blob: 61b50b69b4e86474f7aea4355344b099a26af9c2 [file] [log] [blame]
//===- NVPTXUtilities.cpp - Utility Functions -----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains miscellaneous utility functions
//
//===----------------------------------------------------------------------===//
#include "NVPTXUtilities.h"
#include "NVPTX.h"
#include "NVPTXTargetMachine.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/ModRef.h"
#include "llvm/Support/Mutex.h"
#include <cstdint>
#include <cstring>
#include <map>
#include <mutex>
#include <optional>
#include <string>
#include <vector>
namespace llvm {
namespace {
typedef std::map<std::string, std::vector<unsigned>> key_val_pair_t;
typedef std::map<const GlobalValue *, key_val_pair_t> global_val_annot_t;
struct AnnotationCache {
sys::Mutex Lock;
std::map<const Module *, global_val_annot_t> Cache;
};
AnnotationCache &getAnnotationCache() {
static AnnotationCache AC;
return AC;
}
} // anonymous namespace
void clearAnnotationCache(const Module *Mod) {
auto &AC = getAnnotationCache();
std::lock_guard<sys::Mutex> Guard(AC.Lock);
AC.Cache.erase(Mod);
}
static void readIntVecFromMDNode(const MDNode *MetadataNode,
std::vector<unsigned> &Vec) {
for (unsigned i = 0, e = MetadataNode->getNumOperands(); i != e; ++i) {
ConstantInt *Val =
mdconst::extract<ConstantInt>(MetadataNode->getOperand(i));
Vec.push_back(Val->getZExtValue());
}
}
static void cacheAnnotationFromMD(const MDNode *MetadataNode,
key_val_pair_t &retval) {
auto &AC = getAnnotationCache();
std::lock_guard<sys::Mutex> Guard(AC.Lock);
assert(MetadataNode && "Invalid mdnode for annotation");
assert((MetadataNode->getNumOperands() % 2) == 1 &&
"Invalid number of operands");
// start index = 1, to skip the global variable key
// increment = 2, to skip the value for each property-value pairs
for (unsigned i = 1, e = MetadataNode->getNumOperands(); i != e; i += 2) {
// property
const MDString *prop = dyn_cast<MDString>(MetadataNode->getOperand(i));
assert(prop && "Annotation property not a string");
std::string Key = prop->getString().str();
// value
if (ConstantInt *Val = mdconst::dyn_extract<ConstantInt>(
MetadataNode->getOperand(i + 1))) {
retval[Key].push_back(Val->getZExtValue());
} else if (MDNode *VecMd =
dyn_cast<MDNode>(MetadataNode->getOperand(i + 1))) {
// note: only "grid_constant" annotations support vector MDNodes.
// assert: there can only exist one unique key value pair of
// the form (string key, MDNode node). Operands of such a node
// shall always be unsigned ints.
auto [It, Inserted] = retval.try_emplace(Key);
if (Inserted) {
readIntVecFromMDNode(VecMd, It->second);
continue;
}
} else {
llvm_unreachable("Value operand not a constant int or an mdnode");
}
}
}
static void cacheAnnotationFromMD(const Module *m, const GlobalValue *gv) {
auto &AC = getAnnotationCache();
std::lock_guard<sys::Mutex> Guard(AC.Lock);
NamedMDNode *NMD = m->getNamedMetadata("nvvm.annotations");
if (!NMD)
return;
key_val_pair_t tmp;
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
const MDNode *elem = NMD->getOperand(i);
GlobalValue *entity =
mdconst::dyn_extract_or_null<GlobalValue>(elem->getOperand(0));
// entity may be null due to DCE
if (!entity)
continue;
if (entity != gv)
continue;
// accumulate annotations for entity in tmp
cacheAnnotationFromMD(elem, tmp);
}
if (tmp.empty()) // no annotations for this gv
return;
AC.Cache[m][gv] = std::move(tmp);
}
static std::optional<unsigned> findOneNVVMAnnotation(const GlobalValue *gv,
const std::string &prop) {
auto &AC = getAnnotationCache();
std::lock_guard<sys::Mutex> Guard(AC.Lock);
const Module *m = gv->getParent();
auto ACIt = AC.Cache.find(m);
if (ACIt == AC.Cache.end())
cacheAnnotationFromMD(m, gv);
else if (ACIt->second.find(gv) == ACIt->second.end())
cacheAnnotationFromMD(m, gv);
// Look up AC.Cache[m][gv] again because cacheAnnotationFromMD may have
// inserted the entry.
