex::ImOp>(elementType, adaptor.getComplex()); |
| Value resultImag = |
| b.create<math::Atan2Op>(elementType, imag, real, fmf.getValue()); |
| rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal, |
| resultImag); |
| return success(); |
| } |
| }; |
| |
| struct Log1pOpConversion : public OpConversionPattern<complex::Log1pOp> { |
| using OpConversionPattern<complex::Log1pOp>::OpConversionPattern; |
| |
| LogicalResult |
| matchAndRewrite(complex::Log1pOp op, OpAdaptor adaptor, |
| ConversionPatternRewriter &rewriter) const override { |
| auto type = cast<ComplexType>(adaptor.getComplex().getType()); |
| auto elementType = cast<FloatType>(type.getElementType()); |
| arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr(); |
| mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter); |
| |
| Value real = b.create<complex::ReOp>(elementType, adaptor.getComplex()); |
| Value imag = b.create<complex::ImOp>(elementType, adaptor.getComplex()); |
| |
| Value half = b.create<arith::ConstantOp>(elementType, |
| b.getFloatAttr(elementType, 0.5)); |
| Value one = b.create<arith::ConstantOp>(elementType, |
| b.getFloatAttr(elementType, 1)); |
| Value two = b.create<arith::ConstantOp>(elementType, |
| b.getFloatAttr(elementType, 2)); |
| |
| // log1p(a+bi) = .5*log((a+1)^2+b^2) + i*atan2(b, a + 1) |
| // log((a+1)+bi) = .5*log(a*a + 2*a + 1 + b*b) + i*atan2(b, a+1) |
| // log((a+1)+bi) = .5*log1p(a*a + 2*a + b*b) + i*atan2(b, a+1) |
| Value sumSq = b.create<arith::MulFOp>(real, real, fmf.getValue()); |
| sumSq = b.create<arith::AddFOp>( |
| sumSq, b.create<arith::MulFOp>(real, two, fmf.getValue()), |
| fmf.getValue()); |
| sumSq = b.create<arith::AddFOp>( |
| sumSq, b.create<arith::MulFOp>(imag, imag, fmf.getValue()), |
| fmf.getValue()); |
| Value logSumSq = |
| b.create<math::Log1pOp>(elementType, sumSq, fmf.getValue()); |
| Value resultReal = b.create<arith::MulFOp>(logSumSq, half, fmf.getValue()); |
| |
| Value realPlusOne = b.create<arith::AddFOp>(real, one, fmf.getValue()); |
| |
| Value resultImag = |
| b.create<math::Atan2Op>(elementType, imag, realPlusOne, fmf.getValue()); |
| rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal, |
| resultImag); |
| return success(); |
| } |
| }; |
| |
| struct MulOpConversion : public OpConversionPattern<complex::MulOp> { |
| using OpConversionPattern<complex::MulOp>::OpConversionPattern; |
| |
| LogicalResult |
| matchAndRewrite(complex::MulOp op, OpAdaptor adaptor, |
| ConversionPatternRewriter &rewriter) const override { |
| mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter); |
| auto type = cast<ComplexType>(adaptor.getLhs().getType()); |
| auto elementType = cast<FloatType>(type.getElementType()); |
| arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr(); |
| auto fmfValue = fmf.getValue(); |
| |
| Value lhsReal = b.create<complex::ReOp>(elementType, adaptor.getLhs()); |
| Value lhsRealAbs = b.create<math::AbsFOp>(lhsReal, fmfValue); |
| Value lhsImag = b.create<complex::ImOp>(elementType, adaptor.getLhs()); |
| Value lhsImagAbs = b.create<math::AbsFOp>(lhsImag, fmfValue); |
| Value rhsReal = b.create<complex::ReOp>(elementType, adaptor.getRhs()); |
| Value rhsRealAbs = b.create<math::AbsFOp>(rhsReal, fmfValue); |
| Value rhsImag = b.create<complex::ImOp>(elementType, adaptor.getRhs()); |
| Value rhsImagAbs = b.create<math::AbsFOp>(rhsImag, fmfValue); |
