blob: c1ffc287235e5b6c33fc1e29f827f4a97fc5f2f4 [file] [log] [blame]
//===-- SystemZAsmPrinter.cpp - SystemZ LLVM assembly printer -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Streams SystemZ assembly language and associated data, in the form of
// MCInsts and MCExprs respectively.
//
//===----------------------------------------------------------------------===//
#include "SystemZAsmPrinter.h"
#include "MCTargetDesc/SystemZGNUInstPrinter.h"
#include "MCTargetDesc/SystemZHLASMInstPrinter.h"
#include "MCTargetDesc/SystemZMCExpr.h"
#include "MCTargetDesc/SystemZMCTargetDesc.h"
#include "SystemZConstantPoolValue.h"
#include "SystemZMCInstLower.h"
#include "TargetInfo/SystemZTargetInfo.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/Chrono.h"
#include "llvm/Support/ConvertEBCDIC.h"
#include "llvm/Support/FormatVariadic.h"
using namespace llvm;
// Return an RI instruction like MI with opcode Opcode, but with the
// GR64 register operands turned into GR32s.
static MCInst lowerRILow(const MachineInstr *MI, unsigned Opcode) {
if (MI->isCompare())
return MCInstBuilder(Opcode)
.addReg(SystemZMC::getRegAsGR32(MI->getOperand(0).getReg()))
.addImm(MI->getOperand(1).getImm());
else
return MCInstBuilder(Opcode)
.addReg(SystemZMC::getRegAsGR32(MI->getOperand(0).getReg()))
.addReg(SystemZMC::getRegAsGR32(MI->getOperand(1).getReg()))
.addImm(MI->getOperand(2).getImm());
}
// Return an RI instruction like MI with opcode Opcode, but with the
// GR64 register operands turned into GRH32s.
static MCInst lowerRIHigh(const MachineInstr *MI, unsigned Opcode) {
if (MI->isCompare())
return MCInstBuilder(Opcode)
.addReg(SystemZMC::getRegAsGRH32(MI->getOperand(0).getReg()))
.addImm(MI->getOperand(1).getImm());
else
return MCInstBuilder(Opcode)
.addReg(SystemZMC::getRegAsGRH32(MI->getOperand(0).getReg()))
.addReg(SystemZMC::getRegAsGRH32(MI->getOperand(1).getReg()))
.addImm(MI->getOperand(2).getImm());
}
// Return an RI instruction like MI with opcode Opcode, but with the
// R2 register turned into a GR64.
static MCInst lowerRIEfLow(const MachineInstr *MI, unsigned Opcode) {
return MCInstBuilder(Opcode)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addReg(SystemZMC::getRegAsGR64(MI->getOperand(2).getReg()))
.addImm(MI->getOperand(3).getImm())
.addImm(MI->getOperand(4).getImm())
.addImm(MI->getOperand(5).getImm());
}
static const MCSymbolRefExpr *getTLSGetOffset(MCContext &Context) {
StringRef Name = "__tls_get_offset";
return MCSymbolRefExpr::create(Context.getOrCreateSymbol(Name),
SystemZMCExpr::VK_PLT, Context);
}
static const MCSymbolRefExpr *getGlobalOffsetTable(MCContext &Context) {
StringRef Name = "_GLOBAL_OFFSET_TABLE_";
return MCSymbolRefExpr::create(Context.getOrCreateSymbol(Name),
Context);
}
// MI is an instruction that accepts an optional alignment hint,
// and which was already lowered to LoweredMI. If the alignment
// of the original memory operand is known, update LoweredMI to
// an instruction with the corresponding hint set.
static void lowerAlignmentHint(const MachineInstr *MI, MCInst &LoweredMI,
unsigned Opcode) {
if (MI->memoperands_empty())
return;
Align Alignment = Align(16);
for (MachineInstr::mmo_iterator MMOI = MI->memoperands_begin(),
EE = MI->memoperands_end(); MMOI != EE; ++MMOI)
if ((*MMOI)->getAlign() < Alignment)
Alignment = (*MMOI)->getAlign();
unsigned AlignmentHint = 0;
if (Alignment >= Align(16))
AlignmentHint = 4;
else if (Alignment >= Align(8))
AlignmentHint = 3;
if (AlignmentHint == 0)
return;
LoweredMI.setOpcode(Opcode);
LoweredMI.addOperand(MCOperand::createImm(AlignmentHint));
}
// MI loads the high part of a vector from memory. Return an instruction
// that uses replicating vector load Opcode to do the same thing.
static MCInst lowerSubvectorLoad(const MachineInstr *MI, unsigned Opcode) {
return MCInstBuilder(Opcode)
.addReg(SystemZMC::getRegAsVR128(MI->getOperand(0).getReg()))
.addReg(MI->getOperand(1).getReg())
.addImm(MI->getOperand(2).getImm())
.addReg(MI->getOperand(3).getReg());
}
// MI stores the high part of a vector to memory. Return an instruction
// that uses elemental vector store Opcode to do the same thing.
static MCInst lowerSubvectorStore(const MachineInstr *MI, unsigned Opcode) {
return MCInstBuilder(Opcode)
.addReg(SystemZMC::getRegAsVR128(MI->getOperand(0).getReg()))
.addReg(MI->getOperand(1).getReg())
.addImm(MI->getOperand(2).getImm())
.addReg(MI->getOperand(3).getReg())
.addImm(0);
}
// MI extracts the first element of the source vector.
static MCInst lowerVecEltExtraction(const MachineInstr *MI, unsigned Opcode) {
return MCInstBuilder(Opcode)
.addReg(SystemZMC::getRegAsGR64(MI->getOperand(0).getReg()))
.addReg(SystemZMC::getRegAsVR128(MI->getOperand(1).getReg()))
.addReg(0)
.addImm(0);
}
// MI inserts value into the first element of the destination vector.
static MCInst lowerVecEltInsertion(const MachineInstr *MI, unsigned Opcode) {
return MCInstBuilder(Opcode)
.addReg(SystemZMC::getRegAsVR128(MI->getOperand(0).getReg()))
.addReg(SystemZMC::getRegAsVR128(MI->getOperand(0).getReg()))
.addReg(MI->getOperand(1).getReg())
.addReg(0)
.addImm(0);
}
// The XPLINK ABI requires that a no-op encoding the call type is emitted after
// each call to a subroutine. This information can be used by the called
// function to determine its entry point, e.g. for generating a backtrace. The
// call type is encoded as a register number in the bcr instruction. See
// enumeration CallType for the possible values.
void SystemZAsmPrinter::emitCallInformation(CallType CT) {
EmitToStreamer(*OutStreamer,
MCInstBuilder(SystemZ::BCRAsm)
.addImm(0)
.addReg(SystemZMC::GR64Regs[static_cast<unsigned>(CT)]));
}
uint32_t SystemZAsmPrinter::AssociatedDataAreaTable::insert(const MCSymbol *Sym,
unsigned SlotKind) {
auto Key = std::make_pair(Sym, SlotKind);
auto It = Displacements.find(Key);
if (It != Displacements.end())
return (*It).second;
// Determine length of descriptor.
