blob: aba62c36546f92a995f9e164d42d46a7bcf8f8f3 [file] [log] [blame]
//===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86SelectionDAGInfo class.
//
//===----------------------------------------------------------------------===//
#include "X86SelectionDAGInfo.h"
#include "X86ISelLowering.h"
#include "X86InstrInfo.h"
#include "X86RegisterInfo.h"
#include "X86Subtarget.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLowering.h"
using namespace llvm;
#define DEBUG_TYPE "x86-selectiondag-info"
static cl::opt<bool>
UseFSRMForMemcpy("x86-use-fsrm-for-memcpy", cl::Hidden, cl::init(false),
cl::desc("Use fast short rep mov in memcpy lowering"));
bool X86SelectionDAGInfo::isTargetMemoryOpcode(unsigned Opcode) const {
return Opcode >= X86ISD::FIRST_MEMORY_OPCODE &&
Opcode <= X86ISD::LAST_MEMORY_OPCODE;
}
bool X86SelectionDAGInfo::isTargetStrictFPOpcode(unsigned Opcode) const {
return Opcode >= X86ISD::FIRST_STRICTFP_OPCODE &&
Opcode <= X86ISD::LAST_STRICTFP_OPCODE;
}
/// Returns the best type to use with repmovs/repstos depending on alignment.
static MVT getOptimalRepType(const X86Subtarget &Subtarget, Align Alignment) {
uint64_t Align = Alignment.value();
assert((Align != 0) && "Align is normalized");
assert(isPowerOf2_64(Align) && "Align is a power of 2");
switch (Align) {
case 1:
return MVT::i8;
case 2:
return MVT::i16;
case 4:
return MVT::i32;
default:
return Subtarget.is64Bit() ? MVT::i64 : MVT::i32;
}
}
bool X86SelectionDAGInfo::isBaseRegConflictPossible(
SelectionDAG &DAG, ArrayRef<MCPhysReg> ClobberSet) const {
// We cannot use TRI->hasBasePointer() until *after* we select all basic
// blocks. Legalization may introduce new stack temporaries with large
// alignment requirements. Fall back to generic code if there are any
// dynamic stack adjustments (hopefully rare) and the base pointer would
// conflict if we had to use it.
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
if (!MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment())
return false;
const X86RegisterInfo *TRI = static_cast<const X86RegisterInfo *>(
DAG.getSubtarget().getRegisterInfo());
return llvm::is_contained(ClobberSet, TRI->getBaseRegister());
}
/// Emit a single REP STOSB instruction for a particular constant size.
static SDValue emitRepstos(const X86Subtarget &Subtarget, SelectionDAG &DAG,
const SDLoc &dl, SDValue Chain, SDValue Dst,
SDValue Val, SDValue Size, MVT AVT) {
const bool Use64BitRegs = Subtarget.isTarget64BitLP64();
unsigned AX = X86::AL;
switch (AVT.getSizeInBits()) {
case 8:
AX = X86::AL;
break;
case 16:
AX = X86::AX;
break;
case 32:
AX = X86::EAX;
break;
default:
AX = X86::RAX;
break;
}
const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX;
const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI;
SDValue InGlue;
Chain = DAG.getCopyToReg(Chain, dl, AX, Val, InGlue);
InGlue = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, CX, Size, InGlue);
InGlue = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, DI, Dst, InGlue);
InGlue = Chain.getValue(1);
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = {Chain, DAG.getValueType(AVT), InGlue};
return DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops);
}
/// Emit a single REP STOSB instruction for a particular constant size.
static SDValue emitRepstosB(const X86Subtarget &Subtarget, SelectionDAG &DAG,
const SDLoc &dl, SDValue Chain, SDValue Dst,
SDValue Val, uint64_t Size) {
return emitRepstos(Subtarget, DAG, dl, Chain, Dst, Val,
DAG.getIntPtrConstant(Size, dl), MVT::i8);
}
/// Returns a REP STOS instruction, possibly with a few load/stores to implement
/// a constant size memory set. In some cases where we know REP MOVS is
/// inefficient we return an empty SDValue so the calling code can either
/// generate a store sequence or call the runtime memset function.
static SDValue emitConstantSizeRepstos(SelectionDAG &DAG,
const X86Subtarget &Subtarget,
const SDLoc &dl, SDValue Chain,
SDValue Dst, SDValue Val, uint64_t Size,
EVT SizeVT, Align Alignment,
bool isVolatile, bool AlwaysInline,
MachinePointerInfo DstPtrInfo) {
/// In case we optimize for size, we use repstosb even if it's less efficient
/// so we can save the loads/stores of the leftover.
