|  | //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "Basic/SDNodeProperties.h" | 
|  | #include "Common/CodeGenDAGPatterns.h" | 
|  | #include "Common/CodeGenInstruction.h" | 
|  | #include "Common/CodeGenRegisters.h" | 
|  | #include "Common/CodeGenTarget.h" | 
|  | #include "Common/DAGISelMatcher.h" | 
|  | #include "Common/InfoByHwMode.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringMap.h" | 
|  | #include "llvm/TableGen/Error.h" | 
|  | #include "llvm/TableGen/Record.h" | 
|  | #include <utility> | 
|  | using namespace llvm; | 
|  |  | 
|  | /// getRegisterValueType - Look up and return the ValueType of the specified | 
|  | /// register. If the register is a member of multiple register classes, they | 
|  | /// must all have the same type. | 
|  | static MVT::SimpleValueType getRegisterValueType(const Record *R, | 
|  | const CodeGenTarget &T) { | 
|  | bool FoundRC = false; | 
|  | MVT::SimpleValueType VT = MVT::Other; | 
|  | const CodeGenRegister *Reg = T.getRegBank().getReg(R); | 
|  |  | 
|  | for (const auto &RC : T.getRegBank().getRegClasses()) { | 
|  | if (!RC.contains(Reg)) | 
|  | continue; | 
|  |  | 
|  | if (!FoundRC) { | 
|  | FoundRC = true; | 
|  | const ValueTypeByHwMode &VVT = RC.getValueTypeNum(0); | 
|  | assert(VVT.isSimple()); | 
|  | VT = VVT.getSimple().SimpleTy; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // If this occurs in multiple register classes, they all have to agree. | 
|  | const ValueTypeByHwMode &VVT = RC.getValueTypeNum(0); | 
|  | assert(VVT.isSimple() && VVT.getSimple().SimpleTy == VT && | 
|  | "ValueType mismatch between register classes for this register"); | 
|  | #endif | 
|  | } | 
|  | return VT; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class MatcherGen { | 
|  | const PatternToMatch &Pattern; | 
|  | const CodeGenDAGPatterns &CGP; | 
|  |  | 
|  | /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts | 
|  | /// out with all of the types removed.  This allows us to insert type checks | 
|  | /// as we scan the tree. | 
|  | TreePatternNodePtr PatWithNoTypes; | 
|  |  | 
|  | /// VariableMap - A map from variable names ('$dst') to the recorded operand | 
|  | /// number that they were captured as.  These are biased by 1 to make | 
|  | /// insertion easier. | 
|  | StringMap<unsigned> VariableMap; | 
|  |  | 
|  | /// This maintains the recorded operand number that OPC_CheckComplexPattern | 
|  | /// drops each sub-operand into. We don't want to insert these into | 
|  | /// VariableMap because that leads to identity checking if they are | 
|  | /// encountered multiple times. Biased by 1 like VariableMap for | 
|  | /// consistency. | 
|  | StringMap<unsigned> NamedComplexPatternOperands; | 
|  |  | 
|  | /// NextRecordedOperandNo - As we emit opcodes to record matched values in | 
|  | /// the RecordedNodes array, this keeps track of which slot will be next to | 
|  | /// record into. | 
|  | unsigned NextRecordedOperandNo = 0; | 
|  |  | 
|  | /// MatchedChainNodes - This maintains the position in the recorded nodes | 
|  | /// array of all of the recorded input nodes that have chains. | 
|  | SmallVector<unsigned, 2> MatchedChainNodes; | 
|  |  | 
|  | /// MatchedComplexPatterns - This maintains a list of all of the | 
|  | /// ComplexPatterns that we need to check. The second element of each pair | 
|  | /// is the recorded operand number of the input node. | 
|  | SmallVector<std::pair<const TreePatternNode *, unsigned>, 2> | 
|  | MatchedComplexPatterns; | 
|  |  | 
|  | /// PhysRegInputs - List list has an entry for each explicitly specified | 
|  | /// physreg input to the pattern.  The first elt is the Register node, the | 
|  | /// second is the recorded slot number the input pattern match saved it in. | 
|  | SmallVector<std::pair<const Record *, unsigned>, 2> PhysRegInputs; | 
|  |  | 
|  | /// Matcher - This is the top level of the generated matcher, the result. | 
|  | Matcher *TheMatcher = nullptr; | 
|  |  | 
|  | /// CurPredicate - As we emit matcher nodes, this points to the latest check | 
|  | /// which should have future checks stuck into its Next position. | 
|  | Matcher *CurPredicate = nullptr; | 
|  |  | 
|  | public: | 
|  | MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp); | 
|  |  | 
|  | bool EmitMatcherCode(unsigned Variant); | 
|  | void EmitResultCode(); | 
|  |  | 
|  | Matcher *GetMatcher() const { return TheMatcher; } | 
|  |  | 
|  | private: | 
|  | void AddMatcher(Matcher *NewNode); | 
|  | void InferPossibleTypes(); | 
|  |  | 
|  | // Matcher Generation. | 
|  | void EmitMatchCode(const TreePatternNode &N, TreePatternNode &NodeNoTypes); | 
|  | void EmitLeafMatchCode(const TreePatternNode &N); | 
|  | void EmitOperatorMatchCode(const TreePatternNode &N, | 
|  | TreePatternNode &NodeNoTypes); | 
|  |  | 
|  | /// If this is the first time a node with unique identifier Name has been | 
|  | /// seen, record it. Otherwise, emit a check to make sure this is the same | 
|  | /// node. Returns true if this is the first encounter. | 
|  | bool recordUniqueNode(ArrayRef<std::string> Names); | 
|  |  | 
|  | // Result Code Generation. | 
|  | unsigned getNamedArgumentSlot(StringRef Name) { | 
|  | unsigned VarMapEntry = VariableMap[Name]; | 
|  | assert(VarMapEntry != 0 && | 
|  | "Variable referenced but not defined and not caught earlier!"); | 
|  | return VarMapEntry - 1; | 
|  | } | 
|  |  | 
|  | void EmitResultOperand(const TreePatternNode &N, | 
|  | SmallVectorImpl<unsigned> &ResultOps); | 
|  | void EmitResultOfNamedOperand(const TreePatternNode &N, | 
|  | SmallVectorImpl<unsigned> &ResultOps); | 
|  | void EmitResultLeafAsOperand(const TreePatternNode &N, | 
|  | SmallVectorImpl<unsigned> &ResultOps); | 
|  | void EmitResultInstructionAsOperand(const TreePatternNode &N, | 
|  | SmallVectorImpl<unsigned> &ResultOps); | 
|  | void EmitResultSDNodeXFormAsOperand(const TreePatternNode &N, | 
