blob: c054b267278551c58c4a6e3502a3a42770ae9d10 [file] [log] [blame]
//===-- X86TileConfig.cpp - Tile Register Configure----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file Pass to config the shape of AMX physical registers
/// AMX register need to be configured before use. In X86PreTileConfig pass
/// the pldtilecfg instruction is inserted, however at that time we don't
/// know the shape of each physical tile registers, because the register
/// allocation is not done yet. This pass runs after egister allocation
/// pass. It collects the shape information of each physical tile register
/// and store the shape in the stack slot that is allocated for load config
/// to tile config register.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86MachineFunctionInfo.h"
#include "X86Subtarget.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TileShapeInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/InitializePasses.h"
using namespace llvm;
#define DEBUG_TYPE "tileconfig"
namespace {
struct X86TileConfig : public MachineFunctionPass {
X86TileConfig() : MachineFunctionPass(ID) {}
/// Return the pass name.
StringRef getPassName() const override { return "Tile Register Configure"; }
/// X86TileConfig analysis usage.
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
AU.addRequired<VirtRegMapWrapperLegacy>();
AU.addRequired<LiveIntervalsWrapperPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
/// Perform register allocation.
bool runOnMachineFunction(MachineFunction &mf) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoPHIs);
}
static char ID;
};
} // end anonymous namespace
char X86TileConfig::ID = 0;
INITIALIZE_PASS_BEGIN(X86TileConfig, DEBUG_TYPE, "Tile Register Configure",
false, false)
INITIALIZE_PASS_DEPENDENCY(VirtRegMapWrapperLegacy)
INITIALIZE_PASS_END(X86TileConfig, DEBUG_TYPE, "Tile Register Configure", false,
false)
unsigned getAMXRegNum(MachineRegisterInfo *MRI, Register Reg) {
if (Reg.isVirtual()) {
unsigned RegClassID = MRI->getRegClass(Reg)->getID();
if (RegClassID == X86::TILERegClassID)
return 1;
if (RegClassID == X86::TILEPAIRRegClassID)
return 2;
} else {
if (Reg >= X86::TMM0 && Reg <= X86::TMM7)
return 1;
if (Reg >= X86::TMM0_TMM1 && Reg <= X86::TMM6_TMM7)
return 2;
}
return 0;
}
static void collectVirtRegShapes(MachineRegisterInfo *MRI, VirtRegMap &VRM,
Register VirtReg,
SmallVector<ShapeT, 8> &Phys2Shapes) {
unsigned Num = getAMXRegNum(MRI, VirtReg);
MCRegister PhysReg = VRM.getPhys(VirtReg);
if (!PhysReg)
return;
if (Num == 1) {
unsigned Index = PhysReg - X86::TMM0;
if (!Phys2Shapes[Index].isValid()) {
ShapeT Shape = VRM.getShape(VirtReg);
Phys2Shapes[Index] = std::move(Shape);
return;
}
}
// Split tile pair shape info to 2 single tile shape info. e.g:
// Put TMM0_TMM1's Shape to TMM0's shape + TMM1's Shape in Phys2Shapes.
if (Num == 2) {
unsigned Index0 = (PhysReg - X86::TMM0_TMM1) * 2;
unsigned Index1 = (PhysReg - X86::TMM0_TMM1) * 2 + 1;
ShapeT Shape = VRM.getShape(VirtReg);
assert(Shape.getShapeNum() == 2 && "Unexpected shape number!");
if (!Phys2Shapes[Index0].isValid()) {
ShapeT Shape0(Shape.getRow(0), Shape.getCol(0), MRI);
Phys2Shapes[Index0] = std::move(Shape0);
}
if (!Phys2Shapes[Index1].isValid()) {
ShapeT Shape1(Shape.getRow(1), Shape.getCol(1), MRI);
Phys2Shapes[Index1] = std::move(Shape1);
}
}
}
static bool isAMXRegClass(MachineRegisterInfo *MRI, Register Reg) {
return getAMXRegNum(MRI, Reg) > 0;
}
bool X86TileConfig::runOnMachineFunction(MachineFunction &MF) {
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
// Early exit in the common case of non-AMX code.
if (X86FI->getAMXProgModel() != AMXProgModelEnum::ManagedRA)
return false;
const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
const TargetRegisterInfo *TRI = ST.getRegisterInfo();
const TargetInstrInfo *TII = ST.getInstrInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
LiveIntervals &LIS = getAnalysis<LiveIntervalsWrapperPass>().getLIS();
VirtRegMap &VRM = getAnalysis<VirtRegMapWrapperLegacy>().getVRM();
if (VRM.isShapeMapEmpty())
return false;
int SS = INT_MAX;
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
if (MI.getOpcode() == X86::PLDTILECFGV) {
SS = MI.getOperand(0).getIndex();
break;
}
}
if (SS != INT_MAX)
break;
}
// Didn't find PLDTILECFGV, just return false;
if (SS == INT_MAX)
return false;
// Try to find a point to insert MIs for constant shapes.
