blob: 9a609a1752de0638433475b25e9fe8da21f6f9c5 [file] [log] [blame]
//===- AMDGPUResourceUsageAnalysis.h ---- analysis of resources -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief Analyzes how many registers and other resources are used by
/// functions.
///
/// The results of this analysis are used to fill the register usage, flat
/// usage, etc. into hardware registers.
///
//===----------------------------------------------------------------------===//
#include "AMDGPUResourceUsageAnalysis.h"
#include "AMDGPU.h"
#include "GCNSubtarget.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
using namespace llvm::AMDGPU;
#define DEBUG_TYPE "amdgpu-resource-usage"
char llvm::AMDGPUResourceUsageAnalysis::ID = 0;
char &llvm::AMDGPUResourceUsageAnalysisID = AMDGPUResourceUsageAnalysis::ID;
// In code object v4 and older, we need to tell the runtime some amount ahead of
// time if we don't know the true stack size. Assume a smaller number if this is
// only due to dynamic / non-entry block allocas.
static cl::opt<uint32_t> clAssumedStackSizeForExternalCall(
"amdgpu-assume-external-call-stack-size",
cl::desc("Assumed stack use of any external call (in bytes)"), cl::Hidden,
cl::init(16384));
static cl::opt<uint32_t> clAssumedStackSizeForDynamicSizeObjects(
"amdgpu-assume-dynamic-stack-object-size",
cl::desc("Assumed extra stack use if there are any "
"variable sized objects (in bytes)"),
cl::Hidden, cl::init(4096));
INITIALIZE_PASS(AMDGPUResourceUsageAnalysis, DEBUG_TYPE,
"Function register usage analysis", true, true)
static const Function *getCalleeFunction(const MachineOperand &Op) {
if (Op.isImm()) {
assert(Op.getImm() == 0);
return nullptr;
}
return cast<Function>(Op.getGlobal()->stripPointerCastsAndAliases());
}
static bool hasAnyNonFlatUseOfReg(const MachineRegisterInfo &MRI,
const SIInstrInfo &TII, unsigned Reg) {
for (const MachineOperand &UseOp : MRI.reg_operands(Reg)) {
if (!UseOp.isImplicit() || !TII.isFLAT(*UseOp.getParent()))
return true;
}
return false;
}
bool AMDGPUResourceUsageAnalysis::runOnMachineFunction(MachineFunction &MF) {
auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
if (!TPC)
return false;
const TargetMachine &TM = TPC->getTM<TargetMachine>();
const MCSubtargetInfo &STI = *TM.getMCSubtargetInfo();
// By default, for code object v5 and later, track only the minimum scratch
// size
uint32_t AssumedStackSizeForDynamicSizeObjects =
clAssumedStackSizeForDynamicSizeObjects;
uint32_t AssumedStackSizeForExternalCall = clAssumedStackSizeForExternalCall;
if (AMDGPU::getAMDHSACodeObjectVersion(*MF.getFunction().getParent()) >=
AMDGPU::AMDHSA_COV5 ||
STI.getTargetTriple().getOS() == Triple::AMDPAL) {
if (!clAssumedStackSizeForDynamicSizeObjects.getNumOccurrences())
AssumedStackSizeForDynamicSizeObjects = 0;
if (!clAssumedStackSizeForExternalCall.getNumOccurrences())
AssumedStackSizeForExternalCall = 0;
}
ResourceInfo = analyzeResourceUsage(MF, AssumedStackSizeForDynamicSizeObjects,
AssumedStackSizeForExternalCall);
return false;
}
AMDGPUResourceUsageAnalysis::SIFunctionResourceInfo
AMDGPUResourceUsageAnalysis::analyzeResourceUsage(
const MachineFunction &MF, uint32_t AssumedStackSizeForDynamicSizeObjects,
uint32_t AssumedStackSizeForExternalCall) const {
SIFunctionResourceInfo Info;
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
const MachineRegisterInfo &MRI = MF.getRegInfo();
const SIInstrInfo *TII = ST.getInstrInfo();
const SIRegisterInfo &TRI = TII->getRegisterInfo();
Info.UsesFlatScratch = MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_LO) ||
MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_HI) ||
MRI.isLiveIn(MFI->getPreloadedReg(
AMDGPUFunctionArgInfo::FLAT_SCRATCH_INIT));
// Even if FLAT_SCRATCH is implicitly used, it has no effect if flat
// instructions aren't used to access the scratch buffer. Inline assembly may
// need it though.