uint32_t Length;
switch (SlotKind) {
case SystemZII::MO_ADA_DIRECT_FUNC_DESC:
Length = 2 * PointerSize;
break;
default:
Length = PointerSize;
break;
}
uint32_t Displacement = NextDisplacement;
Displacements[std::make_pair(Sym, SlotKind)] = NextDisplacement;
NextDisplacement += Length;
return Displacement;
}
uint32_t
SystemZAsmPrinter::AssociatedDataAreaTable::insert(const MachineOperand MO) {
MCSymbol *Sym;
if (MO.getType() == MachineOperand::MO_GlobalAddress) {
const GlobalValue *GV = MO.getGlobal();
Sym = MO.getParent()->getMF()->getTarget().getSymbol(GV);
assert(Sym && "No symbol");
} else if (MO.getType() == MachineOperand::MO_ExternalSymbol) {
const char *SymName = MO.getSymbolName();
Sym = MO.getParent()->getMF()->getContext().getOrCreateSymbol(SymName);
assert(Sym && "No symbol");
} else
llvm_unreachable("Unexpected operand type");
unsigned ADAslotType = MO.getTargetFlags();
return insert(Sym, ADAslotType);
}
void SystemZAsmPrinter::emitInstruction(const MachineInstr *MI) {
SystemZ_MC::verifyInstructionPredicates(MI->getOpcode(),
getSubtargetInfo().getFeatureBits());
SystemZMCInstLower Lower(MF->getContext(), *this);
MCInst LoweredMI;
switch (MI->getOpcode()) {
case SystemZ::Return:
LoweredMI = MCInstBuilder(SystemZ::BR)
.addReg(SystemZ::R14D);
break;
case SystemZ::Return_XPLINK:
LoweredMI = MCInstBuilder(SystemZ::B)
.addReg(SystemZ::R7D)
.addImm(2)
.addReg(0);
break;
case SystemZ::CondReturn:
LoweredMI = MCInstBuilder(SystemZ::BCR)
.addImm(MI->getOperand(0).getImm())
.addImm(MI->getOperand(1).getImm())
.addReg(SystemZ::R14D);
break;
case SystemZ::CondReturn_XPLINK:
LoweredMI = MCInstBuilder(SystemZ::BC)
.addImm(MI->getOperand(0).getImm())
.addImm(MI->getOperand(1).getImm())
.addReg(SystemZ::R7D)
.addImm(2)
.addReg(0);
break;
case SystemZ::CRBReturn:
LoweredMI = MCInstBuilder(SystemZ::CRB)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addImm(MI->getOperand(2).getImm())
.addReg(SystemZ::R14D)
.addImm(0);
break;
case SystemZ::CGRBReturn:
LoweredMI = MCInstBuilder(SystemZ::CGRB)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addImm(MI->getOperand(2).getImm())
.addReg(SystemZ::R14D)
.addImm(0);
break;
case SystemZ::CIBReturn:
LoweredMI = MCInstBuilder(SystemZ::CIB)
.addReg(MI->getOperand(0).getReg())
.addImm(MI->getOperand(1).getImm())
.addImm(MI->getOperand(2).getImm())
.addReg(SystemZ::R14D)
.addImm(0);
break;
case SystemZ::CGIBReturn:
LoweredMI = MCInstBuilder(SystemZ::CGIB)
.addReg(MI->getOperand(0).getReg())
.addImm(MI->getOperand(1).getImm())
.addImm(MI->getOperand(2).getImm())
.addReg(SystemZ::R14D)
.addImm(0);
break;
case SystemZ::CLRBReturn:
LoweredMI = MCInstBuilder(SystemZ::CLRB)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addImm(MI->getOperand(2).getImm())
.addReg(SystemZ::R14D)
.addImm(0);
break;
case SystemZ::CLGRBReturn:
LoweredMI = MCInstBuilder(SystemZ::CLGRB)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addImm(MI->getOperand(2).getImm())
.addReg(SystemZ::R14D)
.addImm(0);
break;
case SystemZ::CLIBReturn:
LoweredMI = MCInstBuilder(SystemZ::CLIB)
.addReg(MI->getOperand(0).getReg())
.addImm(MI->getOperand(1).getImm())
.addImm(MI->getOperand(2).getImm())
.addReg(SystemZ::R14D)
.addImm(0);
break;
case SystemZ::CLGIBReturn:
LoweredMI = MCInstBuilder(SystemZ::CLGIB)
.addReg(MI->getOperand(0).getReg())
.addImm(MI->getOperand(1).getImm())
.addImm(MI->getOperand(2).getImm())
.addReg(SystemZ::R14D)
.addImm(0);
break;
case SystemZ::CallBRASL_XPLINK64:
EmitToStreamer(
*OutStreamer,
MCInstBuilder(SystemZ::BRASL)
.addReg(SystemZ::R7D)
.addExpr(Lower.getExpr(MI->getOperand(0), SystemZMCExpr::VK_PLT)));
emitCallInformation(CallType::BRASL7);
return;
case SystemZ::CallBASR_XPLINK64:
EmitToStreamer(*OutStreamer, MCInstBuilder(SystemZ::BASR)
.addReg(SystemZ::R7D)
.addReg(MI->getOperand(0).getReg()));
emitCallInformation(CallType::BASR76);
return;
case SystemZ::CallBASR_STACKEXT:
EmitToStreamer(*OutStreamer, MCInstBuilder(SystemZ::BASR)
.addReg(SystemZ::R3D)
.addReg(MI->getOperand(0).getReg()));
emitCallInformation(CallType::BASR33);
return;
case SystemZ::ADA_ENTRY_VALUE:
case SystemZ::ADA_ENTRY: {
const SystemZSubtarget &Subtarget = MF->getSubtarget<SystemZSubtarget>();
const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
uint32_t Disp = ADATable.insert(MI->getOperand(1));
Register TargetReg = MI->getOperand(0).getReg();
Register ADAReg = MI->getOperand(2).getReg();
Disp += MI->getOperand(3).getImm();
bool LoadAddr = MI->getOpcode() == SystemZ::ADA_ENTRY;
unsigned Op0 = LoadAddr ? SystemZ::LA : SystemZ::LG;
unsigned Op = TII->getOpcodeForOffset(Op0, Disp);
Register IndexReg = 0;
if (!Op) {
if (TargetReg != ADAReg) {
IndexReg = TargetReg;
// Use TargetReg to store displacement.
EmitToStreamer(
*OutStreamer,
MCInstBuilder(SystemZ::LLILF).addReg(TargetReg).addImm(Disp));
} else
EmitToStreamer(*OutStreamer, MCInstBuilder(SystemZ::ALGFI)
.addReg(TargetReg)
.addReg(TargetReg)
.addImm(Disp));
Disp = 0;
Op = Op0;
}
EmitToStreamer(*OutStreamer, MCInstBuilder(Op)
.addReg(TargetReg)
.addReg(ADAReg)
.addImm(Disp)
.addReg(IndexReg));
return;
}
case SystemZ::CallBRASL:
LoweredMI =
MCInstBuilder(SystemZ::BRASL)
.addReg(SystemZ::R14D)
.addExpr(Lower.getExpr(MI->getOperand(0), SystemZMCExpr::VK_PLT));
break;
case SystemZ::CallBASR:
LoweredMI = MCInstBuilder(SystemZ::BASR)
.addReg(SystemZ::R14D)
.addReg(MI->getOperand(0).getReg());
break;
case SystemZ::CallJG:
LoweredMI =
MCInstBuilder(SystemZ::JG)
.addExpr(Lower.getExpr(MI->getOperand(0), SystemZMCExpr::VK_PLT));
break;
case SystemZ::CallBRCL:
LoweredMI =
MCInstBuilder(SystemZ::BRCL)
.addImm(MI->getOperand(0).getImm())
.addImm(MI->getOperand(1).getImm())
.addExpr(Lower.getExpr(MI->getOperand(2), SystemZMCExpr::VK_PLT));
break;
case SystemZ::CallBR:
LoweredMI = MCInstBuilder(SystemZ::BR)
.addReg(MI->getOperand(0).getReg());
break;
case SystemZ::CallBCR:
LoweredMI = MCInstBuilder(SystemZ::BCR)
.addImm(MI->getOperand(0).getImm())
.addImm(MI->getOperand(1).getImm())
.addReg(MI->getOperand(2).getReg());
break;
case SystemZ::CRBCall:
LoweredMI = MCInstBuilder(SystemZ::CRB)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addImm(MI->getOperand(2).getImm())
.addReg(MI->getOperand(3).getReg())
.addImm(0);
break;
case SystemZ::CGRBCall:
LoweredMI = MCInstBuilder(SystemZ::CGRB)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addImm(MI->getOperand(2).getImm())
.addReg(MI->getOperand(3).getReg())
.addImm(0);
break;
case SystemZ::CIBCall:
LoweredMI = MCInstBuilder(SystemZ::CIB)
.addReg(MI->getOperand(0).getReg())
.addImm(MI->getOperand(1).getImm())
.addImm(MI->getOperand(2).getImm())
.addReg(MI->getOperand(3).getReg())
.addImm(0);
break;
case SystemZ::CGIBCall:
LoweredMI = MCInstBuilder(SystemZ::CGIB)
.addReg(MI->getOperand(0).getReg())
.addImm(MI->getOperand(1).getImm())
.addImm(MI->getOperand(2).getImm())
.addReg(MI->getOperand(3).getReg())
.addImm(0);
break;
case SystemZ::CLRBCall:
LoweredMI = MCInstBuilder(SystemZ::CLRB)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addImm(MI->getOperand(2).getImm())
.addReg(MI->getOperand(3).getReg())
.addImm(0);
break;
case SystemZ::CLGRBCall:
