|  | //===---------------- DecoderEmitter.cpp - Decoder Generator --------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // It contains the tablegen backend that emits the decoder functions for | 
|  | // targets with fixed/variable length instruction set. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "Common/CodeGenHwModes.h" | 
|  | #include "Common/CodeGenInstruction.h" | 
|  | #include "Common/CodeGenTarget.h" | 
|  | #include "Common/InfoByHwMode.h" | 
|  | #include "Common/InstructionEncoding.h" | 
|  | #include "Common/SubtargetFeatureInfo.h" | 
|  | #include "Common/VarLenCodeEmitterGen.h" | 
|  | #include "TableGenBackends.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/CachedHashString.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallBitVector.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/MC/MCDecoderOps.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/Format.h" | 
|  | #include "llvm/Support/FormatVariadic.h" | 
|  | #include "llvm/Support/FormattedStream.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  | #include "llvm/Support/LEB128.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/TableGen/Error.h" | 
|  | #include "llvm/TableGen/Record.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <map> | 
|  | #include <memory> | 
|  | #include <set> | 
|  | #include <string> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::MCD; | 
|  |  | 
|  | #define DEBUG_TYPE "decoder-emitter" | 
|  |  | 
|  | extern cl::OptionCategory DisassemblerEmitterCat; | 
|  |  | 
|  | enum SuppressLevel { | 
|  | SUPPRESSION_DISABLE, | 
|  | SUPPRESSION_LEVEL1, | 
|  | SUPPRESSION_LEVEL2 | 
|  | }; | 
|  |  | 
|  | static cl::opt<SuppressLevel> DecoderEmitterSuppressDuplicates( | 
|  | "suppress-per-hwmode-duplicates", | 
|  | cl::desc("Suppress duplication of instrs into per-HwMode decoder tables"), | 
|  | cl::values( | 
|  | clEnumValN( | 
|  | SUPPRESSION_DISABLE, "O0", | 
|  | "Do not prevent DecoderTable duplications caused by HwModes"), | 
|  | clEnumValN( | 
|  | SUPPRESSION_LEVEL1, "O1", | 
|  | "Remove duplicate DecoderTable entries generated due to HwModes"), | 
|  | clEnumValN( | 
|  | SUPPRESSION_LEVEL2, "O2", | 
|  | "Extract HwModes-specific instructions into new DecoderTables, " | 
|  | "significantly reducing Table Duplications")), | 
|  | cl::init(SUPPRESSION_DISABLE), cl::cat(DisassemblerEmitterCat)); | 
|  |  | 
|  | static cl::opt<bool> LargeTable( | 
|  | "large-decoder-table", | 
|  | cl::desc("Use large decoder table format. This uses 24 bits for offset\n" | 
|  | "in the table instead of the default 16 bits."), | 
|  | cl::init(false), cl::cat(DisassemblerEmitterCat)); | 
|  |  | 
|  | static cl::opt<bool> UseFnTableInDecodeToMCInst( | 
|  | "use-fn-table-in-decode-to-mcinst", | 
|  | cl::desc( | 
|  | "Use a table of function pointers instead of a switch case in the\n" | 
|  | "generated `decodeToMCInst` function. Helps improve compile time\n" | 
|  | "of the generated code."), | 
|  | cl::init(false), cl::cat(DisassemblerEmitterCat)); | 
|  |  | 
|  | // Enabling this option requires use of different `InsnType` for different | 
|  | // bitwidths and defining `InsnBitWidth` template specialization for the | 
|  | // `InsnType` types used. Some common specializations are already defined in | 
|  | // MCDecoder.h. | 
|  | static cl::opt<bool> SpecializeDecodersPerBitwidth( | 
|  | "specialize-decoders-per-bitwidth", | 
|  | cl::desc("Specialize the generated `decodeToMCInst` function per bitwidth. " | 
|  | "Helps reduce the code size."), | 
|  | cl::init(false), cl::cat(DisassemblerEmitterCat)); | 
|  |  | 
|  | static cl::opt<bool> IgnoreNonDecodableOperands( | 
|  | "ignore-non-decodable-operands", | 
|  | cl::desc( | 
|  | "Do not issue an error if an operand cannot be decoded automatically."), | 
|  | cl::init(false), cl::cat(DisassemblerEmitterCat)); | 
|  |  | 
|  | static cl::opt<bool> IgnoreFullyDefinedOperands( | 
|  | "ignore-fully-defined-operands", | 
|  | cl::desc( | 
|  | "Do not automatically decode operands with no '?' in their encoding."), | 
|  | cl::init(false), cl::cat(DisassemblerEmitterCat)); | 
|  |  | 
|  | STATISTIC(NumEncodings, "Number of encodings considered"); | 
|  | STATISTIC(NumEncodingsLackingDisasm, | 
|  | "Number of encodings without disassembler info"); | 
|  | STATISTIC(NumInstructions, "Number of instructions considered"); | 
|  | STATISTIC(NumEncodingsSupported, "Number of encodings supported"); | 
|  | STATISTIC(NumEncodingsOmitted, "Number of encodings omitted"); | 
|  |  | 
|  | static unsigned getNumToSkipInBytes() { return LargeTable ? 3 : 2; } | 
|  |  | 
|  | /// Similar to KnownBits::print(), but allows you to specify a character to use | 
|  | /// to print unknown bits. | 
|  | static void printKnownBits(raw_ostream &OS, const KnownBits &Bits, | 
|  | char Unknown) { | 
|  | for (unsigned I = Bits.getBitWidth(); I--;) { | 
|  | if (Bits.Zero[I] && Bits.One[I]) | 
|  | OS << '!'; | 
|  | else if (Bits.Zero[I]) | 
|  | OS << '0'; | 
|  | else if (Bits.One[I]) | 
|  | OS << '1'; | 
|  | else | 
|  | OS << Unknown; | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Sorting predicate to sort encoding IDs by encoding width. | 
|  | class LessEncodingIDByWidth { | 
|  | ArrayRef<InstructionEncoding> Encodings; | 
|  |  | 
|  | public: | 
|  | explicit LessEncodingIDByWidth(ArrayRef<InstructionEncoding> Encodings) | 
|  | : Encodings(Encodings) {} | 
|  |  | 
|  | bool operator()(unsigned ID1, unsigned ID2) const { | 
|  | return Encodings[ID1].getBitWidth() < Encodings[ID2].getBitWidth(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | typedef SmallSetVector<CachedHashString, 16> PredicateSet; | 
|  | typedef SmallSetVector<CachedHashString, 16> DecoderSet; | 
|  |  | 
|  | class DecoderTable { | 
|  | public: | 
|  | DecoderTable() { Data.reserve(16384); } | 
|  |  | 
|  | void clear() { Data.clear(); } | 
|  | size_t size() const { return Data.size(); } | 
|  | const uint8_t *data() const { return Data.data(); } | 
|  |  | 
|  | using const_iterator = std::vector<uint8_t>::const_iterator; | 
|  | const_iterator begin() const { return Data.begin(); } | 
|  | const_iterator end() const { return Data.end(); } | 
|  |  | 
|  | /// Inserts a state machine opcode into the table. | 
|  | void insertOpcode(DecoderOps Opcode) { Data.push_back(Opcode); } | 
|  |  | 
|  | /// Inserts a uint8 encoded value into the table. | 
|  | void insertUInt8(unsigned Value) { | 
|  | assert(isUInt<8>(Value)); | 
|  | Data.push_back(Value); | 
|  | } | 
|  |  | 
|  | /// Inserts a ULEB128 encoded value into the table. | 
|  | void insertULEB128(uint64_t Value) { | 
|  | // Encode and emit the value to filter against. | 
|  | uint8_t Buffer[16]; | 
|  | unsigned Len = encodeULEB128(Value, Buffer); | 
|  | Data.insert(Data.end(), Buffer, Buffer + Len); | 
|  | } | 
|  |  | 
|  | // Insert space for `NumToSkip` and return the position | 
|  | // in the table for patching. | 
|  | size_t insertNumToSkip() { | 
|  | size_t Size = Data.size(); | 
|  | Data.insert(Data.end(), getNumToSkipInBytes(), 0); | 
|  | return Size; | 
|  | } | 
|  |  | 
|  | void patchNumToSkip(size_t FixupIdx, uint32_t DestIdx) { | 
|  | // Calculate the distance from the byte following the fixup entry byte | 
|  | // to the destination. The Target is calculated from after the | 
|  | // `getNumToSkipInBytes()`-byte NumToSkip entry itself, so subtract | 
|  | // `getNumToSkipInBytes()` from the displacement here to account for that. | 
|  | assert(DestIdx >= FixupIdx + getNumToSkipInBytes() && | 
|  | "Expecting a forward jump in the decoding table"); | 
|  | uint32_t Delta = DestIdx - FixupIdx - getNumToSkipInBytes(); | 
|  | if (!isUIntN(8 * getNumToSkipInBytes(), Delta)) | 
|  | PrintFatalError( | 
|  | "disassembler decoding table too large, try --large-decoder-table"); | 
|  |  | 
|  | Data[FixupIdx] = static_cast<uint8_t>(Delta); | 
|  | Data[FixupIdx + 1] = static_cast<uint8_t>(Delta >> 8); | 
|  | if (getNumToSkipInBytes() == 3) | 
|  | Data[FixupIdx + 2] = static_cast<uint8_t>(Delta >> 16); | 
|  | } | 
|  |  | 
|  | private: | 
|  | std::vector<uint8_t> Data; | 
|  | }; | 
|  |  | 
|  | struct DecoderTableInfo { | 
|  | DecoderTable Table; | 
|  | PredicateSet Predicates; | 
|  | DecoderSet Decoders; | 
|  |  | 
|  | void insertPredicate(StringRef Predicate) { | 
|  | Predicates.insert(CachedHashString(Predicate)); | 
|  | } | 
|  |  | 
|  | void insertDecoder(StringRef Decoder) { | 
|  | Decoders.insert(CachedHashString(Decoder)); | 
|  | } | 
|  |  | 
|  | unsigned getPredicateIndex(StringRef Predicate) const { | 
|  | auto I = find(Predicates, Predicate); | 
|  | assert(I != Predicates.end()); | 
|  | return std::distance(Predicates.begin(), I); | 
|  | } | 
|  |  | 
|  | unsigned getDecoderIndex(StringRef Decoder) const { | 
|  | auto I = find(Decoders, Decoder); | 
|  | assert(I != Decoders.end()); | 
|  | return std::distance(Decoders.begin(), I); | 
|  | } | 
|  | }; | 
|  |  | 
|  | using NamespacesHwModesMap = std::map<StringRef, std::set<unsigned>>; | 
|  |  | 
|  | class DecoderEmitter { | 
|  | const RecordKeeper &RK; | 
|  | CodeGenTarget Target; | 
|  | const CodeGenHwModes &CGH; | 
|  |  | 
|  | /// All parsed encodings. | 
|  | std::vector<InstructionEncoding> Encodings; | 
|  |  | 
|  | /// Encodings IDs for each HwMode. An ID is an index into Encodings. | 
|  | SmallDenseMap<unsigned, std::vector<unsigned>> EncodingIDsByHwMode; | 
|  |  | 
|  | public: | 
|  | explicit DecoderEmitter(const RecordKeeper &RK); | 
|  |  | 
|  | const CodeGenTarget &getTarget() const { return Target; } | 
|  |  | 
|  | // Emit the decoder state machine table. Returns a mask of MCD decoder ops | 
|  | // that were emitted. | 
|  | unsigned emitTable(formatted_raw_ostream &OS, DecoderTable &Table, | 
|  | StringRef Namespace, unsigned HwModeID, unsigned BitWidth, | 
|  | ArrayRef<unsigned> EncodingIDs) const; | 
|  | void emitInstrLenTable(formatted_raw_ostream &OS, | 
|  | ArrayRef<unsigned> InstrLen) const; | 
|  | void emitPredicateFunction(formatted_raw_ostream &OS, | 
|  | PredicateSet &Predicates) const; | 
|  | void emitDecoderFunction(formatted_raw_ostream &OS, | 
|  | const DecoderSet &Decoders, | 
|  | unsigned BucketBitWidth) const; | 
|  |  | 
|  | // run - Output the code emitter | 
|  | void run(raw_ostream &o) const; | 
|  |  | 
|  | private: | 
