|  | //===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===---------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass performs peephole optimizations to clean up ugly code | 
|  | // sequences at the MachineInstruction layer.  It runs at the end of | 
|  | // the SSA phases, following VSX swap removal.  A pass of dead code | 
|  | // elimination follows this one for quick clean-up of any dead | 
|  | // instructions introduced here.  Although we could do this as callbacks | 
|  | // from the generic peephole pass, this would have a couple of bad | 
|  | // effects:  it might remove optimization opportunities for VSX swap | 
|  | // removal, and it would miss cleanups made possible following VSX | 
|  | // swap removal. | 
|  | // | 
|  | // NOTE: We run the verifier after this pass in Asserts/Debug builds so it | 
|  | //       is important to keep the code valid after transformations. | 
|  | //       Common causes of errors stem from violating the contract specified | 
|  | //       by kill flags. Whenever a transformation changes the live range of | 
|  | //       a register, that register should be added to the work list using | 
|  | //       addRegToUpdate(RegsToUpdate, <Reg>). Furthermore, if a transformation | 
|  | //       is changing the definition of a register (i.e. removing the single | 
|  | //       definition of the original vreg), it needs to provide a dummy | 
|  | //       definition of that register using addDummyDef(<MBB>, <Reg>). | 
|  | //===---------------------------------------------------------------------===// | 
|  |  | 
|  | #include "MCTargetDesc/PPCMCTargetDesc.h" | 
|  | #include "MCTargetDesc/PPCPredicates.h" | 
|  | #include "PPC.h" | 
|  | #include "PPCInstrBuilder.h" | 
|  | #include "PPCInstrInfo.h" | 
|  | #include "PPCMachineFunctionInfo.h" | 
|  | #include "PPCTargetMachine.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/CodeGen/LiveVariables.h" | 
|  | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachinePostDominators.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/InitializePasses.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "ppc-mi-peepholes" | 
|  |  | 
|  | STATISTIC(RemoveTOCSave, "Number of TOC saves removed"); | 
|  | STATISTIC(MultiTOCSaves, | 
|  | "Number of functions with multiple TOC saves that must be kept"); | 
|  | STATISTIC(NumTOCSavesInPrologue, "Number of TOC saves placed in the prologue"); | 
|  | STATISTIC(NumEliminatedSExt, "Number of eliminated sign-extensions"); | 
|  | STATISTIC(NumEliminatedZExt, "Number of eliminated zero-extensions"); | 
|  | STATISTIC(NumOptADDLIs, "Number of optimized ADD instruction fed by LI"); | 
|  | STATISTIC(NumConvertedToImmediateForm, | 
|  | "Number of instructions converted to their immediate form"); | 
|  | STATISTIC(NumFunctionsEnteredInMIPeephole, | 
|  | "Number of functions entered in PPC MI Peepholes"); | 
|  | STATISTIC(NumFixedPointIterations, | 
|  | "Number of fixed-point iterations converting reg-reg instructions " | 
|  | "to reg-imm ones"); | 
|  | STATISTIC(NumRotatesCollapsed, | 
|  | "Number of pairs of rotate left, clear left/right collapsed"); | 
|  | STATISTIC(NumEXTSWAndSLDICombined, | 
|  | "Number of pairs of EXTSW and SLDI combined as EXTSWSLI"); | 
|  | STATISTIC(NumLoadImmZeroFoldedAndRemoved, | 
|  | "Number of LI(8) reg, 0 that are folded to r0 and removed"); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden, cl::init(true), | 
|  | cl::desc("Iterate to a fixed point when attempting to " | 
|  | "convert reg-reg instructions to reg-imm")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden, cl::init(true), | 
|  | cl::desc("Convert eligible reg+reg instructions to reg+imm")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | EnableSExtElimination("ppc-eliminate-signext", | 
|  | cl::desc("enable elimination of sign-extensions"), | 
|  | cl::init(true), cl::Hidden); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | EnableZExtElimination("ppc-eliminate-zeroext", | 
|  | cl::desc("enable elimination of zero-extensions"), | 
|  | cl::init(true), cl::Hidden); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | EnableTrapOptimization("ppc-opt-conditional-trap", | 
|  | cl::desc("enable optimization of conditional traps"), | 
|  | cl::init(false), cl::Hidden); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | struct PPCMIPeephole : public MachineFunctionPass { | 
|  |  | 
|  | static char ID; | 
|  | const PPCInstrInfo *TII; | 
|  | MachineFunction *MF; | 
|  | MachineRegisterInfo *MRI; | 
|  | LiveVariables *LV; | 
|  |  | 
|  | PPCMIPeephole() : MachineFunctionPass(ID) { | 
|  | initializePPCMIPeepholePass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | private: | 
|  | MachineDominatorTree *MDT; | 
|  | MachinePostDominatorTree *MPDT; | 
|  | MachineBlockFrequencyInfo *MBFI; | 
|  | BlockFrequency EntryFreq; | 
|  | SmallSet<Register, 16> RegsToUpdate; | 
|  |  | 
|  | // Initialize class variables. | 
|  | void initialize(MachineFunction &MFParm); | 
|  |  | 
|  | // Perform peepholes. | 
|  | bool simplifyCode(); | 
|  |  | 
|  | // Perform peepholes. | 
|  | bool eliminateRedundantCompare(); | 
|  | bool eliminateRedundantTOCSaves(std::map<MachineInstr *, bool> &TOCSaves); | 
|  | bool combineSEXTAndSHL(MachineInstr &MI, MachineInstr *&ToErase); | 
|  | bool emitRLDICWhenLoweringJumpTables(MachineInstr &MI, | 
|  | MachineInstr *&ToErase); | 
|  | void UpdateTOCSaves(std::map<MachineInstr *, bool> &TOCSaves, | 
|  | MachineInstr *MI); | 
|  |  | 
|  | // A number of transformations will eliminate the definition of a register | 
|  | // as all of its uses will be removed. However, this leaves a register | 
|  | // without a definition for LiveVariables. Such transformations should | 
|  | // use this function to provide a dummy definition of the register that | 
|  | // will simply be removed by DCE. | 
|  | void addDummyDef(MachineBasicBlock &MBB, MachineInstr *At, Register Reg) { | 
|  | BuildMI(MBB, At, At->getDebugLoc(), TII->get(PPC::IMPLICIT_DEF), Reg); | 
|  | } | 
|  | void addRegToUpdateWithLine(Register Reg, int Line); | 
|  | void convertUnprimedAccPHIs(const PPCInstrInfo *TII, MachineRegisterInfo *MRI, | 
|  | SmallVectorImpl<MachineInstr *> &PHIs, | 
|  | Register Dst); | 
|  |  | 
|  | public: | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<LiveVariables>(); | 
|  | AU.addRequired<MachineDominatorTree>(); | 
|  | AU.addRequired<MachinePostDominatorTree>(); | 
|  | AU.addRequired<MachineBlockFrequencyInfo>(); | 
|  | AU.addPreserved<LiveVariables>(); | 
|  | AU.addPreserved<MachineDominatorTree>(); | 
|  | AU.addPreserved<MachinePostDominatorTree>(); | 
|  | AU.addPreserved<MachineBlockFrequencyInfo>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | // Main entry point for this pass. | 
|  | bool runOnMachineFunction(MachineFunction &MF) override { | 
|  | initialize(MF); | 
|  | // At this point, TOC pointer should not be used in a function that uses | 
|  | // PC-Relative addressing. | 
|  | assert((MF.getRegInfo().use_empty(PPC::X2) || | 
|  | !MF.getSubtarget<PPCSubtarget>().isUsingPCRelativeCalls()) && | 
|  | "TOC pointer used in a function using PC-Relative addressing!"); | 
|  | if (skipFunction(MF.getFunction())) | 
|  | return false; | 
|  | bool Changed = simplifyCode(); | 
|  | #ifndef NDEBUG | 
|  | if (Changed) | 
|  | MF.verify(this, "Error in PowerPC MI Peephole optimization, compile with " | 
|  | "-mllvm -disable-ppc-peephole"); | 
|  | #endif | 
|  | return Changed; | 
|  | } | 
|  | }; | 
|  |  | 
|  | #define addRegToUpdate(R) addRegToUpdateWithLine(R, __LINE__) | 
|  | void PPCMIPeephole::addRegToUpdateWithLine(Register Reg, int Line) { | 
|  | if (!Register::isVirtualRegister(Reg)) | 
|  | return; | 
|  | if (RegsToUpdate.insert(Reg).second) | 
|  | LLVM_DEBUG(dbgs() << "Adding register: " << Register::virtReg2Index(Reg) | 
|  | << " on line " << Line | 
|  | << " for re-computation of kill flags\n"); | 
|  | } | 
|  |  | 
|  | // Initialize class variables. | 
|  | void PPCMIPeephole::initialize(MachineFunction &MFParm) { | 
|  | MF = &MFParm; | 
|  | MRI = &MF->getRegInfo(); | 
|  | MDT = &getAnalysis<MachineDominatorTree>(); | 
|  | MPDT = &getAnalysis<MachinePostDominatorTree>(); | 
|  | MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); | 
|  | LV = &getAnalysis<LiveVariables>(); | 
|  | EntryFreq = MBFI->getEntryFreq(); | 
|  | TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo(); | 
|  | RegsToUpdate.clear(); | 
|  | LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n"); | 
|  | LLVM_DEBUG(MF->dump()); | 
|  | } | 
|  |  | 
|  | static MachineInstr *getVRegDefOrNull(MachineOperand *Op, | 
|  | MachineRegisterInfo *MRI) { | 
|  | assert(Op && "Invalid Operand!"); | 
|  | if (!Op->isReg()) | 
|  | return nullptr; | 
|  |  | 
|  | Register Reg = Op->getReg(); | 
|  | if (!Reg.isVirtual()) | 
|  | return nullptr; | 
|  |  | 
|  | return MRI->getVRegDef(Reg); | 
|  | } | 
|  |  | 
|  | // This function returns number of known zero bits in output of MI | 
|  | // starting from the most significant bit. | 
|  | static unsigned getKnownLeadingZeroCount(const unsigned Reg, | 
|  | const PPCInstrInfo *TII, | 
|  | const MachineRegisterInfo *MRI) { | 
|  | MachineInstr *MI = MRI->getVRegDef(Reg); | 
|  | unsigned Opcode = MI->getOpcode(); | 
|  | if (Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || | 
|  | Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec) | 
|  | return MI->getOperand(3).getImm(); | 
|  |  | 
|  | if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && | 
|  | MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm()) | 
|  | return MI->getOperand(3).getImm(); | 
|  |  | 
|  | if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || | 
|  | Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || | 
|  | Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && | 
|  | MI->getOperand(3).getImm() <= MI->getOperand(4).getImm()) | 
|  | return 32 + MI->getOperand(3).getImm(); | 
|  |  | 
|  | if (Opcode == PPC::ANDI_rec) { | 
|  | uint16_t Imm = MI->getOperand(2).getImm(); | 
|  | return 48 + llvm::countl_zero(Imm); | 
|  | } | 
|  |  | 
|  | if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec || | 
|  | Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec || | 
|  | Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8) | 
|  | // The result ranges from 0 to 32. | 
|  | return 58; | 
|  |  | 