LoweredMI = MCInstBuilder(SystemZ::CLGRB)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addImm(MI->getOperand(2).getImm())
.addReg(MI->getOperand(3).getReg())
.addImm(0);
break;
case SystemZ::CLIBCall:
LoweredMI = MCInstBuilder(SystemZ::CLIB)
.addReg(MI->getOperand(0).getReg())
.addImm(MI->getOperand(1).getImm())
.addImm(MI->getOperand(2).getImm())
.addReg(MI->getOperand(3).getReg())
.addImm(0);
break;
case SystemZ::CLGIBCall:
LoweredMI = MCInstBuilder(SystemZ::CLGIB)
.addReg(MI->getOperand(0).getReg())
.addImm(MI->getOperand(1).getImm())
.addImm(MI->getOperand(2).getImm())
.addReg(MI->getOperand(3).getReg())
.addImm(0);
break;
case SystemZ::TLS_GDCALL:
LoweredMI =
MCInstBuilder(SystemZ::BRASL)
.addReg(SystemZ::R14D)
.addExpr(getTLSGetOffset(MF->getContext()))
.addExpr(Lower.getExpr(MI->getOperand(0), SystemZMCExpr::VK_TLSGD));
break;
case SystemZ::TLS_LDCALL:
LoweredMI = MCInstBuilder(SystemZ::BRASL)
.addReg(SystemZ::R14D)
.addExpr(getTLSGetOffset(MF->getContext()))
.addExpr(Lower.getExpr(MI->getOperand(0),
SystemZMCExpr::VK_TLSLDM));
break;
case SystemZ::GOT:
LoweredMI = MCInstBuilder(SystemZ::LARL)
.addReg(MI->getOperand(0).getReg())
.addExpr(getGlobalOffsetTable(MF->getContext()));
break;
case SystemZ::IILF64:
LoweredMI = MCInstBuilder(SystemZ::IILF)
.addReg(SystemZMC::getRegAsGR32(MI->getOperand(0).getReg()))
.addImm(MI->getOperand(2).getImm());
break;
case SystemZ::IIHF64:
LoweredMI = MCInstBuilder(SystemZ::IIHF)
.addReg(SystemZMC::getRegAsGRH32(MI->getOperand(0).getReg()))
.addImm(MI->getOperand(2).getImm());
break;
case SystemZ::RISBHH:
case SystemZ::RISBHL:
LoweredMI = lowerRIEfLow(MI, SystemZ::RISBHG);
break;
case SystemZ::RISBLH:
case SystemZ::RISBLL:
LoweredMI = lowerRIEfLow(MI, SystemZ::RISBLG);
break;
case SystemZ::VLVGP32:
LoweredMI = MCInstBuilder(SystemZ::VLVGP)
.addReg(MI->getOperand(0).getReg())
.addReg(SystemZMC::getRegAsGR64(MI->getOperand(1).getReg()))
.addReg(SystemZMC::getRegAsGR64(MI->getOperand(2).getReg()));
break;
case SystemZ::VLR32:
case SystemZ::VLR64:
LoweredMI = MCInstBuilder(SystemZ::VLR)
.addReg(SystemZMC::getRegAsVR128(MI->getOperand(0).getReg()))
.addReg(SystemZMC::getRegAsVR128(MI->getOperand(1).getReg()));
break;
case SystemZ::VL:
Lower.lower(MI, LoweredMI);
lowerAlignmentHint(MI, LoweredMI, SystemZ::VLAlign);
break;
case SystemZ::VST:
Lower.lower(MI, LoweredMI);
lowerAlignmentHint(MI, LoweredMI, SystemZ::VSTAlign);
break;
case SystemZ::VLM:
Lower.lower(MI, LoweredMI);
lowerAlignmentHint(MI, LoweredMI, SystemZ::VLMAlign);
break;
case SystemZ::VSTM:
Lower.lower(MI, LoweredMI);
lowerAlignmentHint(MI, LoweredMI, SystemZ::VSTMAlign);
break;
case SystemZ::VL16:
LoweredMI = lowerSubvectorLoad(MI, SystemZ::VLREPH);
break;
case SystemZ::VL32:
LoweredMI = lowerSubvectorLoad(MI, SystemZ::VLREPF);
break;
case SystemZ::VL64:
LoweredMI = lowerSubvectorLoad(MI, SystemZ::VLREPG);
break;
case SystemZ::VST16:
LoweredMI = lowerSubvectorStore(MI, SystemZ::VSTEH);
break;
case SystemZ::VST32:
LoweredMI = lowerSubvectorStore(MI, SystemZ::VSTEF);
break;
case SystemZ::VST64:
LoweredMI = lowerSubvectorStore(MI, SystemZ::VSTEG);
break;
case SystemZ::LFER:
LoweredMI = lowerVecEltExtraction(MI, SystemZ::VLGVF);
break;
case SystemZ::LFER_16:
LoweredMI = lowerVecEltExtraction(MI, SystemZ::VLGVH);
break;
case SystemZ::LEFR:
LoweredMI = lowerVecEltInsertion(MI, SystemZ::VLVGF);
break;
case SystemZ::LEFR_16:
LoweredMI = lowerVecEltInsertion(MI, SystemZ::VLVGH);
break;
#define LOWER_LOW(NAME) \
case SystemZ::NAME##64: LoweredMI = lowerRILow(MI, SystemZ::NAME); break
LOWER_LOW(IILL);
LOWER_LOW(IILH);
LOWER_LOW(TMLL);
LOWER_LOW(TMLH);
LOWER_LOW(NILL);
LOWER_LOW(NILH);
LOWER_LOW(NILF);
LOWER_LOW(OILL);
LOWER_LOW(OILH);
LOWER_LOW(OILF);
LOWER_LOW(XILF);
#undef LOWER_LOW
#define LOWER_HIGH(NAME) \
case SystemZ::NAME##64: LoweredMI = lowerRIHigh(MI, SystemZ::NAME); break
LOWER_HIGH(IIHL);
LOWER_HIGH(IIHH);
LOWER_HIGH(TMHL);
LOWER_HIGH(TMHH);
LOWER_HIGH(NIHL);
LOWER_HIGH(NIHH);
LOWER_HIGH(NIHF);
LOWER_HIGH(OIHL);
LOWER_HIGH(OIHH);
LOWER_HIGH(OIHF);
LOWER_HIGH(XIHF);
#undef LOWER_HIGH
case SystemZ::Serialize:
if (MF->getSubtarget<SystemZSubtarget>().hasFastSerialization())
LoweredMI = MCInstBuilder(SystemZ::BCRAsm)
.addImm(14).addReg(SystemZ::R0D);
else
LoweredMI = MCInstBuilder(SystemZ::BCRAsm)
.addImm(15).addReg(SystemZ::R0D);
break;
// We want to emit "j .+2" for traps, jumping to the relative immediate field
// of the jump instruction, which is an illegal instruction. We cannot emit a
// "." symbol, so create and emit a temp label before the instruction and use
// that instead.
case SystemZ::Trap: {
MCSymbol *DotSym = OutContext.createTempSymbol();
OutStreamer->emitLabel(DotSym);
const MCSymbolRefExpr *Expr = MCSymbolRefExpr::create(DotSym, OutContext);
const MCConstantExpr *ConstExpr = MCConstantExpr::create(2, OutContext);
LoweredMI = MCInstBuilder(SystemZ::J)
.addExpr(MCBinaryExpr::createAdd(Expr, ConstExpr, OutContext));
}
break;
// Conditional traps will create a branch on condition instruction that jumps
// to the relative immediate field of the jump instruction. (eg. "jo .+2")
case SystemZ::CondTrap: {
MCSymbol *DotSym = OutContext.createTempSymbol();
OutStreamer->emitLabel(DotSym);
const MCSymbolRefExpr *Expr = MCSymbolRefExpr::create(DotSym, OutContext);
const MCConstantExpr *ConstExpr = MCConstantExpr::create(2, OutContext);
LoweredMI = MCInstBuilder(SystemZ::BRC)
.addImm(MI->getOperand(0).getImm())
.addImm(MI->getOperand(1).getImm())
.addExpr(MCBinaryExpr::createAdd(Expr, ConstExpr, OutContext));
}
break;
case TargetOpcode::FENTRY_CALL:
LowerFENTRY_CALL(*MI, Lower);
return;
case TargetOpcode::STACKMAP:
LowerSTACKMAP(*MI);
return;
case TargetOpcode::PATCHPOINT:
LowerPATCHPOINT(*MI, Lower);
return;
case TargetOpcode::PATCHABLE_FUNCTION_ENTER:
LowerPATCHABLE_FUNCTION_ENTER(*MI, Lower);
return;
case TargetOpcode::PATCHABLE_RET:
LowerPATCHABLE_RET(*MI, Lower);
return;
case TargetOpcode::PATCHABLE_FUNCTION_EXIT:
llvm_unreachable("PATCHABLE_FUNCTION_EXIT should never be emitted");
case TargetOpcode::PATCHABLE_TAIL_CALL:
// TODO: Define a trampoline `__xray_FunctionTailExit` and differentiate a
// normal function exit from a tail exit.
llvm_unreachable("Tail call is handled in the normal case. See comments "
"around this assert.");
case SystemZ::EXRL_Pseudo: {
unsigned TargetInsOpc = MI->getOperand(0).getImm();
Register LenMinus1Reg = MI->getOperand(1).getReg();
Register DestReg = MI->getOperand(2).getReg();
int64_t DestDisp = MI->getOperand(3).getImm();
Register SrcReg = MI->getOperand(4).getReg();
int64_t SrcDisp = MI->getOperand(5).getImm();
SystemZTargetStreamer *TS = getTargetStreamer();
MCInst ET = MCInstBuilder(TargetInsOpc)
.addReg(DestReg)
.addImm(DestDisp)
.addImm(1)
.addReg(SrcReg)
.addImm(SrcDisp);
SystemZTargetStreamer::MCInstSTIPair ET_STI(ET, &MF->getSubtarget());
auto [It, Inserted] = TS->EXRLTargets2Sym.try_emplace(ET_STI);
if (Inserted)
It->second = OutContext.createTempSymbol();
MCSymbol *DotSym = It->second;
const MCSymbolRefExpr *Dot = MCSymbolRefExpr::create(DotSym, OutContext);
EmitToStreamer(
*OutStreamer,
MCInstBuilder(SystemZ::EXRL).addReg(LenMinus1Reg).addExpr(Dot));
return;
}
// EH_SjLj_Setup is a dummy terminator instruction of size 0.