|  | void collectHwModesReferencedForEncodings( | 
|  | std::vector<unsigned> &HwModeIDs, | 
|  | NamespacesHwModesMap &NamespacesWithHwModes) const; | 
|  |  | 
|  | void | 
|  | handleHwModesUnrelatedEncodings(unsigned EncodingID, | 
|  | ArrayRef<unsigned> HwModeIDs, | 
|  | NamespacesHwModesMap &NamespacesWithHwModes); | 
|  |  | 
|  | void parseInstructionEncodings(); | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Filter - Filter works with FilterChooser to produce the decoding tree for | 
|  | /// the ISA. | 
|  | /// | 
|  | /// It is useful to think of a Filter as governing the switch stmts of the | 
|  | /// decoding tree in a certain level.  Each case stmt delegates to an inferior | 
|  | /// FilterChooser to decide what further decoding logic to employ, or in another | 
|  | /// words, what other remaining bits to look at.  The FilterChooser eventually | 
|  | /// chooses a best Filter to do its job. | 
|  | /// | 
|  | /// This recursive scheme ends when the number of Opcodes assigned to the | 
|  | /// FilterChooser becomes 1 or if there is a conflict.  A conflict happens when | 
|  | /// the Filter/FilterChooser combo does not know how to distinguish among the | 
|  | /// Opcodes assigned. | 
|  | /// | 
|  | /// An example of a conflict is | 
|  | /// | 
|  | /// Decoding Conflict: | 
|  | ///     ................................ | 
|  | ///     1111............................ | 
|  | ///     1111010......................... | 
|  | ///     1111010...00.................... | 
|  | ///     1111010...00........0001........ | 
|  | ///     111101000.00........0001........ | 
|  | ///     111101000.00........00010000.... | 
|  | ///     111101000_00________00010000____  VST4q8a | 
|  | ///     111101000_00________00010000____  VST4q8b | 
|  | /// | 
|  | /// The Debug output shows the path that the decoding tree follows to reach the | 
|  | /// the conclusion that there is a conflict.  VST4q8a is a vst4 to double-spaced | 
|  | /// even registers, while VST4q8b is a vst4 to double-spaced odd registers. | 
|  | /// | 
|  | /// The encoding info in the .td files does not specify this meta information, | 
|  | /// which could have been used by the decoder to resolve the conflict.  The | 
|  | /// decoder could try to decode the even/odd register numbering and assign to | 
|  | /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a" | 
|  | /// version and return the Opcode since the two have the same Asm format string. | 
|  | struct Filter { | 
|  | unsigned StartBit; // the starting bit position | 
|  | unsigned NumBits;  // number of bits to filter | 
|  |  | 
|  | // Map of well-known segment value to the set of uid's with that value. | 
|  | std::map<uint64_t, std::vector<unsigned>> FilteredIDs; | 
|  |  | 
|  | // Set of uid's with non-constant segment values. | 
|  | std::vector<unsigned> VariableIDs; | 
|  |  | 
|  | Filter(ArrayRef<InstructionEncoding> Encodings, | 
|  | ArrayRef<unsigned> EncodingIDs, unsigned StartBit, unsigned NumBits); | 
|  |  | 
|  | // Returns the number of fanout produced by the filter.  More fanout implies | 
|  | // the filter distinguishes more categories of instructions. | 
|  | unsigned usefulness() const; | 
|  | }; // end class Filter | 
|  |  | 
|  | // These are states of our finite state machines used in FilterChooser's | 
|  | // filterProcessor() which produces the filter candidates to use. | 
|  | enum bitAttr_t { | 
|  | ATTR_NONE, | 
|  | ATTR_FILTERED, | 
|  | ATTR_ALL_SET, | 
|  | ATTR_ALL_UNSET, | 
|  | ATTR_MIXED | 
|  | }; | 
|  |  | 
|  | /// FilterChooser - FilterChooser chooses the best filter among a set of Filters | 
|  | /// in order to perform the decoding of instructions at the current level. | 
|  | /// | 
|  | /// Decoding proceeds from the top down.  Based on the well-known encoding bits | 
|  | /// of instructions available, FilterChooser builds up the possible Filters that | 
|  | /// can further the task of decoding by distinguishing among the remaining | 
|  | /// candidate instructions. | 
|  | /// | 
|  | /// Once a filter has been chosen, it is called upon to divide the decoding task | 
|  | /// into sub-tasks and delegates them to its inferior FilterChoosers for further | 
|  | /// processings. | 
|  | /// | 
|  | /// It is useful to think of a Filter as governing the switch stmts of the | 
|  | /// decoding tree.  And each case is delegated to an inferior FilterChooser to | 
|  | /// decide what further remaining bits to look at. | 
|  |  | 
|  | class FilterChooser { | 
|  | // TODO: Unfriend by providing the necessary accessors. | 
|  | friend class DecoderTableBuilder; | 
|  |  | 
|  | // Vector of encodings to choose our filter. | 
|  | ArrayRef<InstructionEncoding> Encodings; | 
|  |  | 
|  | /// Encoding IDs for this filter chooser to work on. | 
|  | /// Sorted by non-decreasing encoding width. | 
|  | SmallVector<unsigned, 0> EncodingIDs; | 
|  |  | 
|  | // Array of bit values passed down from our parent. | 
|  | // Set to all unknown for Parent == nullptr. | 
|  | KnownBits FilterBits; | 
|  |  | 
|  | // Links to the FilterChooser above us in the decoding tree. | 
|  | const FilterChooser *Parent; | 
|  |  | 
|  | /// If the selected filter matches multiple encodings, then this is the | 
|  | /// starting position and the width of the filtered range. | 
|  | unsigned StartBit; | 
|  | unsigned NumBits; | 
|  |  | 
|  | /// If the selected filter matches multiple encodings, and there is | 
|  | /// *exactly one* encoding in which all bits are known in the filtered range, | 
|  | /// then this is the ID of that encoding. | 
|  | /// Also used when there is only one encoding. | 
|  | std::optional<unsigned> SingletonEncodingID; | 
|  |  | 
|  | /// If the selected filter matches multiple encodings, and there is | 
|  | /// *at least one* encoding in which all bits are known in the filtered range, | 
|  | /// then this is the FilterChooser created for the subset of encodings that | 
|  | /// contain some unknown bits in the filtered range. | 
|  | std::unique_ptr<const FilterChooser> VariableFC; | 
|  |  | 
|  | /// If the selected filter matches multiple encodings, and there is | 
|  | /// *more than one* encoding in which all bits are known in the filtered | 
|  | /// range, then this is a map of field values to FilterChoosers created for | 
|  | /// the subset of encodings sharing that field value. | 
|  | /// The "field value" here refers to the encoding bits in the filtered range. | 
|  | std::map<uint64_t, std::unique_ptr<const FilterChooser>> FilterChooserMap; | 
|  |  | 
|  | /// Set to true if decoding conflict was encountered. | 
|  | bool HasConflict = false; | 
|  |  | 
|  | struct Island { | 
|  | unsigned StartBit; | 
|  | unsigned NumBits; | 
|  | uint64_t FieldVal; | 
|  | }; | 
|  |  | 
|  | public: | 
|  | /// Constructs a top-level filter chooser. | 
|  | FilterChooser(ArrayRef<InstructionEncoding> Encodings, | 
|  | ArrayRef<unsigned> EncodingIDs) | 
|  | : Encodings(Encodings), EncodingIDs(EncodingIDs), Parent(nullptr) { | 
|  | // Sort encoding IDs once. | 
|  | stable_sort(this->EncodingIDs, LessEncodingIDByWidth(Encodings)); | 
|  | // Filter width is the width of the smallest encoding. | 
|  | unsigned FilterWidth = Encodings[this->EncodingIDs.front()].getBitWidth(); | 
|  | FilterBits = KnownBits(FilterWidth); | 
|  | doFilter(); | 
|  | } | 
|  |  | 
|  | /// Constructs an inferior filter chooser. | 
|  | FilterChooser(ArrayRef<InstructionEncoding> Encodings, | 
|  | ArrayRef<unsigned> EncodingIDs, const KnownBits &FilterBits, | 
|  | const FilterChooser &Parent) | 
|  | : Encodings(Encodings), EncodingIDs(EncodingIDs), Parent(&Parent) { | 
|  | // Inferior filter choosers are created from sorted array of encoding IDs. | 
|  | assert(is_sorted(EncodingIDs, LessEncodingIDByWidth(Encodings))); | 
|  | assert(!FilterBits.hasConflict() && "Broken filter"); | 
|  | // Filter width is the width of the smallest encoding. | 
|  | unsigned FilterWidth = Encodings[EncodingIDs.front()].getBitWidth(); | 
|  | this->FilterBits = FilterBits.anyext(FilterWidth); | 
|  | doFilter(); | 
|  | } | 
|  |  | 
|  | FilterChooser(const FilterChooser &) = delete; | 
|  | void operator=(const FilterChooser &) = delete; | 
|  |  | 
|  | /// Returns the width of the largest encoding. | 
|  | unsigned getMaxEncodingWidth() const { | 
|  | // The last encoding ID is the ID of an encoding with the largest width. | 
|  | return Encodings[EncodingIDs.back()].getBitWidth(); | 
|  | } | 
|  |  | 
|  | /// Returns true if any decoding conflicts were encountered. | 
|  | bool hasConflict() const { return HasConflict; } | 
|  |  | 
|  | private: | 
|  | /// Applies the given filter to the set of encodings this FilterChooser | 
|  | /// works with, creating inferior FilterChoosers as necessary. | 
|  | void applyFilter(const Filter &F); | 
|  |  | 
|  | /// dumpStack - dumpStack traverses the filter chooser chain and calls | 
|  | /// dumpFilterArray on each filter chooser up to the top level one. | 
|  | void dumpStack(raw_ostream &OS, indent Indent, unsigned PadToWidth) const; | 
|  |  | 
|  | bool isPositionFiltered(unsigned Idx) const { | 
|  | return FilterBits.Zero[Idx] || FilterBits.One[Idx]; | 
|  | } | 
|  |  | 
|  | // Calculates the island(s) needed to decode the instruction. | 
|  | // This returns a list of undecoded bits of an instructions, for example, | 
|  | // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be | 
|  | // decoded bits in order to verify that the instruction matches the Opcode. | 
|  | std::vector<Island> getIslands(const KnownBits &EncodingBits) const; | 
|  |  | 
|  | /// Scans the well-known encoding bits of the encodings and, builds up a list | 
|  | /// of candidate filters, and then returns the best one, if any. | 
|  | std::unique_ptr<Filter> findBestFilter(ArrayRef<bitAttr_t> BitAttrs, | 
|  | bool AllowMixed, | 
|  | bool Greedy = true) const; | 
|  |  | 
|  | std::unique_ptr<Filter> findBestFilter() const; | 
|  |  | 
|  | // Decides on the best configuration of filter(s) to use in order to decode | 
|  | // the instructions.  A conflict of instructions may occur, in which case we | 
|  | // dump the conflict set to the standard error. | 
|  | void doFilter(); | 
|  |  | 
|  | public: | 
|  | void dump() const; | 
|  | }; | 
|  |  | 
|  | class DecoderTableBuilder { | 
|  | const CodeGenTarget &Target; | 