//
// If we only have implicit uses of flat_scr on flat instructions, it is not
// really needed.
if (Info.UsesFlatScratch && !MFI->getUserSGPRInfo().hasFlatScratchInit() &&
(!hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR) &&
!hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_LO) &&
!hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_HI))) {
Info.UsesFlatScratch = false;
}
Info.PrivateSegmentSize = FrameInfo.getStackSize();
// Assume a big number if there are any unknown sized objects.
Info.HasDynamicallySizedStack = FrameInfo.hasVarSizedObjects();
if (Info.HasDynamicallySizedStack)
Info.PrivateSegmentSize += AssumedStackSizeForDynamicSizeObjects;
if (MFI->isStackRealigned())
Info.PrivateSegmentSize += FrameInfo.getMaxAlign().value();
Info.UsesVCC =
MRI.isPhysRegUsed(AMDGPU::VCC_LO) || MRI.isPhysRegUsed(AMDGPU::VCC_HI);
// If there are no calls, MachineRegisterInfo can tell us the used register
// count easily.
// A tail call isn't considered a call for MachineFrameInfo's purposes.
if (!FrameInfo.hasCalls() && !FrameInfo.hasTailCall()) {
Info.NumVGPR = TRI.getNumUsedPhysRegs(MRI, AMDGPU::VGPR_32RegClass);
Info.NumExplicitSGPR = TRI.getNumUsedPhysRegs(MRI, AMDGPU::SGPR_32RegClass);
if (ST.hasMAIInsts())
Info.NumAGPR = TRI.getNumUsedPhysRegs(MRI, AMDGPU::AGPR_32RegClass);
return Info;
}
int32_t MaxVGPR = -1;
int32_t MaxAGPR = -1;
int32_t MaxSGPR = -1;
Info.CalleeSegmentSize = 0;
for (const MachineBasicBlock &MBB : MF) {
for (const MachineInstr &MI : MBB) {
// TODO: Check regmasks? Do they occur anywhere except calls?
for (const MachineOperand &MO : MI.operands()) {
unsigned Width = 0;
bool IsSGPR = false;
bool IsAGPR = false;
if (!MO.isReg())
continue;
Register Reg = MO.getReg();
switch (Reg) {
case AMDGPU::EXEC:
case AMDGPU::EXEC_LO:
case AMDGPU::EXEC_HI:
case AMDGPU::SCC:
case AMDGPU::M0:
case AMDGPU::M0_LO16:
case AMDGPU::M0_HI16:
case AMDGPU::SRC_SHARED_BASE_LO:
case AMDGPU::SRC_SHARED_BASE:
case AMDGPU::SRC_SHARED_LIMIT_LO:
case AMDGPU::SRC_SHARED_LIMIT:
case AMDGPU::SRC_PRIVATE_BASE_LO:
case AMDGPU::SRC_PRIVATE_BASE:
case AMDGPU::SRC_PRIVATE_LIMIT_LO:
case AMDGPU::SRC_PRIVATE_LIMIT:
case AMDGPU::SRC_POPS_EXITING_WAVE_ID:
case AMDGPU::SGPR_NULL:
case AMDGPU::SGPR_NULL64:
case AMDGPU::MODE:
continue;
case AMDGPU::NoRegister:
assert(MI.isDebugInstr() &&
"Instruction uses invalid noreg register");
continue;
case AMDGPU::VCC:
case AMDGPU::VCC_LO:
case AMDGPU::VCC_HI:
case AMDGPU::VCC_LO_LO16:
case AMDGPU::VCC_LO_HI16:
case AMDGPU::VCC_HI_LO16:
case AMDGPU::VCC_HI_HI16:
Info.UsesVCC = true;
continue;
case AMDGPU::FLAT_SCR:
case AMDGPU::FLAT_SCR_LO:
case AMDGPU::FLAT_SCR_HI:
continue;
case AMDGPU::XNACK_MASK:
case AMDGPU::XNACK_MASK_LO:
case AMDGPU::XNACK_MASK_HI:
llvm_unreachable("xnack_mask registers should not be used");
case AMDGPU::LDS_DIRECT:
llvm_unreachable("lds_direct register should not be used");
case AMDGPU::TBA:
case AMDGPU::TBA_LO:
case AMDGPU::TBA_HI:
case AMDGPU::TMA:
case AMDGPU::TMA_LO:
case AMDGPU::TMA_HI:
llvm_unreachable("trap handler registers should not be used");
case AMDGPU::SRC_VCCZ:
llvm_unreachable("src_vccz register should not be used");
case AMDGPU::SRC_EXECZ:
llvm_unreachable("src_execz register should not be used");