|  | if (Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec || | 
|  | Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec) | 
|  | // The result ranges from 0 to 64. | 
|  | return 57; | 
|  |  | 
|  | if (Opcode == PPC::LHZ   || Opcode == PPC::LHZX  || | 
|  | Opcode == PPC::LHZ8  || Opcode == PPC::LHZX8 || | 
|  | Opcode == PPC::LHZU  || Opcode == PPC::LHZUX || | 
|  | Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8) | 
|  | return 48; | 
|  |  | 
|  | if (Opcode == PPC::LBZ   || Opcode == PPC::LBZX  || | 
|  | Opcode == PPC::LBZ8  || Opcode == PPC::LBZX8 || | 
|  | Opcode == PPC::LBZU  || Opcode == PPC::LBZUX || | 
|  | Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8) | 
|  | return 56; | 
|  |  | 
|  | if (Opcode == PPC::AND || Opcode == PPC::AND8 || Opcode == PPC::AND_rec || | 
|  | Opcode == PPC::AND8_rec) | 
|  | return std::max( | 
|  | getKnownLeadingZeroCount(MI->getOperand(1).getReg(), TII, MRI), | 
|  | getKnownLeadingZeroCount(MI->getOperand(2).getReg(), TII, MRI)); | 
|  |  | 
|  | if (Opcode == PPC::OR || Opcode == PPC::OR8 || Opcode == PPC::XOR || | 
|  | Opcode == PPC::XOR8 || Opcode == PPC::OR_rec || | 
|  | Opcode == PPC::OR8_rec || Opcode == PPC::XOR_rec || | 
|  | Opcode == PPC::XOR8_rec) | 
|  | return std::min( | 
|  | getKnownLeadingZeroCount(MI->getOperand(1).getReg(), TII, MRI), | 
|  | getKnownLeadingZeroCount(MI->getOperand(2).getReg(), TII, MRI)); | 
|  |  | 
|  | if (TII->isZeroExtended(Reg, MRI)) | 
|  | return 32; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // This function maintains a map for the pairs <TOC Save Instr, Keep> | 
|  | // Each time a new TOC save is encountered, it checks if any of the existing | 
|  | // ones are dominated by the new one. If so, it marks the existing one as | 
|  | // redundant by setting it's entry in the map as false. It then adds the new | 
|  | // instruction to the map with either true or false depending on if any | 
|  | // existing instructions dominated the new one. | 
|  | void PPCMIPeephole::UpdateTOCSaves( | 
|  | std::map<MachineInstr *, bool> &TOCSaves, MachineInstr *MI) { | 
|  | assert(TII->isTOCSaveMI(*MI) && "Expecting a TOC save instruction here"); | 
|  | // FIXME: Saving TOC in prologue hasn't been implemented well in AIX ABI part, | 
|  | // here only support it under ELFv2. | 
|  | if (MF->getSubtarget<PPCSubtarget>().isELFv2ABI()) { | 
|  | PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); | 
|  |  | 
|  | MachineBasicBlock *Entry = &MF->front(); | 
|  | BlockFrequency CurrBlockFreq = MBFI->getBlockFreq(MI->getParent()); | 
|  |  | 
|  | // If the block in which the TOC save resides is in a block that | 
|  | // post-dominates Entry, or a block that is hotter than entry (keep in mind | 
|  | // that early MachineLICM has already run so the TOC save won't be hoisted) | 
|  | // we can just do the save in the prologue. | 
|  | if (CurrBlockFreq > EntryFreq || MPDT->dominates(MI->getParent(), Entry)) | 
|  | FI->setMustSaveTOC(true); | 
|  |  | 
|  | // If we are saving the TOC in the prologue, all the TOC saves can be | 
|  | // removed from the code. | 
|  | if (FI->mustSaveTOC()) { | 
|  | for (auto &TOCSave : TOCSaves) | 
|  | TOCSave.second = false; | 
|  | // Add new instruction to map. | 
|  | TOCSaves[MI] = false; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Keep = true; | 
|  | for (auto &I : TOCSaves) { | 
|  | MachineInstr *CurrInst = I.first; | 
|  | // If new instruction dominates an existing one, mark existing one as | 
|  | // redundant. | 
|  | if (I.second && MDT->dominates(MI, CurrInst)) | 
|  | I.second = false; | 
|  | // Check if the new instruction is redundant. | 
|  | if (MDT->dominates(CurrInst, MI)) { | 
|  | Keep = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Add new instruction to map. | 
|  | TOCSaves[MI] = Keep; | 
|  | } | 
|  |  | 
|  | // This function returns a list of all PHI nodes in the tree starting from | 
|  | // the RootPHI node. We perform a BFS traversal to get an ordered list of nodes. | 
|  | // The list initially only contains the root PHI. When we visit a PHI node, we | 
|  | // add it to the list. We continue to look for other PHI node operands while | 
|  | // there are nodes to visit in the list. The function returns false if the | 
|  | // optimization cannot be applied on this tree. | 
|  | static bool collectUnprimedAccPHIs(MachineRegisterInfo *MRI, | 
|  | MachineInstr *RootPHI, | 
|  | SmallVectorImpl<MachineInstr *> &PHIs) { | 
|  | PHIs.push_back(RootPHI); | 
|  | unsigned VisitedIndex = 0; | 
|  | while (VisitedIndex < PHIs.size()) { | 
|  | MachineInstr *VisitedPHI = PHIs[VisitedIndex]; | 
|  | for (unsigned PHIOp = 1, NumOps = VisitedPHI->getNumOperands(); | 
|  | PHIOp != NumOps; PHIOp += 2) { | 
|  | Register RegOp = VisitedPHI->getOperand(PHIOp).getReg(); | 
|  | if (!RegOp.isVirtual()) | 
|  | return false; | 
|  | MachineInstr *Instr = MRI->getVRegDef(RegOp); | 
|  | // While collecting the PHI nodes, we check if they can be converted (i.e. | 
|  | // all the operands are either copies, implicit defs or PHI nodes). | 
|  | unsigned Opcode = Instr->getOpcode(); | 
|  | if (Opcode == PPC::COPY) { | 
|  | Register Reg = Instr->getOperand(1).getReg(); | 
|  | if (!Reg.isVirtual() || MRI->getRegClass(Reg) != &PPC::ACCRCRegClass) | 
|  | return false; | 
|  | } else if (Opcode != PPC::IMPLICIT_DEF && Opcode != PPC::PHI) | 
|  | return false; | 
|  | // If we detect a cycle in the PHI nodes, we exit. It would be | 
|  | // possible to change cycles as well, but that would add a lot | 
|  | // of complexity for a case that is unlikely to occur with MMA | 
|  | // code. | 
|  | if (Opcode != PPC::PHI) | 
|  | continue; | 
|  | if (llvm::is_contained(PHIs, Instr)) | 
|  | return false; | 
|  | PHIs.push_back(Instr); | 
|  | } | 
|  | VisitedIndex++; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // This function changes the unprimed accumulator PHI nodes in the PHIs list to | 
|  | // primed accumulator PHI nodes. The list is traversed in reverse order to | 
|  | // change all the PHI operands of a PHI node before changing the node itself. | 
|  | // We keep a map to associate each changed PHI node to its non-changed form. | 
|  | void PPCMIPeephole::convertUnprimedAccPHIs( | 
|  | const PPCInstrInfo *TII, MachineRegisterInfo *MRI, | 
|  | SmallVectorImpl<MachineInstr *> &PHIs, Register Dst) { | 
|  | DenseMap<MachineInstr *, MachineInstr *> ChangedPHIMap; | 
|  | for (MachineInstr *PHI : llvm::reverse(PHIs)) { | 
|  | SmallVector<std::pair<MachineOperand, MachineOperand>, 4> PHIOps; | 
|  | // We check if the current PHI node can be changed by looking at its | 
|  | // operands. If all the operands are either copies from primed | 
|  | // accumulators, implicit definitions or other unprimed accumulator | 
|  | // PHI nodes, we change it. | 
|  | for (unsigned PHIOp = 1, NumOps = PHI->getNumOperands(); PHIOp != NumOps; | 
|  | PHIOp += 2) { | 
|  | Register RegOp = PHI->getOperand(PHIOp).getReg(); | 
|  | MachineInstr *PHIInput = MRI->getVRegDef(RegOp); | 
|  | unsigned Opcode = PHIInput->getOpcode(); | 
|  | assert((Opcode == PPC::COPY || Opcode == PPC::IMPLICIT_DEF || | 
|  | Opcode == PPC::PHI) && | 
|  | "Unexpected instruction"); | 
|  | if (Opcode == PPC::COPY) { | 
|  | assert(MRI->getRegClass(PHIInput->getOperand(1).getReg()) == | 
|  | &PPC::ACCRCRegClass && | 
|  | "Unexpected register class"); | 
|  | PHIOps.push_back({PHIInput->getOperand(1), PHI->getOperand(PHIOp + 1)}); | 
|  | } else if (Opcode == PPC::IMPLICIT_DEF) { | 
|  | Register AccReg = MRI->createVirtualRegister(&PPC::ACCRCRegClass); | 
|  | BuildMI(*PHIInput->getParent(), PHIInput, PHIInput->getDebugLoc(), | 
|  | TII->get(PPC::IMPLICIT_DEF), AccReg); | 
|  | PHIOps.push_back({MachineOperand::CreateReg(AccReg, false), | 
|  | PHI->getOperand(PHIOp + 1)}); | 
|  | } else if (Opcode == PPC::PHI) { | 
|  | // We found a PHI operand. At this point we know this operand | 
|  | // has already been changed so we get its associated changed form | 
|  | // from the map. | 
|  | assert(ChangedPHIMap.count(PHIInput) == 1 && | 
|  | "This PHI node should have already been changed."); | 
|  | MachineInstr *PrimedAccPHI = ChangedPHIMap.lookup(PHIInput); | 
|  | PHIOps.push_back({MachineOperand::CreateReg( | 
|  | PrimedAccPHI->getOperand(0).getReg(), false), | 
|  | PHI->getOperand(PHIOp + 1)}); | 
|  | } | 
|  | } | 
|  | Register AccReg = Dst; | 
|  | // If the PHI node we are changing is the root node, the register it defines | 
|  | // will be the destination register of the original copy (of the PHI def). | 
|  | // For all other PHI's in the list, we need to create another primed | 
|  | // accumulator virtual register as the PHI will no longer define the | 
|  | // unprimed accumulator. | 
|  | if (PHI != PHIs[0]) | 
|  | AccReg = MRI->createVirtualRegister(&PPC::ACCRCRegClass); | 
|  | MachineInstrBuilder NewPHI = BuildMI( | 
|  | *PHI->getParent(), PHI, PHI->getDebugLoc(), TII->get(PPC::PHI), AccReg); | 
|  | for (auto RegMBB : PHIOps) { | 
|  | NewPHI.add(RegMBB.first).add(RegMBB.second); | 
|  | if (MRI->isSSA()) | 
|  | addRegToUpdate(RegMBB.first.getReg()); | 
|  | } | 
|  | ChangedPHIMap[PHI] = NewPHI.getInstr(); | 
|  | LLVM_DEBUG(dbgs() << "Converting PHI: "); | 
|  | LLVM_DEBUG(PHI->dump()); | 
|  | LLVM_DEBUG(dbgs() << "To: "); | 
|  | LLVM_DEBUG(NewPHI.getInstr()->dump()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Perform peephole optimizations. | 
|  | bool PPCMIPeephole::simplifyCode() { | 
|  | bool Simplified = false; | 
|  | bool TrapOpt = false; | 
|  | MachineInstr* ToErase = nullptr; | 
|  | std::map<MachineInstr *, bool> TOCSaves; | 
|  | const TargetRegisterInfo *TRI = &TII->getRegisterInfo(); | 
|  | NumFunctionsEnteredInMIPeephole++; | 
|  | if (ConvertRegReg) { | 
|  | // Fixed-point conversion of reg/reg instructions fed by load-immediate | 
|  | // into reg/imm instructions. FIXME: This is expensive, control it with | 
|  | // an option. | 
|  | bool SomethingChanged = false; | 
|  | do { | 
|  | NumFixedPointIterations++; | 
|  | SomethingChanged = false; | 
|  | for (MachineBasicBlock &MBB : *MF) { | 
|  | for (MachineInstr &MI : MBB) { | 
|  | if (MI.isDebugInstr()) | 
|  | continue; | 
|  |  | 
|  | SmallSet<Register, 4> RRToRIRegsToUpdate; | 
|  | if (!TII->convertToImmediateForm(MI, RRToRIRegsToUpdate)) | 
|  | continue; | 
|  | for (Register R : RRToRIRegsToUpdate) | 
|  | addRegToUpdate(R); | 