|  | ArrayRef<InstructionEncoding> Encodings; | 
|  | DecoderTableInfo &TableInfo; | 
|  |  | 
|  | public: | 
|  | DecoderTableBuilder(const CodeGenTarget &Target, | 
|  | ArrayRef<InstructionEncoding> Encodings, | 
|  | DecoderTableInfo &TableInfo) | 
|  | : Target(Target), Encodings(Encodings), TableInfo(TableInfo) {} | 
|  |  | 
|  | void buildTable(const FilterChooser &FC, unsigned BitWidth) const { | 
|  | // When specializing decoders per bit width, each decoder table will begin | 
|  | // with the bitwidth for that table. | 
|  | if (SpecializeDecodersPerBitwidth) | 
|  | TableInfo.Table.insertULEB128(BitWidth); | 
|  | emitTableEntries(FC); | 
|  | } | 
|  |  | 
|  | private: | 
|  | void emitBinaryParser(raw_ostream &OS, indent Indent, | 
|  | const InstructionEncoding &Encoding, | 
|  | const OperandInfo &OpInfo) const; | 
|  |  | 
|  | void emitDecoder(raw_ostream &OS, indent Indent, unsigned EncodingID) const; | 
|  |  | 
|  | unsigned getDecoderIndex(unsigned EncodingID) const; | 
|  |  | 
|  | unsigned getPredicateIndex(StringRef P) const; | 
|  |  | 
|  | bool emitPredicateMatch(raw_ostream &OS, unsigned EncodingID) const; | 
|  |  | 
|  | void emitPredicateTableEntry(unsigned EncodingID) const; | 
|  |  | 
|  | void emitSoftFailTableEntry(unsigned EncodingID) const; | 
|  |  | 
|  | void emitSingletonTableEntry(const FilterChooser &FC) const; | 
|  |  | 
|  | void emitTableEntries(const FilterChooser &FC) const; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /////////////////////////// | 
|  | //                       // | 
|  | // Filter Implementation // | 
|  | //                       // | 
|  | /////////////////////////// | 
|  |  | 
|  | Filter::Filter(ArrayRef<InstructionEncoding> Encodings, | 
|  | ArrayRef<unsigned> EncodingIDs, unsigned StartBit, | 
|  | unsigned NumBits) | 
|  | : StartBit(StartBit), NumBits(NumBits) { | 
|  | for (unsigned EncodingID : EncodingIDs) { | 
|  | const InstructionEncoding &Encoding = Encodings[EncodingID]; | 
|  | KnownBits EncodingBits = Encoding.getMandatoryBits(); | 
|  |  | 
|  | // Scans the segment for possibly well-specified encoding bits. | 
|  | KnownBits FieldBits = EncodingBits.extractBits(NumBits, StartBit); | 
|  |  | 
|  | if (FieldBits.isConstant()) { | 
|  | // The encoding bits are well-known.  Lets add the uid of the | 
|  | // instruction into the bucket keyed off the constant field value. | 
|  | FilteredIDs[FieldBits.getConstant().getZExtValue()].push_back(EncodingID); | 
|  | } else { | 
|  | // Some of the encoding bit(s) are unspecified.  This contributes to | 
|  | // one additional member of "Variable" instructions. | 
|  | VariableIDs.push_back(EncodingID); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert((FilteredIDs.size() + VariableIDs.size() > 0) && | 
|  | "Filter returns no instruction categories"); | 
|  | } | 
|  |  | 
|  | void FilterChooser::applyFilter(const Filter &F) { | 
|  | StartBit = F.StartBit; | 
|  | NumBits = F.NumBits; | 
|  | assert(FilterBits.extractBits(NumBits, StartBit).isUnknown()); | 
|  |  | 
|  | if (!F.VariableIDs.empty()) { | 
|  | // Delegates to an inferior filter chooser for further processing on this | 
|  | // group of instructions whose segment values are variable. | 
|  | VariableFC = std::make_unique<FilterChooser>(Encodings, F.VariableIDs, | 
|  | FilterBits, *this); | 
|  | HasConflict |= VariableFC->HasConflict; | 
|  | } | 
|  |  | 
|  | // Otherwise, create sub choosers. | 
|  | for (const auto &[FilterVal, InferiorEncodingIDs] : F.FilteredIDs) { | 
|  | // Create a new filter by inserting the field bits into the parent filter. | 
|  | APInt FieldBits(NumBits, FilterVal); | 
|  | KnownBits InferiorFilterBits = FilterBits; | 
|  | InferiorFilterBits.insertBits(KnownBits::makeConstant(FieldBits), StartBit); | 
|  |  | 
|  | // Delegates to an inferior filter chooser for further processing on this | 
|  | // category of instructions. | 
|  | auto [It, _] = FilterChooserMap.try_emplace( | 
|  | FilterVal, | 
|  | std::make_unique<FilterChooser>(Encodings, InferiorEncodingIDs, | 
|  | InferiorFilterBits, *this)); | 
|  | HasConflict |= It->second->HasConflict; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Returns the number of fanout produced by the filter.  More fanout implies | 
|  | // the filter distinguishes more categories of instructions. | 
|  | unsigned Filter::usefulness() const { | 
|  | return FilteredIDs.size() + VariableIDs.empty(); | 
|  | } | 
|  |  | 
|  | ////////////////////////////////// | 
|  | //                              // | 
|  | // Filterchooser Implementation // | 
|  | //                              // | 
|  | ////////////////////////////////// | 
|  |  | 
|  | static StringRef getDecoderOpName(DecoderOps Op) { | 
|  | #define CASE(OP)                                                               \ | 
|  | case OP:                                                                     \ | 
|  | return #OP | 
|  | switch (Op) { | 
|  | CASE(OPC_Scope); | 
|  | CASE(OPC_ExtractField); | 
|  | CASE(OPC_FilterValueOrSkip); | 
|  | CASE(OPC_FilterValue); | 
|  | CASE(OPC_CheckField); | 
|  | CASE(OPC_CheckPredicate); | 
|  | CASE(OPC_Decode); | 
|  | CASE(OPC_TryDecode); | 
|  | CASE(OPC_SoftFail); | 
|  | } | 
|  | #undef CASE | 
|  | llvm_unreachable("Unknown decoder op"); | 
|  | } | 
|  |  | 
|  | // Emit the decoder state machine table. Returns a mask of MCD decoder ops | 
|  | // that were emitted. | 
|  | unsigned DecoderEmitter::emitTable(formatted_raw_ostream &OS, | 
|  | DecoderTable &Table, StringRef Namespace, | 
|  | unsigned HwModeID, unsigned BitWidth, | 
|  | ArrayRef<unsigned> EncodingIDs) const { | 
|  | // We'll need to be able to map from a decoded opcode into the corresponding | 
|  | // EncodingID for this specific combination of BitWidth and Namespace. This | 
|  | // is used below to index into Encodings. | 
|  | DenseMap<unsigned, unsigned> OpcodeToEncodingID; | 
|  | OpcodeToEncodingID.reserve(EncodingIDs.size()); | 
|  | for (unsigned EncodingID : EncodingIDs) { | 
|  | const Record *InstDef = Encodings[EncodingID].getInstruction()->TheDef; | 
|  | OpcodeToEncodingID[Target.getInstrIntValue(InstDef)] = EncodingID; | 
|  | } | 
|  |  | 
|  | OS << "static const uint8_t DecoderTable" << Namespace; | 
|  | if (HwModeID != DefaultMode) | 
|  | OS << '_' << Target.getHwModes().getModeName(HwModeID); | 
|  | OS << BitWidth << "[" << Table.size() << "] = {\n"; | 
|  |  | 
|  | // Emit ULEB128 encoded value to OS, returning the number of bytes emitted. | 
|  | auto EmitULEB128 = [](DecoderTable::const_iterator &I, | 
|  | formatted_raw_ostream &OS) { | 
|  | while (*I >= 128) | 
|  | OS << (unsigned)*I++ << ", "; | 
|  | OS << (unsigned)*I++ << ", "; | 
|  | }; | 
|  |  | 
|  | // Emit `getNumToSkipInBytes()`-byte numtoskip value to OS, returning the | 
|  | // NumToSkip value. | 
|  | auto EmitNumToSkip = [](DecoderTable::const_iterator &I, | 
|  | formatted_raw_ostream &OS) { | 
|  | uint8_t Byte = *I++; | 
|  | uint32_t NumToSkip = Byte; | 
|  | OS << (unsigned)Byte << ", "; | 
|  | Byte = *I++; | 
|  | OS << (unsigned)Byte << ", "; | 
|  | NumToSkip |= Byte << 8; | 
|  | if (getNumToSkipInBytes() == 3) { | 
|  | Byte = *I++; | 
|  | OS << (unsigned)(Byte) << ", "; | 
|  | NumToSkip |= Byte << 16; | 
|  | } | 
|  | return NumToSkip; | 
|  | }; | 
|  |  | 
|  | // FIXME: We may be able to use the NumToSkip values to recover | 
|  | // appropriate indentation levels. | 
|  | DecoderTable::const_iterator I = Table.begin(); | 
|  | DecoderTable::const_iterator E = Table.end(); | 
|  | const uint8_t *const EndPtr = Table.data() + Table.size(); | 
|  |  | 
|  | auto EmitPos = [&OS](uint32_t Pos) { | 
|  | constexpr uint32_t StartColumn = 12; | 
|  | OS << "/* " << Pos << " */"; | 
|  | OS.PadToColumn(StartColumn); | 
|  | }; | 
|  |  | 
|  | auto StartComment = [&OS]() { | 
|  | constexpr uint32_t CommentColumn = 52; | 
|  | OS.PadToColumn(CommentColumn); | 
|  | OS << "// "; | 
|  | }; | 
|  |  | 
|  | auto EmitNumToSkipComment = [&](uint32_t NumToSkip) { | 
|  | uint32_t Index = (I - Table.begin()) + NumToSkip; | 
|  | OS << "skip to " << Index; | 
|  | }; | 
|  |  | 
|  | // The first entry when specializing decoders per bitwidth is the bitwidth. | 
|  | // This will be used for additional checks in `decodeInstruction`. | 
|  | if (SpecializeDecodersPerBitwidth) { | 
|  | EmitPos(0); | 
|  | EmitULEB128(I, OS); | 
|  | StartComment(); | 
|  | OS << "Bitwidth " << BitWidth << '\n'; | 
|  | } | 
|  |  | 
|  | auto DecodeAndEmitULEB128 = [EndPtr, | 
|  | &EmitULEB128](DecoderTable::const_iterator &I, | 
|  | formatted_raw_ostream &OS) { | 
|  | const char *ErrMsg = nullptr; | 
|  | uint64_t Value = decodeULEB128(&*I, nullptr, EndPtr, &ErrMsg); | 
|  | assert(ErrMsg == nullptr && "ULEB128 value too large!"); | 
|  |  | 
|  | EmitULEB128(I, OS); | 
|  | return Value; | 
|  | }; | 
|  |  | 
|  | unsigned OpcodeMask = 0; | 
|  |  | 
|  | while (I != E) { | 
|  | assert(I < E && "incomplete decode table entry!"); | 
|  |  | 
|  | uint32_t Pos = I - Table.begin(); | 
|  | EmitPos(Pos); | 
|  | const uint8_t DecoderOp = *I++; | 
|  | OpcodeMask |= (1 << DecoderOp); | 
|  | OS << getDecoderOpName(static_cast<DecoderOps>(DecoderOp)) << ", "; | 
|  | switch (DecoderOp) { | 
|  | default: | 
|  | PrintFatalError("Invalid decode table opcode: " + Twine((int)DecoderOp) + | 
|  | " at index " + Twine(Pos)); | 
|  | case OPC_Scope: { | 
|  | uint32_t NumToSkip = EmitNumToSkip(I, OS); | 
|  | StartComment(); | 
|  | uint32_t Index = (I - Table.begin()) + NumToSkip; | 
|  | OS << "end scope at " << Index; | 
|  | break; | 
|  | } | 
|  | case OPC_ExtractField: { | 
|  | // ULEB128 encoded start value. | 
|  | unsigned Start = DecodeAndEmitULEB128(I, OS); | 
|  | unsigned Len = *I++; | 
|  | OS << Len << ','; | 
|  | StartComment(); | 
|  | OS << "Field = Inst{"; | 
|  | if (Len > 1) | 
|  | OS << (Start + Len - 1) << '-'; | 
|  | OS << Start << '}'; | 
|  | break; | 
|  | } | 
|  | case OPC_FilterValueOrSkip: { | 
|  | // The filter value is ULEB128 encoded. | 
|  | uint64_t FilterVal = DecodeAndEmitULEB128(I, OS); | 
|  | uint32_t NumToSkip = EmitNumToSkip(I, OS); | 
|  | StartComment(); | 
|  | OS << "if Field != " << format_hex(FilterVal, 0) << ' '; | 
|  | EmitNumToSkipComment(NumToSkip); | 
|  | break; | 
|  | } | 
|  | case OPC_FilterValue: { | 