|  | SmallVectorImpl<unsigned> &ResultOps); | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | MatcherGen::MatcherGen(const PatternToMatch &pattern, | 
|  | const CodeGenDAGPatterns &cgp) | 
|  | : Pattern(pattern), CGP(cgp) { | 
|  | // We need to produce the matcher tree for the patterns source pattern.  To | 
|  | // do this we need to match the structure as well as the types.  To do the | 
|  | // type matching, we want to figure out the fewest number of type checks we | 
|  | // need to emit.  For example, if there is only one integer type supported | 
|  | // by a target, there should be no type comparisons at all for integer | 
|  | // patterns! | 
|  | // | 
|  | // To figure out the fewest number of type checks needed, clone the pattern, | 
|  | // remove the types, then perform type inference on the pattern as a whole. | 
|  | // If there are unresolved types, emit an explicit check for those types, | 
|  | // apply the type to the tree, then rerun type inference.  Iterate until all | 
|  | // types are resolved. | 
|  | // | 
|  | PatWithNoTypes = Pattern.getSrcPattern().clone(); | 
|  | PatWithNoTypes->RemoveAllTypes(); | 
|  |  | 
|  | // If there are types that are manifestly known, infer them. | 
|  | InferPossibleTypes(); | 
|  | } | 
|  |  | 
|  | /// InferPossibleTypes - As we emit the pattern, we end up generating type | 
|  | /// checks and applying them to the 'PatWithNoTypes' tree.  As we do this, we | 
|  | /// want to propagate implied types as far throughout the tree as possible so | 
|  | /// that we avoid doing redundant type checks.  This does the type propagation. | 
|  | void MatcherGen::InferPossibleTypes() { | 
|  | // TP - Get *SOME* tree pattern, we don't care which.  It is only used for | 
|  | // diagnostics, which we know are impossible at this point. | 
|  | TreePattern &TP = *CGP.pf_begin()->second; | 
|  |  | 
|  | bool MadeChange = true; | 
|  | while (MadeChange) | 
|  | MadeChange = PatWithNoTypes->ApplyTypeConstraints( | 
|  | TP, true /*Ignore reg constraints*/); | 
|  | } | 
|  |  | 
|  | /// AddMatcher - Add a matcher node to the current graph we're building. | 
|  | void MatcherGen::AddMatcher(Matcher *NewNode) { | 
|  | if (CurPredicate) | 
|  | CurPredicate->setNext(NewNode); | 
|  | else | 
|  | TheMatcher = NewNode; | 
|  | CurPredicate = NewNode; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Pattern Match Generation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// EmitLeafMatchCode - Generate matching code for leaf nodes. | 
|  | void MatcherGen::EmitLeafMatchCode(const TreePatternNode &N) { | 
|  | assert(N.isLeaf() && "Not a leaf?"); | 
|  |  | 
|  | // Direct match against an integer constant. | 
|  | if (const IntInit *II = dyn_cast<IntInit>(N.getLeafValue())) { | 
|  | // If this is the root of the dag we're matching, we emit a redundant opcode | 
|  | // check to ensure that this gets folded into the normal top-level | 
|  | // OpcodeSwitch. | 
|  | if (&N == &Pattern.getSrcPattern()) { | 
|  | const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm")); | 
|  | AddMatcher(new CheckOpcodeMatcher(NI)); | 
|  | } | 
|  |  | 
|  | return AddMatcher(new CheckIntegerMatcher(II->getValue())); | 
|  | } | 
|  |  | 
|  | // An UnsetInit represents a named node without any constraints. | 
|  | if (isa<UnsetInit>(N.getLeafValue())) { | 
|  | assert(N.hasName() && "Unnamed ? leaf"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const DefInit *DI = dyn_cast<DefInit>(N.getLeafValue()); | 
|  | if (!DI) { | 
|  | errs() << "Unknown leaf kind: " << N << "\n"; | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | const Record *LeafRec = DI->getDef(); | 
|  |  | 
|  | // A ValueType leaf node can represent a register when named, or itself when | 
|  | // unnamed. | 
|  | if (LeafRec->isSubClassOf("ValueType")) { | 
|  | // A named ValueType leaf always matches: (add i32:$a, i32:$b). | 
|  | if (N.hasName()) | 
|  | return; | 
|  | // An unnamed ValueType as in (sext_inreg GPR:$foo, i8). | 
|  | return AddMatcher(new CheckValueTypeMatcher(llvm::getValueType(LeafRec))); | 
|  | } | 
|  |  | 
|  | if ( // Handle register references.  Nothing to do here, they always match. | 
|  | LeafRec->isSubClassOf("RegisterClass") || | 
|  | LeafRec->isSubClassOf("RegisterOperand") || | 
|  | LeafRec->isSubClassOf("PointerLikeRegClass") || | 
|  | LeafRec->isSubClassOf("SubRegIndex") || | 
|  | // Place holder for SRCVALUE nodes. Nothing to do here. | 
|  | LeafRec->getName() == "srcvalue") | 
|  | return; | 
|  |  | 
|  | // If we have a physreg reference like (mul gpr:$src, EAX) then we need to | 
|  | // record the register | 
|  | if (LeafRec->isSubClassOf("Register")) { | 
|  | AddMatcher(new RecordMatcher("physreg input " + LeafRec->getName().str(), | 
|  | NextRecordedOperandNo)); | 
|  | PhysRegInputs.emplace_back(LeafRec, NextRecordedOperandNo++); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (LeafRec->isSubClassOf("CondCode")) | 
|  | return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName())); | 
|  |  | 
|  | if (LeafRec->isSubClassOf("ComplexPattern")) { | 
|  | // We can't model ComplexPattern uses that don't have their name taken yet. | 
|  | // The OPC_CheckComplexPattern operation implicitly records the results. | 
|  | if (N.getName().empty()) { | 
|  | std::string S; | 
|  | raw_string_ostream OS(S); | 
|  | OS << "We expect complex pattern uses to have names: " << N; | 
|  | PrintFatalError(S); | 
|  | } | 
|  |  | 
|  | // Remember this ComplexPattern so that we can emit it after all the other | 
|  | // structural matches are done. | 
|  | unsigned InputOperand = VariableMap[N.getName()] - 1; | 
|  | MatchedComplexPatterns.emplace_back(&N, InputOperand); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (LeafRec->getName() == "immAllOnesV" || | 
|  | LeafRec->getName() == "immAllZerosV") { | 
|  | // If this is the root of the dag we're matching, we emit a redundant opcode | 