|  | // The updated instruction may now have new register operands. | 
|  | // Conservatively add them to recompute the flags as well. | 
|  | for (const MachineOperand &MO : MI.operands()) | 
|  | if (MO.isReg()) | 
|  | addRegToUpdate(MO.getReg()); | 
|  | // We don't erase anything in case the def has other uses. Let DCE | 
|  | // remove it if it can be removed. | 
|  | LLVM_DEBUG(dbgs() << "Converted instruction to imm form: "); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | NumConvertedToImmediateForm++; | 
|  | SomethingChanged = true; | 
|  | Simplified = true; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } while (SomethingChanged && FixedPointRegToImm); | 
|  | } | 
|  |  | 
|  | // Since we are deleting this instruction, we need to run LiveVariables | 
|  | // on any of its definitions that are marked as needing an update since | 
|  | // we can't run LiveVariables on a deleted register. This only needs | 
|  | // to be done for defs since uses will have their own defining | 
|  | // instructions so we won't be running LiveVariables on a deleted reg. | 
|  | auto recomputeLVForDyingInstr = [&]() { | 
|  | if (RegsToUpdate.empty()) | 
|  | return; | 
|  | for (MachineOperand &MO : ToErase->operands()) { | 
|  | if (!MO.isReg() || !MO.isDef() || !RegsToUpdate.count(MO.getReg())) | 
|  | continue; | 
|  | Register RegToUpdate = MO.getReg(); | 
|  | RegsToUpdate.erase(RegToUpdate); | 
|  | // If some transformation has introduced an additional definition of | 
|  | // this register (breaking SSA), we can safely convert this def to | 
|  | // a def of an invalid register as the instruction is going away. | 
|  | if (!MRI->getUniqueVRegDef(RegToUpdate)) | 
|  | MO.setReg(PPC::NoRegister); | 
|  | LV->recomputeForSingleDefVirtReg(RegToUpdate); | 
|  | } | 
|  | }; | 
|  |  | 
|  | for (MachineBasicBlock &MBB : *MF) { | 
|  | for (MachineInstr &MI : MBB) { | 
|  |  | 
|  | // If the previous instruction was marked for elimination, | 
|  | // remove it now. | 
|  | if (ToErase) { | 
|  | LLVM_DEBUG(dbgs() << "Deleting instruction: "); | 
|  | LLVM_DEBUG(ToErase->dump()); | 
|  | recomputeLVForDyingInstr(); | 
|  | ToErase->eraseFromParent(); | 
|  | ToErase = nullptr; | 
|  | } | 
|  | // If a conditional trap instruction got optimized to an | 
|  | // unconditional trap, eliminate all the instructions after | 
|  | // the trap. | 
|  | if (EnableTrapOptimization && TrapOpt) { | 
|  | ToErase = &MI; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Ignore debug instructions. | 
|  | if (MI.isDebugInstr()) | 
|  | continue; | 
|  |  | 
|  | // Per-opcode peepholes. | 
|  | switch (MI.getOpcode()) { | 
|  |  | 
|  | default: | 
|  | break; | 
|  | case PPC::COPY: { | 
|  | Register Src = MI.getOperand(1).getReg(); | 
|  | Register Dst = MI.getOperand(0).getReg(); | 
|  | if (!Src.isVirtual() || !Dst.isVirtual()) | 
|  | break; | 
|  | if (MRI->getRegClass(Src) != &PPC::UACCRCRegClass || | 
|  | MRI->getRegClass(Dst) != &PPC::ACCRCRegClass) | 
|  | break; | 
|  |  | 
|  | // We are copying an unprimed accumulator to a primed accumulator. | 
|  | // If the input to the copy is a PHI that is fed only by (i) copies in | 
|  | // the other direction (ii) implicitly defined unprimed accumulators or | 
|  | // (iii) other PHI nodes satisfying (i) and (ii), we can change | 
|  | // the PHI to a PHI on primed accumulators (as long as we also change | 
|  | // its operands). To detect and change such copies, we first get a list | 
|  | // of all the PHI nodes starting from the root PHI node in BFS order. | 
|  | // We then visit all these PHI nodes to check if they can be changed to | 
|  | // primed accumulator PHI nodes and if so, we change them. | 
|  | MachineInstr *RootPHI = MRI->getVRegDef(Src); | 
|  | if (RootPHI->getOpcode() != PPC::PHI) | 
|  | break; | 
|  |  | 
|  | SmallVector<MachineInstr *, 4> PHIs; | 
|  | if (!collectUnprimedAccPHIs(MRI, RootPHI, PHIs)) | 
|  | break; | 
|  |  | 
|  | convertUnprimedAccPHIs(TII, MRI, PHIs, Dst); | 
|  |  | 
|  | ToErase = &MI; | 
|  | break; | 
|  | } | 
|  | case PPC::LI: | 
|  | case PPC::LI8: { | 
|  | // If we are materializing a zero, look for any use operands for which | 
|  | // zero means immediate zero. All such operands can be replaced with | 
|  | // PPC::ZERO. | 
|  | if (!MI.getOperand(1).isImm() || MI.getOperand(1).getImm() != 0) | 
|  | break; | 
|  | Register MIDestReg = MI.getOperand(0).getReg(); | 
|  | bool Folded = false; | 
|  | for (MachineInstr& UseMI : MRI->use_instructions(MIDestReg)) | 
|  | Folded |= TII->onlyFoldImmediate(UseMI, MI, MIDestReg); | 
|  | if (MRI->use_nodbg_empty(MIDestReg)) { | 
|  | ++NumLoadImmZeroFoldedAndRemoved; | 
|  | ToErase = &MI; | 
|  | } | 
|  | if (Folded) | 
|  | addRegToUpdate(MIDestReg); | 
|  | Simplified |= Folded; | 
|  | break; | 
|  | } | 
|  | case PPC::STW: | 
|  | case PPC::STD: { | 
|  | MachineFrameInfo &MFI = MF->getFrameInfo(); | 
|  | if (MFI.hasVarSizedObjects() || | 
|  | (!MF->getSubtarget<PPCSubtarget>().isELFv2ABI() && | 
|  | !MF->getSubtarget<PPCSubtarget>().isAIXABI())) | 
|  | break; | 
|  | // When encountering a TOC save instruction, call UpdateTOCSaves | 
|  | // to add it to the TOCSaves map and mark any existing TOC saves | 
|  | // it dominates as redundant. | 
|  | if (TII->isTOCSaveMI(MI)) | 
|  | UpdateTOCSaves(TOCSaves, &MI); | 
|  | break; | 
|  | } | 
|  | case PPC::XXPERMDI: { | 
|  | // Perform simplifications of 2x64 vector swaps and splats. | 
|  | // A swap is identified by an immediate value of 2, and a splat | 
|  | // is identified by an immediate value of 0 or 3. | 
|  | int Immed = MI.getOperand(3).getImm(); | 
|  |  | 
|  | if (Immed == 1) | 
|  | break; | 
|  |  | 
|  | // For each of these simplifications, we need the two source | 
|  | // regs to match.  Unfortunately, MachineCSE ignores COPY and | 
|  | // SUBREG_TO_REG, so for example we can see | 
|  | //   XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed. | 
|  | // We have to look through chains of COPY and SUBREG_TO_REG | 
|  | // to find the real source values for comparison. | 
|  | Register TrueReg1 = | 
|  | TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI); | 
|  | Register TrueReg2 = | 
|  | TRI->lookThruCopyLike(MI.getOperand(2).getReg(), MRI); | 
|  |  | 
|  | if (!(TrueReg1 == TrueReg2 && TrueReg1.isVirtual())) | 
|  | break; | 
|  |  | 
|  | MachineInstr *DefMI = MRI->getVRegDef(TrueReg1); | 
|  |  | 
|  | if (!DefMI) | 
|  | break; | 
|  |  | 
|  | unsigned DefOpc = DefMI->getOpcode(); | 
|  |  | 
|  | // If this is a splat fed by a splatting load, the splat is | 
|  | // redundant. Replace with a copy. This doesn't happen directly due | 
|  | // to code in PPCDAGToDAGISel.cpp, but it can happen when converting | 
|  | // a load of a double to a vector of 64-bit integers. | 
|  | auto isConversionOfLoadAndSplat = [=]() -> bool { | 
|  | if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS) | 
|  | return false; | 
|  | Register FeedReg1 = | 
|  | TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI); | 
|  | if (FeedReg1.isVirtual()) { | 
|  | MachineInstr *LoadMI = MRI->getVRegDef(FeedReg1); | 
|  | if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | }; | 
|  | if ((Immed == 0 || Immed == 3) && | 
|  | (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat())) { | 
|  | LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat " | 
|  | "to load-and-splat/copy: "); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), | 
|  | MI.getOperand(0).getReg()) | 
|  | .add(MI.getOperand(1)); | 
|  | addRegToUpdate(MI.getOperand(1).getReg()); | 
|  | ToErase = &MI; | 
|  | Simplified = true; | 
|  | } | 
|  |  | 
|  | // If this is a splat or a swap fed by another splat, we | 
|  | // can replace it with a copy. | 
|  | if (DefOpc == PPC::XXPERMDI) { | 
|  | Register DefReg1 = DefMI->getOperand(1).getReg(); | 
|  | Register DefReg2 = DefMI->getOperand(2).getReg(); | 
|  | unsigned DefImmed = DefMI->getOperand(3).getImm(); | 
|  |  | 
|  | // If the two inputs are not the same register, check to see if | 
|  | // they originate from the same virtual register after only | 
|  | // copy-like instructions. | 
|  | if (DefReg1 != DefReg2) { | 
|  | Register FeedReg1 = TRI->lookThruCopyLike(DefReg1, MRI); | 
|  | Register FeedReg2 = TRI->lookThruCopyLike(DefReg2, MRI); | 
|  |  | 
|  | if (!(FeedReg1 == FeedReg2 && FeedReg1.isVirtual())) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (DefImmed == 0 || DefImmed == 3) { | 
|  | LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat " | 
|  | "to splat/copy: "); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), | 
|  | MI.getOperand(0).getReg()) | 
|  | .add(MI.getOperand(1)); | 
|  | addRegToUpdate(MI.getOperand(1).getReg()); | 
|  | ToErase = &MI; | 
|  | Simplified = true; | 
|  | } | 
|  |  | 
|  | // If this is a splat fed by a swap, we can simplify modify | 
|  | // the splat to splat the other value from the swap's input | 
|  | // parameter. | 
|  | else if ((Immed == 0 || Immed == 3) && DefImmed == 2) { | 
|  | LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: "); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | addRegToUpdate(MI.getOperand(1).getReg()); | 
|  | addRegToUpdate(MI.getOperand(2).getReg()); | 
|  | MI.getOperand(1).setReg(DefReg1); | 
|  | MI.getOperand(2).setReg(DefReg2); | 
|  | MI.getOperand(3).setImm(3 - Immed); | 
|  | addRegToUpdate(DefReg1); | 
|  | addRegToUpdate(DefReg2); | 
|  | Simplified = true; | 
|  | } | 
|  |  | 
|  | // If this is a swap fed by a swap, we can replace it | 
|  | // with a copy from the first swap's input. | 
|  | else if (Immed == 2 && DefImmed == 2) { | 
|  | LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: "); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | addRegToUpdate(MI.getOperand(1).getReg()); | 
|  | BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), | 
|  | MI.getOperand(0).getReg()) | 
|  | .add(DefMI->getOperand(1)); | 
|  | addRegToUpdate(DefMI->getOperand(0).getReg()); | 
|  | addRegToUpdate(DefMI->getOperand(1).getReg()); | 
|  | ToErase = &MI; | 
|  | Simplified = true; | 
|  | } | 
|  | } else if ((Immed == 0 || Immed == 3 || Immed == 2) && | 
|  | DefOpc == PPC::XXPERMDIs && | 
|  | (DefMI->getOperand(2).getImm() == 0 || | 
|  | DefMI->getOperand(2).getImm() == 3)) { | 
|  | ToErase = &MI; | 
|  | Simplified = true; | 
|  | // Swap of a splat, convert to copy. | 
|  | if (Immed == 2) { | 