|  | // The filter value is ULEB128 encoded. | 
|  | uint64_t FilterVal = DecodeAndEmitULEB128(I, OS); | 
|  |  | 
|  | StartComment(); | 
|  | OS << "if Field != " << format_hex(FilterVal, 0) << " pop scope"; | 
|  | break; | 
|  | } | 
|  | case OPC_CheckField: { | 
|  | // ULEB128 encoded start value. | 
|  | unsigned Start = DecodeAndEmitULEB128(I, OS); | 
|  |  | 
|  | // 8-bit length. | 
|  | unsigned Len = *I++; | 
|  | OS << Len << ", "; | 
|  |  | 
|  | // ULEB128 encoded field value. | 
|  | uint64_t FieldVal = DecodeAndEmitULEB128(I, OS); | 
|  |  | 
|  | StartComment(); | 
|  | OS << "if Inst{"; | 
|  | if (Len > 1) | 
|  | OS << (Start + Len - 1) << '-'; | 
|  | OS << Start << "} != " << format_hex(FieldVal, 0) << " pop scope"; | 
|  | break; | 
|  | } | 
|  | case OPC_CheckPredicate: { | 
|  | unsigned PIdx = DecodeAndEmitULEB128(I, OS); | 
|  | StartComment(); | 
|  | OS << "if !checkPredicate(" << PIdx << ") pop scope"; | 
|  | break; | 
|  | } | 
|  | case OPC_Decode: | 
|  | case OPC_TryDecode: { | 
|  | // Decode the Opcode value. | 
|  | unsigned Opc = DecodeAndEmitULEB128(I, OS); | 
|  |  | 
|  | // Decoder index. | 
|  | unsigned DecodeIdx = DecodeAndEmitULEB128(I, OS); | 
|  |  | 
|  | auto EncI = OpcodeToEncodingID.find(Opc); | 
|  | assert(EncI != OpcodeToEncodingID.end() && "no encoding entry"); | 
|  | auto EncodingID = EncI->second; | 
|  |  | 
|  | StartComment(); | 
|  | OS << "Opcode: " << Encodings[EncodingID].getName() | 
|  | << ", DecodeIdx: " << DecodeIdx; | 
|  | break; | 
|  | } | 
|  | case OPC_SoftFail: { | 
|  | // Decode the positive mask. | 
|  | uint64_t PositiveMask = DecodeAndEmitULEB128(I, OS); | 
|  |  | 
|  | // Decode the negative mask. | 
|  | uint64_t NegativeMask = DecodeAndEmitULEB128(I, OS); | 
|  |  | 
|  | StartComment(); | 
|  | OS << "positive mask: " << format_hex(PositiveMask, 0) | 
|  | << "negative mask: " << format_hex(NegativeMask, 0); | 
|  | break; | 
|  | } | 
|  | } | 
|  | OS << '\n'; | 
|  | } | 
|  | OS << "};\n\n"; | 
|  |  | 
|  | return OpcodeMask; | 
|  | } | 
|  |  | 
|  | void DecoderEmitter::emitInstrLenTable(formatted_raw_ostream &OS, | 
|  | ArrayRef<unsigned> InstrLen) const { | 
|  | OS << "static const uint8_t InstrLenTable[] = {\n"; | 
|  | for (unsigned Len : InstrLen) | 
|  | OS << Len << ",\n"; | 
|  | OS << "};\n\n"; | 
|  | } | 
|  |  | 
|  | void DecoderEmitter::emitPredicateFunction(formatted_raw_ostream &OS, | 
|  | PredicateSet &Predicates) const { | 
|  | // The predicate function is just a big switch statement based on the | 
|  | // input predicate index. | 
|  | OS << "static bool checkDecoderPredicate(unsigned Idx, const FeatureBitset " | 
|  | "&FB) {\n"; | 
|  | OS << "  switch (Idx) {\n"; | 
|  | OS << "  default: llvm_unreachable(\"Invalid index!\");\n"; | 
|  | for (const auto &[Index, Predicate] : enumerate(Predicates)) { | 
|  | OS << "  case " << Index << ":\n"; | 
|  | OS << "    return " << Predicate << ";\n"; | 
|  | } | 
|  | OS << "  }\n"; | 
|  | OS << "}\n\n"; | 
|  | } | 
|  |  | 
|  | void DecoderEmitter::emitDecoderFunction(formatted_raw_ostream &OS, | 
|  | const DecoderSet &Decoders, | 
|  | unsigned BucketBitWidth) const { | 
|  | // The decoder function is just a big switch statement or a table of function | 
|  | // pointers based on the input decoder index. | 
|  |  | 
|  | // TODO: When InsnType is large, using uint64_t limits all fields to 64 bits | 
|  | // It would be better for emitBinaryParser to use a 64-bit tmp whenever | 
|  | // possible but fall back to an InsnType-sized tmp for truly large fields. | 
|  | StringRef TmpTypeDecl = | 
|  | "using TmpType = std::conditional_t<std::is_integral<InsnType>::value, " | 
|  | "InsnType, uint64_t>;\n"; | 
|  | StringRef DecodeParams = | 
|  | "DecodeStatus S, InsnType insn, MCInst &MI, uint64_t Address, const " | 
|  | "MCDisassembler *Decoder, bool &DecodeComplete"; | 
|  |  | 
|  | // Print the name of the decode function to OS. | 
|  | auto PrintDecodeFnName = [&OS, BucketBitWidth](unsigned DecodeIdx) { | 
|  | OS << "decodeFn"; | 
|  | if (BucketBitWidth != 0) { | 
|  | OS << '_' << BucketBitWidth << "bit"; | 
|  | } | 
|  | OS << '_' << DecodeIdx; | 
|  | }; | 
|  |  | 
|  | // Print the template statement. | 
|  | auto PrintTemplate = [&OS, BucketBitWidth]() { | 
|  | OS << "template <typename InsnType>\n"; | 
|  | OS << "static "; | 
|  | if (BucketBitWidth != 0) | 
|  | OS << "std::enable_if_t<InsnBitWidth<InsnType> == " << BucketBitWidth | 
|  | << ", DecodeStatus>\n"; | 
|  | else | 
|  | OS << "DecodeStatus "; | 
|  | }; | 
|  |  | 
|  | if (UseFnTableInDecodeToMCInst) { | 
|  | // Emit a function for each case first. | 
|  | for (const auto &[Index, Decoder] : enumerate(Decoders)) { | 
|  | PrintTemplate(); | 
|  | PrintDecodeFnName(Index); | 
|  | OS << "(" << DecodeParams << ") {\n"; | 
|  | OS << "  " << TmpTypeDecl; | 
|  | OS << "  [[maybe_unused]] TmpType tmp;\n"; | 
|  | OS << Decoder; | 
|  | OS << "  return S;\n"; | 
|  | OS << "}\n\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | OS << "// Handling " << Decoders.size() << " cases.\n"; | 
|  | PrintTemplate(); | 
|  | OS << "decodeToMCInst(unsigned Idx, " << DecodeParams << ") {\n"; | 
|  | OS << "  DecodeComplete = true;\n"; | 
|  |  | 
|  | if (UseFnTableInDecodeToMCInst) { | 
|  | // Build a table of function pointers | 
|  | OS << "  using DecodeFnTy = DecodeStatus (*)(" << DecodeParams << ");\n"; | 
|  | OS << "  static constexpr DecodeFnTy decodeFnTable[] = {\n"; | 
|  | for (size_t Index : llvm::seq(Decoders.size())) { | 
|  | OS << "    "; | 
|  | PrintDecodeFnName(Index); | 
|  | OS << ",\n"; | 
|  | } | 
|  | OS << "  };\n"; | 
|  | OS << "  if (Idx >= " << Decoders.size() << ")\n"; | 
|  | OS << "    llvm_unreachable(\"Invalid decoder index!\");\n"; | 
|  | OS << "  return decodeFnTable[Idx](S, insn, MI, Address, Decoder, " | 
|  | "DecodeComplete);\n"; | 
|  | } else { | 
|  | OS << "  " << TmpTypeDecl; | 
|  | OS << "  TmpType tmp;\n"; | 
|  | OS << "  switch (Idx) {\n"; | 
|  | OS << "  default: llvm_unreachable(\"Invalid decoder index!\");\n"; | 
|  | for (const auto &[Index, Decoder] : enumerate(Decoders)) { | 
|  | OS << "  case " << Index << ":\n"; | 
|  | OS << Decoder; | 
|  | OS << "    return S;\n"; | 
|  | } | 
|  | OS << "  }\n"; | 
|  | } | 
|  | OS << "}\n"; | 
|  | } | 
|  |  | 
|  | /// dumpStack - dumpStack traverses the filter chooser chain and calls | 
|  | /// dumpFilterArray on each filter chooser up to the top level one. | 
|  | void FilterChooser::dumpStack(raw_ostream &OS, indent Indent, | 
|  | unsigned PadToWidth) const { | 
|  | if (Parent) | 
|  | Parent->dumpStack(OS, Indent, PadToWidth); | 
|  | assert(PadToWidth >= FilterBits.getBitWidth()); | 
|  | OS << Indent << indent(PadToWidth - FilterBits.getBitWidth()); | 
|  | printKnownBits(OS, FilterBits, '.'); | 
|  | OS << '\n'; | 
|  | } | 
|  |  | 
|  | // Calculates the island(s) needed to decode the instruction. | 
|  | // This returns a list of undecoded bits of an instructions, for example, | 
|  | // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be | 
|  | // decoded bits in order to verify that the instruction matches the Opcode. | 
|  | std::vector<FilterChooser::Island> | 
|  | FilterChooser::getIslands(const KnownBits &EncodingBits) const { | 
|  | std::vector<Island> Islands; | 
|  | uint64_t FieldVal; | 
|  | unsigned StartBit; | 
|  |  | 
|  | // 0: Init | 
|  | // 1: Water (the bit value does not affect decoding) | 
|  | // 2: Island (well-known bit value needed for decoding) | 
|  | unsigned State = 0; | 
|  |  | 
|  | unsigned FilterWidth = FilterBits.getBitWidth(); | 
|  | for (unsigned i = 0; i != FilterWidth; ++i) { | 
|  | bool IsKnown = EncodingBits.Zero[i] || EncodingBits.One[i]; | 
|  | bool Filtered = isPositionFiltered(i); | 
|  | switch (State) { | 
|  | default: | 
|  | llvm_unreachable("Unreachable code!"); | 
|  | case 0: | 
|  | case 1: | 
|  | if (Filtered || !IsKnown) { | 
|  | State = 1; // Still in Water | 
|  | } else { | 
|  | State = 2; // Into the Island | 
|  | StartBit = i; | 
|  | FieldVal = static_cast<uint64_t>(EncodingBits.One[i]); | 
|  | } | 
|  | break; | 
|  | case 2: | 
|  | if (Filtered || !IsKnown) { | 
|  | State = 1; // Into the Water | 
|  | Islands.push_back({StartBit, i - StartBit, FieldVal}); | 
|  | } else { | 
|  | State = 2; // Still in Island | 
|  | FieldVal |= static_cast<uint64_t>(EncodingBits.One[i]) | 
|  | << (i - StartBit); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | // If we are still in Island after the loop, do some housekeeping. | 
|  | if (State == 2) | 
|  | Islands.push_back({StartBit, FilterWidth - StartBit, FieldVal}); | 
|  |  | 
|  | return Islands; | 
|  | } | 
|  |  | 
|  | void DecoderTableBuilder::emitBinaryParser(raw_ostream &OS, indent Indent, | 
|  | const InstructionEncoding &Encoding, | 
|  | const OperandInfo &OpInfo) const { | 
|  | if (OpInfo.HasNoEncoding) { | 
|  | // If an operand has no encoding, the old behavior is to not decode it | 
|  | // automatically and let the target do it. This is error-prone, so the | 
|  | // new behavior is to report an error. | 
|  | if (!IgnoreNonDecodableOperands) | 
|  | PrintError(Encoding.getRecord()->getLoc(), | 
|  | "could not find field for operand '" + OpInfo.Name + "'"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Special case for 'bits<0>'. | 
|  | if (OpInfo.Fields.empty() && !OpInfo.InitValue) { | 
|  | if (IgnoreNonDecodableOperands) | 
|  | return; | 
|  | assert(!OpInfo.Decoder.empty()); | 
|  | // The operand has no encoding, so the corresponding argument is omitted. | 
|  | // This avoids confusion and allows the function to be overloaded if the | 
|  | // operand does have an encoding in other instructions. | 
|  | OS << Indent << "if (!Check(S, " << OpInfo.Decoder << "(MI, Decoder)))\n" | 
|  | << Indent << "  return MCDisassembler::Fail;\n"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (OpInfo.fields().empty()) { | 
|  | // Only a constant part. The old behavior is to not decode this operand. | 
|  | if (IgnoreFullyDefinedOperands) | 
|  | return; | 
|  | // Initialize `tmp` with the constant part. | 
|  | OS << Indent << "tmp = " << format_hex(*OpInfo.InitValue, 0) << ";\n"; | 
|  | } else if (OpInfo.fields().size() == 1 && !OpInfo.InitValue.value_or(0)) { | 
|  | // One variable part and no/zero constant part. Initialize `tmp` with the | 