// It is used to handle the clobber register for builtin setjmp.
case SystemZ::EH_SjLj_Setup:
return;
default:
Lower.lower(MI, LoweredMI);
break;
}
EmitToStreamer(*OutStreamer, LoweredMI);
}
// Emit the largest nop instruction smaller than or equal to NumBytes
// bytes. Return the size of nop emitted.
static unsigned EmitNop(MCContext &OutContext, MCStreamer &OutStreamer,
unsigned NumBytes, const MCSubtargetInfo &STI) {
if (NumBytes < 2) {
llvm_unreachable("Zero nops?");
return 0;
}
else if (NumBytes < 4) {
OutStreamer.emitInstruction(
MCInstBuilder(SystemZ::BCRAsm).addImm(0).addReg(SystemZ::R0D), STI);
return 2;
}
else if (NumBytes < 6) {
OutStreamer.emitInstruction(
MCInstBuilder(SystemZ::BCAsm).addImm(0).addReg(0).addImm(0).addReg(0),
STI);
return 4;
}
else {
MCSymbol *DotSym = OutContext.createTempSymbol();
const MCSymbolRefExpr *Dot = MCSymbolRefExpr::create(DotSym, OutContext);
OutStreamer.emitLabel(DotSym);
OutStreamer.emitInstruction(
MCInstBuilder(SystemZ::BRCLAsm).addImm(0).addExpr(Dot), STI);
return 6;
}
}
void SystemZAsmPrinter::LowerFENTRY_CALL(const MachineInstr &MI,
SystemZMCInstLower &Lower) {
MCContext &Ctx = MF->getContext();
if (MF->getFunction().hasFnAttribute("mrecord-mcount")) {
MCSymbol *DotSym = OutContext.createTempSymbol();
OutStreamer->pushSection();
OutStreamer->switchSection(
Ctx.getELFSection("__mcount_loc", ELF::SHT_PROGBITS, ELF::SHF_ALLOC));
OutStreamer->emitSymbolValue(DotSym, 8);
OutStreamer->popSection();
OutStreamer->emitLabel(DotSym);
}
if (MF->getFunction().hasFnAttribute("mnop-mcount")) {
EmitNop(Ctx, *OutStreamer, 6, getSubtargetInfo());
return;
}
MCSymbol *fentry = Ctx.getOrCreateSymbol("__fentry__");
const MCSymbolRefExpr *Op =
MCSymbolRefExpr::create(fentry, SystemZMCExpr::VK_PLT, Ctx);
OutStreamer->emitInstruction(
MCInstBuilder(SystemZ::BRASL).addReg(SystemZ::R0D).addExpr(Op),
getSubtargetInfo());
}
void SystemZAsmPrinter::LowerSTACKMAP(const MachineInstr &MI) {
auto *TII = MF->getSubtarget<SystemZSubtarget>().getInstrInfo();
unsigned NumNOPBytes = MI.getOperand(1).getImm();
auto &Ctx = OutStreamer->getContext();
MCSymbol *MILabel = Ctx.createTempSymbol();
OutStreamer->emitLabel(MILabel);
SM.recordStackMap(*MILabel, MI);
assert(NumNOPBytes % 2 == 0 && "Invalid number of NOP bytes requested!");
// Scan ahead to trim the shadow.
unsigned ShadowBytes = 0;
const MachineBasicBlock &MBB = *MI.getParent();
MachineBasicBlock::const_iterator MII(MI);
++MII;
while (ShadowBytes < NumNOPBytes) {
if (MII == MBB.end() ||
MII->getOpcode() == TargetOpcode::PATCHPOINT ||
MII->getOpcode() == TargetOpcode::STACKMAP)
break;
ShadowBytes += TII->getInstSizeInBytes(*MII);
if (MII->isCall())
break;
++MII;
}
// Emit nops.
while (ShadowBytes < NumNOPBytes)
ShadowBytes += EmitNop(OutContext, *OutStreamer, NumNOPBytes - ShadowBytes,
getSubtargetInfo());
}
// Lower a patchpoint of the form:
// [<def>], <id>, <numBytes>, <target>, <numArgs>
void SystemZAsmPrinter::LowerPATCHPOINT(const MachineInstr &MI,
SystemZMCInstLower &Lower) {
auto &Ctx = OutStreamer->getContext();
MCSymbol *MILabel = Ctx.createTempSymbol();
OutStreamer->emitLabel(MILabel);
SM.recordPatchPoint(*MILabel, MI);
PatchPointOpers Opers(&MI);
unsigned EncodedBytes = 0;
const MachineOperand &CalleeMO = Opers.getCallTarget();
if (CalleeMO.isImm()) {
uint64_t CallTarget = CalleeMO.getImm();
if (CallTarget) {
unsigned ScratchIdx = -1;
unsigned ScratchReg = 0;
do {
ScratchIdx = Opers.getNextScratchIdx(ScratchIdx + 1);
ScratchReg = MI.getOperand(ScratchIdx).getReg();
} while (ScratchReg == SystemZ::R0D);
// Materialize the call target address
EmitToStreamer(*OutStreamer, MCInstBuilder(SystemZ::LLILF)
.addReg(ScratchReg)
.addImm(CallTarget & 0xFFFFFFFF));
EncodedBytes += 6;
if (CallTarget >> 32) {
EmitToStreamer(*OutStreamer, MCInstBuilder(SystemZ::IIHF)
.addReg(ScratchReg)
.addImm(CallTarget >> 32));
EncodedBytes += 6;
}
EmitToStreamer(*OutStreamer, MCInstBuilder(SystemZ::BASR)
.addReg(SystemZ::R14D)
.addReg(ScratchReg));
EncodedBytes += 2;
}
} else if (CalleeMO.isGlobal()) {
const MCExpr *Expr = Lower.getExpr(CalleeMO, SystemZMCExpr::VK_PLT);
EmitToStreamer(*OutStreamer, MCInstBuilder(SystemZ::BRASL)
.addReg(SystemZ::R14D)
.addExpr(Expr));
EncodedBytes += 6;
}
// Emit padding.
unsigned NumBytes = Opers.getNumPatchBytes();
assert(NumBytes >= EncodedBytes &&
"Patchpoint can't request size less than the length of a call.");
assert((NumBytes - EncodedBytes) % 2 == 0 &&
"Invalid number of NOP bytes requested!");
while (EncodedBytes < NumBytes)
EncodedBytes += EmitNop(OutContext, *OutStreamer, NumBytes - EncodedBytes,
getSubtargetInfo());
}
void SystemZAsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(
const MachineInstr &MI, SystemZMCInstLower &Lower) {
// .begin:
// j .end # -> stmg %r2, %r15, 16(%r15)
// nop
// llilf %2, FuncID
// brasl %r14, __xray_FunctionEntry@GOT
// .end:
//
// Update compiler-rt/lib/xray/xray_s390x.cpp accordingly when number
// of instructions change.
bool HasVectorFeature =
TM.getMCSubtargetInfo()->hasFeature(SystemZ::FeatureVector) &&
!TM.getMCSubtargetInfo()->hasFeature(SystemZ::FeatureSoftFloat);
MCSymbol *FuncEntry = OutContext.getOrCreateSymbol(
HasVectorFeature ? "__xray_FunctionEntryVec" : "__xray_FunctionEntry");
MCSymbol *BeginOfSled = OutContext.createTempSymbol("xray_sled_", true);
MCSymbol *EndOfSled = OutContext.createTempSymbol();
OutStreamer->emitLabel(BeginOfSled);
EmitToStreamer(*OutStreamer,
MCInstBuilder(SystemZ::J)
.addExpr(MCSymbolRefExpr::create(EndOfSled, OutContext)));
EmitNop(OutContext, *OutStreamer, 2, getSubtargetInfo());
EmitToStreamer(*OutStreamer,
MCInstBuilder(SystemZ::LLILF).addReg(SystemZ::R2D).addImm(0));
EmitToStreamer(*OutStreamer,
MCInstBuilder(SystemZ::BRASL)
.addReg(SystemZ::R14D)
.addExpr(MCSymbolRefExpr::create(
FuncEntry, SystemZMCExpr::VK_PLT, OutContext)));
OutStreamer->emitLabel(EndOfSled);
recordSled(BeginOfSled, MI, SledKind::FUNCTION_ENTER, 2);
}
void SystemZAsmPrinter::LowerPATCHABLE_RET(const MachineInstr &MI,
SystemZMCInstLower &Lower) {
unsigned OpCode = MI.getOperand(0).getImm();
MCSymbol *FallthroughLabel = nullptr;
if (OpCode == SystemZ::CondReturn) {
FallthroughLabel = OutContext.createTempSymbol();
int64_t Cond0 = MI.getOperand(1).getImm();
int64_t Cond1 = MI.getOperand(2).getImm();
EmitToStreamer(*OutStreamer, MCInstBuilder(SystemZ::BRC)
.addImm(Cond0)
.addImm(Cond1 ^ Cond0)
.addExpr(MCSymbolRefExpr::create(
FallthroughLabel, OutContext)));
}
// .begin:
// br %r14 # -> stmg %r2, %r15, 24(%r15)
// nop
// nop
// llilf %2,FuncID
// j __xray_FunctionExit@GOT
//
// Update compiler-rt/lib/xray/xray_s390x.cpp accordingly when number
// of instructions change.