|  | LLVM_DEBUG(dbgs() << "Optimizing swap(splat) => copy(splat): "); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), | 
|  | MI.getOperand(0).getReg()) | 
|  | .add(MI.getOperand(1)); | 
|  | addRegToUpdate(MI.getOperand(1).getReg()); | 
|  | break; | 
|  | } | 
|  | // Splat fed by another splat - switch the output of the first | 
|  | // and remove the second. | 
|  | DefMI->getOperand(0).setReg(MI.getOperand(0).getReg()); | 
|  | LLVM_DEBUG(dbgs() << "Removing redundant splat: "); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | } else if (Immed == 2 && | 
|  | (DefOpc == PPC::VSPLTB || DefOpc == PPC::VSPLTH || | 
|  | DefOpc == PPC::VSPLTW || DefOpc == PPC::XXSPLTW || | 
|  | DefOpc == PPC::VSPLTISB || DefOpc == PPC::VSPLTISH || | 
|  | DefOpc == PPC::VSPLTISW)) { | 
|  | // Swap of various vector splats, convert to copy. | 
|  | ToErase = &MI; | 
|  | Simplified = true; | 
|  | LLVM_DEBUG(dbgs() << "Optimizing swap(vsplt(is)?[b|h|w]|xxspltw) => " | 
|  | "copy(vsplt(is)?[b|h|w]|xxspltw): "); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), | 
|  | MI.getOperand(0).getReg()) | 
|  | .add(MI.getOperand(1)); | 
|  | addRegToUpdate(MI.getOperand(1).getReg()); | 
|  | } else if ((Immed == 0 || Immed == 3 || Immed == 2) && | 
|  | TII->isLoadFromConstantPool(DefMI)) { | 
|  | const Constant *C = TII->getConstantFromConstantPool(DefMI); | 
|  | if (C && C->getType()->isVectorTy() && C->getSplatValue()) { | 
|  | ToErase = &MI; | 
|  | Simplified = true; | 
|  | LLVM_DEBUG(dbgs() | 
|  | << "Optimizing swap(splat pattern from constant-pool) " | 
|  | "=> copy(splat pattern from constant-pool): "); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), | 
|  | MI.getOperand(0).getReg()) | 
|  | .add(MI.getOperand(1)); | 
|  | addRegToUpdate(MI.getOperand(1).getReg()); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case PPC::VSPLTB: | 
|  | case PPC::VSPLTH: | 
|  | case PPC::XXSPLTW: { | 
|  | unsigned MyOpcode = MI.getOpcode(); | 
|  | unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2; | 
|  | Register TrueReg = | 
|  | TRI->lookThruCopyLike(MI.getOperand(OpNo).getReg(), MRI); | 
|  | if (!TrueReg.isVirtual()) | 
|  | break; | 
|  | MachineInstr *DefMI = MRI->getVRegDef(TrueReg); | 
|  | if (!DefMI) | 
|  | break; | 
|  | unsigned DefOpcode = DefMI->getOpcode(); | 
|  | auto isConvertOfSplat = [=]() -> bool { | 
|  | if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS) | 
|  | return false; | 
|  | Register ConvReg = DefMI->getOperand(1).getReg(); | 
|  | if (!ConvReg.isVirtual()) | 
|  | return false; | 
|  | MachineInstr *Splt = MRI->getVRegDef(ConvReg); | 
|  | return Splt && (Splt->getOpcode() == PPC::LXVWSX || | 
|  | Splt->getOpcode() == PPC::XXSPLTW); | 
|  | }; | 
|  | bool AlreadySplat = (MyOpcode == DefOpcode) || | 
|  | (MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) || | 
|  | (MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) || | 
|  | (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) || | 
|  | (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) || | 
|  | (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)|| | 
|  | (MyOpcode == PPC::XXSPLTW && isConvertOfSplat()); | 
|  | // If the instruction[s] that feed this splat have already splat | 
|  | // the value, this splat is redundant. | 
|  | if (AlreadySplat) { | 
|  | LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: "); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), | 
|  | MI.getOperand(0).getReg()) | 
|  | .add(MI.getOperand(OpNo)); | 
|  | addRegToUpdate(MI.getOperand(OpNo).getReg()); | 
|  | ToErase = &MI; | 
|  | Simplified = true; | 
|  | } | 
|  | // Splat fed by a shift. Usually when we align value to splat into | 
|  | // vector element zero. | 
|  | if (DefOpcode == PPC::XXSLDWI) { | 
|  | Register ShiftRes = DefMI->getOperand(0).getReg(); | 
|  | Register ShiftOp1 = DefMI->getOperand(1).getReg(); | 
|  | Register ShiftOp2 = DefMI->getOperand(2).getReg(); | 
|  | unsigned ShiftImm = DefMI->getOperand(3).getImm(); | 
|  | unsigned SplatImm = | 
|  | MI.getOperand(MyOpcode == PPC::XXSPLTW ? 2 : 1).getImm(); | 
|  | if (ShiftOp1 == ShiftOp2) { | 
|  | unsigned NewElem = (SplatImm + ShiftImm) & 0x3; | 
|  | if (MRI->hasOneNonDBGUse(ShiftRes)) { | 
|  | LLVM_DEBUG(dbgs() << "Removing redundant shift: "); | 
|  | LLVM_DEBUG(DefMI->dump()); | 
|  | ToErase = DefMI; | 
|  | } | 
|  | Simplified = true; | 
|  | LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm | 
|  | << " to " << NewElem << " in instruction: "); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | addRegToUpdate(MI.getOperand(OpNo).getReg()); | 
|  | addRegToUpdate(ShiftOp1); | 
|  | MI.getOperand(OpNo).setReg(ShiftOp1); | 
|  | MI.getOperand(2).setImm(NewElem); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case PPC::XVCVDPSP: { | 
|  | // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant. | 
|  | Register TrueReg = | 
|  | TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI); | 
|  | if (!TrueReg.isVirtual()) | 
|  | break; | 
|  | MachineInstr *DefMI = MRI->getVRegDef(TrueReg); | 
|  |  | 
|  | // This can occur when building a vector of single precision or integer | 
|  | // values. | 
|  | if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) { | 
|  | Register DefsReg1 = | 
|  | TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI); | 
|  | Register DefsReg2 = | 
|  | TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI); | 
|  | if (!DefsReg1.isVirtual() || !DefsReg2.isVirtual()) | 
|  | break; | 
|  | MachineInstr *P1 = MRI->getVRegDef(DefsReg1); | 
|  | MachineInstr *P2 = MRI->getVRegDef(DefsReg2); | 
|  |  | 
|  | if (!P1 || !P2) | 
|  | break; | 
|  |  | 
|  | // Remove the passed FRSP/XSRSP instruction if it only feeds this MI | 
|  | // and set any uses of that FRSP/XSRSP (in this MI) to the source of | 
|  | // the FRSP/XSRSP. | 
|  | auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) { | 
|  | unsigned Opc = RoundInstr->getOpcode(); | 
|  | if ((Opc == PPC::FRSP || Opc == PPC::XSRSP) && | 
|  | MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) { | 
|  | Simplified = true; | 
|  | Register ConvReg1 = RoundInstr->getOperand(1).getReg(); | 
|  | Register FRSPDefines = RoundInstr->getOperand(0).getReg(); | 
|  | MachineInstr &Use = *(MRI->use_instr_nodbg_begin(FRSPDefines)); | 
|  | for (int i = 0, e = Use.getNumOperands(); i < e; ++i) | 
|  | if (Use.getOperand(i).isReg() && | 
|  | Use.getOperand(i).getReg() == FRSPDefines) | 
|  | Use.getOperand(i).setReg(ConvReg1); | 
|  | LLVM_DEBUG(dbgs() << "Removing redundant FRSP/XSRSP:\n"); | 
|  | LLVM_DEBUG(RoundInstr->dump()); | 
|  | LLVM_DEBUG(dbgs() << "As it feeds instruction:\n"); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | LLVM_DEBUG(dbgs() << "Through instruction:\n"); | 
|  | LLVM_DEBUG(DefMI->dump()); | 
|  | addRegToUpdate(ConvReg1); | 
|  | addRegToUpdate(FRSPDefines); | 
|  | ToErase = RoundInstr; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // If the input to XVCVDPSP is a vector that was built (even | 
|  | // partially) out of FRSP's, the FRSP(s) can safely be removed | 
|  | // since this instruction performs the same operation. | 
|  | if (P1 != P2) { | 
|  | removeFRSPIfPossible(P1); | 
|  | removeFRSPIfPossible(P2); | 
|  | break; | 
|  | } | 
|  | removeFRSPIfPossible(P1); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case PPC::EXTSH: | 
|  | case PPC::EXTSH8: | 
|  | case PPC::EXTSH8_32_64: { | 
|  | if (!EnableSExtElimination) break; | 
|  | Register NarrowReg = MI.getOperand(1).getReg(); | 
|  | if (!NarrowReg.isVirtual()) | 
|  | break; | 
|  |  | 
|  | MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg); | 
|  | unsigned SrcOpcode = SrcMI->getOpcode(); | 
|  | // If we've used a zero-extending load that we will sign-extend, | 
|  | // just do a sign-extending load. | 
|  | if (SrcOpcode == PPC::LHZ || SrcOpcode == PPC::LHZX) { | 
|  | if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg())) | 
|  | break; | 
|  | // Determine the new opcode. We need to make sure that if the original | 
|  | // instruction has a 64 bit opcode we keep using a 64 bit opcode. | 
|  | // Likewise if the source is X-Form the new opcode should also be | 
|  | // X-Form. | 
|  | unsigned Opc = PPC::LHA; | 
|  | bool SourceIsXForm = SrcOpcode == PPC::LHZX; | 
|  | bool MIIs64Bit = MI.getOpcode() == PPC::EXTSH8 || | 
|  | MI.getOpcode() == PPC::EXTSH8_32_64; | 
|  |  | 
|  | if (SourceIsXForm && MIIs64Bit) | 
|  | Opc = PPC::LHAX8; | 
|  | else if (SourceIsXForm && !MIIs64Bit) | 
|  | Opc = PPC::LHAX; | 
|  | else if (MIIs64Bit) | 
|  | Opc = PPC::LHA8; | 
|  |  | 
|  | addRegToUpdate(NarrowReg); | 
|  | addRegToUpdate(MI.getOperand(0).getReg()); | 
|  |  | 
|  | // We are removing a definition of NarrowReg which will cause | 
|  | // problems in AliveBlocks. Add an implicit def that will be | 
|  | // removed so that AliveBlocks are updated correctly. | 
|  | addDummyDef(MBB, &MI, NarrowReg); | 
|  | LLVM_DEBUG(dbgs() << "Zero-extending load\n"); | 
|  | LLVM_DEBUG(SrcMI->dump()); | 
|  | LLVM_DEBUG(dbgs() << "and sign-extension\n"); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n"); | 
|  | SrcMI->setDesc(TII->get(Opc)); | 
|  | SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg()); | 
|  | ToErase = &MI; | 
|  | Simplified = true; | 
|  | NumEliminatedSExt++; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case PPC::EXTSW: | 
|  | case PPC::EXTSW_32: | 
|  | case PPC::EXTSW_32_64: { | 
|  | if (!EnableSExtElimination) break; | 
|  | Register NarrowReg = MI.getOperand(1).getReg(); | 
|  | if (!NarrowReg.isVirtual()) | 
|  | break; | 
|  |  | 
|  | MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg); | 
|  | unsigned SrcOpcode = SrcMI->getOpcode(); | 
|  | // If we've used a zero-extending load that we will sign-extend, | 
|  | // just do a sign-extending load. | 
|  | if (SrcOpcode == PPC::LWZ || SrcOpcode == PPC::LWZX) { | 
|  | if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg())) | 
|  | break; | 
|  |  | 
|  | // The transformation from a zero-extending load to a sign-extending | 
|  | // load is only legal when the displacement is a multiple of 4. | 
|  | // If the displacement is not at least 4 byte aligned, don't perform | 
|  | // the transformation. | 
|  | bool IsWordAligned = false; | 
|  | if (SrcMI->getOperand(1).isGlobal()) { | 
|  | const GlobalObject *GO = | 
|  | dyn_cast<GlobalObject>(SrcMI->getOperand(1).getGlobal()); | 
|  | if (GO && GO->getAlign() && *GO->getAlign() >= 4 && | 