|  | // variable part. | 
|  | auto [Base, Width, Offset] = OpInfo.fields().front(); | 
|  | OS << Indent << "tmp = fieldFromInstruction(insn, " << Base << ", " << Width | 
|  | << ')'; | 
|  | if (Offset) | 
|  | OS << " << " << Offset; | 
|  | OS << ";\n"; | 
|  | } else { | 
|  | // General case. Initialize `tmp` with the constant part, if any, and | 
|  | // insert the variable parts into it. | 
|  | OS << Indent << "tmp = " << format_hex(OpInfo.InitValue.value_or(0), 0) | 
|  | << ";\n"; | 
|  | for (auto [Base, Width, Offset] : OpInfo.fields()) | 
|  | OS << Indent << "insertBits(tmp, fieldFromInstruction(insn, " << Base | 
|  | << ", " << Width << "), " << Offset << ", " << Width << ");\n"; | 
|  | } | 
|  |  | 
|  | StringRef Decoder = OpInfo.Decoder; | 
|  | if (!Decoder.empty()) { | 
|  | OS << Indent << "if (!Check(S, " << Decoder | 
|  | << "(MI, tmp, Address, Decoder))) { " | 
|  | << (OpInfo.HasCompleteDecoder ? "" : "DecodeComplete = false; ") | 
|  | << "return MCDisassembler::Fail; }\n"; | 
|  | } else { | 
|  | OS << Indent << "MI.addOperand(MCOperand::createImm(tmp));\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | void DecoderTableBuilder::emitDecoder(raw_ostream &OS, indent Indent, | 
|  | unsigned EncodingID) const { | 
|  | const InstructionEncoding &Encoding = Encodings[EncodingID]; | 
|  |  | 
|  | // If a custom instruction decoder was specified, use that. | 
|  | StringRef DecoderMethod = Encoding.getDecoderMethod(); | 
|  | if (!DecoderMethod.empty()) { | 
|  | OS << Indent << "if (!Check(S, " << DecoderMethod | 
|  | << "(MI, insn, Address, Decoder))) { " | 
|  | << (Encoding.hasCompleteDecoder() ? "" : "DecodeComplete = false; ") | 
|  | << "return MCDisassembler::Fail; }\n"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (const OperandInfo &Op : Encoding.getOperands()) | 
|  | emitBinaryParser(OS, Indent, Encoding, Op); | 
|  | } | 
|  |  | 
|  | unsigned DecoderTableBuilder::getDecoderIndex(unsigned EncodingID) const { | 
|  | // Build up the predicate string. | 
|  | SmallString<256> Decoder; | 
|  | // FIXME: emitDecoder() function can take a buffer directly rather than | 
|  | // a stream. | 
|  | raw_svector_ostream S(Decoder); | 
|  | indent Indent(UseFnTableInDecodeToMCInst ? 2 : 4); | 
|  | emitDecoder(S, Indent, EncodingID); | 
|  |  | 
|  | // Using the full decoder string as the key value here is a bit | 
|  | // heavyweight, but is effective. If the string comparisons become a | 
|  | // performance concern, we can implement a mangling of the predicate | 
|  | // data easily enough with a map back to the actual string. That's | 
|  | // overkill for now, though. | 
|  | TableInfo.insertDecoder(Decoder); | 
|  | return TableInfo.getDecoderIndex(Decoder); | 
|  | } | 
|  |  | 
|  | // Returns true if there was any predicate emitted. | 
|  | bool DecoderTableBuilder::emitPredicateMatch(raw_ostream &OS, | 
|  | unsigned EncodingID) const { | 
|  | std::vector<const Record *> Predicates = | 
|  | Encodings[EncodingID].getRecord()->getValueAsListOfDefs("Predicates"); | 
|  | auto It = llvm::find_if(Predicates, [](const Record *R) { | 
|  | return R->getValueAsBit("AssemblerMatcherPredicate"); | 
|  | }); | 
|  | bool AnyAsmPredicate = It != Predicates.end(); | 
|  | if (!AnyAsmPredicate) | 
|  | return false; | 
|  | SubtargetFeatureInfo::emitMCPredicateCheck(OS, Target.getName(), Predicates); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned DecoderTableBuilder::getPredicateIndex(StringRef Predicate) const { | 
|  | // Using the full predicate string as the key value here is a bit | 
|  | // heavyweight, but is effective. If the string comparisons become a | 
|  | // performance concern, we can implement a mangling of the predicate | 
|  | // data easily enough with a map back to the actual string. That's | 
|  | // overkill for now, though. | 
|  | TableInfo.insertPredicate(Predicate); | 
|  | return TableInfo.getPredicateIndex(Predicate); | 
|  | } | 
|  |  | 
|  | void DecoderTableBuilder::emitPredicateTableEntry(unsigned EncodingID) const { | 
|  | // Build up the predicate string. | 
|  | SmallString<256> Predicate; | 
|  | raw_svector_ostream PS(Predicate); | 
|  | if (!emitPredicateMatch(PS, EncodingID)) | 
|  | return; | 
|  |  | 
|  | // Figure out the index into the predicate table for the predicate just | 
|  | // computed. | 
|  | unsigned PIdx = getPredicateIndex(PS.str()); | 
|  |  | 
|  | TableInfo.Table.insertOpcode(OPC_CheckPredicate); | 
|  | TableInfo.Table.insertULEB128(PIdx); | 
|  | } | 
|  |  | 
|  | void DecoderTableBuilder::emitSoftFailTableEntry(unsigned EncodingID) const { | 
|  | const InstructionEncoding &Encoding = Encodings[EncodingID]; | 
|  | const KnownBits &InstBits = Encoding.getInstBits(); | 
|  | const APInt &SoftFailMask = Encoding.getSoftFailMask(); | 
|  |  | 
|  | if (SoftFailMask.isZero()) | 
|  | return; | 
|  |  | 
|  | APInt PositiveMask = InstBits.Zero & SoftFailMask; | 
|  | APInt NegativeMask = InstBits.One & SoftFailMask; | 
|  |  | 
|  | TableInfo.Table.insertOpcode(OPC_SoftFail); | 
|  | TableInfo.Table.insertULEB128(PositiveMask.getZExtValue()); | 
|  | TableInfo.Table.insertULEB128(NegativeMask.getZExtValue()); | 
|  | } | 
|  |  | 
|  | // Emits table entries to decode the singleton. | 
|  | void DecoderTableBuilder::emitSingletonTableEntry( | 
|  | const FilterChooser &FC) const { | 
|  | unsigned EncodingID = *FC.SingletonEncodingID; | 
|  | const InstructionEncoding &Encoding = Encodings[EncodingID]; | 
|  | KnownBits EncodingBits = Encoding.getMandatoryBits(); | 
|  |  | 
|  | // Look for islands of undecoded bits of the singleton. | 
|  | std::vector<FilterChooser::Island> Islands = FC.getIslands(EncodingBits); | 
|  |  | 
|  | // Emit the predicate table entry if one is needed. | 
|  | emitPredicateTableEntry(EncodingID); | 
|  |  | 
|  | // Check any additional encoding fields needed. | 
|  | for (const FilterChooser::Island &Ilnd : reverse(Islands)) { | 
|  | TableInfo.Table.insertOpcode(OPC_CheckField); | 
|  | TableInfo.Table.insertULEB128(Ilnd.StartBit); | 
|  | TableInfo.Table.insertUInt8(Ilnd.NumBits); | 
|  | TableInfo.Table.insertULEB128(Ilnd.FieldVal); | 
|  | } | 
|  |  | 
|  | // Check for soft failure of the match. | 
|  | emitSoftFailTableEntry(EncodingID); | 
|  |  | 
|  | unsigned DIdx = getDecoderIndex(EncodingID); | 
|  |  | 
|  | // Produce OPC_Decode or OPC_TryDecode opcode based on the information | 
|  | // whether the instruction decoder is complete or not. If it is complete | 
|  | // then it handles all possible values of remaining variable/unfiltered bits | 
|  | // and for any value can determine if the bitpattern is a valid instruction | 
|  | // or not. This means OPC_Decode will be the final step in the decoding | 
|  | // process. If it is not complete, then the Fail return code from the | 
|  | // decoder method indicates that additional processing should be done to see | 
|  | // if there is any other instruction that also matches the bitpattern and | 
|  | // can decode it. | 
|  | const DecoderOps DecoderOp = | 
|  | Encoding.hasCompleteDecoder() ? OPC_Decode : OPC_TryDecode; | 
|  | TableInfo.Table.insertOpcode(DecoderOp); | 
|  | const Record *InstDef = Encodings[EncodingID].getInstruction()->TheDef; | 
|  | TableInfo.Table.insertULEB128(Target.getInstrIntValue(InstDef)); | 
|  | TableInfo.Table.insertULEB128(DIdx); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<Filter> | 
|  | FilterChooser::findBestFilter(ArrayRef<bitAttr_t> BitAttrs, bool AllowMixed, | 
|  | bool Greedy) const { | 
|  | assert(EncodingIDs.size() >= 2 && "Nothing to filter"); | 
|  |  | 
|  | // Heuristics.  See also doFilter()'s "Heuristics" comment when num of | 
|  | // instructions is 3. | 
|  | if (AllowMixed && !Greedy) { | 
|  | assert(EncodingIDs.size() == 3); | 
|  |  | 
|  | for (unsigned EncodingID : EncodingIDs) { | 
|  | const InstructionEncoding &Encoding = Encodings[EncodingID]; | 
|  | KnownBits EncodingBits = Encoding.getMandatoryBits(); | 
|  |  | 
|  | // Look for islands of undecoded bits of any instruction. | 
|  | std::vector<Island> Islands = getIslands(EncodingBits); | 
|  | if (!Islands.empty()) { | 
|  | // Found an instruction with island(s).  Now just assign a filter. | 
|  | return std::make_unique<Filter>( | 
|  | Encodings, EncodingIDs, Islands[0].StartBit, Islands[0].NumBits); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // The regionAttr automaton consumes the bitAttrs automatons' state, | 
|  | // lowest-to-highest. | 
|  | // | 
|  | //   Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed) | 
|  | //   States:        NONE, ALL_SET, MIXED | 
|  | //   Initial state: NONE | 
|  | // | 
|  | // (NONE) ----- F --> (NONE) | 
|  | // (NONE) ----- S --> (ALL_SET)     ; and set region start | 
|  | // (NONE) ----- U --> (NONE) | 
|  | // (NONE) ----- M --> (MIXED)       ; and set region start | 
|  | // (ALL_SET) -- F --> (NONE)        ; and report an ALL_SET region | 
|  | // (ALL_SET) -- S --> (ALL_SET) | 
|  | // (ALL_SET) -- U --> (NONE)        ; and report an ALL_SET region | 
|  | // (ALL_SET) -- M --> (MIXED)       ; and report an ALL_SET region | 
|  | // (MIXED) ---- F --> (NONE)        ; and report a MIXED region | 
|  | // (MIXED) ---- S --> (ALL_SET)     ; and report a MIXED region | 
|  | // (MIXED) ---- U --> (NONE)        ; and report a MIXED region | 
|  | // (MIXED) ---- M --> (MIXED) | 
|  |  | 
|  | bitAttr_t RA = ATTR_NONE; | 
|  | unsigned StartBit = 0; | 
|  |  | 
|  | std::vector<std::unique_ptr<Filter>> Filters; | 
|  |  | 
|  | auto addCandidateFilter = [&](unsigned StartBit, unsigned EndBit) { | 
|  | Filters.push_back(std::make_unique<Filter>(Encodings, EncodingIDs, StartBit, | 
|  | EndBit - StartBit)); | 
|  | }; | 
|  |  | 
|  | unsigned FilterWidth = FilterBits.getBitWidth(); | 
|  | for (unsigned BitIndex = 0; BitIndex != FilterWidth; ++BitIndex) { | 
|  | bitAttr_t bitAttr = BitAttrs[BitIndex]; | 
|  |  | 
|  | assert(bitAttr != ATTR_NONE && "Bit without attributes"); | 
|  |  | 
|  | switch (RA) { | 
|  | case ATTR_NONE: | 
|  | switch (bitAttr) { | 
|  | case ATTR_FILTERED: | 
|  | break; | 
|  | case ATTR_ALL_SET: | 
|  | StartBit = BitIndex; | 
|  | RA = ATTR_ALL_SET; | 
|  | break; | 
|  | case ATTR_ALL_UNSET: | 
|  | break; | 
|  | case ATTR_MIXED: | 
|  | StartBit = BitIndex; | 