| |
| Value lhsRealTimesRhsReal = |
| b.create<arith::MulFOp>(lhsReal, rhsReal, fmfValue); |
| Value lhsRealTimesRhsRealAbs = |
| b.create<math::AbsFOp>(lhsRealTimesRhsReal, fmfValue); |
| Value lhsImagTimesRhsImag = |
| b.create<arith::MulFOp>(lhsImag, rhsImag, fmfValue); |
| Value lhsImagTimesRhsImagAbs = |
| b.create<math::AbsFOp>(lhsImagTimesRhsImag, fmfValue); |
| Value real = b.create<arith::SubFOp>(lhsRealTimesRhsReal, |
| lhsImagTimesRhsImag, fmfValue); |
| |
| Value lhsImagTimesRhsReal = |
| b.create<arith::MulFOp>(lhsImag, rhsReal, fmfValue); |
| Value lhsImagTimesRhsRealAbs = |
| b.create<math::AbsFOp>(lhsImagTimesRhsReal, fmfValue); |
| Value lhsRealTimesRhsImag = |
| b.create<arith::MulFOp>(lhsReal, rhsImag, fmfValue); |
| Value lhsRealTimesRhsImagAbs = |
| b.create<math::AbsFOp>(lhsRealTimesRhsImag, fmfValue); |
| Value imag = b.create<arith::AddFOp>(lhsImagTimesRhsReal, |
| lhsRealTimesRhsImag, fmfValue); |
| |
| // Handle cases where the "naive" calculation results in NaN values. |
| Value realIsNan = |
| b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, real, real); |
| Value imagIsNan = |
| b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, imag, imag); |
| Value isNan = b.create<arith::AndIOp>(realIsNan, imagIsNan); |
| |
| Value inf = b.create<arith::ConstantOp>( |
| elementType, |
| b.getFloatAttr(elementType, |
| APFloat::getInf(elementType.getFloatSemantics()))); |
| |
| // Case 1. `lhsReal` or `lhsImag` are infinite. |
| Value lhsRealIsInf = |
| b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, lhsRealAbs, inf); |
| Value lhsImagIsInf = |
| b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, lhsImagAbs, inf); |
| Value lhsIsInf = b.create<arith::OrIOp>(lhsRealIsInf, lhsImagIsInf); |
| Value rhsRealIsNan = |
| b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, rhsReal, rhsReal); |
| Value rhsImagIsNan = |
| b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, rhsImag, rhsImag); |
| Value zero = |
| b.create<arith::ConstantOp>(elementType, b.getZeroAttr(elementType)); |
| Value one = b.create<arith::ConstantOp>(elementType, |
| b.getFloatAttr(elementType, 1)); |
| Value lhsRealIsInfFloat = |
| b.create<arith::SelectOp>(lhsRealIsInf, one, zero); |
| lhsReal = b.create<arith::SelectOp>( |
| lhsIsInf, b.create<math::CopySignOp>(lhsRealIsInfFloat, lhsReal), |
| lhsReal); |
| Value lhsImagIsInfFloat = |
| b.create<arith::SelectOp>(lhsImagIsInf, one, zero); |
| lhsImag = b.create<arith::SelectOp>( |
| lhsIsInf, b.create<math::CopySignOp>(lhsImagIsInfFloat, lhsImag), |
| lhsImag); |
| Value lhsIsInfAndRhsRealIsNan = |
| b.create<arith::AndIOp>(lhsIsInf, rhsRealIsNan); |
| rhsReal = b.create<arith::SelectOp>( |
| lhsIsInfAndRhsRealIsNan, b.create<math::CopySignOp>(zero, rhsReal), |
| rhsReal); |
| Value lhsIsInfAndRhsImagIsNan = |
| b.create<arith::AndIOp>(lhsIsInf, rhsImagIsNan); |
| rhsImag = b.create<arith::SelectOp>( |
| lhsIsInfAndRhsImagIsNan, b.create<math::CopySignOp>(zero, rhsImag), |
| rhsImag); |
| |
| // Case 2. `rhsReal` or `rhsImag` are infinite. |
| Value rhsRealIsInf = |
| b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, rhsRealAbs, inf); |
| Value rhsImagIsInf = |
| b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, rhsImagAbs, inf); |
| Value rhsIsInf = b.create<arith::OrIOp>(rhsRealIsInf, rhsImagIsInf); |
| Value lhsRealIsNan = |