bool HasVectorFeature =
TM.getMCSubtargetInfo()->hasFeature(SystemZ::FeatureVector) &&
!TM.getMCSubtargetInfo()->hasFeature(SystemZ::FeatureSoftFloat);
MCSymbol *FuncExit = OutContext.getOrCreateSymbol(
HasVectorFeature ? "__xray_FunctionExitVec" : "__xray_FunctionExit");
MCSymbol *BeginOfSled = OutContext.createTempSymbol("xray_sled_", true);
OutStreamer->emitLabel(BeginOfSled);
EmitToStreamer(*OutStreamer,
MCInstBuilder(SystemZ::BR).addReg(SystemZ::R14D));
EmitNop(OutContext, *OutStreamer, 4, getSubtargetInfo());
EmitToStreamer(*OutStreamer,
MCInstBuilder(SystemZ::LLILF).addReg(SystemZ::R2D).addImm(0));
EmitToStreamer(*OutStreamer,
MCInstBuilder(SystemZ::J)
.addExpr(MCSymbolRefExpr::create(
FuncExit, SystemZMCExpr::VK_PLT, OutContext)));
if (FallthroughLabel)
OutStreamer->emitLabel(FallthroughLabel);
recordSled(BeginOfSled, MI, SledKind::FUNCTION_EXIT, 2);
}
// The *alignment* of 128-bit vector types is different between the software
// and hardware vector ABIs. If the there is an externally visible use of a
// vector type in the module it should be annotated with an attribute.
void SystemZAsmPrinter::emitAttributes(Module &M) {
if (M.getModuleFlag("s390x-visible-vector-ABI")) {
bool HasVectorFeature =
TM.getMCSubtargetInfo()->hasFeature(SystemZ::FeatureVector);
OutStreamer->emitGNUAttribute(8, HasVectorFeature ? 2 : 1);
}
}
// Convert a SystemZ-specific constant pool modifier into the associated
// specifier.
static uint8_t getSpecifierFromModifier(SystemZCP::SystemZCPModifier Modifier) {
switch (Modifier) {
case SystemZCP::TLSGD:
return SystemZMCExpr::VK_TLSGD;
case SystemZCP::TLSLDM:
return SystemZMCExpr::VK_TLSLDM;
case SystemZCP::DTPOFF:
return SystemZMCExpr::VK_DTPOFF;
case SystemZCP::NTPOFF:
return SystemZMCExpr::VK_NTPOFF;
}
llvm_unreachable("Invalid SystemCPModifier!");
}
void SystemZAsmPrinter::emitMachineConstantPoolValue(
MachineConstantPoolValue *MCPV) {
auto *ZCPV = static_cast<SystemZConstantPoolValue*>(MCPV);
const MCExpr *Expr = MCSymbolRefExpr::create(
getSymbol(ZCPV->getGlobalValue()),
getSpecifierFromModifier(ZCPV->getModifier()), OutContext);
uint64_t Size = getDataLayout().getTypeAllocSize(ZCPV->getType());
OutStreamer->emitValue(Expr, Size);
}
static void printFormattedRegName(const MCAsmInfo *MAI, unsigned RegNo,
raw_ostream &OS) {
const char *RegName;
if (MAI->getAssemblerDialect() == AD_HLASM) {
RegName = SystemZHLASMInstPrinter::getRegisterName(RegNo);
// Skip register prefix so that only register number is left
assert(isalpha(RegName[0]) && isdigit(RegName[1]));
OS << (RegName + 1);
} else {
RegName = SystemZGNUInstPrinter::getRegisterName(RegNo);
OS << '%' << RegName;
}
}
static void printReg(unsigned Reg, const MCAsmInfo *MAI, raw_ostream &OS) {
if (!Reg)
OS << '0';
else
printFormattedRegName(MAI, Reg, OS);
}
static void printOperand(const MCOperand &MCOp, const MCAsmInfo *MAI,
raw_ostream &OS) {
if (MCOp.isReg())
printReg(MCOp.getReg(), MAI, OS);
else if (MCOp.isImm())
OS << MCOp.getImm();
else if (MCOp.isExpr())
MCOp.getExpr()->print(OS, MAI);
else
llvm_unreachable("Invalid operand");
}
static void printAddress(const MCAsmInfo *MAI, unsigned Base,
const MCOperand &DispMO, unsigned Index,
raw_ostream &OS) {
printOperand(DispMO, MAI, OS);
if (Base || Index) {
OS << '(';
if (Index) {
printFormattedRegName(MAI, Index, OS);
if (Base)
OS << ',';
}
if (Base)
printFormattedRegName(MAI, Base, OS);
OS << ')';
}
}
bool SystemZAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
const char *ExtraCode,
raw_ostream &OS) {
const MCRegisterInfo &MRI = *TM.getMCRegisterInfo();
const MachineOperand &MO = MI->getOperand(OpNo);
MCOperand MCOp;
if (ExtraCode) {
if (ExtraCode[0] == 'N' && !ExtraCode[1] && MO.isReg() &&
SystemZ::GR128BitRegClass.contains(MO.getReg()))
MCOp =
MCOperand::createReg(MRI.getSubReg(MO.getReg(), SystemZ::subreg_l64));
else
return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, OS);
} else {
SystemZMCInstLower Lower(MF->getContext(), *this);
MCOp = Lower.lowerOperand(MO);
}
printOperand(MCOp, MAI, OS);
return false;
}
bool SystemZAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
unsigned OpNo,
const char *ExtraCode,
raw_ostream &OS) {
if (ExtraCode && ExtraCode[0] && !ExtraCode[1]) {
switch (ExtraCode[0]) {
case 'A':
// Unlike EmitMachineNode(), EmitSpecialNode(INLINEASM) does not call
// setMemRefs(), so MI->memoperands() is empty and the alignment
// information is not available.
return false;
case 'O':
OS << MI->getOperand(OpNo + 1).getImm();
return false;
case 'R':
::printReg(MI->getOperand(OpNo).getReg(), MAI, OS);
return false;
}
}
printAddress(MAI, MI->getOperand(OpNo).getReg(),
MCOperand::createImm(MI->getOperand(OpNo + 1).getImm()),
MI->getOperand(OpNo + 2).getReg(), OS);
return false;
}
void SystemZAsmPrinter::emitEndOfAsmFile(Module &M) {
auto TT = OutContext.getTargetTriple();
if (TT.isOSzOS()) {
emitADASection();
emitIDRLSection(M);
}
emitAttributes(M);
}
void SystemZAsmPrinter::emitADASection() {
OutStreamer->pushSection();
const unsigned PointerSize = getDataLayout().getPointerSize();
OutStreamer->switchSection(getObjFileLowering().getADASection());
unsigned EmittedBytes = 0;
for (auto &Entry : ADATable.getTable()) {
const MCSymbol *Sym;
unsigned SlotKind;
std::tie(Sym, SlotKind) = Entry.first;
unsigned Offset = Entry.second;
assert(Offset == EmittedBytes && "Offset not as expected");
(void)EmittedBytes;
#define EMIT_COMMENT(Str) \
OutStreamer->AddComment(Twine("Offset ") \
.concat(utostr(Offset)) \
.concat(" " Str " ") \
.concat(Sym->getName()));
switch (SlotKind) {
case SystemZII::MO_ADA_DIRECT_FUNC_DESC:
// Language Environment DLL logic requires function descriptors, for
// imported functions, that are placed in the ADA to be 8 byte aligned.