|  | RA = ATTR_MIXED; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unexpected bitAttr!"); | 
|  | } | 
|  | break; | 
|  | case ATTR_ALL_SET: | 
|  | if (!AllowMixed && bitAttr != ATTR_ALL_SET) | 
|  | addCandidateFilter(StartBit, BitIndex); | 
|  | switch (bitAttr) { | 
|  | case ATTR_FILTERED: | 
|  | RA = ATTR_NONE; | 
|  | break; | 
|  | case ATTR_ALL_SET: | 
|  | break; | 
|  | case ATTR_ALL_UNSET: | 
|  | RA = ATTR_NONE; | 
|  | break; | 
|  | case ATTR_MIXED: | 
|  | StartBit = BitIndex; | 
|  | RA = ATTR_MIXED; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unexpected bitAttr!"); | 
|  | } | 
|  | break; | 
|  | case ATTR_MIXED: | 
|  | if (AllowMixed && bitAttr != ATTR_MIXED) | 
|  | addCandidateFilter(StartBit, BitIndex); | 
|  | switch (bitAttr) { | 
|  | case ATTR_FILTERED: | 
|  | StartBit = BitIndex; | 
|  | RA = ATTR_NONE; | 
|  | break; | 
|  | case ATTR_ALL_SET: | 
|  | StartBit = BitIndex; | 
|  | RA = ATTR_ALL_SET; | 
|  | break; | 
|  | case ATTR_ALL_UNSET: | 
|  | RA = ATTR_NONE; | 
|  | break; | 
|  | case ATTR_MIXED: | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unexpected bitAttr!"); | 
|  | } | 
|  | break; | 
|  | case ATTR_ALL_UNSET: | 
|  | llvm_unreachable("regionAttr state machine has no ATTR_UNSET state"); | 
|  | case ATTR_FILTERED: | 
|  | llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // At the end, if we're still in ALL_SET or MIXED states, report a region | 
|  | switch (RA) { | 
|  | case ATTR_NONE: | 
|  | break; | 
|  | case ATTR_FILTERED: | 
|  | break; | 
|  | case ATTR_ALL_SET: | 
|  | if (!AllowMixed) | 
|  | addCandidateFilter(StartBit, FilterWidth); | 
|  | break; | 
|  | case ATTR_ALL_UNSET: | 
|  | break; | 
|  | case ATTR_MIXED: | 
|  | if (AllowMixed) | 
|  | addCandidateFilter(StartBit, FilterWidth); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // We have finished with the filter processings.  Now it's time to choose | 
|  | // the best performing filter. | 
|  | auto MaxIt = llvm::max_element(Filters, [](const std::unique_ptr<Filter> &A, | 
|  | const std::unique_ptr<Filter> &B) { | 
|  | return A->usefulness() < B->usefulness(); | 
|  | }); | 
|  | if (MaxIt == Filters.end() || (*MaxIt)->usefulness() == 0) | 
|  | return nullptr; | 
|  | return std::move(*MaxIt); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<Filter> FilterChooser::findBestFilter() const { | 
|  | // We maintain BIT_WIDTH copies of the bitAttrs automaton. | 
|  | // The automaton consumes the corresponding bit from each | 
|  | // instruction. | 
|  | // | 
|  | //   Input symbols: 0, 1, _ (unset), and . (any of the above). | 
|  | //   States:        NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED. | 
|  | //   Initial state: NONE. | 
|  | // | 
|  | // (NONE) ------- [01] -> (ALL_SET) | 
|  | // (NONE) ------- _ ----> (ALL_UNSET) | 
|  | // (ALL_SET) ---- [01] -> (ALL_SET) | 
|  | // (ALL_SET) ---- _ ----> (MIXED) | 
|  | // (ALL_UNSET) -- [01] -> (MIXED) | 
|  | // (ALL_UNSET) -- _ ----> (ALL_UNSET) | 
|  | // (MIXED) ------ . ----> (MIXED) | 
|  | // (FILTERED)---- . ----> (FILTERED) | 
|  |  | 
|  | unsigned FilterWidth = FilterBits.getBitWidth(); | 
|  | SmallVector<bitAttr_t, 128> BitAttrs(FilterWidth, ATTR_NONE); | 
|  |  | 
|  | // FILTERED bit positions provide no entropy and are not worthy of pursuing. | 
|  | // Filter::recurse() set either 1 or 0 for each position. | 
|  | for (unsigned BitIndex = 0; BitIndex != FilterWidth; ++BitIndex) | 
|  | if (isPositionFiltered(BitIndex)) | 
|  | BitAttrs[BitIndex] = ATTR_FILTERED; | 
|  |  | 
|  | for (unsigned EncodingID : EncodingIDs) { | 
|  | const InstructionEncoding &Encoding = Encodings[EncodingID]; | 
|  | KnownBits EncodingBits = Encoding.getMandatoryBits(); | 
|  |  | 
|  | for (unsigned BitIndex = 0; BitIndex != FilterWidth; ++BitIndex) { | 
|  | bool IsKnown = EncodingBits.Zero[BitIndex] || EncodingBits.One[BitIndex]; | 
|  | switch (BitAttrs[BitIndex]) { | 
|  | case ATTR_NONE: | 
|  | if (IsKnown) | 
|  | BitAttrs[BitIndex] = ATTR_ALL_SET; | 
|  | else | 
|  | BitAttrs[BitIndex] = ATTR_ALL_UNSET; | 
|  | break; | 
|  | case ATTR_ALL_SET: | 
|  | if (!IsKnown) | 
|  | BitAttrs[BitIndex] = ATTR_MIXED; | 
|  | break; | 
|  | case ATTR_ALL_UNSET: | 
|  | if (IsKnown) | 
|  | BitAttrs[BitIndex] = ATTR_MIXED; | 
|  | break; | 
|  | case ATTR_MIXED: | 
|  | case ATTR_FILTERED: | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try regions of consecutive known bit values first. | 
|  | if (std::unique_ptr<Filter> F = | 
|  | findBestFilter(BitAttrs, /*AllowMixed=*/false)) | 
|  | return F; | 
|  |  | 
|  | // Then regions of mixed bits (both known and unitialized bit values allowed). | 
|  | if (std::unique_ptr<Filter> F = findBestFilter(BitAttrs, /*AllowMixed=*/true)) | 
|  | return F; | 
|  |  | 
|  | // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where | 
|  | // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a | 
|  | // well-known encoding pattern.  In such case, we backtrack and scan for the | 
|  | // the very first consecutive ATTR_ALL_SET region and assign a filter to it. | 
|  | if (EncodingIDs.size() == 3) { | 
|  | if (std::unique_ptr<Filter> F = | 
|  | findBestFilter(BitAttrs, /*AllowMixed=*/true, /*Greedy=*/false)) | 
|  | return F; | 
|  | } | 
|  |  | 
|  | // There is a conflict we could not resolve. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Decides on the best configuration of filter(s) to use in order to decode | 
|  | // the instructions.  A conflict of instructions may occur, in which case we | 
|  | // dump the conflict set to the standard error. | 
|  | void FilterChooser::doFilter() { | 
|  | assert(!EncodingIDs.empty() && "FilterChooser created with no instructions"); | 
|  |  | 
|  | // No filter needed. | 
|  | if (EncodingIDs.size() == 1) { | 
|  | SingletonEncodingID = EncodingIDs.front(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | std::unique_ptr<Filter> BestFilter = findBestFilter(); | 
|  | if (BestFilter) { | 
|  | applyFilter(*BestFilter); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Print out useful conflict information for postmortem analysis. | 
|  | errs() << "Decoding Conflict:\n"; | 
|  | dump(); | 
|  | HasConflict = true; | 
|  | } | 
|  |  | 
|  | void FilterChooser::dump() const { | 
|  | indent Indent(4); | 
|  | // Helps to keep the output right-justified. | 
|  | unsigned PadToWidth = getMaxEncodingWidth(); | 
|  |  | 
|  | // Dump filter stack. | 
|  | dumpStack(errs(), Indent, PadToWidth); | 
|  |  | 
|  | // Dump encodings. | 
|  | for (unsigned EncodingID : EncodingIDs) { | 
|  | const InstructionEncoding &Encoding = Encodings[EncodingID]; | 
|  | errs() << Indent << indent(PadToWidth - Encoding.getBitWidth()); | 
|  | printKnownBits(errs(), Encoding.getMandatoryBits(), '_'); | 
|  | errs() << "  " << Encoding.getName() << '\n'; | 
|  | } | 
|  | } | 
|  |  | 
|  | void DecoderTableBuilder::emitTableEntries(const FilterChooser &FC) const { | 
|  | DecoderTable &Table = TableInfo.Table; | 
|  |  | 
|  | // If there are other encodings that could match if those with all bits | 
|  | // known don't, enter a scope so that they have a chance. | 
|  | size_t FixupLoc = 0; | 
|  | if (FC.VariableFC) { | 
|  | Table.insertOpcode(OPC_Scope); | 
|  | FixupLoc = Table.insertNumToSkip(); | 
|  | } | 
|  |  | 
|  | if (FC.SingletonEncodingID) { | 
|  | assert(FC.FilterChooserMap.empty()); | 
|  | // There is only one encoding in which all bits in the filtered range are | 
|  | // fully defined, but we still need to check if the remaining (unfiltered) | 
|  | // bits are valid for this encoding. We also need to check predicates etc. | 
|  | emitSingletonTableEntry(FC); | 
|  | } else if (FC.FilterChooserMap.size() == 1) { | 
|  | // If there is only one possible field value, emit a combined OPC_CheckField | 
|  | // instead of OPC_ExtractField + OPC_FilterValue. | 
|  | const auto &[FilterVal, Delegate] = *FC.FilterChooserMap.begin(); | 
|  | Table.insertOpcode(OPC_CheckField); | 
|  | Table.insertULEB128(FC.StartBit); | 
|  | Table.insertUInt8(FC.NumBits); | 
|  | Table.insertULEB128(FilterVal); | 
|  |  | 
|  | // Emit table entries for the only case. | 
|  | emitTableEntries(*Delegate); | 
|  | } else { | 
|  | // The general case: emit a switch over the field value. | 
|  | Table.insertOpcode(OPC_ExtractField); | 
|  | Table.insertULEB128(FC.StartBit); | 
|  | Table.insertUInt8(FC.NumBits); | 
|  |  | 
|  | // Emit switch cases for all but the last element. | 
|  | for (const auto &[FilterVal, Delegate] : drop_end(FC.FilterChooserMap)) { | 
|  | Table.insertOpcode(OPC_FilterValueOrSkip); | 
|  | Table.insertULEB128(FilterVal); | 
|  | size_t FixupPos = Table.insertNumToSkip(); | 
|  |  | 
|  | // Emit table entries for this case. | 
|  | emitTableEntries(*Delegate); | 
|  |  | 
|  | // Patch the previous FilterValueOrSkip to fall through to the next case. | 
|  | Table.patchNumToSkip(FixupPos, Table.size()); | 
|  | } | 
|  |  | 
|  | // Emit a switch case for the last element. It never falls through; | 
|  | // if it doesn't match, we leave the current scope. | 
|  | const auto &[FilterVal, Delegate] = *FC.FilterChooserMap.rbegin(); | 
|  | Table.insertOpcode(OPC_FilterValue); | 
|  | Table.insertULEB128(FilterVal); | 
|  |  | 
|  | // Emit table entries for the last case. | 
|  | emitTableEntries(*Delegate); | 
|  | } | 
|  |  | 
|  | if (FC.VariableFC) { | 
|  | Table.patchNumToSkip(FixupLoc, Table.size()); | 
|  | emitTableEntries(*FC.VariableFC); | 
|  | } | 
|  | } | 
|  |  | 
|  | // emitDecodeInstruction - Emit the templated helper function | 
|  | // decodeInstruction(). | 
|  | static void emitDecodeInstruction(formatted_raw_ostream &OS, bool IsVarLenInst, | 
|  | unsigned OpcodeMask) { | 
|  | const bool HasTryDecode = OpcodeMask & (1 << OPC_TryDecode); | 
|  | const bool HasCheckPredicate = OpcodeMask & (1 << OPC_CheckPredicate); | 
|  | const bool HasSoftFail = OpcodeMask & (1 << OPC_SoftFail); | 
|  |  | 
|  | OS << R"( | 
|  | static unsigned decodeNumToSkip(const uint8_t *&Ptr) { | 
|  | unsigned NumToSkip = *Ptr++; | 
|  | NumToSkip |= (*Ptr++) << 8; | 
|  | )"; | 
|  | if (getNumToSkipInBytes() == 3) | 
|  | OS << "  NumToSkip |= (*Ptr++) << 16;\n"; | 
|  | OS << R"(  return NumToSkip; | 
|  | } | 
|  |  | 
|  | template <typename InsnType> | 
|  | static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], MCInst &MI, | 