| b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, lhsReal, lhsReal); |
| Value lhsImagIsNan = |
| b.create<arith::CmpFOp>(arith::CmpFPredicate::UNO, lhsImag, lhsImag); |
| Value rhsRealIsInfFloat = |
| b.create<arith::SelectOp>(rhsRealIsInf, one, zero); |
| rhsReal = b.create<arith::SelectOp>( |
| rhsIsInf, b.create<math::CopySignOp>(rhsRealIsInfFloat, rhsReal), |
| rhsReal); |
| Value rhsImagIsInfFloat = |
| b.create<arith::SelectOp>(rhsImagIsInf, one, zero); |
| rhsImag = b.create<arith::SelectOp>( |
| rhsIsInf, b.create<math::CopySignOp>(rhsImagIsInfFloat, rhsImag), |
| rhsImag); |
| Value rhsIsInfAndLhsRealIsNan = |
| b.create<arith::AndIOp>(rhsIsInf, lhsRealIsNan); |
| lhsReal = b.create<arith::SelectOp>( |
| rhsIsInfAndLhsRealIsNan, b.create<math::CopySignOp>(zero, lhsReal), |
| lhsReal); |
| Value rhsIsInfAndLhsImagIsNan = |
| b.create<arith::AndIOp>(rhsIsInf, lhsImagIsNan); |
| lhsImag = b.create<arith::SelectOp>( |
| rhsIsInfAndLhsImagIsNan, b.create<math::CopySignOp>(zero, lhsImag), |
| lhsImag); |
| Value recalc = b.create<arith::OrIOp>(lhsIsInf, rhsIsInf); |
| |
| // Case 3. One of the pairwise products of left hand side with right hand |
| // side is infinite. |
| Value lhsRealTimesRhsRealIsInf = b.create<arith::CmpFOp>( |
| arith::CmpFPredicate::OEQ, lhsRealTimesRhsRealAbs, inf); |
| Value lhsImagTimesRhsImagIsInf = b.create<arith::CmpFOp>( |
| arith::CmpFPredicate::OEQ, lhsImagTimesRhsImagAbs, inf); |
| Value isSpecialCase = b.create<arith::OrIOp>(lhsRealTimesRhsRealIsInf, |
| lhsImagTimesRhsImagIsInf); |
| Value lhsRealTimesRhsImagIsInf = b.create<arith::CmpFOp>( |
| arith::CmpFPredicate::OEQ, lhsRealTimesRhsImagAbs, inf); |
| isSpecialCase = |
| b.create<arith::OrIOp>(isSpecialCase, lhsRealTimesRhsImagIsInf); |
| Value lhsImagTimesRhsRealIsInf = b.create<arith::CmpFOp>( |
| arith::CmpFPredicate::OEQ, lhsImagTimesRhsRealAbs, inf); |
| isSpecialCase = |
| b.create<arith::OrIOp>(isSpecialCase, lhsImagTimesRhsRealIsInf); |
| Type i1Type = b.getI1Type(); |
| Value notRecalc = b.create<arith::XOrIOp>( |
| recalc, |
| b.create<arith::ConstantOp>(i1Type, b.getIntegerAttr(i1Type, 1))); |
| isSpecialCase = b.create<arith::AndIOp>(isSpecialCase, notRecalc); |
| Value isSpecialCaseAndLhsRealIsNan = |
| b.create<arith::AndIOp>(isSpecialCase, lhsRealIsNan); |
| lhsReal = b.create<arith::SelectOp>( |
| isSpecialCaseAndLhsRealIsNan, b.create<math::CopySignOp>(zero, lhsReal), |
| lhsReal); |
| Value isSpecialCaseAndLhsImagIsNan = |
| b.create<arith::AndIOp>(isSpecialCase, lhsImagIsNan); |
| lhsImag = b.create<arith::SelectOp>( |
| isSpecialCaseAndLhsImagIsNan, b.create<math::CopySignOp>(zero, lhsImag), |
| lhsImag); |
| Value isSpecialCaseAndRhsRealIsNan = |
| b.create<arith::AndIOp>(isSpecialCase, rhsRealIsNan); |
| rhsReal = b.create<arith::SelectOp>( |
| isSpecialCaseAndRhsRealIsNan, b.create<math::CopySignOp>(zero, rhsReal), |
| rhsReal); |
| Value isSpecialCaseAndRhsImagIsNan = |
| b.create<arith::AndIOp>(isSpecialCase, rhsImagIsNan); |
| rhsImag = b.create<arith::SelectOp>( |
| isSpecialCaseAndRhsImagIsNan, b.create<math::CopySignOp>(zero, rhsImag), |
| rhsImag); |
| recalc = b.create<arith::OrIOp>(recalc, isSpecialCase); |
| recalc = b.create<arith::AndIOp>(isNan, recalc); |
| |
| // Recalculate real part. |
| lhsRealTimesRhsReal = b.create<arith::MulFOp>(lhsReal, rhsReal, fmfValue); |
