| //===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the X86SelectionDAGInfo class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86SelectionDAGInfo.h" |
| #include "X86ISelLowering.h" |
| #include "X86InstrInfo.h" |
| #include "X86RegisterInfo.h" |
| #include "X86Subtarget.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "x86-selectiondag-info" |
| |
| static cl::opt<bool> |
| UseFSRMForMemcpy("x86-use-fsrm-for-memcpy", cl::Hidden, cl::init(false), |
| cl::desc("Use fast short rep mov in memcpy lowering")); |
| |
| bool X86SelectionDAGInfo::isTargetMemoryOpcode(unsigned Opcode) const { |
| return Opcode >= X86ISD::FIRST_MEMORY_OPCODE && |
| Opcode <= X86ISD::LAST_MEMORY_OPCODE; |
| } |
| |
| bool X86SelectionDAGInfo::isTargetStrictFPOpcode(unsigned Opcode) const { |
| return Opcode >= X86ISD::FIRST_STRICTFP_OPCODE && |
| Opcode <= X86ISD::LAST_STRICTFP_OPCODE; |
| } |
| |
| /// Returns the best type to use with repmovs/repstos depending on alignment. |
| static MVT getOptimalRepType(const X86Subtarget &Subtarget, Align Alignment) { |
| uint64_t Align = Alignment.value(); |
| assert((Align != 0) && "Align is normalized"); |
| assert(isPowerOf2_64(Align) && "Align is a power of 2"); |
| switch (Align) { |
| case 1: |
| return MVT::i8; |
| case 2: |
| return MVT::i16; |
| case 4: |
| return MVT::i32; |
| default: |
| return Subtarget.is64Bit() ? MVT::i64 : MVT::i32; |
| } |
| } |
| |
| bool X86SelectionDAGInfo::isBaseRegConflictPossible( |
| SelectionDAG &DAG, ArrayRef<MCPhysReg> ClobberSet) const { |
| // We cannot use TRI->hasBasePointer() until *after* we select all basic |
| // blocks. Legalization may introduce new stack temporaries with large |
| // alignment requirements. Fall back to generic code if there are any |
| // dynamic stack adjustments (hopefully rare) and the base pointer would |
| // conflict if we had to use it. |
| MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| if (!MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment()) |
| return false; |
| |
| const X86RegisterInfo *TRI = static_cast<const X86RegisterInfo *>( |
| DAG.getSubtarget().getRegisterInfo()); |
| return llvm::is_contained(ClobberSet, TRI->getBaseRegister()); |
| } |
| |
| /// Emit a single REP STOSB instruction for a particular constant size. |
| static SDValue emitRepstos(const X86Subtarget &Subtarget, SelectionDAG &DAG, |
| const SDLoc &dl, SDValue Chain, SDValue Dst, |
| SDValue Val, SDValue Size, MVT AVT) { |
| const bool Use64BitRegs = Subtarget.isTarget64BitLP64(); |
| unsigned AX = X86::AL; |
| switch (AVT.getSizeInBits()) { |
| case 8: |
| AX = X86::AL; |
| break; |
| case 16: |
| AX = X86::AX; |
| break; |
| case 32: |
| AX = X86::EAX; |
| break; |
| default: |
| AX = X86::RAX; |
| break; |
| } |
| |
| const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX; |
| const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI; |
| |
| SDValue InGlue; |
| Chain = DAG.getCopyToReg(Chain, dl, AX, Val, InGlue); |
| InGlue = Chain.getValue(1); |
| Chain = DAG.getCopyToReg(Chain, dl, CX, Size, InGlue); |
| InGlue = Chain.getValue(1); |
| Chain = DAG.getCopyToReg(Chain, dl, DI, Dst, InGlue); |
| InGlue = Chain.getValue(1); |
| |
| SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue Ops[] = {Chain, DAG.getValueType(AVT), InGlue}; |
| return DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops); |
| } |