|  | InsnType insn, uint64_t Address, | 
|  | const MCDisassembler *DisAsm, | 
|  | const MCSubtargetInfo &STI)"; | 
|  | if (IsVarLenInst) { | 
|  | OS << ",\n                                      " | 
|  | "llvm::function_ref<void(APInt &, uint64_t)> makeUp"; | 
|  | } | 
|  | OS << ") {\n"; | 
|  | if (HasCheckPredicate) | 
|  | OS << "  const FeatureBitset &Bits = STI.getFeatureBits();\n"; | 
|  | OS << "  const uint8_t *Ptr = DecodeTable;\n"; | 
|  |  | 
|  | if (SpecializeDecodersPerBitwidth) { | 
|  | // Fail with a fatal error if decoder table's bitwidth does not match | 
|  | // `InsnType` bitwidth. | 
|  | OS << R"( | 
|  | [[maybe_unused]] uint32_t BitWidth = decodeULEB128AndIncUnsafe(Ptr); | 
|  | assert(InsnBitWidth<InsnType> == BitWidth && | 
|  | "Table and instruction bitwidth mismatch"); | 
|  | )"; | 
|  | } | 
|  |  | 
|  | OS << R"( | 
|  | SmallVector<const uint8_t *, 8> ScopeStack; | 
|  | uint64_t CurFieldValue = 0; | 
|  | DecodeStatus S = MCDisassembler::Success; | 
|  | while (true) { | 
|  | ptrdiff_t Loc = Ptr - DecodeTable; | 
|  | const uint8_t DecoderOp = *Ptr++; | 
|  | switch (DecoderOp) { | 
|  | default: | 
|  | errs() << Loc << ": Unexpected decode table opcode: " | 
|  | << (int)DecoderOp << '\n'; | 
|  | return MCDisassembler::Fail; | 
|  | case OPC_Scope: { | 
|  | unsigned NumToSkip = decodeNumToSkip(Ptr); | 
|  | const uint8_t *SkipTo = Ptr + NumToSkip; | 
|  | ScopeStack.push_back(SkipTo); | 
|  | LLVM_DEBUG(dbgs() << Loc << ": OPC_Scope(" << SkipTo - DecodeTable | 
|  | << ")\n"); | 
|  | break; | 
|  | } | 
|  | case OPC_ExtractField: { | 
|  | // Decode the start value. | 
|  | unsigned Start = decodeULEB128AndIncUnsafe(Ptr); | 
|  | unsigned Len = *Ptr++;)"; | 
|  | if (IsVarLenInst) | 
|  | OS << "\n      makeUp(insn, Start + Len);"; | 
|  | OS << R"( | 
|  | CurFieldValue = fieldFromInstruction(insn, Start, Len); | 
|  | LLVM_DEBUG(dbgs() << Loc << ": OPC_ExtractField(" << Start << ", " | 
|  | << Len << "): " << CurFieldValue << "\n"); | 
|  | break; | 
|  | } | 
|  | case OPC_FilterValueOrSkip: { | 
|  | // Decode the field value. | 
|  | uint64_t Val = decodeULEB128AndIncUnsafe(Ptr); | 
|  | bool Failed = Val != CurFieldValue; | 
|  | unsigned NumToSkip = decodeNumToSkip(Ptr); | 
|  | const uint8_t *SkipTo = Ptr + NumToSkip; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << Loc << ": OPC_FilterValueOrSkip(" << Val << ", " | 
|  | << SkipTo - DecodeTable << ") " | 
|  | << (Failed ? "FAIL, " : "PASS\n")); | 
|  |  | 
|  | if (Failed) { | 
|  | Ptr = SkipTo; | 
|  | LLVM_DEBUG(dbgs() << "continuing at " << Ptr - DecodeTable << '\n'); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case OPC_FilterValue: { | 
|  | // Decode the field value. | 
|  | uint64_t Val = decodeULEB128AndIncUnsafe(Ptr); | 
|  | bool Failed = Val != CurFieldValue; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << Loc << ": OPC_FilterValue(" << Val << ") " | 
|  | << (Failed ? "FAIL, " : "PASS\n")); | 
|  |  | 
|  | if (Failed) { | 
|  | if (ScopeStack.empty()) { | 
|  | LLVM_DEBUG(dbgs() << "returning Fail\n"); | 
|  | return MCDisassembler::Fail; | 
|  | } | 
|  | Ptr = ScopeStack.pop_back_val(); | 
|  | LLVM_DEBUG(dbgs() << "continuing at " << Ptr - DecodeTable << '\n'); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case OPC_CheckField: { | 
|  | // Decode the start value. | 
|  | unsigned Start = decodeULEB128AndIncUnsafe(Ptr); | 
|  | unsigned Len = *Ptr;)"; | 
|  | if (IsVarLenInst) | 
|  | OS << "\n      makeUp(insn, Start + Len);"; | 
|  | OS << R"( | 
|  | uint64_t FieldValue = fieldFromInstruction(insn, Start, Len); | 
|  | // Decode the field value. | 
|  | unsigned PtrLen = 0; | 
|  | uint64_t ExpectedValue = decodeULEB128(++Ptr, &PtrLen); | 
|  | Ptr += PtrLen; | 
|  | bool Failed = ExpectedValue != FieldValue; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << Loc << ": OPC_CheckField(" << Start << ", " << Len | 
|  | << ", " << ExpectedValue << "): FieldValue = " | 
|  | << FieldValue << ", ExpectedValue = " << ExpectedValue | 
|  | << ": " << (Failed ? "FAIL, " : "PASS\n");); | 
|  | if (Failed) { | 
|  | if (ScopeStack.empty()) { | 
|  | LLVM_DEBUG(dbgs() << "returning Fail\n"); | 
|  | return MCDisassembler::Fail; | 
|  | } | 
|  | Ptr = ScopeStack.pop_back_val(); | 
|  | LLVM_DEBUG(dbgs() << "continuing at " << Ptr - DecodeTable << '\n'); | 
|  | } | 
|  | break; | 
|  | })"; | 
|  | if (HasCheckPredicate) { | 
|  | OS << R"( | 
|  | case OPC_CheckPredicate: { | 
|  | // Decode the Predicate Index value. | 
|  | unsigned PIdx = decodeULEB128AndIncUnsafe(Ptr); | 
|  | // Check the predicate. | 
|  | bool Failed = !checkDecoderPredicate(PIdx, Bits); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << Loc << ": OPC_CheckPredicate(" << PIdx << "): " | 
|  | << (Failed ? "FAIL, " : "PASS\n");); | 
|  |  | 
|  | if (Failed) { | 
|  | if (ScopeStack.empty()) { | 
|  | LLVM_DEBUG(dbgs() << "returning Fail\n"); | 
|  | return MCDisassembler::Fail; | 
|  | } | 
|  | Ptr = ScopeStack.pop_back_val(); | 
|  | LLVM_DEBUG(dbgs() << "continuing at " << Ptr - DecodeTable << '\n'); | 
|  | } | 
|  | break; | 
|  | })"; | 
|  | } | 
|  | OS << R"( | 
|  | case OPC_Decode: { | 
|  | // Decode the Opcode value. | 
|  | unsigned Opc = decodeULEB128AndIncUnsafe(Ptr); | 
|  | unsigned DecodeIdx = decodeULEB128AndIncUnsafe(Ptr); | 
|  |  | 
|  | MI.clear(); | 
|  | MI.setOpcode(Opc); | 
|  | bool DecodeComplete;)"; | 
|  | if (IsVarLenInst) { | 
|  | OS << "\n      unsigned Len = InstrLenTable[Opc];\n" | 
|  | << "      makeUp(insn, Len);"; | 
|  | } | 
|  | OS << R"( | 
|  | S = decodeToMCInst(DecodeIdx, S, insn, MI, Address, DisAsm, DecodeComplete); | 
|  | assert(DecodeComplete); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << Loc << ": OPC_Decode: opcode " << Opc | 
|  | << ", using decoder " << DecodeIdx << ": " | 
|  | << (S != MCDisassembler::Fail ? "PASS\n" : "FAIL\n")); | 
|  | return S; | 
|  | })"; | 
|  | if (HasTryDecode) { | 
|  | OS << R"( | 
|  | case OPC_TryDecode: { | 
|  | // Decode the Opcode value. | 
|  | unsigned Opc = decodeULEB128AndIncUnsafe(Ptr); | 
|  | unsigned DecodeIdx = decodeULEB128AndIncUnsafe(Ptr); | 
|  |  | 
|  | // Perform the decode operation. | 
|  | MCInst TmpMI; | 
|  | TmpMI.setOpcode(Opc); | 
|  | bool DecodeComplete; | 
|  | S = decodeToMCInst(DecodeIdx, S, insn, TmpMI, Address, DisAsm, DecodeComplete); | 
|  | LLVM_DEBUG(dbgs() << Loc << ": OPC_TryDecode: opcode " << Opc | 
|  | << ", using decoder " << DecodeIdx << ": "); | 
|  |  | 
|  | if (DecodeComplete) { | 
|  | // Decoding complete. | 
|  | LLVM_DEBUG(dbgs() << (S != MCDisassembler::Fail ? "PASS\n" : "FAIL\n")); | 
|  | MI = TmpMI; | 
|  | return S; | 
|  | } | 
|  | assert(S == MCDisassembler::Fail); | 
|  | if (ScopeStack.empty()) { | 
|  | LLVM_DEBUG(dbgs() << "FAIL, returning FAIL\n"); | 
|  | return MCDisassembler::Fail; | 
|  | } | 
|  | Ptr = ScopeStack.pop_back_val(); | 
|  | LLVM_DEBUG(dbgs() << "FAIL, continuing at " << Ptr - DecodeTable << '\n'); | 
|  | // Reset decode status. This also drops a SoftFail status that could be | 
|  | // set before the decode attempt. | 
|  | S = MCDisassembler::Success; | 
|  | break; | 
|  | })"; | 
|  | } | 
|  | if (HasSoftFail) { | 
|  | OS << R"( | 
|  | case OPC_SoftFail: { | 
|  | // Decode the mask values. | 
|  | uint64_t PositiveMask = decodeULEB128AndIncUnsafe(Ptr); | 
|  | uint64_t NegativeMask = decodeULEB128AndIncUnsafe(Ptr); | 
|  | bool Failed = (insn & PositiveMask) != 0 || (~insn & NegativeMask) != 0; | 
|  | if (Failed) | 
|  | S = MCDisassembler::SoftFail; | 
|  | LLVM_DEBUG(dbgs() << Loc << ": OPC_SoftFail: " << (Failed ? "FAIL\n" : "PASS\n")); | 
|  | break; | 
|  | })"; | 
|  | } | 
|  | OS << R"( | 
|  | } | 
|  | } | 
|  | llvm_unreachable("bogosity detected in disassembler state machine!"); | 
|  | } | 
|  |  | 
|  | )"; | 
|  | } | 
|  |  | 
|  | /// Collects all HwModes referenced by the target for encoding purposes. | 
|  | void DecoderEmitter::collectHwModesReferencedForEncodings( | 
|  | std::vector<unsigned> &HwModeIDs, | 
|  | NamespacesHwModesMap &NamespacesWithHwModes) const { | 
|  | SmallBitVector BV(CGH.getNumModeIds()); | 
|  | for (const auto &MS : CGH.getHwModeSelects()) { | 
|  | for (auto [HwModeID, EncodingDef] : MS.second.Items) { | 
|  | if (EncodingDef->isSubClassOf("InstructionEncoding")) { | 
|  | StringRef DecoderNamespace = | 
|  | EncodingDef->getValueAsString("DecoderNamespace"); | 
|  | NamespacesWithHwModes[DecoderNamespace].insert(HwModeID); | 
|  | BV.set(HwModeID); | 
|  | } | 
|  | } | 
|  | } | 
|  | // FIXME: Can't do `HwModeIDs.assign(BV.set_bits_begin(), BV.set_bits_end())` | 
|  | //   because const_set_bits_iterator_impl is not copy-assignable. | 
|  | //   This breaks some MacOS builds. | 
|  | llvm::copy(BV.set_bits(), std::back_inserter(HwModeIDs)); | 
|  | } | 
|  |  | 
|  | void DecoderEmitter::handleHwModesUnrelatedEncodings( | 
|  | unsigned EncodingID, ArrayRef<unsigned> HwModeIDs, | 
|  | NamespacesHwModesMap &NamespacesWithHwModes) { | 
|  | switch (DecoderEmitterSuppressDuplicates) { | 
|  | case SUPPRESSION_DISABLE: { | 
|  | for (unsigned HwModeID : HwModeIDs) | 
|  | EncodingIDsByHwMode[HwModeID].push_back(EncodingID); | 
|  | break; | 
|  | } | 
|  | case SUPPRESSION_LEVEL1: { | 
|  | StringRef DecoderNamespace = Encodings[EncodingID].getDecoderNamespace(); | 
|  | auto It = NamespacesWithHwModes.find(DecoderNamespace); | 
|  | if (It != NamespacesWithHwModes.end()) { | 
|  | for (unsigned HwModeID : It->second) | 
|  | EncodingIDsByHwMode[HwModeID].push_back(EncodingID); | 
|  | } else { | 
|  | // Only emit the encoding once, as it's DecoderNamespace doesn't | 
|  | // contain any HwModes. | 
|  | EncodingIDsByHwMode[DefaultMode].push_back(EncodingID); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case SUPPRESSION_LEVEL2: | 
|  | EncodingIDsByHwMode[DefaultMode].push_back(EncodingID); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Checks if the given target-specific non-pseudo instruction | 
|  | /// is a candidate for decoding. | 
|  | static bool isDecodableInstruction(const Record *InstDef) { | 
|  | return !InstDef->getValueAsBit("isAsmParserOnly") && | 
|  | !InstDef->getValueAsBit("isCodeGenOnly"); | 
|  | } | 
|  |  | 
|  | /// Checks if the given encoding is valid. | 
|  | static bool isValidEncoding(const Record *EncodingDef) { | 