| lhsImagTimesRhsImag = b.create<arith::MulFOp>(lhsImag, rhsImag, fmfValue); |
| Value newReal = b.create<arith::SubFOp>(lhsRealTimesRhsReal, |
| lhsImagTimesRhsImag, fmfValue); |
| real = b.create<arith::SelectOp>( |
| recalc, b.create<arith::MulFOp>(inf, newReal, fmfValue), real); |
| |
| // Recalculate imag part. |
| lhsImagTimesRhsReal = b.create<arith::MulFOp>(lhsImag, rhsReal, fmfValue); |
| lhsRealTimesRhsImag = b.create<arith::MulFOp>(lhsReal, rhsImag, fmfValue); |
| Value newImag = b.create<arith::AddFOp>(lhsImagTimesRhsReal, |
| lhsRealTimesRhsImag, fmfValue); |
| imag = b.create<arith::SelectOp>( |
| recalc, b.create<arith::MulFOp>(inf, newImag, fmfValue), imag); |
| |
| rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, real, imag); |
| return success(); |
| } |
| }; |
| |
| struct NegOpConversion : public OpConversionPattern<complex::NegOp> { |
| using OpConversionPattern<complex::NegOp>::OpConversionPattern; |
| |
| LogicalResult |
| matchAndRewrite(complex::NegOp op, OpAdaptor adaptor, |
| ConversionPatternRewriter &rewriter) const override { |
| auto loc = op.getLoc(); |
| auto type = cast<ComplexType>(adaptor.getComplex().getType()); |
| auto elementType = cast<FloatType>(type.getElementType()); |
| |
| Value real = |
| rewriter.create<complex::ReOp>(loc, elementType, adaptor.getComplex()); |
| Value imag = |
| rewriter.create<complex::ImOp>(loc, elementType, adaptor.getComplex()); |
| Value negReal = rewriter.create<arith::NegFOp>(loc, real); |
| Value negImag = rewriter.create<arith::NegFOp>(loc, imag); |
| rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, negReal, negImag); |
| return success(); |
| } |
| }; |
| |
| struct SinOpConversion : public TrigonometricOpConversion<complex::SinOp> { |
| using TrigonometricOpConversion<complex::SinOp>::TrigonometricOpConversion; |
| |
| std::pair<Value, Value> |
| combine(Location loc, Value scaledExp, Value reciprocalExp, Value sin, |
| Value cos, ConversionPatternRewriter &rewriter) const override { |
| // Complex sine is defined as; |
| // sin(x + iy) = -0.5i * (exp(i(x + iy)) - exp(-i(x + iy))) |
| // Plugging in: |
| // exp(i(x+iy)) = exp(-y + ix) = exp(-y)(cos(x) + i sin(x)) |
| // exp(-i(x+iy)) = exp(y + i(-x)) = exp(y)(cos(x) + i (-sin(x))) |
| // and defining t := exp(y) |
| // We get: |
| // Re(sin(x + iy)) = (0.5*t + 0.5/t) * sin x |
| // Im(cos(x + iy)) = (0.5*t - 0.5/t) * cos x |
| Value sum = rewriter.create<arith::AddFOp>(loc, scaledExp, reciprocalExp); |
| Value resultReal = rewriter.create<arith::MulFOp>(loc, sum, sin); |
| Value diff = rewriter.create<arith::SubFOp>(loc, scaledExp, reciprocalExp); |
| Value resultImag = rewriter.create<arith::MulFOp>(loc, diff, cos); |
| return {resultReal, resultImag}; |
| } |
| }; |
| |
| // The algorithm is listed in https://dl.acm.org/doi/pdf/10.1145/363717.363780. |
| struct SqrtOpConversion : public OpConversionPattern<complex::SqrtOp> { |
| using OpConversionPattern<complex::SqrtOp>::OpConversionPattern; |
| |
| LogicalResult |
| matchAndRewrite(complex::SqrtOp op, OpAdaptor adaptor, |
| ConversionPatternRewriter &rewriter) const override { |
| mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter); |
| |
| auto type = cast<ComplexType>(op.getType()); |
| Type elementType = type.getElementType(); |
| Value arg = adaptor.getComplex(); |
| |
| Value zero = |