|  | (SrcMI->getOperand(1).getOffset() % 4 == 0)) | 
|  | IsWordAligned = true; | 
|  | } else if (SrcMI->getOperand(1).isImm()) { | 
|  | int64_t Value = SrcMI->getOperand(1).getImm(); | 
|  | if (Value % 4 == 0) | 
|  | IsWordAligned = true; | 
|  | } | 
|  |  | 
|  | // Determine the new opcode. We need to make sure that if the original | 
|  | // instruction has a 64 bit opcode we keep using a 64 bit opcode. | 
|  | // Likewise if the source is X-Form the new opcode should also be | 
|  | // X-Form. | 
|  | unsigned Opc = PPC::LWA_32; | 
|  | bool SourceIsXForm = SrcOpcode == PPC::LWZX; | 
|  | bool MIIs64Bit = MI.getOpcode() == PPC::EXTSW || | 
|  | MI.getOpcode() == PPC::EXTSW_32_64; | 
|  |  | 
|  | if (SourceIsXForm && MIIs64Bit) | 
|  | Opc = PPC::LWAX; | 
|  | else if (SourceIsXForm && !MIIs64Bit) | 
|  | Opc = PPC::LWAX_32; | 
|  | else if (MIIs64Bit) | 
|  | Opc = PPC::LWA; | 
|  |  | 
|  | if (!IsWordAligned && (Opc == PPC::LWA || Opc == PPC::LWA_32)) | 
|  | break; | 
|  |  | 
|  | addRegToUpdate(NarrowReg); | 
|  | addRegToUpdate(MI.getOperand(0).getReg()); | 
|  |  | 
|  | // We are removing a definition of NarrowReg which will cause | 
|  | // problems in AliveBlocks. Add an implicit def that will be | 
|  | // removed so that AliveBlocks are updated correctly. | 
|  | addDummyDef(MBB, &MI, NarrowReg); | 
|  | LLVM_DEBUG(dbgs() << "Zero-extending load\n"); | 
|  | LLVM_DEBUG(SrcMI->dump()); | 
|  | LLVM_DEBUG(dbgs() << "and sign-extension\n"); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n"); | 
|  | SrcMI->setDesc(TII->get(Opc)); | 
|  | SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg()); | 
|  | ToErase = &MI; | 
|  | Simplified = true; | 
|  | NumEliminatedSExt++; | 
|  | } else if (MI.getOpcode() == PPC::EXTSW_32_64 && | 
|  | TII->isSignExtended(NarrowReg, MRI)) { | 
|  | // We can eliminate EXTSW if the input is known to be already | 
|  | // sign-extended. | 
|  | LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n"); | 
|  | Register TmpReg = | 
|  | MF->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass); | 
|  | BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::IMPLICIT_DEF), | 
|  | TmpReg); | 
|  | BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::INSERT_SUBREG), | 
|  | MI.getOperand(0).getReg()) | 
|  | .addReg(TmpReg) | 
|  | .addReg(NarrowReg) | 
|  | .addImm(PPC::sub_32); | 
|  | ToErase = &MI; | 
|  | Simplified = true; | 
|  | NumEliminatedSExt++; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case PPC::RLDICL: { | 
|  | // We can eliminate RLDICL (e.g. for zero-extension) | 
|  | // if all bits to clear are already zero in the input. | 
|  | // This code assume following code sequence for zero-extension. | 
|  | //   %6 = COPY %5:sub_32; (optional) | 
|  | //   %8 = IMPLICIT_DEF; | 
|  | //   %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32; | 
|  | if (!EnableZExtElimination) break; | 
|  |  | 
|  | if (MI.getOperand(2).getImm() != 0) | 
|  | break; | 
|  |  | 
|  | Register SrcReg = MI.getOperand(1).getReg(); | 
|  | if (!SrcReg.isVirtual()) | 
|  | break; | 
|  |  | 
|  | MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); | 
|  | if (!(SrcMI && SrcMI->getOpcode() == PPC::INSERT_SUBREG && | 
|  | SrcMI->getOperand(0).isReg() && SrcMI->getOperand(1).isReg())) | 
|  | break; | 
|  |  | 
|  | MachineInstr *ImpDefMI, *SubRegMI; | 
|  | ImpDefMI = MRI->getVRegDef(SrcMI->getOperand(1).getReg()); | 
|  | SubRegMI = MRI->getVRegDef(SrcMI->getOperand(2).getReg()); | 
|  | if (ImpDefMI->getOpcode() != PPC::IMPLICIT_DEF) break; | 
|  |  | 
|  | SrcMI = SubRegMI; | 
|  | if (SubRegMI->getOpcode() == PPC::COPY) { | 
|  | Register CopyReg = SubRegMI->getOperand(1).getReg(); | 
|  | if (CopyReg.isVirtual()) | 
|  | SrcMI = MRI->getVRegDef(CopyReg); | 
|  | } | 
|  | if (!SrcMI->getOperand(0).isReg()) | 
|  | break; | 
|  |  | 
|  | unsigned KnownZeroCount = | 
|  | getKnownLeadingZeroCount(SrcMI->getOperand(0).getReg(), TII, MRI); | 
|  | if (MI.getOperand(3).getImm() <= KnownZeroCount) { | 
|  | LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n"); | 
|  | BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), | 
|  | MI.getOperand(0).getReg()) | 
|  | .addReg(SrcReg); | 
|  | addRegToUpdate(SrcReg); | 
|  | ToErase = &MI; | 
|  | Simplified = true; | 
|  | NumEliminatedZExt++; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // TODO: Any instruction that has an immediate form fed only by a PHI | 
|  | // whose operands are all load immediate can be folded away. We currently | 
|  | // do this for ADD instructions, but should expand it to arithmetic and | 
|  | // binary instructions with immediate forms in the future. | 
|  | case PPC::ADD4: | 
|  | case PPC::ADD8: { | 
|  | auto isSingleUsePHI = [&](MachineOperand *PhiOp) { | 
|  | assert(PhiOp && "Invalid Operand!"); | 
|  | MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI); | 
|  |  | 
|  | return DefPhiMI && (DefPhiMI->getOpcode() == PPC::PHI) && | 
|  | MRI->hasOneNonDBGUse(DefPhiMI->getOperand(0).getReg()); | 
|  | }; | 
|  |  | 
|  | auto dominatesAllSingleUseLIs = [&](MachineOperand *DominatorOp, | 
|  | MachineOperand *PhiOp) { | 
|  | assert(PhiOp && "Invalid Operand!"); | 
|  | assert(DominatorOp && "Invalid Operand!"); | 
|  | MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI); | 
|  | MachineInstr *DefDomMI = getVRegDefOrNull(DominatorOp, MRI); | 
|  |  | 
|  | // Note: the vregs only show up at odd indices position of PHI Node, | 
|  | // the even indices position save the BB info. | 
|  | for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) { | 
|  | MachineInstr *LiMI = | 
|  | getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI); | 
|  | if (!LiMI || | 
|  | (LiMI->getOpcode() != PPC::LI && LiMI->getOpcode() != PPC::LI8) | 
|  | || !MRI->hasOneNonDBGUse(LiMI->getOperand(0).getReg()) || | 
|  | !MDT->dominates(DefDomMI, LiMI)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | MachineOperand Op1 = MI.getOperand(1); | 
|  | MachineOperand Op2 = MI.getOperand(2); | 
|  | if (isSingleUsePHI(&Op2) && dominatesAllSingleUseLIs(&Op1, &Op2)) | 
|  | std::swap(Op1, Op2); | 
|  | else if (!isSingleUsePHI(&Op1) || !dominatesAllSingleUseLIs(&Op2, &Op1)) | 
|  | break; // We don't have an ADD fed by LI's that can be transformed | 
|  |  | 
|  | // Now we know that Op1 is the PHI node and Op2 is the dominator | 
|  | Register DominatorReg = Op2.getReg(); | 
|  |  | 
|  | const TargetRegisterClass *TRC = MI.getOpcode() == PPC::ADD8 | 
|  | ? &PPC::G8RC_and_G8RC_NOX0RegClass | 
|  | : &PPC::GPRC_and_GPRC_NOR0RegClass; | 
|  | MRI->setRegClass(DominatorReg, TRC); | 
|  |  | 
|  | // replace LIs with ADDIs | 
|  | MachineInstr *DefPhiMI = getVRegDefOrNull(&Op1, MRI); | 
|  | for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) { | 
|  | MachineInstr *LiMI = getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI); | 
|  | LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: "); | 
|  | LLVM_DEBUG(LiMI->dump()); | 
|  |  | 
|  | // There could be repeated registers in the PHI, e.g: %1 = | 
|  | // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've | 
|  | // already replaced the def instruction, skip. | 
|  | if (LiMI->getOpcode() == PPC::ADDI || LiMI->getOpcode() == PPC::ADDI8) | 
|  | continue; | 
|  |  | 
|  | assert((LiMI->getOpcode() == PPC::LI || | 
|  | LiMI->getOpcode() == PPC::LI8) && | 
|  | "Invalid Opcode!"); | 
|  | auto LiImm = LiMI->getOperand(1).getImm(); // save the imm of LI | 
|  | LiMI->removeOperand(1);                    // remove the imm of LI | 
|  | LiMI->setDesc(TII->get(LiMI->getOpcode() == PPC::LI ? PPC::ADDI | 
|  | : PPC::ADDI8)); | 
|  | MachineInstrBuilder(*LiMI->getParent()->getParent(), *LiMI) | 
|  | .addReg(DominatorReg) | 
|  | .addImm(LiImm); // restore the imm of LI | 
|  | LLVM_DEBUG(LiMI->dump()); | 
|  | } | 
|  |  | 
|  | // Replace ADD with COPY | 
|  | LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: "); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), | 
|  | MI.getOperand(0).getReg()) | 
|  | .add(Op1); | 
|  | addRegToUpdate(Op1.getReg()); | 
|  | addRegToUpdate(Op2.getReg()); | 
|  | ToErase = &MI; | 
|  | Simplified = true; | 
|  | NumOptADDLIs++; | 
|  | break; | 
|  | } | 
|  | case PPC::RLDICR: { | 
|  | Simplified |= emitRLDICWhenLoweringJumpTables(MI, ToErase) || | 
|  | combineSEXTAndSHL(MI, ToErase); | 
|  | break; | 
|  | } | 
|  | case PPC::ANDI_rec: | 
|  | case PPC::ANDI8_rec: | 
|  | case PPC::ANDIS_rec: | 
|  | case PPC::ANDIS8_rec: { | 
|  | Register TrueReg = | 
|  | TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI); | 
|  | if (!TrueReg.isVirtual() || !MRI->hasOneNonDBGUse(TrueReg)) | 
|  | break; | 
|  |  | 
|  | MachineInstr *SrcMI = MRI->getVRegDef(TrueReg); | 
|  | if (!SrcMI) | 
|  | break; | 
|  |  | 
|  | unsigned SrcOpCode = SrcMI->getOpcode(); | 
|  | if (SrcOpCode != PPC::RLDICL && SrcOpCode != PPC::RLDICR) | 
|  | break; | 
|  |  | 
|  | Register SrcReg, DstReg; | 
|  | SrcReg = SrcMI->getOperand(1).getReg(); | 
|  | DstReg = MI.getOperand(1).getReg(); | 
|  | const TargetRegisterClass *SrcRC = MRI->getRegClassOrNull(SrcReg); | 
|  | const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(DstReg); | 
|  | if (DstRC != SrcRC) | 
|  | break; | 
|  |  | 
|  | uint64_t AndImm = MI.getOperand(2).getImm(); | 
|  | if (MI.getOpcode() == PPC::ANDIS_rec || | 
|  | MI.getOpcode() == PPC::ANDIS8_rec) | 
|  | AndImm <<= 16; | 
|  | uint64_t LZeroAndImm = llvm::countl_zero<uint64_t>(AndImm); | 
|  | uint64_t RZeroAndImm = llvm::countr_zero<uint64_t>(AndImm); | 
|  | uint64_t ImmSrc = SrcMI->getOperand(3).getImm(); | 
|  |  | 
|  | // We can transfer `RLDICL/RLDICR + ANDI_rec/ANDIS_rec` to `ANDI_rec 0` | 
|  | // if all bits to AND are already zero in the input. | 
|  | bool PatternResultZero = | 
|  | (SrcOpCode == PPC::RLDICL && (RZeroAndImm + ImmSrc > 63)) || | 
|  | (SrcOpCode == PPC::RLDICR && LZeroAndImm > ImmSrc); | 
|  |  | 
|  | // We can eliminate RLDICL/RLDICR if it's used to clear bits and all | 
|  | // bits cleared will be ANDed with 0 by ANDI_rec/ANDIS_rec. | 
|  | bool PatternRemoveRotate = | 
|  | SrcMI->getOperand(2).getImm() == 0 && | 
|  | ((SrcOpCode == PPC::RLDICL && LZeroAndImm >= ImmSrc) || | 
|  | (SrcOpCode == PPC::RLDICR && (RZeroAndImm + ImmSrc > 63))); | 
|  |  | 
|  | if (!PatternResultZero && !PatternRemoveRotate) | 
|  | break; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Combining pair: "); | 