if (DAG.getMachineFunction().getFunction().hasMinSize()) {
if (auto *ValC = dyn_cast<ConstantSDNode>(Val)) {
// Special case 0 because otherwise we get large literals,
// which causes larger encoding.
if ((Size & 31) == 0 && (ValC->getZExtValue() & 255) == 0) {
MVT BlockType = MVT::i32;
const uint64_t BlockBits = BlockType.getSizeInBits();
const uint64_t BlockBytes = BlockBits / 8;
const uint64_t BlockCount = Size / BlockBytes;
Val = DAG.getConstant(0, dl, BlockType);
// repstosd is same size as repstosb
return emitRepstos(Subtarget, DAG, dl, Chain, Dst, Val,
DAG.getIntPtrConstant(BlockCount, dl), BlockType);
}
}
return emitRepstosB(Subtarget, DAG, dl, Chain, Dst, Val, Size);
}
if (Size > Subtarget.getMaxInlineSizeThreshold())
return SDValue();
// If not DWORD aligned or size is more than the threshold, call the library.
// The libc version is likely to be faster for these cases. It can use the
// address value and run time information about the CPU.
if (Alignment < Align(4))
return SDValue();
MVT BlockType = MVT::i8;
uint64_t BlockCount = Size;
uint64_t BytesLeft = 0;
SDValue OriginalVal = Val;
if (auto *ValC = dyn_cast<ConstantSDNode>(Val)) {
BlockType = getOptimalRepType(Subtarget, Alignment);
uint64_t Value = ValC->getZExtValue() & 255;
const uint64_t BlockBits = BlockType.getSizeInBits();
if (BlockBits >= 16)
Value = (Value << 8) | Value;
if (BlockBits >= 32)
Value = (Value << 16) | Value;
if (BlockBits >= 64)
Value = (Value << 32) | Value;
const uint64_t BlockBytes = BlockBits / 8;
BlockCount = Size / BlockBytes;
BytesLeft = Size % BlockBytes;
Val = DAG.getConstant(Value, dl, BlockType);
}
SDValue RepStos =
emitRepstos(Subtarget, DAG, dl, Chain, Dst, Val,
DAG.getIntPtrConstant(BlockCount, dl), BlockType);
/// RepStos can process the whole length.
if (BytesLeft == 0)
return RepStos;
// Handle the last 1 - 7 bytes.
SmallVector<SDValue, 4> Results;
Results.push_back(RepStos);
unsigned Offset = Size - BytesLeft;
EVT AddrVT = Dst.getValueType();
Results.push_back(
DAG.getMemset(Chain, dl,
DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
DAG.getConstant(Offset, dl, AddrVT)),
OriginalVal, DAG.getConstant(BytesLeft, dl, SizeVT),
Alignment, isVolatile, AlwaysInline,
/* CI */ nullptr, DstPtrInfo.getWithOffset(Offset)));
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results);
}
SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset(
SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val,
SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline,
MachinePointerInfo DstPtrInfo) const {
// If to a segment-relative address space, use the default lowering.
if (DstPtrInfo.getAddrSpace() >= 256)
return SDValue();
// If the base register might conflict with our physical registers, bail out.
const MCPhysReg ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI,
X86::ECX, X86::EAX, X86::EDI};
if (isBaseRegConflictPossible(DAG, ClobberSet))
return SDValue();
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
if (!ConstantSize)
return SDValue();
const X86Subtarget &Subtarget =
DAG.getMachineFunction().getSubtarget<X86Subtarget>();
return emitConstantSizeRepstos(
DAG, Subtarget, dl, Chain, Dst, Val, ConstantSize->getZExtValue(),
Size.getValueType(), Alignment, isVolatile, AlwaysInline, DstPtrInfo);
}
/// Emit a single REP MOVS{B,W,D,Q} instruction.
static SDValue emitRepmovs(const X86Subtarget &Subtarget, SelectionDAG &DAG,
const SDLoc &dl, SDValue Chain, SDValue Dst,
SDValue Src, SDValue Size, MVT AVT) {
const bool Use64BitRegs = Subtarget.isTarget64BitLP64();
const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX;
const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI;
const unsigned SI = Use64BitRegs ? X86::RSI : X86::ESI;
SDValue InGlue;
Chain = DAG.getCopyToReg(Chain, dl, CX, Size, InGlue);
InGlue = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, DI, Dst, InGlue);
InGlue = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, SI, Src, InGlue);
InGlue = Chain.getValue(1);
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = {Chain, DAG.getValueType(AVT), InGlue};
return DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops);
}
/// Emit a single REP MOVSB instruction for a particular constant size.