| b.create<arith::ConstantOp>(elementType, b.getZeroAttr(elementType)); |
| |
| Value real = b.create<complex::ReOp>(elementType, adaptor.getComplex()); |
| Value imag = b.create<complex::ImOp>(elementType, adaptor.getComplex()); |
| |
| Value absLhs = b.create<math::AbsFOp>(real); |
| Value absArg = b.create<complex::AbsOp>(elementType, arg); |
| Value addAbs = b.create<arith::AddFOp>(absLhs, absArg); |
| |
| Value half = b.create<arith::ConstantOp>(elementType, |
| b.getFloatAttr(elementType, 0.5)); |
| Value halfAddAbs = b.create<arith::MulFOp>(addAbs, half); |
| Value sqrtAddAbs = b.create<math::SqrtOp>(halfAddAbs); |
| |
| Value realIsNegative = |
| b.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, real, zero); |
| Value imagIsNegative = |
| b.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, imag, zero); |
| |
| Value resultReal = sqrtAddAbs; |
| |
| Value imagDivTwoResultReal = b.create<arith::DivFOp>( |
| imag, b.create<arith::AddFOp>(resultReal, resultReal)); |
| |
| Value negativeResultReal = b.create<arith::NegFOp>(resultReal); |
| |
| Value resultImag = b.create<arith::SelectOp>( |
| realIsNegative, |
| b.create<arith::SelectOp>(imagIsNegative, negativeResultReal, |
| resultReal), |
| imagDivTwoResultReal); |
| |
| resultReal = b.create<arith::SelectOp>( |
| realIsNegative, |
| b.create<arith::DivFOp>( |
| imag, b.create<arith::AddFOp>(resultImag, resultImag)), |
| resultReal); |
| |
| Value realIsZero = |
| b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, real, zero); |
| Value imagIsZero = |
| b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, imag, zero); |
| Value argIsZero = b.create<arith::AndIOp>(realIsZero, imagIsZero); |
| |
| resultReal = b.create<arith::SelectOp>(argIsZero, zero, resultReal); |
| resultImag = b.create<arith::SelectOp>(argIsZero, zero, resultImag); |
| |
| rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, resultReal, |
| resultImag); |
| return success(); |
| } |
| }; |
| |
| struct SignOpConversion : public OpConversionPattern<complex::SignOp> { |
| using OpConversionPattern<complex::SignOp>::OpConversionPattern; |
| |
| LogicalResult |
| matchAndRewrite(complex::SignOp op, OpAdaptor adaptor, |
| ConversionPatternRewriter &rewriter) const override { |
| auto type = cast<ComplexType>(adaptor.getComplex().getType()); |
| auto elementType = cast<FloatType>(type.getElementType()); |
| mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter); |
| |
| Value real = b.create<complex::ReOp>(elementType, adaptor.getComplex()); |
| Value imag = b.create<complex::ImOp>(elementType, adaptor.getComplex()); |
| Value zero = |
| b.create<arith::ConstantOp>(elementType, b.getZeroAttr(elementType)); |
| Value realIsZero = |
| b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, real, zero); |
| Value imagIsZero = |
| b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, imag, zero); |
| Value isZero = b.create<arith::AndIOp>(realIsZero, imagIsZero); |
| auto abs = b.create<complex::AbsOp>(elementType, adaptor.getComplex()); |
| Value realSign = b.create<arith::DivFOp>(real, abs); |
| Value imagSign = b.create<arith::DivFOp>(imag, abs); |
| Value sign = b.create<complex::CreateOp>(type, realSign, imagSign); |
| rewriter.replaceOpWithNewOp<arith::SelectOp>(op, isZero, |
| adaptor.getComplex(), sign); |
| return success(); |
| } |
| }; |
| |
| struct TanOpConversion : public OpConversionPattern<complex::TanOp> { |