| |
| /// Emit a single REP STOSB instruction for a particular constant size. |
| static SDValue emitRepstosB(const X86Subtarget &Subtarget, SelectionDAG &DAG, |
| const SDLoc &dl, SDValue Chain, SDValue Dst, |
| SDValue Val, uint64_t Size) { |
| return emitRepstos(Subtarget, DAG, dl, Chain, Dst, Val, |
| DAG.getIntPtrConstant(Size, dl), MVT::i8); |
| } |
| |
| /// Returns a REP STOS instruction, possibly with a few load/stores to implement |
| /// a constant size memory set. In some cases where we know REP MOVS is |
| /// inefficient we return an empty SDValue so the calling code can either |
| /// generate a store sequence or call the runtime memset function. |
| static SDValue emitConstantSizeRepstos(SelectionDAG &DAG, |
| const X86Subtarget &Subtarget, |
| const SDLoc &dl, SDValue Chain, |
| SDValue Dst, SDValue Val, uint64_t Size, |
| EVT SizeVT, Align Alignment, |
| bool isVolatile, bool AlwaysInline, |
| MachinePointerInfo DstPtrInfo) { |
| /// In case we optimize for size, we use repstosb even if it's less efficient |
| /// so we can save the loads/stores of the leftover. |
| if (DAG.getMachineFunction().getFunction().hasMinSize()) { |
| if (auto *ValC = dyn_cast<ConstantSDNode>(Val)) { |
| // Special case 0 because otherwise we get large literals, |
| // which causes larger encoding. |
| if ((Size & 31) == 0 && (ValC->getZExtValue() & 255) == 0) { |
| MVT BlockType = MVT::i32; |
| const uint64_t BlockBits = BlockType.getSizeInBits(); |
| const uint64_t BlockBytes = BlockBits / 8; |
| const uint64_t BlockCount = Size / BlockBytes; |
| |
| Val = DAG.getConstant(0, dl, BlockType); |
| // repstosd is same size as repstosb |
| return emitRepstos(Subtarget, DAG, dl, Chain, Dst, Val, |
| DAG.getIntPtrConstant(BlockCount, dl), BlockType); |
| } |
| } |
| return emitRepstosB(Subtarget, DAG, dl, Chain, Dst, Val, Size); |
| } |
| |
| if (Size > Subtarget.getMaxInlineSizeThreshold()) |
| return SDValue(); |
| |
| // If not DWORD aligned or size is more than the threshold, call the library. |
| // The libc version is likely to be faster for these cases. It can use the |
| // address value and run time information about the CPU. |
| if (Alignment < Align(4)) |
| return SDValue(); |
| |
| MVT BlockType = MVT::i8; |
| uint64_t BlockCount = Size; |
| uint64_t BytesLeft = 0; |
| |
| SDValue OriginalVal = Val; |
| if (auto *ValC = dyn_cast<ConstantSDNode>(Val)) { |
| BlockType = getOptimalRepType(Subtarget, Alignment); |
| uint64_t Value = ValC->getZExtValue() & 255; |
| const uint64_t BlockBits = BlockType.getSizeInBits(); |
| |
| if (BlockBits >= 16) |
| Value = (Value << 8) | Value; |
| |
| if (BlockBits >= 32) |
| Value = (Value << 16) | Value; |
| |
| if (BlockBits >= 64) |
| Value = (Value << 32) | Value; |
| |
| const uint64_t BlockBytes = BlockBits / 8; |
| BlockCount = Size / BlockBytes; |
| BytesLeft = Size % BlockBytes; |
| Val = DAG.getConstant(Value, dl, BlockType); |
| } |
| |
| SDValue RepStos = |
| emitRepstos(Subtarget, DAG, dl, Chain, Dst, Val, |
| DAG.getIntPtrConstant(BlockCount, dl), BlockType); |
| /// RepStos can process the whole length. |
| if (BytesLeft == 0) |
| return RepStos; |
| |
| // Handle the last 1 - 7 bytes. |
| SmallVector<SDValue, 4> Results; |
| Results.push_back(RepStos); |
| unsigned Offset = Size - BytesLeft; |
| EVT AddrVT = Dst.getValueType(); |
| |
| Results.push_back( |
| DAG.getMemset(Chain, dl, |
