|  | //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | /// \file | 
|  | /// This pass does misc. AMDGPU optimizations on IR before instruction | 
|  | /// selection. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "AMDGPU.h" | 
|  | #include "AMDGPUTargetMachine.h" | 
|  | #include "SIModeRegisterDefaults.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/UniformityAnalysis.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/CodeGen/TargetPassConfig.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InstVisitor.h" | 
|  | #include "llvm/IR/IntrinsicsAMDGPU.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/InitializePasses.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  | #include "llvm/Transforms/Utils/IntegerDivision.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  |  | 
|  | #define DEBUG_TYPE "amdgpu-codegenprepare" | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::PatternMatch; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | static cl::opt<bool> WidenLoads( | 
|  | "amdgpu-codegenprepare-widen-constant-loads", | 
|  | cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"), | 
|  | cl::ReallyHidden, | 
|  | cl::init(false)); | 
|  |  | 
|  | static cl::opt<bool> Widen16BitOps( | 
|  | "amdgpu-codegenprepare-widen-16-bit-ops", | 
|  | cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"), | 
|  | cl::ReallyHidden, | 
|  | cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | BreakLargePHIs("amdgpu-codegenprepare-break-large-phis", | 
|  | cl::desc("Break large PHI nodes for DAGISel"), | 
|  | cl::ReallyHidden, cl::init(true)); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | ForceBreakLargePHIs("amdgpu-codegenprepare-force-break-large-phis", | 
|  | cl::desc("For testing purposes, always break large " | 
|  | "PHIs even if it isn't profitable."), | 
|  | cl::ReallyHidden, cl::init(false)); | 
|  |  | 
|  | static cl::opt<unsigned> BreakLargePHIsThreshold( | 
|  | "amdgpu-codegenprepare-break-large-phis-threshold", | 
|  | cl::desc("Minimum type size in bits for breaking large PHI nodes"), | 
|  | cl::ReallyHidden, cl::init(32)); | 
|  |  | 
|  | static cl::opt<bool> UseMul24Intrin( | 
|  | "amdgpu-codegenprepare-mul24", | 
|  | cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"), | 
|  | cl::ReallyHidden, | 
|  | cl::init(true)); | 
|  |  | 
|  | // Legalize 64-bit division by using the generic IR expansion. | 
|  | static cl::opt<bool> ExpandDiv64InIR( | 
|  | "amdgpu-codegenprepare-expand-div64", | 
|  | cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"), | 
|  | cl::ReallyHidden, | 
|  | cl::init(false)); | 
|  |  | 
|  | // Leave all division operations as they are. This supersedes ExpandDiv64InIR | 
|  | // and is used for testing the legalizer. | 
|  | static cl::opt<bool> DisableIDivExpand( | 
|  | "amdgpu-codegenprepare-disable-idiv-expansion", | 
|  | cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"), | 
|  | cl::ReallyHidden, | 
|  | cl::init(false)); | 
|  |  | 
|  | // Disable processing of fdiv so we can better test the backend implementations. | 
|  | static cl::opt<bool> DisableFDivExpand( | 
|  | "amdgpu-codegenprepare-disable-fdiv-expansion", | 
|  | cl::desc("Prevent expanding floating point division in AMDGPUCodeGenPrepare"), | 
|  | cl::ReallyHidden, | 
|  | cl::init(false)); | 
|  |  | 
|  | class AMDGPUCodeGenPrepareImpl | 
|  | : public InstVisitor<AMDGPUCodeGenPrepareImpl, bool> { | 
|  | public: | 
|  | const GCNSubtarget *ST = nullptr; | 
|  | const TargetLibraryInfo *TLInfo = nullptr; | 
|  | AssumptionCache *AC = nullptr; | 
|  | DominatorTree *DT = nullptr; | 
|  | UniformityInfo *UA = nullptr; | 
|  | Module *Mod = nullptr; | 
|  | const DataLayout *DL = nullptr; | 
|  | bool HasUnsafeFPMath = false; | 
|  | bool HasFP32DenormalFlush = false; | 
|  | bool FlowChanged = false; | 
|  | mutable Function *SqrtF32 = nullptr; | 
|  | mutable Function *LdexpF32 = nullptr; | 
|  |  | 
|  | DenseMap<const PHINode *, bool> BreakPhiNodesCache; | 
|  |  | 
|  | Function *getSqrtF32() const { | 
|  | if (SqrtF32) | 
|  | return SqrtF32; | 
|  |  | 
|  | LLVMContext &Ctx = Mod->getContext(); | 
|  | SqrtF32 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_sqrt, | 
|  | {Type::getFloatTy(Ctx)}); | 
|  | return SqrtF32; | 
|  | } | 
|  |  | 
|  | Function *getLdexpF32() const { | 
|  | if (LdexpF32) | 
|  | return LdexpF32; | 
|  |  | 
|  | LLVMContext &Ctx = Mod->getContext(); | 
|  | LdexpF32 = Intrinsic::getDeclaration( | 