| using OpConversionPattern<complex::TanOp>::OpConversionPattern; |
| |
| LogicalResult |
| matchAndRewrite(complex::TanOp op, OpAdaptor adaptor, |
| ConversionPatternRewriter &rewriter) const override { |
| auto loc = op.getLoc(); |
| Value cos = rewriter.create<complex::CosOp>(loc, adaptor.getComplex()); |
| Value sin = rewriter.create<complex::SinOp>(loc, adaptor.getComplex()); |
| rewriter.replaceOpWithNewOp<complex::DivOp>(op, sin, cos); |
| return success(); |
| } |
| }; |
| |
| struct TanhOpConversion : public OpConversionPattern<complex::TanhOp> { |
| using OpConversionPattern<complex::TanhOp>::OpConversionPattern; |
| |
| LogicalResult |
| matchAndRewrite(complex::TanhOp op, OpAdaptor adaptor, |
| ConversionPatternRewriter &rewriter) const override { |
| auto loc = op.getLoc(); |
| auto type = cast<ComplexType>(adaptor.getComplex().getType()); |
| auto elementType = cast<FloatType>(type.getElementType()); |
| |
| // The hyperbolic tangent for complex number can be calculated as follows. |
| // tanh(x + i * y) = (tanh(x) + i * tan(y)) / (1 + tanh(x) * tan(y)) |
| // See: https://proofwiki.org/wiki/Hyperbolic_Tangent_of_Complex_Number |
| Value real = |
| rewriter.create<complex::ReOp>(loc, elementType, adaptor.getComplex()); |
| Value imag = |
| rewriter.create<complex::ImOp>(loc, elementType, adaptor.getComplex()); |
| Value tanhA = rewriter.create<math::TanhOp>(loc, real); |
| Value cosB = rewriter.create<math::CosOp>(loc, imag); |
| Value sinB = rewriter.create<math::SinOp>(loc, imag); |
| Value tanB = rewriter.create<arith::DivFOp>(loc, sinB, cosB); |
| Value numerator = |
| rewriter.create<complex::CreateOp>(loc, type, tanhA, tanB); |
| Value one = rewriter.create<arith::ConstantOp>( |
| loc, elementType, rewriter.getFloatAttr(elementType, 1)); |
| Value mul = rewriter.create<arith::MulFOp>(loc, tanhA, tanB); |
| Value denominator = rewriter.create<complex::CreateOp>(loc, type, one, mul); |
| rewriter.replaceOpWithNewOp<complex::DivOp>(op, numerator, denominator); |
| return success(); |
| } |
| }; |
| |
| struct ConjOpConversion : public OpConversionPattern<complex::ConjOp> { |
| using OpConversionPattern<complex::ConjOp>::OpConversionPattern; |
| |
| LogicalResult |
| matchAndRewrite(complex::ConjOp op, OpAdaptor adaptor, |
| ConversionPatternRewriter &rewriter) const override { |
| auto loc = op.getLoc(); |
| auto type = cast<ComplexType>(adaptor.getComplex().getType()); |
| auto elementType = cast<FloatType>(type.getElementType()); |
| Value real = |
| rewriter.create<complex::ReOp>(loc, elementType, adaptor.getComplex()); |
| Value imag = |
| rewriter.create<complex::ImOp>(loc, elementType, adaptor.getComplex()); |
| Value negImag = rewriter.create<arith::NegFOp>(loc, elementType, imag); |
| |
| rewriter.replaceOpWithNewOp<complex::CreateOp>(op, type, real, negImag); |
| |
| return success(); |
| } |
| }; |
| |
| /// Coverts x^y = (a+bi)^(c+di) to |
| /// (a*a+b*b)^(0.5c) * exp(-d*atan2(b,a)) * (cos(q) + i*sin(q)), |
| /// where q = c*atan2(b,a)+0.5d*ln(a*a+b*b) |
| static Value powOpConversionImpl(mlir::ImplicitLocOpBuilder &builder, |
| ComplexType type, Value a, Value b, Value c, |
| Value d) { |
| auto elementType = cast<FloatType>(type.getElementType()); |
| |
| // Compute (a*a+b*b)^(0.5c). |
| Value aaPbb = builder.create<arith::AddFOp>( |