| DAG.getNode(ISD::ADD, dl, AddrVT, Dst, |
| DAG.getConstant(Offset, dl, AddrVT)), |
| OriginalVal, DAG.getConstant(BytesLeft, dl, SizeVT), |
| Alignment, isVolatile, AlwaysInline, |
| /* CI */ nullptr, DstPtrInfo.getWithOffset(Offset))); |
| |
| return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results); |
| } |
| |
| SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset( |
| SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val, |
| SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline, |
| MachinePointerInfo DstPtrInfo) const { |
| // If to a segment-relative address space, use the default lowering. |
| if (DstPtrInfo.getAddrSpace() >= 256) |
| return SDValue(); |
| |
| // If the base register might conflict with our physical registers, bail out. |
| const MCPhysReg ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI, |
| X86::ECX, X86::EAX, X86::EDI}; |
| if (isBaseRegConflictPossible(DAG, ClobberSet)) |
| return SDValue(); |
| |
| ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); |
| if (!ConstantSize) |
| return SDValue(); |
| |
| const X86Subtarget &Subtarget = |
| DAG.getMachineFunction().getSubtarget<X86Subtarget>(); |
| return emitConstantSizeRepstos( |
| DAG, Subtarget, dl, Chain, Dst, Val, ConstantSize->getZExtValue(), |
| Size.getValueType(), Alignment, isVolatile, AlwaysInline, DstPtrInfo); |
| } |
| |
| /// Emit a single REP MOVS{B,W,D,Q} instruction. |
| static SDValue emitRepmovs(const X86Subtarget &Subtarget, SelectionDAG &DAG, |
| const SDLoc &dl, SDValue Chain, SDValue Dst, |
| SDValue Src, SDValue Size, MVT AVT) { |
| const bool Use64BitRegs = Subtarget.isTarget64BitLP64(); |
| const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX; |
| const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI; |
| const unsigned SI = Use64BitRegs ? X86::RSI : X86::ESI; |
| |
| SDValue InGlue; |
| Chain = DAG.getCopyToReg(Chain, dl, CX, Size, InGlue); |
| InGlue = Chain.getValue(1); |
| Chain = DAG.getCopyToReg(Chain, dl, DI, Dst, InGlue); |
| InGlue = Chain.getValue(1); |
| Chain = DAG.getCopyToReg(Chain, dl, SI, Src, InGlue); |
| InGlue = Chain.getValue(1); |
| |
| SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); |
| SDValue Ops[] = {Chain, DAG.getValueType(AVT), InGlue}; |
| return DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops); |
| } |
| |
| /// Emit a single REP MOVSB instruction for a particular constant size. |
| static SDValue emitRepmovsB(const X86Subtarget &Subtarget, SelectionDAG &DAG, |
| const SDLoc &dl, SDValue Chain, SDValue Dst, |
| SDValue Src, uint64_t Size) { |
| return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, |
| DAG.getIntPtrConstant(Size, dl), MVT::i8); |
| } |
| |
| /// Returns a REP MOVS instruction, possibly with a few load/stores to implement |
| /// a constant size memory copy. In some cases where we know REP MOVS is |
| /// inefficient we return an empty SDValue so the calling code can either |
| /// generate a load/store sequence or call the runtime memcpy function. |
| static SDValue emitConstantSizeRepmov( |
| SelectionDAG &DAG, const X86Subtarget &Subtarget, const SDLoc &dl, |
| SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, EVT SizeVT, |
| Align Alignment, bool isVolatile, bool AlwaysInline, |
| MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) { |