|  | LLVM_DEBUG(SrcMI->dump()); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | if (PatternResultZero) | 
|  | MI.getOperand(2).setImm(0); | 
|  | MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); | 
|  | LLVM_DEBUG(dbgs() << "To: "); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | addRegToUpdate(MI.getOperand(1).getReg()); | 
|  | addRegToUpdate(SrcMI->getOperand(0).getReg()); | 
|  | Simplified = true; | 
|  | break; | 
|  | } | 
|  | case PPC::RLWINM: | 
|  | case PPC::RLWINM_rec: | 
|  | case PPC::RLWINM8: | 
|  | case PPC::RLWINM8_rec: { | 
|  | // We might replace operand 1 of the instruction which will | 
|  | // require we recompute kill flags for it. | 
|  | Register OrigOp1Reg = MI.getOperand(1).isReg() | 
|  | ? MI.getOperand(1).getReg() | 
|  | : PPC::NoRegister; | 
|  | Simplified = TII->combineRLWINM(MI, &ToErase); | 
|  | if (Simplified) { | 
|  | addRegToUpdate(OrigOp1Reg); | 
|  | if (MI.getOperand(1).isReg()) | 
|  | addRegToUpdate(MI.getOperand(1).getReg()); | 
|  | ++NumRotatesCollapsed; | 
|  | } | 
|  | break; | 
|  | } | 
|  | // We will replace TD/TW/TDI/TWI with an unconditional trap if it will | 
|  | // always trap, we will delete the node if it will never trap. | 
|  | case PPC::TDI: | 
|  | case PPC::TWI: | 
|  | case PPC::TD: | 
|  | case PPC::TW: { | 
|  | if (!EnableTrapOptimization) break; | 
|  | MachineInstr *LiMI1 = getVRegDefOrNull(&MI.getOperand(1), MRI); | 
|  | MachineInstr *LiMI2 = getVRegDefOrNull(&MI.getOperand(2), MRI); | 
|  | bool IsOperand2Immediate = MI.getOperand(2).isImm(); | 
|  | // We can only do the optimization if we can get immediates | 
|  | // from both operands | 
|  | if (!(LiMI1 && (LiMI1->getOpcode() == PPC::LI || | 
|  | LiMI1->getOpcode() == PPC::LI8))) | 
|  | break; | 
|  | if (!IsOperand2Immediate && | 
|  | !(LiMI2 && (LiMI2->getOpcode() == PPC::LI || | 
|  | LiMI2->getOpcode() == PPC::LI8))) | 
|  | break; | 
|  |  | 
|  | auto ImmOperand0 = MI.getOperand(0).getImm(); | 
|  | auto ImmOperand1 = LiMI1->getOperand(1).getImm(); | 
|  | auto ImmOperand2 = IsOperand2Immediate ? MI.getOperand(2).getImm() | 
|  | : LiMI2->getOperand(1).getImm(); | 
|  |  | 
|  | // We will replace the MI with an unconditional trap if it will always | 
|  | // trap. | 
|  | if ((ImmOperand0 == 31) || | 
|  | ((ImmOperand0 & 0x10) && | 
|  | ((int64_t)ImmOperand1 < (int64_t)ImmOperand2)) || | 
|  | ((ImmOperand0 & 0x8) && | 
|  | ((int64_t)ImmOperand1 > (int64_t)ImmOperand2)) || | 
|  | ((ImmOperand0 & 0x2) && | 
|  | ((uint64_t)ImmOperand1 < (uint64_t)ImmOperand2)) || | 
|  | ((ImmOperand0 & 0x1) && | 
|  | ((uint64_t)ImmOperand1 > (uint64_t)ImmOperand2)) || | 
|  | ((ImmOperand0 & 0x4) && (ImmOperand1 == ImmOperand2))) { | 
|  | BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::TRAP)); | 
|  | TrapOpt = true; | 
|  | } | 
|  | // We will delete the MI if it will never trap. | 
|  | ToErase = &MI; | 
|  | Simplified = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the last instruction was marked for elimination, | 
|  | // remove it now. | 
|  | if (ToErase) { | 
|  | recomputeLVForDyingInstr(); | 
|  | ToErase->eraseFromParent(); | 
|  | ToErase = nullptr; | 
|  | } | 
|  | // Reset TrapOpt to false at the end of the basic block. | 
|  | if (EnableTrapOptimization) | 
|  | TrapOpt = false; | 
|  | } | 
|  |  | 
|  | // Eliminate all the TOC save instructions which are redundant. | 
|  | Simplified |= eliminateRedundantTOCSaves(TOCSaves); | 
|  | PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); | 
|  | if (FI->mustSaveTOC()) | 
|  | NumTOCSavesInPrologue++; | 
|  |  | 
|  | // We try to eliminate redundant compare instruction. | 
|  | Simplified |= eliminateRedundantCompare(); | 
|  |  | 
|  | // If we have made any modifications and added any registers to the set of | 
|  | // registers for which we need to update the kill flags, do so by recomputing | 
|  | // LiveVariables for those registers. | 
|  | for (Register Reg : RegsToUpdate) { | 
|  | if (!MRI->reg_empty(Reg)) | 
|  | LV->recomputeForSingleDefVirtReg(Reg); | 
|  | } | 
|  | return Simplified; | 
|  | } | 
|  |  | 
|  | // helper functions for eliminateRedundantCompare | 
|  | static bool isEqOrNe(MachineInstr *BI) { | 
|  | PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm(); | 
|  | unsigned PredCond = PPC::getPredicateCondition(Pred); | 
|  | return (PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE); | 
|  | } | 
|  |  | 
|  | static bool isSupportedCmpOp(unsigned opCode) { | 
|  | return (opCode == PPC::CMPLD  || opCode == PPC::CMPD  || | 
|  | opCode == PPC::CMPLW  || opCode == PPC::CMPW  || | 
|  | opCode == PPC::CMPLDI || opCode == PPC::CMPDI || | 
|  | opCode == PPC::CMPLWI || opCode == PPC::CMPWI); | 
|  | } | 
|  |  | 
|  | static bool is64bitCmpOp(unsigned opCode) { | 
|  | return (opCode == PPC::CMPLD  || opCode == PPC::CMPD || | 
|  | opCode == PPC::CMPLDI || opCode == PPC::CMPDI); | 
|  | } | 
|  |  | 
|  | static bool isSignedCmpOp(unsigned opCode) { | 
|  | return (opCode == PPC::CMPD  || opCode == PPC::CMPW || | 
|  | opCode == PPC::CMPDI || opCode == PPC::CMPWI); | 
|  | } | 
|  |  | 
|  | static unsigned getSignedCmpOpCode(unsigned opCode) { | 
|  | if (opCode == PPC::CMPLD)  return PPC::CMPD; | 
|  | if (opCode == PPC::CMPLW)  return PPC::CMPW; | 
|  | if (opCode == PPC::CMPLDI) return PPC::CMPDI; | 
|  | if (opCode == PPC::CMPLWI) return PPC::CMPWI; | 
|  | return opCode; | 
|  | } | 
|  |  | 
|  | // We can decrement immediate x in (GE x) by changing it to (GT x-1) or | 
|  | // (LT x) to (LE x-1) | 
|  | static unsigned getPredicateToDecImm(MachineInstr *BI, MachineInstr *CMPI) { | 
|  | uint64_t Imm = CMPI->getOperand(2).getImm(); | 
|  | bool SignedCmp = isSignedCmpOp(CMPI->getOpcode()); | 
|  | if ((!SignedCmp && Imm == 0) || (SignedCmp && Imm == 0x8000)) | 
|  | return 0; | 
|  |  | 
|  | PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm(); | 
|  | unsigned PredCond = PPC::getPredicateCondition(Pred); | 
|  | unsigned PredHint = PPC::getPredicateHint(Pred); | 
|  | if (PredCond == PPC::PRED_GE) | 
|  | return PPC::getPredicate(PPC::PRED_GT, PredHint); | 
|  | if (PredCond == PPC::PRED_LT) | 
|  | return PPC::getPredicate(PPC::PRED_LE, PredHint); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // We can increment immediate x in (GT x) by changing it to (GE x+1) or | 
|  | // (LE x) to (LT x+1) | 
|  | static unsigned getPredicateToIncImm(MachineInstr *BI, MachineInstr *CMPI) { | 
|  | uint64_t Imm = CMPI->getOperand(2).getImm(); | 
|  | bool SignedCmp = isSignedCmpOp(CMPI->getOpcode()); | 
|  | if ((!SignedCmp && Imm == 0xFFFF) || (SignedCmp && Imm == 0x7FFF)) | 
|  | return 0; | 
|  |  | 
|  | PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm(); | 
|  | unsigned PredCond = PPC::getPredicateCondition(Pred); | 
|  | unsigned PredHint = PPC::getPredicateHint(Pred); | 
|  | if (PredCond == PPC::PRED_GT) | 
|  | return PPC::getPredicate(PPC::PRED_GE, PredHint); | 
|  | if (PredCond == PPC::PRED_LE) | 
|  | return PPC::getPredicate(PPC::PRED_LT, PredHint); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // This takes a Phi node and returns a register value for the specified BB. | 
|  | static unsigned getIncomingRegForBlock(MachineInstr *Phi, | 
|  | MachineBasicBlock *MBB) { | 
|  | for (unsigned I = 2, E = Phi->getNumOperands() + 1; I != E; I += 2) { | 
|  | MachineOperand &MO = Phi->getOperand(I); | 
|  | if (MO.getMBB() == MBB) | 
|  | return Phi->getOperand(I-1).getReg(); | 
|  | } | 
|  | llvm_unreachable("invalid src basic block for this Phi node\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // This function tracks the source of the register through register copy. | 
|  | // If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2 | 
|  | // assuming that the control comes from BB1 into BB2. | 
|  | static unsigned getSrcVReg(unsigned Reg, MachineBasicBlock *BB1, | 
|  | MachineBasicBlock *BB2, MachineRegisterInfo *MRI) { | 
|  | unsigned SrcReg = Reg; | 
|  | while (true) { | 
|  | unsigned NextReg = SrcReg; | 
|  | MachineInstr *Inst = MRI->getVRegDef(SrcReg); | 
|  | if (BB1 && Inst->getOpcode() == PPC::PHI && Inst->getParent() == BB2) { | 
|  | NextReg = getIncomingRegForBlock(Inst, BB1); | 
|  | // We track through PHI only once to avoid infinite loop. | 
|  | BB1 = nullptr; | 
|  | } | 
|  | else if (Inst->isFullCopy()) | 
|  | NextReg = Inst->getOperand(1).getReg(); | 
|  | if (NextReg == SrcReg || !Register::isVirtualRegister(NextReg)) | 
|  | break; | 
|  | SrcReg = NextReg; | 
|  | } | 
|  | return SrcReg; | 
|  | } | 
|  |  | 
|  | static bool eligibleForCompareElimination(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock *&PredMBB, | 
|  | MachineBasicBlock *&MBBtoMoveCmp, | 
|  | MachineRegisterInfo *MRI) { | 
|  |  | 
|  | auto isEligibleBB = [&](MachineBasicBlock &BB) { | 
|  | auto BII = BB.getFirstInstrTerminator(); | 
|  | // We optimize BBs ending with a conditional branch. | 
|  | // We check only for BCC here, not BCCLR, because BCCLR | 
|  | // will be formed only later in the pipeline. | 
|  | if (BB.succ_size() == 2 && | 
|  | BII != BB.instr_end() && | 
|  | (*BII).getOpcode() == PPC::BCC && | 
|  | (*BII).getOperand(1).isReg()) { | 
|  | // We optimize only if the condition code is used only by one BCC. | 
|  | Register CndReg = (*BII).getOperand(1).getReg(); | 
|  | if (!CndReg.isVirtual() || !MRI->hasOneNonDBGUse(CndReg)) | 
|  | return false; | 
|  |  | 
|  | MachineInstr *CMPI = MRI->getVRegDef(CndReg); | 
|  | // We assume compare and branch are in the same BB for ease of analysis. | 
|  | if (CMPI->getParent() != &BB) | 
|  | return false; | 
|  |  | 
|  | // We skip this BB if a physical register is used in comparison. | 
|  | for (MachineOperand &MO : CMPI->operands()) | 
|  | if (MO.isReg() && !MO.getReg().isVirtual()) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | // If this BB has more than one successor, we can create a new BB and | 
|  | // move the compare instruction in the new BB. | 
|  | // So far, we do not move compare instruction to a BB having multiple | 
|  | // successors to avoid potentially increasing code size. | 
|  | auto isEligibleForMoveCmp = [](MachineBasicBlock &BB) { | 
|  | return BB.succ_size() == 1; | 
|  | }; | 
|  |  | 
|  | if (!isEligibleBB(MBB)) | 
|  | return false; | 
|  |  | 
|  | unsigned NumPredBBs = MBB.pred_size(); | 
|  | if (NumPredBBs == 1) { | 
|  | MachineBasicBlock *TmpMBB = *MBB.pred_begin(); | 