| builder.create<arith::MulFOp>(a, a), builder.create<arith::MulFOp>(b, b)); |
| Value half = builder.create<arith::ConstantOp>( |
| elementType, builder.getFloatAttr(elementType, 0.5)); |
| Value halfC = builder.create<arith::MulFOp>(half, c); |
| Value aaPbbTohalfC = builder.create<math::PowFOp>(aaPbb, halfC); |
| |
| // Compute exp(-d*atan2(b,a)). |
| Value negD = builder.create<arith::NegFOp>(d); |
| Value argX = builder.create<math::Atan2Op>(b, a); |
| Value negDArgX = builder.create<arith::MulFOp>(negD, argX); |
| Value eToNegDArgX = builder.create<math::ExpOp>(negDArgX); |
| |
| // Compute (a*a+b*b)^(0.5c) * exp(-d*atan2(b,a)). |
| Value coeff = builder.create<arith::MulFOp>(aaPbbTohalfC, eToNegDArgX); |
| |
| // Compute c*atan2(b,a)+0.5d*ln(a*a+b*b). |
| Value lnAaPbb = builder.create<math::LogOp>(aaPbb); |
| Value halfD = builder.create<arith::MulFOp>(half, d); |
| Value q = builder.create<arith::AddFOp>( |
| builder.create<arith::MulFOp>(c, argX), |
| builder.create<arith::MulFOp>(halfD, lnAaPbb)); |
| |
| Value cosQ = builder.create<math::CosOp>(q); |
| Value sinQ = builder.create<math::SinOp>(q); |
| Value zero = builder.create<arith::ConstantOp>( |
| elementType, builder.getFloatAttr(elementType, 0)); |
| Value one = builder.create<arith::ConstantOp>( |
| elementType, builder.getFloatAttr(elementType, 1)); |
| |
| Value xEqZero = |
| builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, aaPbb, zero); |
| Value yGeZero = builder.create<arith::AndIOp>( |
| builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGE, c, zero), |
| builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, d, zero)); |
| Value cEqZero = |
| builder.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, c, zero); |
| Value complexZero = builder.create<complex::CreateOp>(type, zero, zero); |
| Value complexOne = builder.create<complex::CreateOp>(type, one, zero); |
| Value complexOther = builder.create<complex::CreateOp>( |
| type, builder.create<arith::MulFOp>(coeff, cosQ), |
| builder.create<arith::MulFOp>(coeff, sinQ)); |
| |
| // x^y is 0 if x is 0 and y > 0. 0^0 is defined to be 1.0, see |
| // Branch Cuts for Complex Elementary Functions or Much Ado About |
| // Nothing's Sign Bit, W. Kahan, Section 10. |
| return builder.create<arith::SelectOp>( |
| builder.create<arith::AndIOp>(xEqZero, yGeZero), |
| builder.create<arith::SelectOp>(cEqZero, complexOne, complexZero), |
| complexOther); |
| } |
| |
| struct PowOpConversion : public OpConversionPattern<complex::PowOp> { |
| using OpConversionPattern<complex::PowOp>::OpConversionPattern; |
| |
| LogicalResult |
| matchAndRewrite(complex::PowOp op, OpAdaptor adaptor, |
| ConversionPatternRewriter &rewriter) const override { |
| mlir::ImplicitLocOpBuilder builder(op.getLoc(), rewriter); |
| auto type = cast<ComplexType>(adaptor.getLhs().getType()); |
| auto elementType = cast<FloatType>(type.getElementType()); |
| |
| Value a = builder.create<complex::ReOp>(elementType, adaptor.getLhs()); |
| Value b = builder.create<complex::ImOp>(elementType, adaptor.getLhs()); |
| Value c = builder.create<complex::ReOp>(elementType, adaptor.getRhs()); |
| Value d = builder.create<complex::ImOp>(elementType, adaptor.getRhs()); |
| |
| rewriter.replaceOp(op, {powOpConversionImpl(builder, type, a, b, c, d)}); |
| return success(); |
| } |
| }; |
| |
| struct RsqrtOpConversion : public OpConversionPattern<complex::RsqrtOp> { |