case AMDGPU::SRC_SCC:
llvm_unreachable("src_scc register should not be used");
default:
break;
}
if (AMDGPU::SGPR_32RegClass.contains(Reg) ||
AMDGPU::SGPR_LO16RegClass.contains(Reg) ||
AMDGPU::SGPR_HI16RegClass.contains(Reg)) {
IsSGPR = true;
Width = 1;
} else if (AMDGPU::VGPR_32RegClass.contains(Reg) ||
AMDGPU::VGPR_16RegClass.contains(Reg)) {
IsSGPR = false;
Width = 1;
} else if (AMDGPU::AGPR_32RegClass.contains(Reg) ||
AMDGPU::AGPR_LO16RegClass.contains(Reg)) {
IsSGPR = false;
IsAGPR = true;
Width = 1;
} else if (AMDGPU::SGPR_64RegClass.contains(Reg)) {
IsSGPR = true;
Width = 2;
} else if (AMDGPU::VReg_64RegClass.contains(Reg)) {
IsSGPR = false;
Width = 2;
} else if (AMDGPU::AReg_64RegClass.contains(Reg)) {
IsSGPR = false;
IsAGPR = true;
Width = 2;
} else if (AMDGPU::VReg_96RegClass.contains(Reg)) {
IsSGPR = false;
Width = 3;
} else if (AMDGPU::SReg_96RegClass.contains(Reg)) {
IsSGPR = true;
Width = 3;
} else if (AMDGPU::AReg_96RegClass.contains(Reg)) {
IsSGPR = false;
IsAGPR = true;
Width = 3;
} else if (AMDGPU::SGPR_128RegClass.contains(Reg)) {
IsSGPR = true;
Width = 4;
} else if (AMDGPU::VReg_128RegClass.contains(Reg)) {
IsSGPR = false;
Width = 4;
} else if (AMDGPU::AReg_128RegClass.contains(Reg)) {
IsSGPR = false;
IsAGPR = true;
Width = 4;
} else if (AMDGPU::VReg_160RegClass.contains(Reg)) {
IsSGPR = false;
Width = 5;
} else if (AMDGPU::SReg_160RegClass.contains(Reg)) {
IsSGPR = true;
Width = 5;
} else if (AMDGPU::AReg_160RegClass.contains(Reg)) {
IsSGPR = false;
IsAGPR = true;
Width = 5;
} else if (AMDGPU::VReg_192RegClass.contains(Reg)) {
IsSGPR = false;
Width = 6;
} else if (AMDGPU::SReg_192RegClass.contains(Reg)) {
IsSGPR = true;
Width = 6;
} else if (AMDGPU::AReg_192RegClass.contains(Reg)) {
IsSGPR = false;
IsAGPR = true;
Width = 6;
} else if (AMDGPU::VReg_224RegClass.contains(Reg)) {
IsSGPR = false;
Width = 7;
} else if (AMDGPU::SReg_224RegClass.contains(Reg)) {
IsSGPR = true;
Width = 7;
} else if (AMDGPU::AReg_224RegClass.contains(Reg)) {
IsSGPR = false;
IsAGPR = true;
Width = 7;
} else if (AMDGPU::SReg_256RegClass.contains(Reg)) {
IsSGPR = true;
Width = 8;
} else if (AMDGPU::VReg_256RegClass.contains(Reg)) {
IsSGPR = false;
Width = 8;
} else if (AMDGPU::AReg_256RegClass.contains(Reg)) {
IsSGPR = false;
IsAGPR = true;
Width = 8;
} else if (AMDGPU::VReg_288RegClass.contains(Reg)) {
IsSGPR = false;
Width = 9;
} else if (AMDGPU::SReg_288RegClass.contains(Reg)) {
IsSGPR = true;
Width = 9;
} else if (AMDGPU::AReg_288RegClass.contains(Reg)) {
IsSGPR = false;
IsAGPR = true;
Width = 9;
} else if (AMDGPU::VReg_320RegClass.contains(Reg)) {
IsSGPR = false;
Width = 10;
} else if (AMDGPU::SReg_320RegClass.contains(Reg)) {
IsSGPR = true;
Width = 10;
} else if (AMDGPU::AReg_320RegClass.contains(Reg)) {
IsSGPR = false;
IsAGPR = true;
Width = 10;
} else if (AMDGPU::VReg_352RegClass.contains(Reg)) {
IsSGPR = false;
Width = 11;
} else if (AMDGPU::SReg_352RegClass.contains(Reg)) {
IsSGPR = true;
Width = 11;
} else if (AMDGPU::AReg_352RegClass.contains(Reg)) {
IsSGPR = false;
IsAGPR = true;
Width = 11;
} else if (AMDGPU::VReg_384RegClass.contains(Reg)) {
IsSGPR = false;
Width = 12;
} else if (AMDGPU::SReg_384RegClass.contains(Reg)) {
IsSGPR = true;
Width = 12;