|  | // check to ensure that this gets folded into the normal top-level | 
|  | // OpcodeSwitch. | 
|  | if (&N == &Pattern.getSrcPattern()) { | 
|  | MVT VT = N.getSimpleType(0); | 
|  | StringRef Name = VT.isScalableVector() ? "splat_vector" : "build_vector"; | 
|  | const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed(Name)); | 
|  | AddMatcher(new CheckOpcodeMatcher(NI)); | 
|  | } | 
|  | if (LeafRec->getName() == "immAllOnesV") | 
|  | AddMatcher(new CheckImmAllOnesVMatcher()); | 
|  | else | 
|  | AddMatcher(new CheckImmAllZerosVMatcher()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | errs() << "Unknown leaf kind: " << N << "\n"; | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | void MatcherGen::EmitOperatorMatchCode(const TreePatternNode &N, | 
|  | TreePatternNode &NodeNoTypes) { | 
|  | assert(!N.isLeaf() && "Not an operator?"); | 
|  |  | 
|  | if (N.getOperator()->isSubClassOf("ComplexPattern")) { | 
|  | // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is | 
|  | // "MY_PAT:op1:op2". We should already have validated that the uses are | 
|  | // consistent. | 
|  | std::string PatternName = N.getOperator()->getName().str(); | 
|  | for (const TreePatternNode &Child : N.children()) { | 
|  | PatternName += ":"; | 
|  | PatternName += Child.getName(); | 
|  | } | 
|  |  | 
|  | if (recordUniqueNode(PatternName)) { | 
|  | auto NodeAndOpNum = std::pair(&N, NextRecordedOperandNo - 1); | 
|  | MatchedComplexPatterns.push_back(NodeAndOpNum); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N.getOperator()); | 
|  |  | 
|  | // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is | 
|  | // a constant without a predicate fn that has more than one bit set, handle | 
|  | // this as a special case.  This is usually for targets that have special | 
|  | // handling of certain large constants (e.g. alpha with it's 8/16/32-bit | 
|  | // handling stuff).  Using these instructions is often far more efficient | 
|  | // than materializing the constant.  Unfortunately, both the instcombiner | 
|  | // and the dag combiner can often infer that bits are dead, and thus drop | 
|  | // them from the mask in the dag.  For example, it might turn 'AND X, 255' | 
|  | // into 'AND X, 254' if it knows the low bit is set.  Emit code that checks | 
|  | // to handle this. | 
|  | if ((N.getOperator()->getName() == "and" || | 
|  | N.getOperator()->getName() == "or") && | 
|  | N.getChild(1).isLeaf() && N.getChild(1).getPredicateCalls().empty() && | 
|  | N.getPredicateCalls().empty()) { | 
|  | if (const IntInit *II = dyn_cast<IntInit>(N.getChild(1).getLeafValue())) { | 
|  | if (!llvm::has_single_bit<uint32_t>( | 
|  | II->getValue())) { // Don't bother with single bits. | 
|  | // If this is at the root of the pattern, we emit a redundant | 
|  | // CheckOpcode so that the following checks get factored properly under | 
|  | // a single opcode check. | 
|  | if (&N == &Pattern.getSrcPattern()) | 
|  | AddMatcher(new CheckOpcodeMatcher(CInfo)); | 
|  |  | 
|  | // Emit the CheckAndImm/CheckOrImm node. | 
|  | if (N.getOperator()->getName() == "and") | 
|  | AddMatcher(new CheckAndImmMatcher(II->getValue())); | 
|  | else | 
|  | AddMatcher(new CheckOrImmMatcher(II->getValue())); | 
|  |  | 
|  | // Match the LHS of the AND as appropriate. | 
|  | AddMatcher(new MoveChildMatcher(0)); | 
|  | EmitMatchCode(N.getChild(0), NodeNoTypes.getChild(0)); | 
|  | AddMatcher(new MoveParentMatcher()); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check that the current opcode lines up. | 
|  | AddMatcher(new CheckOpcodeMatcher(CInfo)); | 
|  |  | 
|  | // If this node has memory references (i.e. is a load or store), tell the | 
|  | // interpreter to capture them in the memref array. | 
|  | if (N.NodeHasProperty(SDNPMemOperand, CGP)) | 
|  | AddMatcher(new RecordMemRefMatcher()); | 
|  |  | 
|  | // If this node has a chain, then the chain is operand #0 is the SDNode, and | 
|  | // the child numbers of the node are all offset by one. | 
|  | unsigned OpNo = 0; | 
|  | if (N.NodeHasProperty(SDNPHasChain, CGP)) { | 
|  | // Record the node and remember it in our chained nodes list. | 
|  | AddMatcher(new RecordMatcher("'" + N.getOperator()->getName().str() + | 
|  | "' chained node", | 
|  | NextRecordedOperandNo)); | 
|  | // Remember all of the input chains our pattern will match. | 
|  | MatchedChainNodes.push_back(NextRecordedOperandNo++); | 
|  |  | 
|  | // Don't look at the input chain when matching the tree pattern to the | 
|  | // SDNode. | 
|  | OpNo = 1; | 
|  |  | 
|  | // If this node is not the root and the subtree underneath it produces a | 
|  | // chain, then the result of matching the node is also produce a chain. | 
|  | // Beyond that, this means that we're also folding (at least) the root node | 
|  | // into the node that produce the chain (for example, matching | 
|  | // "(add reg, (load ptr))" as a add_with_memory on X86).  This is | 
|  | // problematic, if the 'reg' node also uses the load (say, its chain). | 
|  | // Graphically: | 
|  | // | 
|  | //         [LD] | 
|  | //         ^  ^ | 
|  | //         |  \                              DAG's like cheese. | 
|  | //        /    | | 
|  | //       /    [YY] | 
|  | //       |     ^ | 
|  | //      [XX]--/ | 
|  | // | 
|  | // It would be invalid to fold XX and LD.  In this case, folding the two | 
|  | // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG' | 
|  | // To prevent this, we emit a dynamic check for legality before allowing | 
|  | // this to be folded. | 
|  | // | 
|  | const TreePatternNode &Root = Pattern.getSrcPattern(); | 
|  | if (&N != &Root) { // Not the root of the pattern. | 
|  | // If there is a node between the root and this node, then we definitely | 
|  | // need to emit the check. | 
|  | bool NeedCheck = !Root.hasChild(&N); | 
|  |  | 
|  | // If it *is* an immediate child of the root, we can still need a check if | 