|  | if (isEligibleBB(*TmpMBB)) { | 
|  | PredMBB = TmpMBB; | 
|  | MBBtoMoveCmp = nullptr; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | else if (NumPredBBs == 2) { | 
|  | // We check for partially redundant case. | 
|  | // So far, we support cases with only two predecessors | 
|  | // to avoid increasing the number of instructions. | 
|  | MachineBasicBlock::pred_iterator PI = MBB.pred_begin(); | 
|  | MachineBasicBlock *Pred1MBB = *PI; | 
|  | MachineBasicBlock *Pred2MBB = *(PI+1); | 
|  |  | 
|  | if (isEligibleBB(*Pred1MBB) && isEligibleForMoveCmp(*Pred2MBB)) { | 
|  | // We assume Pred1MBB is the BB containing the compare to be merged and | 
|  | // Pred2MBB is the BB to which we will append a compare instruction. | 
|  | // Proceed as is if Pred1MBB is different from MBB. | 
|  | } | 
|  | else if (isEligibleBB(*Pred2MBB) && isEligibleForMoveCmp(*Pred1MBB)) { | 
|  | // We need to swap Pred1MBB and Pred2MBB to canonicalize. | 
|  | std::swap(Pred1MBB, Pred2MBB); | 
|  | } | 
|  | else return false; | 
|  |  | 
|  | if (Pred1MBB == &MBB) | 
|  | return false; | 
|  |  | 
|  | // Here, Pred2MBB is the BB to which we need to append a compare inst. | 
|  | // We cannot move the compare instruction if operands are not available | 
|  | // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI). | 
|  | MachineInstr *BI = &*MBB.getFirstInstrTerminator(); | 
|  | MachineInstr *CMPI = MRI->getVRegDef(BI->getOperand(1).getReg()); | 
|  | for (int I = 1; I <= 2; I++) | 
|  | if (CMPI->getOperand(I).isReg()) { | 
|  | MachineInstr *Inst = MRI->getVRegDef(CMPI->getOperand(I).getReg()); | 
|  | if (Inst->getParent() == &MBB && Inst->getOpcode() != PPC::PHI) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | PredMBB = Pred1MBB; | 
|  | MBBtoMoveCmp = Pred2MBB; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // This function will iterate over the input map containing a pair of TOC save | 
|  | // instruction and a flag. The flag will be set to false if the TOC save is | 
|  | // proven redundant. This function will erase from the basic block all the TOC | 
|  | // saves marked as redundant. | 
|  | bool PPCMIPeephole::eliminateRedundantTOCSaves( | 
|  | std::map<MachineInstr *, bool> &TOCSaves) { | 
|  | bool Simplified = false; | 
|  | int NumKept = 0; | 
|  | for (auto TOCSave : TOCSaves) { | 
|  | if (!TOCSave.second) { | 
|  | TOCSave.first->eraseFromParent(); | 
|  | RemoveTOCSave++; | 
|  | Simplified = true; | 
|  | } else { | 
|  | NumKept++; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (NumKept > 1) | 
|  | MultiTOCSaves++; | 
|  |  | 
|  | return Simplified; | 
|  | } | 
|  |  | 
|  | // If multiple conditional branches are executed based on the (essentially) | 
|  | // same comparison, we merge compare instructions into one and make multiple | 
|  | // conditional branches on this comparison. | 
|  | // For example, | 
|  | //   if (a == 0) { ... } | 
|  | //   else if (a < 0) { ... } | 
|  | // can be executed by one compare and two conditional branches instead of | 
|  | // two pairs of a compare and a conditional branch. | 
|  | // | 
|  | // This method merges two compare instructions in two MBBs and modifies the | 
|  | // compare and conditional branch instructions if needed. | 
|  | // For the above example, the input for this pass looks like: | 
|  | //   cmplwi r3, 0 | 
|  | //   beq    0, .LBB0_3 | 
|  | //   cmpwi  r3, -1 | 
|  | //   bgt    0, .LBB0_4 | 
|  | // So, before merging two compares, we need to modify these instructions as | 
|  | //   cmpwi  r3, 0       ; cmplwi and cmpwi yield same result for beq | 
|  | //   beq    0, .LBB0_3 | 
|  | //   cmpwi  r3, 0       ; greather than -1 means greater or equal to 0 | 
|  | //   bge    0, .LBB0_4 | 
|  |  | 
|  | bool PPCMIPeephole::eliminateRedundantCompare() { | 
|  | bool Simplified = false; | 
|  |  | 
|  | for (MachineBasicBlock &MBB2 : *MF) { | 
|  | MachineBasicBlock *MBB1 = nullptr, *MBBtoMoveCmp = nullptr; | 
|  |  | 
|  | // For fully redundant case, we select two basic blocks MBB1 and MBB2 | 
|  | // as an optimization target if | 
|  | // - both MBBs end with a conditional branch, | 
|  | // - MBB1 is the only predecessor of MBB2, and | 
|  | // - compare does not take a physical register as a operand in both MBBs. | 
|  | // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr. | 
|  | // | 
|  | // As partially redundant case, we additionally handle if MBB2 has one | 
|  | // additional predecessor, which has only one successor (MBB2). | 
|  | // In this case, we move the compare instruction originally in MBB2 into | 
|  | // MBBtoMoveCmp. This partially redundant case is typically appear by | 
|  | // compiling a while loop; here, MBBtoMoveCmp is the loop preheader. | 
|  | // | 
|  | // Overview of CFG of related basic blocks | 
|  | // Fully redundant case        Partially redundant case | 
|  | //   --------                   ----------------  -------- | 
|  | //   | MBB1 | (w/ 2 succ)       | MBBtoMoveCmp |  | MBB1 | (w/ 2 succ) | 
|  | //   --------                   ----------------  -------- | 
|  | //      |    \                     (w/ 1 succ) \     |    \ | 
|  | //      |     \                                 \    |     \ | 
|  | //      |                                        \   | | 
|  | //   --------                                     -------- | 
|  | //   | MBB2 | (w/ 1 pred                          | MBB2 | (w/ 2 pred | 
|  | //   -------- and 2 succ)                         -------- and 2 succ) | 
|  | //      |    \                                       |    \ | 
|  | //      |     \                                      |     \ | 
|  | // | 
|  | if (!eligibleForCompareElimination(MBB2, MBB1, MBBtoMoveCmp, MRI)) | 
|  | continue; | 
|  |  | 
|  | MachineInstr *BI1   = &*MBB1->getFirstInstrTerminator(); | 
|  | MachineInstr *CMPI1 = MRI->getVRegDef(BI1->getOperand(1).getReg()); | 
|  |  | 
|  | MachineInstr *BI2   = &*MBB2.getFirstInstrTerminator(); | 
|  | MachineInstr *CMPI2 = MRI->getVRegDef(BI2->getOperand(1).getReg()); | 
|  | bool IsPartiallyRedundant = (MBBtoMoveCmp != nullptr); | 
|  |  | 
|  | // We cannot optimize an unsupported compare opcode or | 
|  | // a mix of 32-bit and 64-bit comparisons | 
|  | if (!isSupportedCmpOp(CMPI1->getOpcode()) || | 
|  | !isSupportedCmpOp(CMPI2->getOpcode()) || | 
|  | is64bitCmpOp(CMPI1->getOpcode()) != is64bitCmpOp(CMPI2->getOpcode())) | 
|  | continue; | 
|  |  | 
|  | unsigned NewOpCode = 0; | 
|  | unsigned NewPredicate1 = 0, NewPredicate2 = 0; | 
|  | int16_t Imm1 = 0, NewImm1 = 0, Imm2 = 0, NewImm2 = 0; | 
|  | bool SwapOperands = false; | 
|  |  | 
|  | if (CMPI1->getOpcode() != CMPI2->getOpcode()) { | 
|  | // Typically, unsigned comparison is used for equality check, but | 
|  | // we replace it with a signed comparison if the comparison | 
|  | // to be merged is a signed comparison. | 
|  | // In other cases of opcode mismatch, we cannot optimize this. | 
|  |  | 
|  | // We cannot change opcode when comparing against an immediate | 
|  | // if the most significant bit of the immediate is one | 
|  | // due to the difference in sign extension. | 
|  | auto CmpAgainstImmWithSignBit = [](MachineInstr *I) { | 
|  | if (!I->getOperand(2).isImm()) | 
|  | return false; | 
|  | int16_t Imm = (int16_t)I->getOperand(2).getImm(); | 
|  | return Imm < 0; | 
|  | }; | 
|  |  | 
|  | if (isEqOrNe(BI2) && !CmpAgainstImmWithSignBit(CMPI2) && | 
|  | CMPI1->getOpcode() == getSignedCmpOpCode(CMPI2->getOpcode())) | 
|  | NewOpCode = CMPI1->getOpcode(); | 
|  | else if (isEqOrNe(BI1) && !CmpAgainstImmWithSignBit(CMPI1) && | 
|  | getSignedCmpOpCode(CMPI1->getOpcode()) == CMPI2->getOpcode()) | 
|  | NewOpCode = CMPI2->getOpcode(); | 
|  | else continue; | 
|  | } | 
|  |  | 
|  | if (CMPI1->getOperand(2).isReg() && CMPI2->getOperand(2).isReg()) { | 
|  | // In case of comparisons between two registers, these two registers | 
|  | // must be same to merge two comparisons. | 
|  | unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(), | 
|  | nullptr, nullptr, MRI); | 
|  | unsigned Cmp1Operand2 = getSrcVReg(CMPI1->getOperand(2).getReg(), | 
|  | nullptr, nullptr, MRI); | 
|  | unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(), | 
|  | MBB1, &MBB2, MRI); | 
|  | unsigned Cmp2Operand2 = getSrcVReg(CMPI2->getOperand(2).getReg(), | 
|  | MBB1, &MBB2, MRI); | 
|  |  | 
|  | if (Cmp1Operand1 == Cmp2Operand1 && Cmp1Operand2 == Cmp2Operand2) { | 
|  | // Same pair of registers in the same order; ready to merge as is. | 
|  | } | 
|  | else if (Cmp1Operand1 == Cmp2Operand2 && Cmp1Operand2 == Cmp2Operand1) { | 
|  | // Same pair of registers in different order. | 
|  | // We reverse the predicate to merge compare instructions. | 
|  | PPC::Predicate Pred = (PPC::Predicate)BI2->getOperand(0).getImm(); | 
|  | NewPredicate2 = (unsigned)PPC::getSwappedPredicate(Pred); | 
|  | // In case of partial redundancy, we need to swap operands | 
|  | // in another compare instruction. | 
|  | SwapOperands = true; | 
|  | } | 
|  | else continue; | 
|  | } | 
|  | else if (CMPI1->getOperand(2).isImm() && CMPI2->getOperand(2).isImm()) { | 
|  | // In case of comparisons between a register and an immediate, | 
|  | // the operand register must be same for two compare instructions. | 
|  | unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(), | 
|  | nullptr, nullptr, MRI); | 
|  | unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(), | 
|  | MBB1, &MBB2, MRI); | 
|  | if (Cmp1Operand1 != Cmp2Operand1) | 
|  | continue; | 
|  |  | 
|  | NewImm1 = Imm1 = (int16_t)CMPI1->getOperand(2).getImm(); | 
|  | NewImm2 = Imm2 = (int16_t)CMPI2->getOperand(2).getImm(); | 
|  |  | 
|  | // If immediate are not same, we try to adjust by changing predicate; | 
|  | // e.g. GT imm means GE (imm+1). | 
|  | if (Imm1 != Imm2 && (!isEqOrNe(BI2) || !isEqOrNe(BI1))) { | 
|  | int Diff = Imm1 - Imm2; | 
|  | if (Diff < -2 || Diff > 2) | 
|  | continue; | 
|  |  | 
|  | unsigned PredToInc1 = getPredicateToIncImm(BI1, CMPI1); | 
|  | unsigned PredToDec1 = getPredicateToDecImm(BI1, CMPI1); | 
|  | unsigned PredToInc2 = getPredicateToIncImm(BI2, CMPI2); | 
|  | unsigned PredToDec2 = getPredicateToDecImm(BI2, CMPI2); | 
|  | if (Diff == 2) { | 
|  | if (PredToInc2 && PredToDec1) { | 
|  | NewPredicate2 = PredToInc2; | 
|  | NewPredicate1 = PredToDec1; | 
|  | NewImm2++; | 
|  | NewImm1--; | 
|  | } | 
|  | } | 
|  | else if (Diff == 1) { | 