// Here we are leveraging the palette id inserted in PreRA pass.
unsigned ConstPos = 0;
MachineInstr *ConstMI = nullptr;
for (MachineInstr &MI : MF.front()) {
if (MI.getOpcode() == X86::MOV8mi && SS == MI.getOperand(0).getIndex()) {
ConstMI = &MI;
break;
}
++ConstPos;
}
assert(ConstMI && "Cannot find an insertion point");
unsigned AMXRegNum = TRI->getRegClass(X86::TILERegClassID)->getNumRegs();
SmallVector<ShapeT, 8> Phys2Shapes(AMXRegNum, ShapeT());
for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
Register VirtReg = Register::index2VirtReg(I);
if (MRI.reg_nodbg_empty(VirtReg))
continue;
if (!isAMXRegClass(&MRI, VirtReg))
continue;
collectVirtRegShapes(&MRI, VRM, VirtReg, Phys2Shapes);
}
// Fill in the shape of each tile physical register.
for (unsigned I = 0; I < AMXRegNum; ++I) {
ShapeT Shape = Phys2Shapes[I];
if (!Shape.isValid())
continue;
DebugLoc DL;
bool IsRow = true;
MachineInstr *NewMI = nullptr;
for (auto &R : {Shape.getRow()->getReg(), Shape.getCol()->getReg()}) {
// Here is the data format for the tile config.
// 0 palette
// 1 start_row
// 2-15 reserved, must be zero
// 16-17 tile0.colsb Tile 0 bytes per row.
// 18-19 tile1.colsb Tile 1 bytes per row.
// 20-21 tile2.colsb Tile 2 bytes per row.
// ... (sequence continues)
// 30-31 tile7.colsb Tile 7 bytes per row.
// 32-47 reserved, must be zero
// 48 tile0.rows Tile 0 rows.
// 49 tile1.rows Tile 1 rows.
// 50 tile2.rows Tile 2 rows.
// ... (sequence continues)
// 55 tile7.rows Tile 7 rows.
// 56-63 reserved, must be zero
int64_t Imm = INT64_MAX;
int Offset = IsRow ? 48 + I : 16 + I * 2;
for (auto &DefMI : MRI.def_instructions(R)) {
MachineBasicBlock &MBB = *DefMI.getParent();
if (DefMI.isMoveImmediate()) {
if (Imm != INT64_MAX) {
// FIXME: We should handle this case in future.
assert(Imm == DefMI.getOperand(1).getImm() &&
"Cannot initialize with different shapes");
continue;
}
if (DefMI.getOperand(1).isImm()) {
Imm = DefMI.getOperand(1).getImm();
} else {
assert(DefMI.getOpcode() == X86::MOV32r0 &&
"The opcode is assumed to be MOV32r0 if the operand is not "
"immediate.");
Imm = 0;
}
NewMI = addFrameReference(
BuildMI(MF.front(), ++ConstMI->getIterator(), DL,
TII->get(IsRow ? X86::MOV8mi : X86::MOV16mi)),
SS, Offset)
.addImm(Imm);
ConstMI = NewMI;
LIS.InsertMachineInstrInMaps(*NewMI);
} else {
unsigned SubIdx = IsRow ? X86::sub_8bit : X86::sub_16bit;
unsigned RegSize = TRI->getRegSizeInBits(*MRI.getRegClass(R));
if ((IsRow && RegSize == 8) || (!IsRow && RegSize == 16))
SubIdx = 0;
auto Iter = DefMI.getIterator();
if (&MBB == &MF.front() &&
(unsigned)std::distance(MBB.instr_begin(), Iter) < ConstPos)
Iter = ConstMI->getIterator();
NewMI = addFrameReference(
BuildMI(MBB, ++Iter, DL,
TII->get(IsRow ? X86::MOV8mr : X86::MOV16mr)),
SS, Offset)
.addReg(R, 0, SubIdx);
SlotIndex SIdx = LIS.InsertMachineInstrInMaps(*NewMI);
LIS.extendToIndices(LIS.getInterval(R), {SIdx.getRegSlot()});
}
}
IsRow = false;
}
}
return true;
}
FunctionPass *llvm::createX86TileConfigPass() { return new X86TileConfig(); }