|  | // the root SDNode has multiple inputs.  For us, this means that it is an | 
|  | // intrinsic, has multiple operands, or has other inputs like chain or | 
|  | // glue). | 
|  | if (!NeedCheck) { | 
|  | const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root.getOperator()); | 
|  | NeedCheck = | 
|  | Root.getOperator() == CGP.get_intrinsic_void_sdnode() || | 
|  | Root.getOperator() == CGP.get_intrinsic_w_chain_sdnode() || | 
|  | Root.getOperator() == CGP.get_intrinsic_wo_chain_sdnode() || | 
|  | PInfo.getNumOperands() > 1 || PInfo.hasProperty(SDNPHasChain) || | 
|  | PInfo.hasProperty(SDNPInGlue) || PInfo.hasProperty(SDNPOptInGlue); | 
|  | } | 
|  |  | 
|  | if (NeedCheck) | 
|  | AddMatcher(new CheckFoldableChainNodeMatcher()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this node has an output glue and isn't the root, remember it. | 
|  | if (N.NodeHasProperty(SDNPOutGlue, CGP) && &N != &Pattern.getSrcPattern()) { | 
|  | // TODO: This redundantly records nodes with both glues and chains. | 
|  |  | 
|  | // Record the node and remember it in our chained nodes list. | 
|  | AddMatcher(new RecordMatcher("'" + N.getOperator()->getName().str() + | 
|  | "' glue output node", | 
|  | NextRecordedOperandNo)); | 
|  | } | 
|  |  | 
|  | // If this node is known to have an input glue or if it *might* have an input | 
|  | // glue, capture it as the glue input of the pattern. | 
|  | if (N.NodeHasProperty(SDNPOptInGlue, CGP) || | 
|  | N.NodeHasProperty(SDNPInGlue, CGP)) | 
|  | AddMatcher(new CaptureGlueInputMatcher()); | 
|  |  | 
|  | for (unsigned i = 0, e = N.getNumChildren(); i != e; ++i, ++OpNo) { | 
|  | // Get the code suitable for matching this child.  Move to the child, check | 
|  | // it then move back to the parent. | 
|  | AddMatcher(new MoveChildMatcher(OpNo)); | 
|  | EmitMatchCode(N.getChild(i), NodeNoTypes.getChild(i)); | 
|  | AddMatcher(new MoveParentMatcher()); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool MatcherGen::recordUniqueNode(ArrayRef<std::string> Names) { | 
|  | unsigned Entry = 0; | 
|  | for (const std::string &Name : Names) { | 
|  | unsigned &VarMapEntry = VariableMap[Name]; | 
|  | if (!Entry) | 
|  | Entry = VarMapEntry; | 
|  | assert(Entry == VarMapEntry); | 
|  | } | 
|  |  | 
|  | bool NewRecord = false; | 
|  | if (Entry == 0) { | 
|  | // If it is a named node, we must emit a 'Record' opcode. | 
|  | std::string WhatFor; | 
|  | for (const std::string &Name : Names) { | 
|  | if (!WhatFor.empty()) | 
|  | WhatFor += ','; | 
|  | WhatFor += "$" + Name; | 
|  | } | 
|  | AddMatcher(new RecordMatcher(WhatFor, NextRecordedOperandNo)); | 
|  | Entry = ++NextRecordedOperandNo; | 
|  | NewRecord = true; | 
|  | } else { | 
|  | // If we get here, this is a second reference to a specific name.  Since | 
|  | // we already have checked that the first reference is valid, we don't | 
|  | // have to recursively match it, just check that it's the same as the | 
|  | // previously named thing. | 
|  | AddMatcher(new CheckSameMatcher(Entry - 1)); | 
|  | } | 
|  |  | 
|  | for (const std::string &Name : Names) | 
|  | VariableMap[Name] = Entry; | 
|  |  | 
|  | return NewRecord; | 
|  | } | 
|  |  | 
|  | void MatcherGen::EmitMatchCode(const TreePatternNode &N, | 
|  | TreePatternNode &NodeNoTypes) { | 
|  | // If N and NodeNoTypes don't agree on a type, then this is a case where we | 
|  | // need to do a type check.  Emit the check, apply the type to NodeNoTypes and | 
|  | // reinfer any correlated types. | 
|  | SmallVector<unsigned, 2> ResultsToTypeCheck; | 
|  |  | 
|  | for (unsigned i = 0, e = NodeNoTypes.getNumTypes(); i != e; ++i) { | 
|  | if (NodeNoTypes.getExtType(i) == N.getExtType(i)) | 
|  | continue; | 
|  | NodeNoTypes.setType(i, N.getExtType(i)); | 
|  | InferPossibleTypes(); | 
|  | ResultsToTypeCheck.push_back(i); | 
|  | } | 
|  |  | 
|  | // If this node has a name associated with it, capture it in VariableMap. If | 
|  | // we already saw this in the pattern, emit code to verify dagness. | 
|  | SmallVector<std::string, 4> Names; | 
|  | if (!N.getName().empty()) | 
|  | Names.push_back(N.getName().str()); | 
|  |  | 
|  | for (const ScopedName &Name : N.getNamesAsPredicateArg()) { | 
|  | Names.push_back( | 
|  | ("pred:" + Twine(Name.getScope()) + ":" + Name.getIdentifier()).str()); | 
|  | } | 
|  |  | 
|  | if (!Names.empty()) { | 
|  | if (!recordUniqueNode(Names)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (N.isLeaf()) | 
|  | EmitLeafMatchCode(N); | 
|  | else | 
|  | EmitOperatorMatchCode(N, NodeNoTypes); | 
|  |  | 
|  | // If there are node predicates for this node, generate their checks. | 
|  | for (const TreePredicateCall &Pred : N.getPredicateCalls()) { | 
|  | SmallVector<unsigned, 4> Operands; | 
|  | if (Pred.Fn.usesOperands()) { | 
|  | TreePattern *TP = Pred.Fn.getOrigPatFragRecord(); | 
|  | for (const std::string &Arg : TP->getArgList()) { | 
|  | std::string Name = ("pred:" + Twine(Pred.Scope) + ":" + Arg).str(); | 
|  | Operands.push_back(getNamedArgumentSlot(Name)); | 
|  | } | 
|  | } | 
|  | AddMatcher(new CheckPredicateMatcher(Pred.Fn, Operands)); | 
|  | } | 
|  |  | 
|  | for (unsigned I : ResultsToTypeCheck) | 
|  | AddMatcher(new CheckTypeMatcher(N.getSimpleType(I), I)); | 
|  | } | 
|  |  | 
|  | /// EmitMatcherCode - Generate the code that matches the predicate of this | 
|  | /// pattern for the specified Variant.  If the variant is invalid this returns | 
|  | /// true and does not generate code, if it is valid, it returns false. | 
|  | bool MatcherGen::EmitMatcherCode(unsigned Variant) { | 
|  | // If the root of the pattern is a ComplexPattern and if it is specified to | 
|  | // match some number of root opcodes, these are considered to be our variants. | 
|  | // Depending on which variant we're generating code for, emit the root opcode | 
|  | // check. | 
|  | if (const ComplexPattern *CP = | 