|  | if (PredToInc2) { | 
|  | NewImm2++; | 
|  | NewPredicate2 = PredToInc2; | 
|  | } | 
|  | else if (PredToDec1) { | 
|  | NewImm1--; | 
|  | NewPredicate1 = PredToDec1; | 
|  | } | 
|  | } | 
|  | else if (Diff == -1) { | 
|  | if (PredToDec2) { | 
|  | NewImm2--; | 
|  | NewPredicate2 = PredToDec2; | 
|  | } | 
|  | else if (PredToInc1) { | 
|  | NewImm1++; | 
|  | NewPredicate1 = PredToInc1; | 
|  | } | 
|  | } | 
|  | else if (Diff == -2) { | 
|  | if (PredToDec2 && PredToInc1) { | 
|  | NewPredicate2 = PredToDec2; | 
|  | NewPredicate1 = PredToInc1; | 
|  | NewImm2--; | 
|  | NewImm1++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // We cannot merge two compares if the immediates are not same. | 
|  | if (NewImm2 != NewImm1) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n"); | 
|  | LLVM_DEBUG(CMPI1->dump()); | 
|  | LLVM_DEBUG(BI1->dump()); | 
|  | LLVM_DEBUG(CMPI2->dump()); | 
|  | LLVM_DEBUG(BI2->dump()); | 
|  | for (const MachineOperand &MO : CMPI1->operands()) | 
|  | if (MO.isReg()) | 
|  | addRegToUpdate(MO.getReg()); | 
|  | for (const MachineOperand &MO : CMPI2->operands()) | 
|  | if (MO.isReg()) | 
|  | addRegToUpdate(MO.getReg()); | 
|  |  | 
|  | // We adjust opcode, predicates and immediate as we determined above. | 
|  | if (NewOpCode != 0 && NewOpCode != CMPI1->getOpcode()) { | 
|  | CMPI1->setDesc(TII->get(NewOpCode)); | 
|  | } | 
|  | if (NewPredicate1) { | 
|  | BI1->getOperand(0).setImm(NewPredicate1); | 
|  | } | 
|  | if (NewPredicate2) { | 
|  | BI2->getOperand(0).setImm(NewPredicate2); | 
|  | } | 
|  | if (NewImm1 != Imm1) { | 
|  | CMPI1->getOperand(2).setImm(NewImm1); | 
|  | } | 
|  |  | 
|  | if (IsPartiallyRedundant) { | 
|  | // We touch up the compare instruction in MBB2 and move it to | 
|  | // a previous BB to handle partially redundant case. | 
|  | if (SwapOperands) { | 
|  | Register Op1 = CMPI2->getOperand(1).getReg(); | 
|  | Register Op2 = CMPI2->getOperand(2).getReg(); | 
|  | CMPI2->getOperand(1).setReg(Op2); | 
|  | CMPI2->getOperand(2).setReg(Op1); | 
|  | } | 
|  | if (NewImm2 != Imm2) | 
|  | CMPI2->getOperand(2).setImm(NewImm2); | 
|  |  | 
|  | for (int I = 1; I <= 2; I++) { | 
|  | if (CMPI2->getOperand(I).isReg()) { | 
|  | MachineInstr *Inst = MRI->getVRegDef(CMPI2->getOperand(I).getReg()); | 
|  | if (Inst->getParent() != &MBB2) | 
|  | continue; | 
|  |  | 
|  | assert(Inst->getOpcode() == PPC::PHI && | 
|  | "We cannot support if an operand comes from this BB."); | 
|  | unsigned SrcReg = getIncomingRegForBlock(Inst, MBBtoMoveCmp); | 
|  | CMPI2->getOperand(I).setReg(SrcReg); | 
|  | addRegToUpdate(SrcReg); | 
|  | } | 
|  | } | 
|  | auto I = MachineBasicBlock::iterator(MBBtoMoveCmp->getFirstTerminator()); | 
|  | MBBtoMoveCmp->splice(I, &MBB2, MachineBasicBlock::iterator(CMPI2)); | 
|  |  | 
|  | DebugLoc DL = CMPI2->getDebugLoc(); | 
|  | Register NewVReg = MRI->createVirtualRegister(&PPC::CRRCRegClass); | 
|  | BuildMI(MBB2, MBB2.begin(), DL, | 
|  | TII->get(PPC::PHI), NewVReg) | 
|  | .addReg(BI1->getOperand(1).getReg()).addMBB(MBB1) | 
|  | .addReg(BI2->getOperand(1).getReg()).addMBB(MBBtoMoveCmp); | 
|  | BI2->getOperand(1).setReg(NewVReg); | 
|  | addRegToUpdate(NewVReg); | 
|  | } | 
|  | else { | 
|  | // We finally eliminate compare instruction in MBB2. | 
|  | // We do not need to treat CMPI2 specially here in terms of re-computing | 
|  | // live variables even though it is being deleted because: | 
|  | // - It defines a register that has a single use (already checked in | 
|  | // eligibleForCompareElimination()) | 
|  | // - The only user (BI2) is no longer using it so the register is dead (no | 
|  | // def, no uses) | 
|  | // - We do not attempt to recompute live variables for dead registers | 
|  | BI2->getOperand(1).setReg(BI1->getOperand(1).getReg()); | 
|  | CMPI2->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "into a compare and two branches:\n"); | 
|  | LLVM_DEBUG(CMPI1->dump()); | 
|  | LLVM_DEBUG(BI1->dump()); | 
|  | LLVM_DEBUG(BI2->dump()); | 
|  | if (IsPartiallyRedundant) { | 
|  | LLVM_DEBUG(dbgs() << "The following compare is moved into " | 
|  | << printMBBReference(*MBBtoMoveCmp) | 
|  | << " to handle partial redundancy.\n"); | 
|  | LLVM_DEBUG(CMPI2->dump()); | 
|  | } | 
|  | Simplified = true; | 
|  | } | 
|  |  | 
|  | return Simplified; | 
|  | } | 
|  |  | 
|  | // We miss the opportunity to emit an RLDIC when lowering jump tables | 
|  | // since ISEL sees only a single basic block. When selecting, the clear | 
|  | // and shift left will be in different blocks. | 
|  | bool PPCMIPeephole::emitRLDICWhenLoweringJumpTables(MachineInstr &MI, | 
|  | MachineInstr *&ToErase) { | 
|  | if (MI.getOpcode() != PPC::RLDICR) | 
|  | return false; | 
|  |  | 
|  | Register SrcReg = MI.getOperand(1).getReg(); | 
|  | if (!SrcReg.isVirtual()) | 
|  | return false; | 
|  |  | 
|  | MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); | 
|  | if (SrcMI->getOpcode() != PPC::RLDICL) | 
|  | return false; | 
|  |  | 
|  | MachineOperand MOpSHSrc = SrcMI->getOperand(2); | 
|  | MachineOperand MOpMBSrc = SrcMI->getOperand(3); | 
|  | MachineOperand MOpSHMI = MI.getOperand(2); | 
|  | MachineOperand MOpMEMI = MI.getOperand(3); | 
|  | if (!(MOpSHSrc.isImm() && MOpMBSrc.isImm() && MOpSHMI.isImm() && | 
|  | MOpMEMI.isImm())) | 
|  | return false; | 
|  |  | 
|  | uint64_t SHSrc = MOpSHSrc.getImm(); | 
|  | uint64_t MBSrc = MOpMBSrc.getImm(); | 
|  | uint64_t SHMI = MOpSHMI.getImm(); | 
|  | uint64_t MEMI = MOpMEMI.getImm(); | 
|  | uint64_t NewSH = SHSrc + SHMI; | 
|  | uint64_t NewMB = MBSrc - SHMI; | 
|  | if (NewMB > 63 || NewSH > 63) | 
|  | return false; | 
|  |  | 
|  | // The bits cleared with RLDICL are [0, MBSrc). | 
|  | // The bits cleared with RLDICR are (MEMI, 63]. | 
|  | // After the sequence, the bits cleared are: | 
|  | // [0, MBSrc-SHMI) and (MEMI, 63). | 
|  | // | 
|  | // The bits cleared with RLDIC are [0, NewMB) and (63-NewSH, 63]. | 
|  | if ((63 - NewSH) != MEMI) | 
|  | return false; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Converting pair: "); | 
|  | LLVM_DEBUG(SrcMI->dump()); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  |  | 
|  | MI.setDesc(TII->get(PPC::RLDIC)); | 
|  | MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); | 
|  | MI.getOperand(2).setImm(NewSH); | 
|  | MI.getOperand(3).setImm(NewMB); | 
|  | addRegToUpdate(MI.getOperand(1).getReg()); | 
|  | addRegToUpdate(SrcMI->getOperand(0).getReg()); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "To: "); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  | NumRotatesCollapsed++; | 
|  | // If SrcReg has no non-debug use it's safe to delete its def SrcMI. | 
|  | if (MRI->use_nodbg_empty(SrcReg)) { | 
|  | assert(!SrcMI->hasImplicitDef() && | 
|  | "Not expecting an implicit def with this instr."); | 
|  | ToErase = SrcMI; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // For case in LLVM IR | 
|  | // entry: | 
|  | //   %iconv = sext i32 %index to i64 | 
|  | //   br i1 undef label %true, label %false | 
|  | // true: | 
|  | //   %ptr = getelementptr inbounds i32, i32* null, i64 %iconv | 
|  | // ... | 
|  | // PPCISelLowering::combineSHL fails to combine, because sext and shl are in | 
|  | // different BBs when conducting instruction selection. We can do a peephole | 
|  | // optimization to combine these two instructions into extswsli after | 
|  | // instruction selection. | 
|  | bool PPCMIPeephole::combineSEXTAndSHL(MachineInstr &MI, | 
|  | MachineInstr *&ToErase) { | 
|  | if (MI.getOpcode() != PPC::RLDICR) | 
|  | return false; | 
|  |  | 
|  | if (!MF->getSubtarget<PPCSubtarget>().isISA3_0()) | 
|  | return false; | 
|  |  | 
|  | assert(MI.getNumOperands() == 4 && "RLDICR should have 4 operands"); | 
|  |  | 
|  | MachineOperand MOpSHMI = MI.getOperand(2); | 
|  | MachineOperand MOpMEMI = MI.getOperand(3); | 
|  | if (!(MOpSHMI.isImm() && MOpMEMI.isImm())) | 
|  | return false; | 
|  |  | 
|  | uint64_t SHMI = MOpSHMI.getImm(); | 
|  | uint64_t MEMI = MOpMEMI.getImm(); | 
|  | if (SHMI + MEMI != 63) | 
|  | return false; | 
|  |  | 
|  | Register SrcReg = MI.getOperand(1).getReg(); | 
|  | if (!SrcReg.isVirtual()) | 
|  | return false; | 
|  |  | 
|  | MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); | 
|  | if (SrcMI->getOpcode() != PPC::EXTSW && | 
|  | SrcMI->getOpcode() != PPC::EXTSW_32_64) | 
|  | return false; | 
|  |  | 
|  | // If the register defined by extsw has more than one use, combination is not | 
|  | // needed. | 
|  | if (!MRI->hasOneNonDBGUse(SrcReg)) | 
|  | return false; | 
|  |  | 
|  | assert(SrcMI->getNumOperands() == 2 && "EXTSW should have 2 operands"); | 
|  | assert(SrcMI->getOperand(1).isReg() && | 
|  | "EXTSW's second operand should be a register"); | 
|  | if (!SrcMI->getOperand(1).getReg().isVirtual()) | 
|  | return false; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Combining pair: "); | 
|  | LLVM_DEBUG(SrcMI->dump()); | 
|  | LLVM_DEBUG(MI.dump()); | 
|  |  | 
|  | MachineInstr *NewInstr = | 
|  | BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(), | 
|  | SrcMI->getOpcode() == PPC::EXTSW ? TII->get(PPC::EXTSWSLI) | 
|  | : TII->get(PPC::EXTSWSLI_32_64), | 
|  | MI.getOperand(0).getReg()) | 
|  | .add(SrcMI->getOperand(1)) | 
|  | .add(MOpSHMI); | 
|  | (void)NewInstr; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "TO: "); | 
|  | LLVM_DEBUG(NewInstr->dump()); | 
|  | ++NumEXTSWAndSLDICombined; | 
|  | ToErase = &MI; | 
|  | // SrcMI, which is extsw, is of no use now, but we don't erase it here so we | 
|  | // can recompute its kill flags. We run DCE immediately after this pass | 
|  | // to clean up dead instructions such as this. | 
|  | addRegToUpdate(NewInstr->getOperand(1).getReg()); | 
|  | addRegToUpdate(SrcMI->getOperand(0).getReg()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | } // end default namespace | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE, | 
|  | "PowerPC MI Peephole Optimization", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) | 
|  | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) | 
|  | INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) | 
|  | INITIALIZE_PASS_DEPENDENCY(LiveVariables) | 
|  | INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE, | 
|  | "PowerPC MI Peephole Optimization", false, false) | 
|  |  | 
|  | char PPCMIPeephole::ID = 0; | 
|  | FunctionPass* | 
|  | llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); } |