|  | Mod, Intrinsic::ldexp, {Type::getFloatTy(Ctx), Type::getInt32Ty(Ctx)}); | 
|  | return LdexpF32; | 
|  | } | 
|  |  | 
|  | bool canBreakPHINode(const PHINode &I); | 
|  |  | 
|  | /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to | 
|  | /// binary operation \p V. | 
|  | /// | 
|  | /// \returns Binary operation \p V. | 
|  | /// \returns \p T's base element bit width. | 
|  | unsigned getBaseElementBitWidth(const Type *T) const; | 
|  |  | 
|  | /// \returns Equivalent 32 bit integer type for given type \p T. For example, | 
|  | /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> | 
|  | /// is returned. | 
|  | Type *getI32Ty(IRBuilder<> &B, const Type *T) const; | 
|  |  | 
|  | /// \returns True if binary operation \p I is a signed binary operation, false | 
|  | /// otherwise. | 
|  | bool isSigned(const BinaryOperator &I) const; | 
|  |  | 
|  | /// \returns True if the condition of 'select' operation \p I comes from a | 
|  | /// signed 'icmp' operation, false otherwise. | 
|  | bool isSigned(const SelectInst &I) const; | 
|  |  | 
|  | /// \returns True if type \p T needs to be promoted to 32 bit integer type, | 
|  | /// false otherwise. | 
|  | bool needsPromotionToI32(const Type *T) const; | 
|  |  | 
|  | /// Return true if \p T is a legal scalar floating point type. | 
|  | bool isLegalFloatingTy(const Type *T) const; | 
|  |  | 
|  | /// Wrapper to pass all the arguments to computeKnownFPClass | 
|  | KnownFPClass computeKnownFPClass(const Value *V, FPClassTest Interested, | 
|  | const Instruction *CtxI) const { | 
|  | return llvm::computeKnownFPClass(V, *DL, Interested, 0, TLInfo, AC, CtxI, | 
|  | DT); | 
|  | } | 
|  |  | 
|  | bool canIgnoreDenormalInput(const Value *V, const Instruction *CtxI) const { | 
|  | return HasFP32DenormalFlush || | 
|  | computeKnownFPClass(V, fcSubnormal, CtxI).isKnownNeverSubnormal(); | 
|  | } | 
|  |  | 
|  | /// Promotes uniform binary operation \p I to equivalent 32 bit binary | 
|  | /// operation. | 
|  | /// | 
|  | /// \details \p I's base element bit width must be greater than 1 and less | 
|  | /// than or equal 16. Promotion is done by sign or zero extending operands to | 
|  | /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and | 
|  | /// truncating the result of 32 bit binary operation back to \p I's original | 
|  | /// type. Division operation is not promoted. | 
|  | /// | 
|  | /// \returns True if \p I is promoted to equivalent 32 bit binary operation, | 
|  | /// false otherwise. | 
|  | bool promoteUniformOpToI32(BinaryOperator &I) const; | 
|  |  | 
|  | /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. | 
|  | /// | 
|  | /// \details \p I's base element bit width must be greater than 1 and less | 
|  | /// than or equal 16. Promotion is done by sign or zero extending operands to | 
|  | /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. | 
|  | /// | 
|  | /// \returns True. | 
|  | bool promoteUniformOpToI32(ICmpInst &I) const; | 
|  |  | 
|  | /// Promotes uniform 'select' operation \p I to 32 bit 'select' | 
|  | /// operation. | 
|  | /// | 
|  | /// \details \p I's base element bit width must be greater than 1 and less | 
|  | /// than or equal 16. Promotion is done by sign or zero extending operands to | 
|  | /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the | 
|  | /// result of 32 bit 'select' operation back to \p I's original type. | 
|  | /// | 
|  | /// \returns True. | 
|  | bool promoteUniformOpToI32(SelectInst &I) const; | 
|  |  | 
|  | /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' | 
|  | /// intrinsic. | 
|  | /// | 
|  | /// \details \p I's base element bit width must be greater than 1 and less | 
|  | /// than or equal 16. Promotion is done by zero extending the operand to 32 | 
|  | /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the | 
|  | /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the | 
|  | /// shift amount is 32 minus \p I's base element bit width), and truncating | 
|  | /// the result of the shift operation back to \p I's original type. | 
|  | /// | 
|  | /// \returns True. | 
|  | bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; | 
|  |  | 
|  | /// \returns The minimum number of bits needed to store the value of \Op as an | 
|  | /// unsigned integer. Truncating to this size and then zero-extending to | 
|  | /// the original will not change the value. | 
|  | unsigned numBitsUnsigned(Value *Op) const; | 
|  |  | 