|  | Pattern.getSrcPattern().getComplexPatternInfo(CGP)) { | 
|  | ArrayRef<const Record *> OpNodes = CP->getRootNodes(); | 
|  | assert(!OpNodes.empty() && | 
|  | "Complex Pattern must specify what it can match"); | 
|  | if (Variant >= OpNodes.size()) | 
|  | return true; | 
|  |  | 
|  | AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant]))); | 
|  | } else { | 
|  | if (Variant != 0) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Emit the matcher for the pattern structure and types. | 
|  | EmitMatchCode(Pattern.getSrcPattern(), *PatWithNoTypes); | 
|  |  | 
|  | // If the pattern has a predicate on it (e.g. only enabled when a subtarget | 
|  | // feature is around, do the check). | 
|  | std::string PredicateCheck = Pattern.getPredicateCheck(); | 
|  | if (!PredicateCheck.empty()) | 
|  | AddMatcher(new CheckPatternPredicateMatcher(PredicateCheck)); | 
|  |  | 
|  | // Now that we've completed the structural type match, emit any ComplexPattern | 
|  | // checks (e.g. addrmode matches).  We emit this after the structural match | 
|  | // because they are generally more expensive to evaluate and more difficult to | 
|  | // factor. | 
|  | for (const auto &MCP : MatchedComplexPatterns) { | 
|  | auto &N = *MCP.first; | 
|  |  | 
|  | // Remember where the results of this match get stuck. | 
|  | if (N.isLeaf()) { | 
|  | NamedComplexPatternOperands[N.getName()] = NextRecordedOperandNo + 1; | 
|  | } else { | 
|  | unsigned CurOp = NextRecordedOperandNo; | 
|  | for (const TreePatternNode &Child : N.children()) { | 
|  | NamedComplexPatternOperands[Child.getName()] = CurOp + 1; | 
|  | CurOp += Child.getNumMIResults(CGP); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Get the slot we recorded the value in from the name on the node. | 
|  | unsigned RecNodeEntry = MCP.second; | 
|  |  | 
|  | const ComplexPattern *CP = N.getComplexPatternInfo(CGP); | 
|  | assert(CP && "Not a valid ComplexPattern!"); | 
|  |  | 
|  | // Emit a CheckComplexPat operation, which does the match (aborting if it | 
|  | // fails) and pushes the matched operands onto the recorded nodes list. | 
|  | AddMatcher(new CheckComplexPatMatcher(*CP, RecNodeEntry, N.getName(), | 
|  | NextRecordedOperandNo)); | 
|  |  | 
|  | // Record the right number of operands. | 
|  | NextRecordedOperandNo += CP->getNumOperands(); | 
|  | if (CP->hasProperty(SDNPHasChain)) { | 
|  | // If the complex pattern has a chain, then we need to keep track of the | 
|  | // fact that we just recorded a chain input.  The chain input will be | 
|  | // matched as the last operand of the predicate if it was successful. | 
|  | ++NextRecordedOperandNo; // Chained node operand. | 
|  |  | 
|  | // It is the last operand recorded. | 
|  | assert(NextRecordedOperandNo > 1 && | 
|  | "Should have recorded input/result chains at least!"); | 
|  | MatchedChainNodes.push_back(NextRecordedOperandNo - 1); | 
|  | } | 
|  |  | 
|  | // TODO: Complex patterns can't have output glues, if they did, we'd want | 
|  | // to record them. | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Node Result Generation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void MatcherGen::EmitResultOfNamedOperand( | 
|  | const TreePatternNode &N, SmallVectorImpl<unsigned> &ResultOps) { | 
|  | assert(!N.getName().empty() && "Operand not named!"); | 
|  |  | 
|  | if (unsigned SlotNo = NamedComplexPatternOperands[N.getName()]) { | 
|  | // Complex operands have already been completely selected, just find the | 
|  | // right slot ant add the arguments directly. | 
|  | for (unsigned i = 0; i < N.getNumMIResults(CGP); ++i) | 
|  | ResultOps.push_back(SlotNo - 1 + i); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned SlotNo = getNamedArgumentSlot(N.getName()); | 
|  |  | 
|  | // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target | 
|  | // version of the immediate so that it doesn't get selected due to some other | 
|  | // node use. | 
|  | if (!N.isLeaf()) { | 
|  | StringRef OperatorName = N.getOperator()->getName(); | 
|  | if (OperatorName == "imm" || OperatorName == "fpimm") { | 
|  | AddMatcher(new EmitConvertToTargetMatcher(SlotNo, NextRecordedOperandNo)); | 
|  | ResultOps.push_back(NextRecordedOperandNo++); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0; i < N.getNumMIResults(CGP); ++i) | 
|  | ResultOps.push_back(SlotNo + i); | 
|  | } | 
|  |  | 
|  | void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode &N, | 
|  | SmallVectorImpl<unsigned> &ResultOps) { | 
|  | assert(N.isLeaf() && "Must be a leaf"); | 
|  |  | 
|  | if (const IntInit *II = dyn_cast<IntInit>(N.getLeafValue())) { | 
|  | AddMatcher(new EmitIntegerMatcher(II->getValue(), N.getSimpleType(0), | 
|  | NextRecordedOperandNo)); | 
|  | ResultOps.push_back(NextRecordedOperandNo++); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If this is an explicit register reference, handle it. | 
|  | if (const DefInit *DI = dyn_cast<DefInit>(N.getLeafValue())) { | 
|  | const Record *Def = DI->getDef(); | 
|  | if (Def->isSubClassOf("Register")) { | 
|  | const CodeGenRegister *Reg = CGP.getTargetInfo().getRegBank().getReg(Def); | 
|  | AddMatcher(new EmitRegisterMatcher(Reg, N.getSimpleType(0), | 
|  | NextRecordedOperandNo)); | 
|  | ResultOps.push_back(NextRecordedOperandNo++); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Def->getName() == "zero_reg") { | 
|  | AddMatcher(new EmitRegisterMatcher(nullptr, N.getSimpleType(0), | 
|  | NextRecordedOperandNo)); | 
|  | ResultOps.push_back(NextRecordedOperandNo++); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Def->getName() == "undef_tied_input") { | 
|  | MVT::SimpleValueType ResultVT = N.getSimpleType(0); | 
|  | auto IDOperandNo = NextRecordedOperandNo++; | 
|  | const Record *ImpDef = Def->getRecords().getDef("IMPLICIT_DEF"); | 
|  | CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(ImpDef); | 
|  | AddMatcher(new EmitNodeMatcher(II, ResultVT, {}, false, false, false, | 