auto &KVP = AC.Cache[m][gv];
auto It = KVP.find(prop);
if (It == KVP.end())
return std::nullopt;
return It->second[0];
}
static bool findAllNVVMAnnotation(const GlobalValue *gv,
const std::string &prop,
std::vector<unsigned> &retval) {
auto &AC = getAnnotationCache();
std::lock_guard<sys::Mutex> Guard(AC.Lock);
const Module *m = gv->getParent();
auto ACIt = AC.Cache.find(m);
if (ACIt == AC.Cache.end())
cacheAnnotationFromMD(m, gv);
else if (ACIt->second.find(gv) == ACIt->second.end())
cacheAnnotationFromMD(m, gv);
// Look up AC.Cache[m][gv] again because cacheAnnotationFromMD may have
// inserted the entry.
auto &KVP = AC.Cache[m][gv];
auto It = KVP.find(prop);
if (It == KVP.end())
return false;
retval = It->second;
return true;
}
static bool globalHasNVVMAnnotation(const Value &V, const std::string &Prop) {
if (const auto *GV = dyn_cast<GlobalValue>(&V))
if (const auto Annot = findOneNVVMAnnotation(GV, Prop)) {
assert((*Annot == 1) && "Unexpected annotation on a symbol");
return true;
}
return false;
}
static bool argHasNVVMAnnotation(const Value &Val,
const std::string &Annotation,
const bool StartArgIndexAtOne = false) {
if (const Argument *Arg = dyn_cast<Argument>(&Val)) {
const Function *Func = Arg->getParent();
std::vector<unsigned> Annot;
if (findAllNVVMAnnotation(Func, Annotation, Annot)) {
const unsigned BaseOffset = StartArgIndexAtOne ? 1 : 0;
if (is_contained(Annot, BaseOffset + Arg->getArgNo())) {
return true;
}
}
}
return false;
}
static std::optional<unsigned> getFnAttrParsedInt(const Function &F,
StringRef Attr) {
return F.hasFnAttribute(Attr)
? std::optional(F.getFnAttributeAsParsedInteger(Attr))
: std::nullopt;
}
static SmallVector<unsigned, 3> getFnAttrParsedVector(const Function &F,
StringRef Attr) {
SmallVector<unsigned, 3> V;
auto &Ctx = F.getContext();
if (F.hasFnAttribute(Attr)) {
// We expect the attribute value to be of the form "x[,y[,z]]", where x, y,
// and z are unsigned values.
StringRef S = F.getFnAttribute(Attr).getValueAsString();
for (unsigned I = 0; I < 3 && !S.empty(); I++) {
auto [First, Rest] = S.split(",");
unsigned IntVal;
if (First.trim().getAsInteger(0, IntVal))
Ctx.emitError("can't parse integer attribute " + First + " in " + Attr);
V.push_back(IntVal);
S = Rest;
}
}
return V;
}
static std::optional<uint64_t> getVectorProduct(ArrayRef<unsigned> V) {
if (V.empty())
return std::nullopt;
return std::accumulate(V.begin(), V.end(), 1, std::multiplies<uint64_t>{});
}
bool isParamGridConstant(const Argument &Arg) {
assert(isKernelFunction(*Arg.getParent()) &&
"only kernel arguments can be grid_constant");
if (!Arg.hasByValAttr())
return false;
// Lowering an argument as a grid_constant violates the byval semantics (and
// the C++ API) by reusing the same memory location for the argument across
// multiple threads. If an argument doesn't read memory and its address is not
// captured (its address is not compared with any value), then the tweak of
// the C++ API and byval semantics is unobservable by the program and we can
// lower the arg as a grid_constant.