EMIT_COMMENT("function descriptor of");
OutStreamer->emitValue(
SystemZMCExpr::create(SystemZMCExpr::VK_SystemZ_RCon,
MCSymbolRefExpr::create(Sym, OutContext),
OutContext),
PointerSize);
OutStreamer->emitValue(
SystemZMCExpr::create(SystemZMCExpr::VK_SystemZ_VCon,
MCSymbolRefExpr::create(Sym, OutContext),
OutContext),
PointerSize);
EmittedBytes += PointerSize * 2;
break;
case SystemZII::MO_ADA_DATA_SYMBOL_ADDR:
EMIT_COMMENT("pointer to data symbol");
OutStreamer->emitValue(
SystemZMCExpr::create(SystemZMCExpr::VK_None,
MCSymbolRefExpr::create(Sym, OutContext),
OutContext),
PointerSize);
EmittedBytes += PointerSize;
break;
case SystemZII::MO_ADA_INDIRECT_FUNC_DESC: {
MCSymbol *Alias = OutContext.createTempSymbol(
Twine(Sym->getName()).concat("@indirect"));
OutStreamer->emitAssignment(Alias,
MCSymbolRefExpr::create(Sym, OutContext));
OutStreamer->emitSymbolAttribute(Alias, MCSA_IndirectSymbol);
EMIT_COMMENT("pointer to function descriptor");
OutStreamer->emitValue(
SystemZMCExpr::create(SystemZMCExpr::VK_SystemZ_VCon,
MCSymbolRefExpr::create(Alias, OutContext),
OutContext),
PointerSize);
EmittedBytes += PointerSize;
break;
}
default:
llvm_unreachable("Unexpected slot kind");
}
#undef EMIT_COMMENT
}
OutStreamer->popSection();
}
static std::string getProductID(Module &M) {
std::string ProductID;
if (auto *MD = M.getModuleFlag("zos_product_id"))
ProductID = cast<MDString>(MD)->getString().str();
if (ProductID.empty())
ProductID = "LLVM";
return ProductID;
}
static uint32_t getProductVersion(Module &M) {
if (auto *VersionVal = mdconst::extract_or_null<ConstantInt>(
M.getModuleFlag("zos_product_major_version")))
return VersionVal->getZExtValue();
return LLVM_VERSION_MAJOR;
}
static uint32_t getProductRelease(Module &M) {
if (auto *ReleaseVal = mdconst::extract_or_null<ConstantInt>(
M.getModuleFlag("zos_product_minor_version")))
return ReleaseVal->getZExtValue();
return LLVM_VERSION_MINOR;
}
static uint32_t getProductPatch(Module &M) {
if (auto *PatchVal = mdconst::extract_or_null<ConstantInt>(
M.getModuleFlag("zos_product_patchlevel")))
return PatchVal->getZExtValue();
return LLVM_VERSION_PATCH;
}
static time_t getTranslationTime(Module &M) {
std::time_t Time = 0;
if (auto *Val = mdconst::extract_or_null<ConstantInt>(
M.getModuleFlag("zos_translation_time"))) {
long SecondsSinceEpoch = Val->getSExtValue();
Time = static_cast<time_t>(SecondsSinceEpoch);
}
return Time;
}
void SystemZAsmPrinter::emitIDRLSection(Module &M) {
OutStreamer->pushSection();
OutStreamer->switchSection(getObjFileLowering().getIDRLSection());
constexpr unsigned IDRLDataLength = 30;
std::time_t Time = getTranslationTime(M);
uint32_t ProductVersion = getProductVersion(M);
uint32_t ProductRelease = getProductRelease(M);
std::string ProductID = getProductID(M);
SmallString<IDRLDataLength + 1> TempStr;
raw_svector_ostream O(TempStr);
O << formatv("{0,-10}{1,0-2:d}{2,0-2:d}{3:%Y%m%d%H%M%S}{4,0-2}",
ProductID.substr(0, 10).c_str(), ProductVersion, ProductRelease,
llvm::sys::toUtcTime(Time), "0");
SmallString<IDRLDataLength> Data;
ConverterEBCDIC::convertToEBCDIC(TempStr, Data);
OutStreamer->emitInt8(0); // Reserved.
OutStreamer->emitInt8(3); // Format.
OutStreamer->emitInt16(IDRLDataLength); // Length.
OutStreamer->emitBytes(Data.str());
OutStreamer->popSection();
}
void SystemZAsmPrinter::emitFunctionBodyEnd() {
if (TM.getTargetTriple().isOSzOS()) {
// Emit symbol for the end of function if the z/OS target streamer
// is used. This is needed to calculate the size of the function.
MCSymbol *FnEndSym = createTempSymbol("func_end");
OutStreamer->emitLabel(FnEndSym);
OutStreamer->pushSection();
OutStreamer->switchSection(getObjFileLowering().getPPA1Section());
emitPPA1(FnEndSym);
OutStreamer->popSection();
CurrentFnPPA1Sym = nullptr;
CurrentFnEPMarkerSym = nullptr;
}
}
static void emitPPA1Flags(std::unique_ptr<MCStreamer> &OutStreamer, bool VarArg,
bool StackProtector, bool FPRMask, bool VRMask,
bool EHBlock, bool HasName) {
enum class PPA1Flag1 : uint8_t {
DSA64Bit = (0x80 >> 0),
VarArg = (0x80 >> 7),
LLVM_MARK_AS_BITMASK_ENUM(DSA64Bit)
};
enum class PPA1Flag2 : uint8_t {
ExternalProcedure = (0x80 >> 0),
STACKPROTECTOR = (0x80 >> 3),
LLVM_MARK_AS_BITMASK_ENUM(ExternalProcedure)
};
enum class PPA1Flag3 : uint8_t {
FPRMask = (0x80 >> 2),
LLVM_MARK_AS_BITMASK_ENUM(FPRMask)
};
enum class PPA1Flag4 : uint8_t {
EPMOffsetPresent = (0x80 >> 0),
VRMask = (0x80 >> 2),
EHBlock = (0x80 >> 3),
ProcedureNamePresent = (0x80 >> 7),
LLVM_MARK_AS_BITMASK_ENUM(EPMOffsetPresent)
};
// Declare optional section flags that can be modified.
auto Flags1 = PPA1Flag1(0);
auto Flags2 = PPA1Flag2::ExternalProcedure;
auto Flags3 = PPA1Flag3(0);
auto Flags4 = PPA1Flag4::EPMOffsetPresent;
Flags1 |= PPA1Flag1::DSA64Bit;
if (VarArg)
Flags1 |= PPA1Flag1::VarArg;
if (StackProtector)
Flags2 |= PPA1Flag2::STACKPROTECTOR;
// SavedGPRMask, SavedFPRMask, and SavedVRMask are precomputed in.
if (FPRMask)
Flags3 |= PPA1Flag3::FPRMask; // Add emit FPR mask flag.
if (VRMask)
Flags4 |= PPA1Flag4::VRMask; // Add emit VR mask flag.
if (EHBlock)
Flags4 |= PPA1Flag4::EHBlock; // Add optional EH block.
if (HasName)
Flags4 |= PPA1Flag4::ProcedureNamePresent; // Add optional name block.
OutStreamer->AddComment("PPA1 Flags 1");
if ((Flags1 & PPA1Flag1::DSA64Bit) == PPA1Flag1::DSA64Bit)
OutStreamer->AddComment(" Bit 0: 1 = 64-bit DSA");
else
OutStreamer->AddComment(" Bit 0: 0 = 32-bit DSA");
if ((Flags1 & PPA1Flag1::VarArg) == PPA1Flag1::VarArg)
OutStreamer->AddComment(" Bit 7: 1 = Vararg function");
OutStreamer->emitInt8(static_cast<uint8_t>(Flags1)); // Flags 1.
OutStreamer->AddComment("PPA1 Flags 2");
if ((Flags2 & PPA1Flag2::ExternalProcedure) == PPA1Flag2::ExternalProcedure)
OutStreamer->AddComment(" Bit 0: 1 = External procedure");
if ((Flags2 & PPA1Flag2::STACKPROTECTOR) == PPA1Flag2::STACKPROTECTOR)
OutStreamer->AddComment(" Bit 3: 1 = STACKPROTECT is enabled");
else
OutStreamer->AddComment(" Bit 3: 0 = STACKPROTECT is not enabled");
OutStreamer->emitInt8(static_cast<uint8_t>(Flags2)); // Flags 2.
OutStreamer->AddComment("PPA1 Flags 3");
if ((Flags3 & PPA1Flag3::FPRMask) == PPA1Flag3::FPRMask)
OutStreamer->AddComment(" Bit 2: 1 = FP Reg Mask is in optional area");
OutStreamer->emitInt8(
static_cast<uint8_t>(Flags3)); // Flags 3 (optional sections).
OutStreamer->AddComment("PPA1 Flags 4");
if ((Flags4 & PPA1Flag4::VRMask) == PPA1Flag4::VRMask)
OutStreamer->AddComment(" Bit 2: 1 = Vector Reg Mask is in optional area");
if ((Flags4 & PPA1Flag4::EHBlock) == PPA1Flag4::EHBlock)
OutStreamer->AddComment(" Bit 3: 1 = C++ EH block");
if ((Flags4 & PPA1Flag4::ProcedureNamePresent) ==
PPA1Flag4::ProcedureNamePresent)
OutStreamer->AddComment(" Bit 7: 1 = Name Length and Name");
OutStreamer->emitInt8(static_cast<uint8_t>(
Flags4)); // Flags 4 (optional sections, always emit these).