|  | false, -1, IDOperandNo)); | 
|  | ResultOps.push_back(IDOperandNo); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle a reference to a register class. This is used | 
|  | // in COPY_TO_SUBREG instructions. | 
|  | if (Def->isSubClassOf("RegisterOperand")) | 
|  | Def = Def->getValueAsDef("RegClass"); | 
|  | if (Def->isSubClassOf("RegisterClass")) { | 
|  | // If the register class has an enum integer value greater than 127, the | 
|  | // encoding overflows the limit of 7 bits, which precludes the use of | 
|  | // StringIntegerMatcher. In this case, fallback to using IntegerMatcher. | 
|  | const CodeGenRegisterClass &RC = | 
|  | CGP.getTargetInfo().getRegisterClass(Def); | 
|  | if (RC.EnumValue <= 127) { | 
|  | std::string Value = RC.getQualifiedIdName(); | 
|  | AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32, | 
|  | NextRecordedOperandNo)); | 
|  | } else { | 
|  | AddMatcher(new EmitIntegerMatcher(RC.EnumValue, MVT::i32, | 
|  | NextRecordedOperandNo)); | 
|  | } | 
|  | ResultOps.push_back(NextRecordedOperandNo++); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle a subregister index. This is used for INSERT_SUBREG etc. | 
|  | if (Def->isSubClassOf("SubRegIndex")) { | 
|  | const CodeGenRegBank &RB = CGP.getTargetInfo().getRegBank(); | 
|  | // If we have more than 127 subreg indices the encoding can overflow | 
|  | // 7 bit and we cannot use StringInteger. | 
|  | if (RB.getSubRegIndices().size() > 127) { | 
|  | const CodeGenSubRegIndex *I = RB.findSubRegIdx(Def); | 
|  | if (I->EnumValue > 127) { | 
|  | AddMatcher(new EmitIntegerMatcher(I->EnumValue, MVT::i32, | 
|  | NextRecordedOperandNo)); | 
|  | ResultOps.push_back(NextRecordedOperandNo++); | 
|  | return; | 
|  | } | 
|  | } | 
|  | std::string Value = getQualifiedName(Def); | 
|  | AddMatcher( | 
|  | new EmitStringIntegerMatcher(Value, MVT::i32, NextRecordedOperandNo)); | 
|  | ResultOps.push_back(NextRecordedOperandNo++); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | errs() << "unhandled leaf node:\n"; | 
|  | N.dump(); | 
|  | } | 
|  |  | 
|  | static bool mayInstNodeLoadOrStore(const TreePatternNode &N, | 
|  | const CodeGenDAGPatterns &CGP) { | 
|  | const Record *Op = N.getOperator(); | 
|  | const CodeGenTarget &CGT = CGP.getTargetInfo(); | 
|  | CodeGenInstruction &II = CGT.getInstruction(Op); | 
|  | return II.mayLoad || II.mayStore; | 
|  | } | 
|  |  | 
|  | static unsigned numNodesThatMayLoadOrStore(const TreePatternNode &N, | 
|  | const CodeGenDAGPatterns &CGP) { | 
|  | if (N.isLeaf()) | 
|  | return 0; | 
|  |  | 
|  | const Record *OpRec = N.getOperator(); | 
|  | if (!OpRec->isSubClassOf("Instruction")) | 
|  | return 0; | 
|  |  | 
|  | unsigned Count = 0; | 
|  | if (mayInstNodeLoadOrStore(N, CGP)) | 
|  | ++Count; | 
|  |  | 
|  | for (const TreePatternNode &Child : N.children()) | 
|  | Count += numNodesThatMayLoadOrStore(Child, CGP); | 
|  |  | 
|  | return Count; | 
|  | } | 
|  |  | 
|  | void MatcherGen::EmitResultInstructionAsOperand( | 
|  | const TreePatternNode &N, SmallVectorImpl<unsigned> &OutputOps) { | 
|  | const Record *Op = N.getOperator(); | 
|  | const CodeGenTarget &CGT = CGP.getTargetInfo(); | 
|  | CodeGenInstruction &II = CGT.getInstruction(Op); | 
|  | const DAGInstruction &Inst = CGP.getInstruction(Op); | 
|  |  | 
|  | bool isRoot = &N == &Pattern.getDstPattern(); | 
|  |  | 
|  | // TreeHasOutGlue - True if this tree has glue. | 
|  | bool TreeHasInGlue = false, TreeHasOutGlue = false; | 
|  | if (isRoot) { | 
|  | const TreePatternNode &SrcPat = Pattern.getSrcPattern(); | 
|  | TreeHasInGlue = SrcPat.TreeHasProperty(SDNPOptInGlue, CGP) || | 
|  | SrcPat.TreeHasProperty(SDNPInGlue, CGP); | 
|  |  | 
|  | // FIXME2: this is checking the entire pattern, not just the node in | 
|  | // question, doing this just for the root seems like a total hack. | 
|  | TreeHasOutGlue = SrcPat.TreeHasProperty(SDNPOutGlue, CGP); | 
|  | } | 
|  |  | 
|  | // NumResults - This is the number of results produced by the instruction in | 
|  | // the "outs" list. | 
|  | unsigned NumResults = Inst.getNumResults(); | 
|  |  | 
|  | // Number of operands we know the output instruction must have. If it is | 
|  | // variadic, we could have more operands. | 
|  | unsigned NumFixedOperands = II.Operands.size(); | 
|  |  | 
|  | SmallVector<unsigned, 8> InstOps; | 
|  |  | 
|  | // Loop over all of the fixed operands of the instruction pattern, emitting | 
|  | // code to fill them all in. The node 'N' usually has number children equal to | 
|  | // the number of input operands of the instruction.  However, in cases where | 
|  | // there are predicate operands for an instruction, we need to fill in the | 
|  | // 'execute always' values. Match up the node operands to the instruction | 
|  | // operands to do this. | 
|  | unsigned ChildNo = 0; | 
|  |  | 
|  | // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the | 
|  | // number of operands at the end of the list which have default values. | 
|  | // Those can come from the pattern if it provides enough arguments, or be | 
|  | // filled in with the default if the pattern hasn't provided them. But any | 
|  | // operand with a default value _before_ the last mandatory one will be | 
|  | // filled in with their defaults unconditionally. | 
|  | unsigned NonOverridableOperands = NumFixedOperands; | 
|  | while (NonOverridableOperands > NumResults && | 
|  | CGP.operandHasDefault(II.Operands[NonOverridableOperands - 1].Rec)) | 
|  | --NonOverridableOperands; | 
|  |  | 
|  | for (unsigned InstOpNo = NumResults, e = NumFixedOperands; InstOpNo != e; | 
|  | ++InstOpNo) { | 
|  | // Determine what to emit for this operand. | 
|  | const Record *OperandNode = II.Operands[InstOpNo].Rec; | 
|  | if (CGP.operandHasDefault(OperandNode) && | 
|  | (InstOpNo < NonOverridableOperands || ChildNo >= N.getNumChildren())) { | 
|  | // This is a predicate or optional def operand which the pattern has not | 