if (Arg.onlyReadsMemory()) {
const auto CI = Arg.getAttributes().getCaptureInfo();
if (!capturesAddress(CI) && !capturesFullProvenance(CI))
return true;
}
// "grid_constant" counts argument indices starting from 1
if (argHasNVVMAnnotation(Arg, "grid_constant",
/*StartArgIndexAtOne*/ true))
return true;
return false;
}
bool isTexture(const Value &V) { return globalHasNVVMAnnotation(V, "texture"); }
bool isSurface(const Value &V) { return globalHasNVVMAnnotation(V, "surface"); }
bool isSampler(const Value &V) {
const char *AnnotationName = "sampler";
return globalHasNVVMAnnotation(V, AnnotationName) ||
argHasNVVMAnnotation(V, AnnotationName);
}
bool isImageReadOnly(const Value &V) {
return argHasNVVMAnnotation(V, "rdoimage");
}
bool isImageWriteOnly(const Value &V) {
return argHasNVVMAnnotation(V, "wroimage");
}
bool isImageReadWrite(const Value &V) {
return argHasNVVMAnnotation(V, "rdwrimage");
}
bool isImage(const Value &V) {
return isImageReadOnly(V) || isImageWriteOnly(V) || isImageReadWrite(V);
}
bool isManaged(const Value &V) { return globalHasNVVMAnnotation(V, "managed"); }
StringRef getTextureName(const Value &V) {
assert(V.hasName() && "Found texture variable with no name");
return V.getName();
}
StringRef getSurfaceName(const Value &V) {
assert(V.hasName() && "Found surface variable with no name");
return V.getName();
}
StringRef getSamplerName(const Value &V) {
assert(V.hasName() && "Found sampler variable with no name");
return V.getName();
}
SmallVector<unsigned, 3> getMaxNTID(const Function &F) {
return getFnAttrParsedVector(F, "nvvm.maxntid");
}
SmallVector<unsigned, 3> getReqNTID(const Function &F) {
return getFnAttrParsedVector(F, "nvvm.reqntid");
}
SmallVector<unsigned, 3> getClusterDim(const Function &F) {
return getFnAttrParsedVector(F, "nvvm.cluster_dim");
}
std::optional<uint64_t> getOverallMaxNTID(const Function &F) {
// Note: The semantics here are a bit strange. The PTX ISA states the
// following (11.4.2. Performance-Tuning Directives: .maxntid):
//
// Note that this directive guarantees that the total number of threads does
// not exceed the maximum, but does not guarantee that the limit in any
// particular dimension is not exceeded.
const auto MaxNTID = getMaxNTID(F);
return getVectorProduct(MaxNTID);
}
std::optional<uint64_t> getOverallReqNTID(const Function &F) {
// Note: The semantics here are a bit strange. See getMaxNTID.
const auto ReqNTID = getReqNTID(F);
return getVectorProduct(ReqNTID);
}
std::optional<unsigned> getMaxClusterRank(const Function &F) {
return getFnAttrParsedInt(F, "nvvm.maxclusterrank");
}
std::optional<unsigned> getMinCTASm(const Function &F) {
return getFnAttrParsedInt(F, "nvvm.minctasm");
}
std::optional<unsigned> getMaxNReg(const Function &F) {
return getFnAttrParsedInt(F, "nvvm.maxnreg");
}
MaybeAlign getAlign(const CallInst &I, unsigned Index) {
// First check the alignstack metadata
if (MaybeAlign StackAlign =
I.getAttributes().getAttributes(Index).getStackAlignment())
return StackAlign;
// If that is missing, check the legacy nvvm metadata
if (MDNode *alignNode = I.getMetadata("callalign")) {
for (int i = 0, n = alignNode->getNumOperands(); i < n; i++) {
if (const ConstantInt *CI =
mdconst::dyn_extract<ConstantInt>(alignNode->getOperand(i))) {
unsigned V = CI->getZExtValue();
if ((V >> 16) == Index)
return Align(V & 0xFFFF);
if ((V >> 16) > Index)
return std::nullopt;
}
}
}
return std::nullopt;
}
Function *getMaybeBitcastedCallee(const CallBase *CB) {
return dyn_cast<Function>(CB->getCalledOperand()->stripPointerCasts());
}
bool shouldEmitPTXNoReturn(const Value *V, const TargetMachine &TM) {
const auto &ST =
*static_cast<const NVPTXTargetMachine &>(TM).getSubtargetImpl();
if (!ST.hasNoReturn())
return false;
assert((isa<Function>(V) || isa<CallInst>(V)) &&
"Expect either a call instruction or a function");
if (const CallInst *CallI = dyn_cast<CallInst>(V))
return CallI->doesNotReturn() &&
CallI->getFunctionType()->getReturnType()->isVoidTy();
const Function *F = cast<Function>(V);
return F->doesNotReturn() &&
F->getFunctionType()->getReturnType()->isVoidTy() &&
!isKernelFunction(*F);
}
} // namespace llvm