static SDValue emitRepmovsB(const X86Subtarget &Subtarget, SelectionDAG &DAG,
const SDLoc &dl, SDValue Chain, SDValue Dst,
SDValue Src, uint64_t Size) {
return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src,
DAG.getIntPtrConstant(Size, dl), MVT::i8);
}
/// Returns a REP MOVS instruction, possibly with a few load/stores to implement
/// a constant size memory copy. In some cases where we know REP MOVS is
/// inefficient we return an empty SDValue so the calling code can either
/// generate a load/store sequence or call the runtime memcpy function.
static SDValue emitConstantSizeRepmov(
SelectionDAG &DAG, const X86Subtarget &Subtarget, const SDLoc &dl,
SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, EVT SizeVT,
Align Alignment, bool isVolatile, bool AlwaysInline,
MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) {
/// In case we optimize for size, we use repmovsb even if it's less efficient
/// so we can save the loads/stores of the leftover.
if (DAG.getMachineFunction().getFunction().hasMinSize())
return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size);
/// TODO: Revisit next line: big copy with ERMSB on march >= haswell are very
/// efficient.
if (!AlwaysInline && Size > Subtarget.getMaxInlineSizeThreshold())
return SDValue();
/// If we have enhanced repmovs we use it.
if (Subtarget.hasERMSB())
return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size);
assert(!Subtarget.hasERMSB() && "No efficient RepMovs");
/// We assume runtime memcpy will do a better job for unaligned copies when
/// ERMS is not present.
if (!AlwaysInline && (Alignment < Align(4)))
return SDValue();
const MVT BlockType = getOptimalRepType(Subtarget, Alignment);
const uint64_t BlockBytes = BlockType.getSizeInBits() / 8;
const uint64_t BlockCount = Size / BlockBytes;
const uint64_t BytesLeft = Size % BlockBytes;
SDValue RepMovs =
emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src,
DAG.getIntPtrConstant(BlockCount, dl), BlockType);
/// RepMov can process the whole length.
if (BytesLeft == 0)
return RepMovs;
assert(BytesLeft && "We have leftover at this point");
// Handle the last 1 - 7 bytes.
SmallVector<SDValue, 4> Results;
Results.push_back(RepMovs);
unsigned Offset = Size - BytesLeft;
EVT DstVT = Dst.getValueType();
EVT SrcVT = Src.getValueType();
Results.push_back(DAG.getMemcpy(
Chain, dl,
DAG.getNode(ISD::ADD, dl, DstVT, Dst, DAG.getConstant(Offset, dl, DstVT)),
DAG.getNode(ISD::ADD, dl, SrcVT, Src, DAG.getConstant(Offset, dl, SrcVT)),
DAG.getConstant(BytesLeft, dl, SizeVT), Alignment, isVolatile,
/*AlwaysInline*/ true, /*CI=*/nullptr, std::nullopt,
DstPtrInfo.getWithOffset(Offset), SrcPtrInfo.getWithOffset(Offset)));
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results);
}
SDValue X86SelectionDAGInfo::EmitTargetCodeForMemcpy(
SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline,
MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const {
// If to a segment-relative address space, use the default lowering.
if (DstPtrInfo.getAddrSpace() >= 256 || SrcPtrInfo.getAddrSpace() >= 256)
return SDValue();
// If the base registers conflict with our physical registers, use the default
// lowering.
const MCPhysReg ClobberSet[] = {X86::RCX, X86::RSI, X86::RDI,
X86::ECX, X86::ESI, X86::EDI};
if (isBaseRegConflictPossible(DAG, ClobberSet))
return SDValue();
const X86Subtarget &Subtarget =
DAG.getMachineFunction().getSubtarget<X86Subtarget>();
// If enabled and available, use fast short rep mov.
if (UseFSRMForMemcpy && Subtarget.hasFSRM())
return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, Size, MVT::i8);
/// Handle constant sizes
if (ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size))
return emitConstantSizeRepmov(DAG, Subtarget, dl, Chain, Dst, Src,
ConstantSize->getZExtValue(),
Size.getValueType(), Alignment, isVolatile,
AlwaysInline, DstPtrInfo, SrcPtrInfo);
return SDValue();
}