|  | // overridden, or which we aren't letting it override; emit the 'default | 
|  | // ops' operands. | 
|  | const DAGDefaultOperand &DefaultOp = CGP.getDefaultOperand(OperandNode); | 
|  | for (const TreePatternNodePtr &Op : DefaultOp.DefaultOps) | 
|  | EmitResultOperand(*Op, InstOps); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise this is a normal operand or a predicate operand without | 
|  | // 'execute always'; emit it. | 
|  |  | 
|  | // For operands with multiple sub-operands we may need to emit | 
|  | // multiple child patterns to cover them all.  However, ComplexPattern | 
|  | // children may themselves emit multiple MI operands. | 
|  | unsigned NumSubOps = 1; | 
|  | if (OperandNode->isSubClassOf("Operand")) { | 
|  | const DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); | 
|  | if (unsigned NumArgs = MIOpInfo->getNumArgs()) | 
|  | NumSubOps = NumArgs; | 
|  | } | 
|  |  | 
|  | unsigned FinalNumOps = InstOps.size() + NumSubOps; | 
|  | while (InstOps.size() < FinalNumOps) { | 
|  | const TreePatternNode &Child = N.getChild(ChildNo); | 
|  | unsigned BeforeAddingNumOps = InstOps.size(); | 
|  | EmitResultOperand(Child, InstOps); | 
|  | assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands"); | 
|  |  | 
|  | // If the operand is an instruction and it produced multiple results, just | 
|  | // take the first one. | 
|  | if (!Child.isLeaf() && Child.getOperator()->isSubClassOf("Instruction")) | 
|  | InstOps.resize(BeforeAddingNumOps + 1); | 
|  |  | 
|  | ++ChildNo; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't | 
|  | // expand suboperands, use default operands, or other features determined from | 
|  | // the CodeGenInstruction after the fixed operands, which were handled | 
|  | // above. Emit the remaining instructions implicitly added by the use for | 
|  | // variable_ops. | 
|  | if (II.Operands.isVariadic) { | 
|  | for (unsigned I = ChildNo, E = N.getNumChildren(); I < E; ++I) | 
|  | EmitResultOperand(N.getChild(I), InstOps); | 
|  | } | 
|  |  | 
|  | // If this node has input glue or explicitly specified input physregs, we | 
|  | // need to add chained and glued copyfromreg nodes and materialize the glue | 
|  | // input. | 
|  | if (isRoot && !PhysRegInputs.empty()) { | 
|  | // Emit all of the CopyToReg nodes for the input physical registers.  These | 
|  | // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src). | 
|  | for (const auto &PhysRegInput : PhysRegInputs) { | 
|  | const CodeGenRegister *Reg = | 
|  | CGP.getTargetInfo().getRegBank().getReg(PhysRegInput.first); | 
|  | AddMatcher(new EmitCopyToRegMatcher(PhysRegInput.second, Reg)); | 
|  | } | 
|  |  | 
|  | // Even if the node has no other glue inputs, the resultant node must be | 
|  | // glued to the CopyFromReg nodes we just generated. | 
|  | TreeHasInGlue = true; | 
|  | } | 
|  |  | 
|  | // Result order: node results, chain, glue | 
|  |  | 
|  | // Determine the result types. | 
|  | SmallVector<MVT::SimpleValueType, 4> ResultVTs; | 
|  | for (unsigned i = 0, e = N.getNumTypes(); i != e; ++i) | 
|  | ResultVTs.push_back(N.getSimpleType(i)); | 
|  |  | 
|  | // If this is the root instruction of a pattern that has physical registers in | 
|  | // its result pattern, add output VTs for them.  For example, X86 has: | 
|  | //   (set AL, (mul ...)) | 
|  | if (isRoot && !Pattern.getDstRegs().empty()) { | 
|  | // If the root came from an implicit def in the instruction handling stuff, | 
|  | // don't re-add it. | 
|  | const Record *HandledReg = nullptr; | 
|  | if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other) | 
|  | HandledReg = II.ImplicitDefs[0]; | 
|  |  | 
|  | for (const Record *Reg : Pattern.getDstRegs()) { | 
|  | if (!Reg->isSubClassOf("Register") || Reg == HandledReg) | 
|  | continue; | 
|  | ResultVTs.push_back(getRegisterValueType(Reg, CGT)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is the root of the pattern and the pattern we're matching includes | 
|  | // a node that is variadic, mark the generated node as variadic so that it | 
|  | // gets the excess operands from the input DAG. | 
|  | int NumFixedArityOperands = -1; | 
|  | if (isRoot && Pattern.getSrcPattern().NodeHasProperty(SDNPVariadic, CGP)) | 
|  | NumFixedArityOperands = Pattern.getSrcPattern().getNumChildren(); | 
|  |  | 
|  | // If this is the root node and multiple matched nodes in the input pattern | 
|  | // have MemRefs in them, have the interpreter collect them and plop them onto | 
|  | // this node. If there is just one node with MemRefs, leave them on that node | 
|  | // even if it is not the root. | 
|  | // | 
|  | // FIXME3: This is actively incorrect for result patterns with multiple | 
|  | // memory-referencing instructions. | 
|  | bool PatternHasMemOperands = | 
|  | Pattern.getSrcPattern().TreeHasProperty(SDNPMemOperand, CGP); | 
|  |  | 
|  | bool NodeHasMemRefs = false; | 
|  | if (PatternHasMemOperands) { | 
|  | unsigned NumNodesThatLoadOrStore = | 
|  | numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP); | 
|  | bool NodeIsUniqueLoadOrStore = | 
|  | mayInstNodeLoadOrStore(N, CGP) && NumNodesThatLoadOrStore == 1; | 
|  | NodeHasMemRefs = | 
|  | NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) || | 
|  | NumNodesThatLoadOrStore != 1)); | 
|  | } | 
|  |  | 
|  | // Determine whether we need to attach a chain to this node. | 
|  | bool NodeHasChain = false; | 
|  | if (Pattern.getSrcPattern().TreeHasProperty(SDNPHasChain, CGP)) { | 
|  | // For some instructions, we were able to infer from the pattern whether | 
|  | // they should have a chain.  Otherwise, attach the chain to the root. | 
|  | // | 
|  | // FIXME2: This is extremely dubious for several reasons, not the least of | 
|  | // which it gives special status to instructions with patterns that Pat<> | 
|  | // nodes can't duplicate. | 
|  | if (II.hasChain_Inferred) | 