}
static void emitPPA1Name(std::unique_ptr<MCStreamer> &OutStreamer,
StringRef OutName) {
size_t NameSize = OutName.size();
uint16_t OutSize;
if (NameSize < UINT16_MAX) {
OutSize = static_cast<uint16_t>(NameSize);
} else {
OutName = OutName.substr(0, UINT16_MAX);
OutSize = UINT16_MAX;
}
// Emit padding to ensure that the next optional field word-aligned.
uint8_t ExtraZeros = 4 - ((2 + OutSize) % 4);
SmallString<512> OutnameConv;
ConverterEBCDIC::convertToEBCDIC(OutName, OutnameConv);
OutName = OutnameConv.str();
OutStreamer->AddComment("Length of Name");
OutStreamer->emitInt16(OutSize);
OutStreamer->AddComment("Name of Function");
OutStreamer->emitBytes(OutName);
OutStreamer->emitZeros(ExtraZeros);
}
void SystemZAsmPrinter::emitPPA1(MCSymbol *FnEndSym) {
assert(PPA2Sym != nullptr && "PPA2 Symbol not defined");
const TargetRegisterInfo *TRI = MF->getRegInfo().getTargetRegisterInfo();
const SystemZSubtarget &Subtarget = MF->getSubtarget<SystemZSubtarget>();
const auto TargetHasVector = Subtarget.hasVector();
const SystemZMachineFunctionInfo *ZFI =
MF->getInfo<SystemZMachineFunctionInfo>();
const auto *ZFL = static_cast<const SystemZXPLINKFrameLowering *>(
Subtarget.getFrameLowering());
const MachineFrameInfo &MFFrame = MF->getFrameInfo();
// Get saved GPR/FPR/VPR masks.
const std::vector<CalleeSavedInfo> &CSI = MFFrame.getCalleeSavedInfo();
uint16_t SavedGPRMask = 0;
uint16_t SavedFPRMask = 0;
uint8_t SavedVRMask = 0;
int64_t OffsetFPR = 0;
int64_t OffsetVR = 0;
const int64_t TopOfStack =
MFFrame.getOffsetAdjustment() + MFFrame.getStackSize();
// Loop over the spilled registers. The CalleeSavedInfo can't be used because
// it does not contain all spilled registers.
for (unsigned I = ZFI->getSpillGPRRegs().LowGPR,
E = ZFI->getSpillGPRRegs().HighGPR;
I && E && I <= E; ++I) {
unsigned V = TRI->getEncodingValue((Register)I);
assert(V < 16 && "GPR index out of range");
SavedGPRMask |= 1 << (15 - V);
}
for (auto &CS : CSI) {
unsigned Reg = CS.getReg();
unsigned I = TRI->getEncodingValue(Reg);
if (SystemZ::FP64BitRegClass.contains(Reg)) {
assert(I < 16 && "FPR index out of range");
SavedFPRMask |= 1 << (15 - I);
int64_t Temp = MFFrame.getObjectOffset(CS.getFrameIdx());
if (Temp < OffsetFPR)
OffsetFPR = Temp;
} else if (SystemZ::VR128BitRegClass.contains(Reg)) {
assert(I >= 16 && I <= 23 && "VPR index out of range");
unsigned BitNum = I - 16;
SavedVRMask |= 1 << (7 - BitNum);
int64_t Temp = MFFrame.getObjectOffset(CS.getFrameIdx());
if (Temp < OffsetVR)
OffsetVR = Temp;
}
}
// Adjust the offset.
OffsetFPR += (OffsetFPR < 0) ? TopOfStack : 0;
OffsetVR += (OffsetVR < 0) ? TopOfStack : 0;
// Get alloca register.
uint8_t FrameReg = TRI->getEncodingValue(TRI->getFrameRegister(*MF));
uint8_t AllocaReg = ZFL->hasFP(*MF) ? FrameReg : 0;
assert(AllocaReg < 16 && "Can't have alloca register larger than 15");
(void)AllocaReg;
// Build FPR save area offset.
uint32_t FrameAndFPROffset = 0;
if (SavedFPRMask) {
uint64_t FPRSaveAreaOffset = OffsetFPR;
assert(FPRSaveAreaOffset < 0x10000000 && "Offset out of range");
FrameAndFPROffset = FPRSaveAreaOffset & 0x0FFFFFFF; // Lose top 4 bits.
FrameAndFPROffset |= FrameReg << 28; // Put into top 4 bits.
}
// Build VR save area offset.
uint32_t FrameAndVROffset = 0;
if (TargetHasVector && SavedVRMask) {
uint64_t VRSaveAreaOffset = OffsetVR;
assert(VRSaveAreaOffset < 0x10000000 && "Offset out of range");
FrameAndVROffset = VRSaveAreaOffset & 0x0FFFFFFF; // Lose top 4 bits.
FrameAndVROffset |= FrameReg << 28; // Put into top 4 bits.
}
// Emit PPA1 section.
OutStreamer->AddComment("PPA1");
OutStreamer->emitLabel(CurrentFnPPA1Sym);
OutStreamer->AddComment("Version");
OutStreamer->emitInt8(0x02); // Version.
OutStreamer->AddComment("LE Signature X'CE'");
OutStreamer->emitInt8(0xCE); // CEL signature.
OutStreamer->AddComment("Saved GPR Mask");
OutStreamer->emitInt16(SavedGPRMask);
OutStreamer->AddComment("Offset to PPA2");
OutStreamer->emitAbsoluteSymbolDiff(PPA2Sym, CurrentFnPPA1Sym, 4);
bool NeedEmitEHBlock = !MF->getLandingPads().empty();
bool HasName =
MF->getFunction().hasName() && MF->getFunction().getName().size() > 0;
emitPPA1Flags(OutStreamer, MF->getFunction().isVarArg(),
MFFrame.hasStackProtectorIndex(), SavedFPRMask != 0,
TargetHasVector && SavedVRMask != 0, NeedEmitEHBlock, HasName);
OutStreamer->AddComment("Length/4 of Parms");
OutStreamer->emitInt16(
static_cast<uint16_t>(ZFI->getSizeOfFnParams() / 4)); // Parms/4.
OutStreamer->AddComment("Length of Code");
OutStreamer->emitAbsoluteSymbolDiff(FnEndSym, CurrentFnEPMarkerSym, 4);
// Emit saved FPR mask and offset to FPR save area (0x20 of flags 3).
if (SavedFPRMask) {
OutStreamer->AddComment("FPR mask");
OutStreamer->emitInt16(SavedFPRMask);
OutStreamer->AddComment("AR mask");
OutStreamer->emitInt16(0); // AR Mask, unused currently.
OutStreamer->AddComment("FPR Save Area Locator");
OutStreamer->AddComment(Twine(" Bit 0-3: Register R")
.concat(utostr(FrameAndFPROffset >> 28))
.str());
OutStreamer->AddComment(Twine(" Bit 4-31: Offset ")
.concat(utostr(FrameAndFPROffset & 0x0FFFFFFF))
.str());
OutStreamer->emitInt32(FrameAndFPROffset); // Offset to FPR save area with
// register to add value to
// (alloca reg).
}
// Emit saved VR mask to VR save area.
if (TargetHasVector && SavedVRMask) {
OutStreamer->AddComment("VR mask");
OutStreamer->emitInt8(SavedVRMask);
OutStreamer->emitInt8(0); // Reserved.
OutStreamer->emitInt16(0); // Also reserved.
OutStreamer->AddComment("VR Save Area Locator");
OutStreamer->AddComment(Twine(" Bit 0-3: Register R")
.concat(utostr(FrameAndVROffset >> 28))
.str());
OutStreamer->AddComment(Twine(" Bit 4-31: Offset ")
.concat(utostr(FrameAndVROffset & 0x0FFFFFFF))
.str());
OutStreamer->emitInt32(FrameAndVROffset);
}
// Emit C++ EH information block
const Function *Per = nullptr;
if (NeedEmitEHBlock) {
Per = dyn_cast<Function>(
MF->getFunction().getPersonalityFn()->stripPointerCasts());
MCSymbol *PersonalityRoutine =
Per ? MF->getTarget().getSymbol(Per) : nullptr;
assert(PersonalityRoutine && "Missing personality routine");
OutStreamer->AddComment("Version");
OutStreamer->emitInt32(1);
OutStreamer->AddComment("Flags");
OutStreamer->emitInt32(0); // LSDA field is a WAS offset
OutStreamer->AddComment("Personality routine");
OutStreamer->emitInt64(ADATable.insert(
PersonalityRoutine, SystemZII::MO_ADA_INDIRECT_FUNC_DESC));
OutStreamer->AddComment("LSDA location");
MCSymbol *GCCEH = MF->getContext().getOrCreateSymbol(
Twine("GCC_except_table") + Twine(MF->getFunctionNumber()));
OutStreamer->emitInt64(
ADATable.insert(GCCEH, SystemZII::MO_ADA_DATA_SYMBOL_ADDR));
}
// Emit name length and name optional section (0x01 of flags 4)
if (HasName)
emitPPA1Name(OutStreamer, MF->getFunction().getName());
// Emit offset to entry point optional section (0x80 of flags 4).