| /// In case we optimize for size, we use repmovsb even if it's less efficient |
| /// so we can save the loads/stores of the leftover. |
| if (DAG.getMachineFunction().getFunction().hasMinSize()) |
| return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size); |
| |
| /// TODO: Revisit next line: big copy with ERMSB on march >= haswell are very |
| /// efficient. |
| if (!AlwaysInline && Size > Subtarget.getMaxInlineSizeThreshold()) |
| return SDValue(); |
| |
| /// If we have enhanced repmovs we use it. |
| if (Subtarget.hasERMSB()) |
| return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size); |
| |
| assert(!Subtarget.hasERMSB() && "No efficient RepMovs"); |
| /// We assume runtime memcpy will do a better job for unaligned copies when |
| /// ERMS is not present. |
| if (!AlwaysInline && (Alignment < Align(4))) |
| return SDValue(); |
| |
| const MVT BlockType = getOptimalRepType(Subtarget, Alignment); |
| const uint64_t BlockBytes = BlockType.getSizeInBits() / 8; |
| const uint64_t BlockCount = Size / BlockBytes; |
| const uint64_t BytesLeft = Size % BlockBytes; |
| SDValue RepMovs = |
| emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, |
| DAG.getIntPtrConstant(BlockCount, dl), BlockType); |
| |
| /// RepMov can process the whole length. |
| if (BytesLeft == 0) |
| return RepMovs; |
| |
| assert(BytesLeft && "We have leftover at this point"); |
| |
| // Handle the last 1 - 7 bytes. |
| SmallVector<SDValue, 4> Results; |
| Results.push_back(RepMovs); |
| unsigned Offset = Size - BytesLeft; |
| EVT DstVT = Dst.getValueType(); |
| EVT SrcVT = Src.getValueType(); |
| Results.push_back(DAG.getMemcpy( |
| Chain, dl, |
| DAG.getNode(ISD::ADD, dl, DstVT, Dst, DAG.getConstant(Offset, dl, DstVT)), |
| DAG.getNode(ISD::ADD, dl, SrcVT, Src, DAG.getConstant(Offset, dl, SrcVT)), |
| DAG.getConstant(BytesLeft, dl, SizeVT), Alignment, isVolatile, |
| /*AlwaysInline*/ true, /*CI=*/nullptr, std::nullopt, |
| DstPtrInfo.getWithOffset(Offset), SrcPtrInfo.getWithOffset(Offset))); |
| return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results); |
| } |
| |
| SDValue X86SelectionDAGInfo::EmitTargetCodeForMemcpy( |
| SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, |
| SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline, |
| MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const { |
| // If to a segment-relative address space, use the default lowering. |
| if (DstPtrInfo.getAddrSpace() >= 256 || SrcPtrInfo.getAddrSpace() >= 256) |
| return SDValue(); |
| |
| // If the base registers conflict with our physical registers, use the default |
| // lowering. |
| const MCPhysReg ClobberSet[] = {X86::RCX, X86::RSI, X86::RDI, |
| X86::ECX, X86::ESI, X86::EDI}; |
| if (isBaseRegConflictPossible(DAG, ClobberSet)) |
| return SDValue(); |
| |
| const X86Subtarget &Subtarget = |
| DAG.getMachineFunction().getSubtarget<X86Subtarget>(); |
| |
| // If enabled and available, use fast short rep mov. |
| if (UseFSRMForMemcpy && Subtarget.hasFSRM()) |
| return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, Size, MVT::i8); |
| |
| /// Handle constant sizes |
| if (ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size)) |
| return emitConstantSizeRepmov(DAG, Subtarget, dl, Chain, Dst, Src, |
| ConstantSize->getZExtValue(), |
| Size.getValueType(), Alignment, isVolatile, |
| AlwaysInline, DstPtrInfo, SrcPtrInfo); |
| |
| return SDValue(); |
| } |