|  | NodeHasChain = II.hasChain; | 
|  | else | 
|  | NodeHasChain = isRoot; | 
|  | // Instructions which load and store from memory should have a chain, | 
|  | // regardless of whether they happen to have a pattern saying so. | 
|  | if (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad || | 
|  | II.hasSideEffects) | 
|  | NodeHasChain = true; | 
|  | } | 
|  |  | 
|  | assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) && | 
|  | "Node has no result"); | 
|  |  | 
|  | AddMatcher(new EmitNodeMatcher(II, ResultVTs, InstOps, NodeHasChain, | 
|  | TreeHasInGlue, TreeHasOutGlue, NodeHasMemRefs, | 
|  | NumFixedArityOperands, NextRecordedOperandNo)); | 
|  |  | 
|  | // The non-chain and non-glue results of the newly emitted node get recorded. | 
|  | for (MVT::SimpleValueType ResultVT : ResultVTs) { | 
|  | if (ResultVT == MVT::Other || ResultVT == MVT::Glue) | 
|  | break; | 
|  | OutputOps.push_back(NextRecordedOperandNo++); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MatcherGen::EmitResultSDNodeXFormAsOperand( | 
|  | const TreePatternNode &N, SmallVectorImpl<unsigned> &ResultOps) { | 
|  | assert(N.getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?"); | 
|  |  | 
|  | // Emit the operand. | 
|  | SmallVector<unsigned, 8> InputOps; | 
|  |  | 
|  | // FIXME2: Could easily generalize this to support multiple inputs and outputs | 
|  | // to the SDNodeXForm.  For now we just support one input and one output like | 
|  | // the old instruction selector. | 
|  | assert(N.getNumChildren() == 1); | 
|  | EmitResultOperand(N.getChild(0), InputOps); | 
|  |  | 
|  | // The input currently must have produced exactly one result. | 
|  | assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm"); | 
|  |  | 
|  | AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N.getOperator(), | 
|  | NextRecordedOperandNo)); | 
|  | ResultOps.push_back(NextRecordedOperandNo++); | 
|  | } | 
|  |  | 
|  | void MatcherGen::EmitResultOperand(const TreePatternNode &N, | 
|  | SmallVectorImpl<unsigned> &ResultOps) { | 
|  | // This is something selected from the pattern we matched. | 
|  | if (!N.getName().empty()) | 
|  | return EmitResultOfNamedOperand(N, ResultOps); | 
|  |  | 
|  | if (N.isLeaf()) | 
|  | return EmitResultLeafAsOperand(N, ResultOps); | 
|  |  | 
|  | const Record *OpRec = N.getOperator(); | 
|  | if (OpRec->isSubClassOf("Instruction")) | 
|  | return EmitResultInstructionAsOperand(N, ResultOps); | 
|  | if (OpRec->isSubClassOf("SDNodeXForm")) | 
|  | return EmitResultSDNodeXFormAsOperand(N, ResultOps); | 
|  | errs() << "Unknown result node to emit code for: " << N << '\n'; | 
|  | PrintFatalError("Unknown node in result pattern!"); | 
|  | } | 
|  |  | 
|  | void MatcherGen::EmitResultCode() { | 
|  | // Patterns that match nodes with (potentially multiple) chain inputs have to | 
|  | // merge them together into a token factor.  This informs the generated code | 
|  | // what all the chained nodes are. | 
|  | if (!MatchedChainNodes.empty()) | 
|  | AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes)); | 
|  |  | 
|  | // Codegen the root of the result pattern, capturing the resulting values. | 
|  | SmallVector<unsigned, 8> Ops; | 
|  | EmitResultOperand(Pattern.getDstPattern(), Ops); | 
|  |  | 
|  | // At this point, we have however many values the result pattern produces. | 
|  | // However, the input pattern might not need all of these.  If there are | 
|  | // excess values at the end (such as implicit defs of condition codes etc) | 
|  | // just lop them off.  This doesn't need to worry about glue or chains, just | 
|  | // explicit results. | 
|  | // | 
|  | unsigned NumSrcResults = Pattern.getSrcPattern().getNumTypes(); | 
|  |  | 
|  | // If the pattern also has implicit results, count them as well. | 
|  | if (!Pattern.getDstRegs().empty()) { | 
|  | // If the root came from an implicit def in the instruction handling stuff, | 
|  | // don't re-add it. | 
|  | const Record *HandledReg = nullptr; | 
|  | const TreePatternNode &DstPat = Pattern.getDstPattern(); | 
|  | if (!DstPat.isLeaf() && DstPat.getOperator()->isSubClassOf("Instruction")) { | 
|  | const CodeGenTarget &CGT = CGP.getTargetInfo(); | 
|  | CodeGenInstruction &II = CGT.getInstruction(DstPat.getOperator()); | 
|  |  | 
|  | if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other) | 
|  | HandledReg = II.ImplicitDefs[0]; | 
|  | } | 
|  |  | 
|  | for (const Record *Reg : Pattern.getDstRegs()) { | 
|  | if (!Reg->isSubClassOf("Register") || Reg == HandledReg) | 
|  | continue; | 
|  | ++NumSrcResults; | 
|  | } | 
|  | } | 
|  |  | 
|  | SmallVector<unsigned, 8> Results(Ops); | 
|  |  | 
|  | // Apply result permutation. | 
|  | for (unsigned ResNo = 0; ResNo < Pattern.getDstPattern().getNumResults(); | 
|  | ++ResNo) { | 
|  | Results[ResNo] = Ops[Pattern.getDstPattern().getResultIndex(ResNo)]; | 
|  | } | 
|  |  | 
|  | Results.resize(NumSrcResults); | 
|  | AddMatcher(new CompleteMatchMatcher(Results, Pattern)); | 
|  | } | 
|  |  | 
|  | /// ConvertPatternToMatcher - Create the matcher for the specified pattern with | 
|  | /// the specified variant.  If the variant number is invalid, this returns null. | 
|  | Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern, | 
|  | unsigned Variant, | 
|  | const CodeGenDAGPatterns &CGP) { | 
|  | MatcherGen Gen(Pattern, CGP); | 
|  |  | 
|  | // Generate the code for the matcher. | 
|  | if (Gen.EmitMatcherCode(Variant)) | 
|  | return nullptr; | 
|  |  | 
|  | // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence. | 
|  | // FIXME2: Split result code out to another table, and make the matcher end | 
|  | // with an "Emit <index>" command.  This allows result generation stuff to be | 
|  | // shared and factored? | 
|  |  | 
|  | // If the match succeeds, then we generate Pattern. | 
|  | Gen.EmitResultCode(); | 
|  |  | 
|  | // Unconditional match. | 
|  | return Gen.GetMatcher(); | 
|  | } |