OutStreamer->emitAbsoluteSymbolDiff(CurrentFnEPMarkerSym, CurrentFnPPA1Sym,
4);
}
void SystemZAsmPrinter::emitStartOfAsmFile(Module &M) {
if (TM.getTargetTriple().isOSzOS())
emitPPA2(M);
AsmPrinter::emitStartOfAsmFile(M);
}
void SystemZAsmPrinter::emitPPA2(Module &M) {
OutStreamer->pushSection();
OutStreamer->switchSection(getObjFileLowering().getPPA2Section());
MCContext &OutContext = OutStreamer->getContext();
// Make CELQSTRT symbol.
const char *StartSymbolName = "CELQSTRT";
MCSymbol *CELQSTRT = OutContext.getOrCreateSymbol(StartSymbolName);
// Create symbol and assign to class field for use in PPA1.
PPA2Sym = OutContext.createTempSymbol("PPA2", false);
MCSymbol *DateVersionSym = OutContext.createTempSymbol("DVS", false);
std::time_t Time = getTranslationTime(M);
SmallString<15> CompilationTime; // 14 + null
raw_svector_ostream O(CompilationTime);
O << formatv("{0:%Y%m%d%H%M%S}", llvm::sys::toUtcTime(Time));
uint32_t ProductVersion = getProductVersion(M),
ProductRelease = getProductRelease(M),
ProductPatch = getProductPatch(M);
SmallString<7> Version; // 6 + null
raw_svector_ostream ostr(Version);
ostr << formatv("{0,0-2:d}{1,0-2:d}{2,0-2:d}", ProductVersion, ProductRelease,
ProductPatch);
// Drop 0 during conversion.
SmallString<sizeof(CompilationTime) - 1> CompilationTimeStr;
SmallString<sizeof(Version) - 1> VersionStr;
ConverterEBCDIC::convertToEBCDIC(CompilationTime, CompilationTimeStr);
ConverterEBCDIC::convertToEBCDIC(Version, VersionStr);
enum class PPA2MemberId : uint8_t {
// See z/OS Language Environment Vendor Interfaces v2r5, p.23, for
// complete list. Only the C runtime is supported by this backend.
LE_C_Runtime = 3,
};
enum class PPA2MemberSubId : uint8_t {
// List of languages using the LE C runtime implementation.
C = 0x00,
CXX = 0x01,
Swift = 0x03,
Go = 0x60,
LLVMBasedLang = 0xe7,
};
// PPA2 Flags
enum class PPA2Flags : uint8_t {
CompileForBinaryFloatingPoint = 0x80,
CompiledWithXPLink = 0x01,
CompiledUnitASCII = 0x04,
HasServiceInfo = 0x20,
};
PPA2MemberSubId MemberSubId = PPA2MemberSubId::LLVMBasedLang;
if (auto *MD = M.getModuleFlag("zos_cu_language")) {
StringRef Language = cast<MDString>(MD)->getString();
MemberSubId = StringSwitch<PPA2MemberSubId>(Language)
.Case("C", PPA2MemberSubId::C)
.Case("C++", PPA2MemberSubId::CXX)
.Case("Swift", PPA2MemberSubId::Swift)
.Case("Go", PPA2MemberSubId::Go)
.Default(PPA2MemberSubId::LLVMBasedLang);
}
// Emit PPA2 section.
OutStreamer->emitLabel(PPA2Sym);
OutStreamer->emitInt8(static_cast<uint8_t>(PPA2MemberId::LE_C_Runtime));
OutStreamer->emitInt8(static_cast<uint8_t>(MemberSubId));
OutStreamer->emitInt8(0x22); // Member defined, c370_plist+c370_env
OutStreamer->emitInt8(0x04); // Control level 4 (XPLink)
OutStreamer->emitAbsoluteSymbolDiff(CELQSTRT, PPA2Sym, 4);
OutStreamer->emitInt32(0x00000000);
OutStreamer->emitAbsoluteSymbolDiff(DateVersionSym, PPA2Sym, 4);
OutStreamer->emitInt32(
0x00000000); // Offset to main entry point, always 0 (so says TR).
uint8_t Flgs = static_cast<uint8_t>(PPA2Flags::CompileForBinaryFloatingPoint);
Flgs |= static_cast<uint8_t>(PPA2Flags::CompiledWithXPLink);
if (auto *MD = M.getModuleFlag("zos_le_char_mode")) {
const StringRef &CharMode = cast<MDString>(MD)->getString();
if (CharMode == "ascii") {
Flgs |= static_cast<uint8_t>(
PPA2Flags::CompiledUnitASCII); // Setting bit for ASCII char. mode.
} else if (CharMode != "ebcdic") {
report_fatal_error(
"Only ascii or ebcdic are valid values for zos_le_char_mode "
"metadata");
}
}
OutStreamer->emitInt8(Flgs);
OutStreamer->emitInt8(0x00); // Reserved.
// No MD5 signature before timestamp.
// No FLOAT(AFP(VOLATILE)).
// Remaining 5 flag bits reserved.
OutStreamer->emitInt16(0x0000); // 16 Reserved flag bits.
// Emit date and version section.
OutStreamer->emitLabel(DateVersionSym);
OutStreamer->emitBytes(CompilationTimeStr.str());
OutStreamer->emitBytes(VersionStr.str());
OutStreamer->emitInt16(0x0000); // Service level string length.
// The binder requires that the offset to the PPA2 be emitted in a different,
// specially-named section.
OutStreamer->switchSection(getObjFileLowering().getPPA2ListSection());
// Emit 8 byte alignment.
// Emit pointer to PPA2 label.
OutStreamer->AddComment("A(PPA2-CELQSTRT)");
OutStreamer->emitAbsoluteSymbolDiff(PPA2Sym, CELQSTRT, 8);
OutStreamer->popSection();
}
void SystemZAsmPrinter::emitFunctionEntryLabel() {
const SystemZSubtarget &Subtarget = MF->getSubtarget<SystemZSubtarget>();
if (Subtarget.getTargetTriple().isOSzOS()) {
MCContext &OutContext = OutStreamer->getContext();
// Save information for later use.
std::string N(MF->getFunction().hasName()
? Twine(MF->getFunction().getName()).concat("_").str()
: "");
CurrentFnEPMarkerSym =
OutContext.createTempSymbol(Twine("EPM_").concat(N).str(), true);
CurrentFnPPA1Sym =
OutContext.createTempSymbol(Twine("PPA1_").concat(N).str(), true);
// EntryPoint Marker
const MachineFrameInfo &MFFrame = MF->getFrameInfo();
bool IsUsingAlloca = MFFrame.hasVarSizedObjects();
uint32_t DSASize = MFFrame.getStackSize();
bool IsLeaf = DSASize == 0 && MFFrame.getCalleeSavedInfo().empty();
// Set Flags.
uint8_t Flags = 0;
if (IsLeaf)
Flags |= 0x08;
if (IsUsingAlloca)
Flags |= 0x04;
// Combine into top 27 bits of DSASize and bottom 5 bits of Flags.
uint32_t DSAAndFlags = DSASize & 0xFFFFFFE0; // (x/32) << 5
DSAAndFlags |= Flags;
// Emit entry point marker section.
OutStreamer->AddComment("XPLINK Routine Layout Entry");
OutStreamer->emitLabel(CurrentFnEPMarkerSym);
OutStreamer->AddComment("Eyecatcher 0x00C300C500C500");
OutStreamer->emitIntValueInHex(0x00C300C500C500, 7); // Eyecatcher.
OutStreamer->AddComment("Mark Type C'1'");
OutStreamer->emitInt8(0xF1); // Mark Type.
OutStreamer->AddComment("Offset to PPA1");
OutStreamer->emitAbsoluteSymbolDiff(CurrentFnPPA1Sym, CurrentFnEPMarkerSym,
4);
if (OutStreamer->isVerboseAsm()) {
OutStreamer->AddComment("DSA Size 0x" + Twine::utohexstr(DSASize));
OutStreamer->AddComment("Entry Flags");
if (Flags & 0x08)
OutStreamer->AddComment(" Bit 1: 1 = Leaf function");
else
OutStreamer->AddComment(" Bit 1: 0 = Non-leaf function");
if (Flags & 0x04)
OutStreamer->AddComment(" Bit 2: 1 = Uses alloca");
else
OutStreamer->AddComment(" Bit 2: 0 = Does not use alloca");
}
OutStreamer->emitInt32(DSAAndFlags);
}
AsmPrinter::emitFunctionEntryLabel();
}
// Force static initialization.
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZAsmPrinter() {
RegisterAsmPrinter<SystemZAsmPrinter> X(getTheSystemZTarget());
}