| using OpConversionPattern<complex::RsqrtOp>::OpConversionPattern; |
| |
| LogicalResult |
| matchAndRewrite(complex::RsqrtOp op, OpAdaptor adaptor, |
| ConversionPatternRewriter &rewriter) const override { |
| mlir::ImplicitLocOpBuilder builder(op.getLoc(), rewriter); |
| auto type = cast<ComplexType>(adaptor.getComplex().getType()); |
| auto elementType = cast<FloatType>(type.getElementType()); |
| |
| Value a = builder.create<complex::ReOp>(elementType, adaptor.getComplex()); |
| Value b = builder.create<complex::ImOp>(elementType, adaptor.getComplex()); |
| Value c = builder.create<arith::ConstantOp>( |
| elementType, builder.getFloatAttr(elementType, -0.5)); |
| Value d = builder.create<arith::ConstantOp>( |
| elementType, builder.getFloatAttr(elementType, 0)); |
| |
| rewriter.replaceOp(op, {powOpConversionImpl(builder, type, a, b, c, d)}); |
| return success(); |
| } |
| }; |
| |
| struct AngleOpConversion : public OpConversionPattern<complex::AngleOp> { |
| using OpConversionPattern<complex::AngleOp>::OpConversionPattern; |
| |
| LogicalResult |
| matchAndRewrite(complex::AngleOp op, OpAdaptor adaptor, |
| ConversionPatternRewriter &rewriter) const override { |
| auto loc = op.getLoc(); |
| auto type = op.getType(); |
| |
| Value real = |
| rewriter.create<complex::ReOp>(loc, type, adaptor.getComplex()); |
| Value imag = |
| rewriter.create<complex::ImOp>(loc, type, adaptor.getComplex()); |
| |
| rewriter.replaceOpWithNewOp<math::Atan2Op>(op, imag, real); |
| |
| return success(); |
| } |
| }; |
| |
| } // namespace |
| |
| void mlir::populateComplexToStandardConversionPatterns( |
| RewritePatternSet &patterns) { |
| // clang-format off |
| patterns.add< |
| AbsOpConversion, |
| AngleOpConversion, |
| Atan2OpConversion, |
| BinaryComplexOpConversion<complex::AddOp, arith::AddFOp>, |
| BinaryComplexOpConversion<complex::SubOp, arith::SubFOp>, |
| ComparisonOpConversion<complex::EqualOp, arith::CmpFPredicate::OEQ>, |
| ComparisonOpConversion<complex::NotEqualOp, arith::CmpFPredicate::UNE>, |
| ConjOpConversion, |
| CosOpConversion, |
| DivOpConversion, |
| ExpOpConversion, |
| Expm1OpConversion, |
| Log1pOpConversion, |
| LogOpConversion, |
| MulOpConversion, |
| NegOpConversion, |
| SignOpConversion, |
| SinOpConversion, |
| SqrtOpConversion, |
| TanOpConversion, |
| TanhOpConversion, |
| PowOpConversion, |
| RsqrtOpConversion |
| >(patterns.getContext()); |
| // clang-format on |
| } |
| |
| namespace { |
| struct ConvertComplexToStandardPass |
| : public impl::ConvertComplexToStandardBase<ConvertComplexToStandardPass> { |
| void runOnOperation() override; |
| }; |
| |
| void ConvertComplexToStandardPass::runOnOperation() { |
| // Convert to the Standard dialect using the converter defined above. |
| RewritePatternSet patterns(&getContext()); |
| populateComplexToStandardConversionPatterns(patterns); |
| |
| ConversionTarget target(getContext()); |
| target.addLegalDialect<arith::ArithDialect, math::MathDialect>(); |
| target.addLegalOp<complex::CreateOp, complex::ImOp, complex::ReOp>(); |
| if (failed( |
| applyPartialConversion(getOperation(), target, std::move(patterns)))) |
| signalPassFailure(); |
| } |
| } // namespace |
| |
| std::unique_ptr<Pass> mlir::createConvertComplexToStandardPass() { |
| return std::make_unique<ConvertComplexToStandardPass>(); |
| } |