} else if (AMDGPU::AReg_384RegClass.contains(Reg)) {
IsSGPR = false;
IsAGPR = true;
Width = 12;
} else if (AMDGPU::SReg_512RegClass.contains(Reg)) {
IsSGPR = true;
Width = 16;
} else if (AMDGPU::VReg_512RegClass.contains(Reg)) {
IsSGPR = false;
Width = 16;
} else if (AMDGPU::AReg_512RegClass.contains(Reg)) {
IsSGPR = false;
IsAGPR = true;
Width = 16;
} else if (AMDGPU::SReg_1024RegClass.contains(Reg)) {
IsSGPR = true;
Width = 32;
} else if (AMDGPU::VReg_1024RegClass.contains(Reg)) {
IsSGPR = false;
Width = 32;
} else if (AMDGPU::AReg_1024RegClass.contains(Reg)) {
IsSGPR = false;
IsAGPR = true;
Width = 32;
} else {
// We only expect TTMP registers or registers that do not belong to
// any RC.
assert((AMDGPU::TTMP_32RegClass.contains(Reg) ||
AMDGPU::TTMP_64RegClass.contains(Reg) ||
AMDGPU::TTMP_128RegClass.contains(Reg) ||
AMDGPU::TTMP_256RegClass.contains(Reg) ||
AMDGPU::TTMP_512RegClass.contains(Reg) ||
!TRI.getPhysRegBaseClass(Reg)) &&
"Unknown register class");
}
unsigned HWReg = TRI.getHWRegIndex(Reg);
int MaxUsed = HWReg + Width - 1;
if (IsSGPR) {
MaxSGPR = MaxUsed > MaxSGPR ? MaxUsed : MaxSGPR;
} else if (IsAGPR) {
MaxAGPR = MaxUsed > MaxAGPR ? MaxUsed : MaxAGPR;
} else {
MaxVGPR = MaxUsed > MaxVGPR ? MaxUsed : MaxVGPR;
}
}
if (MI.isCall()) {
// Pseudo used just to encode the underlying global. Is there a better
// way to track this?
const MachineOperand *CalleeOp =
TII->getNamedOperand(MI, AMDGPU::OpName::callee);
const Function *Callee = getCalleeFunction(*CalleeOp);
// Avoid crashing on undefined behavior with an illegal call to a
// kernel. If a callsite's calling convention doesn't match the
// function's, it's undefined behavior. If the callsite calling
// convention does match, that would have errored earlier.
if (Callee && AMDGPU::isEntryFunctionCC(Callee->getCallingConv()))
report_fatal_error("invalid call to entry function");
auto isSameFunction = [](const MachineFunction &MF, const Function *F) {
return F == &MF.getFunction();
};
if (Callee && !isSameFunction(MF, Callee))
Info.Callees.push_back(Callee);
bool IsIndirect = !Callee || Callee->isDeclaration();
// FIXME: Call site could have norecurse on it
if (!Callee || !Callee->doesNotRecurse()) {
Info.HasRecursion = true;
// TODO: If we happen to know there is no stack usage in the
// callgraph, we don't need to assume an infinitely growing stack.
if (!MI.isReturn()) {
// We don't need to assume an unknown stack size for tail calls.
// FIXME: This only benefits in the case where the kernel does not
// directly call the tail called function. If a kernel directly
// calls a tail recursive function, we'll assume maximum stack size
// based on the regular call instruction.
Info.CalleeSegmentSize = std::max(
Info.CalleeSegmentSize,
static_cast<uint64_t>(AssumedStackSizeForExternalCall));
}
}
if (IsIndirect) {
Info.CalleeSegmentSize =
std::max(Info.CalleeSegmentSize,
static_cast<uint64_t>(AssumedStackSizeForExternalCall));
// Register usage of indirect calls gets handled later
Info.UsesVCC = true;
Info.UsesFlatScratch = ST.hasFlatAddressSpace();
Info.HasDynamicallySizedStack = true;
Info.HasIndirectCall = true;
}
}
}
}
Info.NumExplicitSGPR = MaxSGPR + 1;
Info.NumVGPR = MaxVGPR + 1;
Info.NumAGPR = MaxAGPR + 1;
return Info;
}