|  | const RecordVal *InstField = EncodingDef->getValue("Inst"); | 
|  | if (!InstField) | 
|  | return false; | 
|  |  | 
|  | if (const auto *InstInit = dyn_cast<BitsInit>(InstField->getValue())) { | 
|  | // Fixed-length encoding. Size must be non-zero. | 
|  | if (!EncodingDef->getValueAsInt("Size")) | 
|  | return false; | 
|  |  | 
|  | // At least one of the encoding bits must be complete (not '?'). | 
|  | // FIXME: This should take SoftFail field into account. | 
|  | return !InstInit->allInComplete(); | 
|  | } | 
|  |  | 
|  | if (const auto *InstInit = dyn_cast<DagInit>(InstField->getValue())) { | 
|  | // Variable-length encoding. | 
|  | // At least one of the encoding bits must be complete (not '?'). | 
|  | VarLenInst VLI(InstInit, InstField); | 
|  | return !all_of(VLI, [](const EncodingSegment &Segment) { | 
|  | return isa<UnsetInit>(Segment.Value); | 
|  | }); | 
|  | } | 
|  |  | 
|  | // Inst field is neither BitsInit nor DagInit. This is something unsupported. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Parses all InstructionEncoding instances and fills internal data structures. | 
|  | void DecoderEmitter::parseInstructionEncodings() { | 
|  | // First, collect all encoding-related HwModes referenced by the target. | 
|  | // And establish a mapping table between DecoderNamespace and HwMode. | 
|  | // If HwModeNames is empty, add the default mode so we always have one HwMode. | 
|  | std::vector<unsigned> HwModeIDs; | 
|  | NamespacesHwModesMap NamespacesWithHwModes; | 
|  | collectHwModesReferencedForEncodings(HwModeIDs, NamespacesWithHwModes); | 
|  | if (HwModeIDs.empty()) | 
|  | HwModeIDs.push_back(DefaultMode); | 
|  |  | 
|  | ArrayRef<const CodeGenInstruction *> Instructions = | 
|  | Target.getTargetNonPseudoInstructions(); | 
|  | Encodings.reserve(Instructions.size()); | 
|  |  | 
|  | for (const CodeGenInstruction *Inst : Instructions) { | 
|  | const Record *InstDef = Inst->TheDef; | 
|  | if (!isDecodableInstruction(InstDef)) { | 
|  | ++NumEncodingsLackingDisasm; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (const Record *RV = InstDef->getValueAsOptionalDef("EncodingInfos")) { | 
|  | EncodingInfoByHwMode EBM(RV, CGH); | 
|  | for (auto [HwModeID, EncodingDef] : EBM) { | 
|  | if (!isValidEncoding(EncodingDef)) { | 
|  | // TODO: Should probably give a warning. | 
|  | ++NumEncodingsOmitted; | 
|  | continue; | 
|  | } | 
|  | unsigned EncodingID = Encodings.size(); | 
|  | Encodings.emplace_back(EncodingDef, Inst); | 
|  | EncodingIDsByHwMode[HwModeID].push_back(EncodingID); | 
|  | } | 
|  | continue; // Ignore encoding specified by Instruction itself. | 
|  | } | 
|  |  | 
|  | if (!isValidEncoding(InstDef)) { | 
|  | ++NumEncodingsOmitted; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | unsigned EncodingID = Encodings.size(); | 
|  | Encodings.emplace_back(InstDef, Inst); | 
|  |  | 
|  | // This instruction is encoded the same on all HwModes. | 
|  | // According to user needs, add it to all, some, or only the default HwMode. | 
|  | handleHwModesUnrelatedEncodings(EncodingID, HwModeIDs, | 
|  | NamespacesWithHwModes); | 
|  | } | 
|  |  | 
|  | for (const Record *EncodingDef : | 
|  | RK.getAllDerivedDefinitions("AdditionalEncoding")) { | 
|  | const Record *InstDef = EncodingDef->getValueAsDef("AliasOf"); | 
|  | // TODO: Should probably give a warning in these cases. | 
|  | //   What's the point of specifying an additional encoding | 
|  | //   if it is invalid or if the instruction is not decodable? | 
|  | if (!isDecodableInstruction(InstDef)) { | 
|  | ++NumEncodingsLackingDisasm; | 
|  | continue; | 
|  | } | 
|  | if (!isValidEncoding(EncodingDef)) { | 
|  | ++NumEncodingsOmitted; | 
|  | continue; | 
|  | } | 
|  | unsigned EncodingID = Encodings.size(); | 
|  | Encodings.emplace_back(EncodingDef, &Target.getInstruction(InstDef)); | 
|  | EncodingIDsByHwMode[DefaultMode].push_back(EncodingID); | 
|  | } | 
|  |  | 
|  | // Do some statistics. | 
|  | NumInstructions = Instructions.size(); | 
|  | NumEncodingsSupported = Encodings.size(); | 
|  | NumEncodings = NumEncodingsSupported + NumEncodingsOmitted; | 
|  | } | 
|  |  | 
|  | DecoderEmitter::DecoderEmitter(const RecordKeeper &RK) | 
|  | : RK(RK), Target(RK), CGH(Target.getHwModes()) { | 
|  | Target.reverseBitsForLittleEndianEncoding(); | 
|  | parseInstructionEncodings(); | 
|  | } | 
|  |  | 
|  | // Emits disassembler code for instruction decoding. | 
|  | void DecoderEmitter::run(raw_ostream &o) const { | 
|  | formatted_raw_ostream OS(o); | 
|  | OS << R"( | 
|  | #include "llvm/MC/MCInst.h" | 
|  | #include "llvm/MC/MCSubtargetInfo.h" | 
|  | #include "llvm/Support/DataTypes.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/LEB128.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/TargetParser/SubtargetFeature.h" | 
|  | #include <assert.h> | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // InsnBitWidth is essentially a type trait used by the decoder emitter to query | 
|  | // the supported bitwidth for a given type. But default, the value is 0, making | 
|  | // it an invalid type for use as `InsnType` when instantiating the decoder. | 
|  | // Individual targets are expected to provide specializations for these based | 
|  | // on their usage. | 
|  | template <typename T> constexpr uint32_t InsnBitWidth = 0; | 
|  |  | 
|  | )"; | 
|  |  | 
|  | // Do extra bookkeeping for variable-length encodings. | 
|  | bool IsVarLenInst = Target.hasVariableLengthEncodings(); | 
|  | unsigned MaxInstLen = 0; | 
|  | if (IsVarLenInst) { | 
|  | std::vector<unsigned> InstrLen(Target.getInstructions().size(), 0); | 
|  | for (const InstructionEncoding &Encoding : Encodings) { | 
|  | MaxInstLen = std::max(MaxInstLen, Encoding.getBitWidth()); | 
|  | InstrLen[Target.getInstrIntValue(Encoding.getInstruction()->TheDef)] = | 
|  | Encoding.getBitWidth(); | 
|  | } | 
|  |  | 
|  | // For variable instruction, we emit an instruction length table to let the | 
|  | // decoder know how long the instructions are. You can see example usage in | 
|  | // M68k's disassembler. | 
|  | emitInstrLenTable(OS, InstrLen); | 
|  | } | 
|  |  | 
|  | // Map of (bitwidth, namespace, hwmode) tuple to encoding IDs. | 
|  | // Its organized as a nested map, with the (namespace, hwmode) as the key for | 
|  | // the inner map and bitwidth as the key for the outer map. We use std::map | 
|  | // for deterministic iteration order so that the code emitted is also | 
|  | // deterministic. | 
|  | using InnerKeyTy = std::pair<StringRef, unsigned>; | 
|  | using InnerMapTy = std::map<InnerKeyTy, std::vector<unsigned>>; | 
|  | std::map<unsigned, InnerMapTy> EncMap; | 
|  |  | 
|  | for (const auto &[HwModeID, EncodingIDs] : EncodingIDsByHwMode) { | 
|  | for (unsigned EncodingID : EncodingIDs) { | 
|  | const InstructionEncoding &Encoding = Encodings[EncodingID]; | 
|  | const unsigned BitWidth = | 
|  | IsVarLenInst ? MaxInstLen : Encoding.getBitWidth(); | 
|  | StringRef DecoderNamespace = Encoding.getDecoderNamespace(); | 
|  | EncMap[BitWidth][{DecoderNamespace, HwModeID}].push_back(EncodingID); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Variable length instructions use the same `APInt` type for all instructions | 
|  | // so we cannot specialize decoders based on instruction bitwidths (which | 
|  | // requires using different `InstType` for differet bitwidths for the correct | 
|  | // template specialization to kick in). | 
|  | if (IsVarLenInst && SpecializeDecodersPerBitwidth) | 
|  | PrintFatalError( | 
|  | "Cannot specialize decoders for variable length instuctions"); | 
|  |  | 
|  | // Entries in `EncMap` are already sorted by bitwidth. So bucketing per | 
|  | // bitwidth can be done on-the-fly as we iterate over the map. | 
|  | DecoderTableInfo TableInfo; | 
|  | DecoderTableBuilder TableBuilder(Target, Encodings, TableInfo); | 
|  | unsigned OpcodeMask = 0; | 
|  |  | 
|  | bool HasConflict = false; | 
|  | for (const auto &[BitWidth, BWMap] : EncMap) { | 
|  | for (const auto &[Key, EncodingIDs] : BWMap) { | 
|  | auto [DecoderNamespace, HwModeID] = Key; | 
|  |  | 
|  | // Emit the decoder for this (namespace, hwmode, width) combination. | 
|  | FilterChooser FC(Encodings, EncodingIDs); | 
|  | HasConflict |= FC.hasConflict(); | 
|  | // Skip emitting table entries if a conflict has been detected. | 
|  | if (HasConflict) | 
|  | continue; | 
|  |  | 
|  | // The decode table is cleared for each top level decoder function. The | 
|  | // predicates and decoders themselves, however, are shared across | 
|  | // different decoders to give more opportunities for uniqueing. | 
|  | //  - If `SpecializeDecodersPerBitwidth` is enabled, decoders are shared | 
|  | //    across all decoder tables for a given bitwidth, else they are shared | 
|  | //    across all decoder tables. | 
|  | //  - predicates are shared across all decoder tables. | 
|  | TableInfo.Table.clear(); | 
|  | TableBuilder.buildTable(FC, BitWidth); | 
|  |  | 
|  | // Print the table to the output stream. | 
|  | OpcodeMask |= emitTable(OS, TableInfo.Table, DecoderNamespace, HwModeID, | 
|  | BitWidth, EncodingIDs); | 
|  | } | 
|  |  | 
|  | // Each BitWidth get's its own decoders and decoder function if | 
|  | // SpecializeDecodersPerBitwidth is enabled. | 
|  | if (SpecializeDecodersPerBitwidth) { | 
|  | emitDecoderFunction(OS, TableInfo.Decoders, BitWidth); | 
|  | TableInfo.Decoders.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (HasConflict) | 
|  | PrintFatalError("Decoding conflict encountered"); | 
|  |  | 
|  | // Emit the decoder function for the last bucket. This will also emit the | 
|  | // single decoder function if SpecializeDecodersPerBitwidth = false. | 
|  | if (!SpecializeDecodersPerBitwidth) | 
|  | emitDecoderFunction(OS, TableInfo.Decoders, 0); | 
|  |  | 
|  | const bool HasCheckPredicate = OpcodeMask & (1 << OPC_CheckPredicate); | 
|  |  | 
|  | // Emit the predicate function. | 
|  | if (HasCheckPredicate) | 
|  | emitPredicateFunction(OS, TableInfo.Predicates); | 
|  |  | 
|  | // Emit the main entry point for the decoder, decodeInstruction(). | 
|  | emitDecodeInstruction(OS, IsVarLenInst, OpcodeMask); | 
|  |  | 
|  | OS << "\n} // namespace\n"; | 
|  | } | 
|  |  | 
|  | void llvm::EmitDecoder(const RecordKeeper &RK, raw_ostream &OS) { | 
|  | DecoderEmitter(RK).run(OS); | 
|  | } |