|  | /// \returns The minimum number of bits needed to store the value of \Op as a | 
|  | /// signed integer. Truncating to this size and then sign-extending to | 
|  | /// the original size will not change the value. | 
|  | unsigned numBitsSigned(Value *Op) const; | 
|  |  | 
|  | /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. | 
|  | /// SelectionDAG has an issue where an and asserting the bits are known | 
|  | bool replaceMulWithMul24(BinaryOperator &I) const; | 
|  |  | 
|  | /// Perform same function as equivalently named function in DAGCombiner. Since | 
|  | /// we expand some divisions here, we need to perform this before obscuring. | 
|  | bool foldBinOpIntoSelect(BinaryOperator &I) const; | 
|  |  | 
|  | bool divHasSpecialOptimization(BinaryOperator &I, | 
|  | Value *Num, Value *Den) const; | 
|  | int getDivNumBits(BinaryOperator &I, | 
|  | Value *Num, Value *Den, | 
|  | unsigned AtLeast, bool Signed) const; | 
|  |  | 
|  | /// Expands 24 bit div or rem. | 
|  | Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, | 
|  | Value *Num, Value *Den, | 
|  | bool IsDiv, bool IsSigned) const; | 
|  |  | 
|  | Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I, | 
|  | Value *Num, Value *Den, unsigned NumBits, | 
|  | bool IsDiv, bool IsSigned) const; | 
|  |  | 
|  | /// Expands 32 bit div or rem. | 
|  | Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, | 
|  | Value *Num, Value *Den) const; | 
|  |  | 
|  | Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I, | 
|  | Value *Num, Value *Den) const; | 
|  | void expandDivRem64(BinaryOperator &I) const; | 
|  |  | 
|  | /// Widen a scalar load. | 
|  | /// | 
|  | /// \details \p Widen scalar load for uniform, small type loads from constant | 
|  | //  memory / to a full 32-bits and then truncate the input to allow a scalar | 
|  | //  load instead of a vector load. | 
|  | // | 
|  | /// \returns True. | 
|  |  | 
|  | bool canWidenScalarExtLoad(LoadInst &I) const; | 
|  |  | 
|  | Value *matchFractPat(IntrinsicInst &I); | 
|  | Value *applyFractPat(IRBuilder<> &Builder, Value *FractArg); | 
|  |  | 
|  | bool canOptimizeWithRsq(const FPMathOperator *SqrtOp, FastMathFlags DivFMF, | 
|  | FastMathFlags SqrtFMF) const; | 
|  |  | 
|  | Value *optimizeWithRsq(IRBuilder<> &Builder, Value *Num, Value *Den, | 
|  | FastMathFlags DivFMF, FastMathFlags SqrtFMF, | 
|  | const Instruction *CtxI) const; | 
|  |  | 
|  | Value *optimizeWithRcp(IRBuilder<> &Builder, Value *Num, Value *Den, | 
|  | FastMathFlags FMF, const Instruction *CtxI) const; | 
|  | Value *optimizeWithFDivFast(IRBuilder<> &Builder, Value *Num, Value *Den, | 
|  | float ReqdAccuracy) const; | 
|  |  | 
|  | Value *visitFDivElement(IRBuilder<> &Builder, Value *Num, Value *Den, | 
|  | FastMathFlags DivFMF, FastMathFlags SqrtFMF, | 
|  | Value *RsqOp, const Instruction *FDiv, | 
|  | float ReqdAccuracy) const; | 
|  |  | 
|  | std::pair<Value *, Value *> getFrexpResults(IRBuilder<> &Builder, | 
|  | Value *Src) const; | 
|  |  | 
|  | Value *emitRcpIEEE1ULP(IRBuilder<> &Builder, Value *Src, | 
|  | bool IsNegative) const; | 
|  | Value *emitFrexpDiv(IRBuilder<> &Builder, Value *LHS, Value *RHS, | 
|  | FastMathFlags FMF) const; | 
|  | Value *emitSqrtIEEE2ULP(IRBuilder<> &Builder, Value *Src, | 
|  | FastMathFlags FMF) const; | 
|  |  | 
|  | public: | 
|  | bool visitFDiv(BinaryOperator &I); | 
|  |  | 
|  | bool visitInstruction(Instruction &I) { return false; } | 
|  | bool visitBinaryOperator(BinaryOperator &I); | 
|  | bool visitLoadInst(LoadInst &I); | 
|  | bool visitICmpInst(ICmpInst &I); | 
|  | bool visitSelectInst(SelectInst &I); | 
|  | bool visitPHINode(PHINode &I); | 
|  |  | 
|  | bool visitIntrinsicInst(IntrinsicInst &I); | 
|  | bool visitBitreverseIntrinsicInst(IntrinsicInst &I); | 
|  | bool visitMinNum(IntrinsicInst &I); | 
|  | bool visitSqrt(IntrinsicInst &I); | 
|  | bool run(Function &F); | 
|  | }; | 
|  |  | 
|  | class AMDGPUCodeGenPrepare : public FunctionPass { | 
|  | private: | 
|  | AMDGPUCodeGenPrepareImpl Impl; | 
|  |  | 
|  | public: | 
|  | static char ID; | 
|  | AMDGPUCodeGenPrepare() : FunctionPass(ID) { | 
|  | initializeAMDGPUCodeGenPreparePass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<AssumptionCacheTracker>(); | 
|  | AU.addRequired<UniformityInfoWrapperPass>(); | 
|  | AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
|  |  | 
|  | // FIXME: Division expansion needs to preserve the dominator tree. | 
|  | if (!ExpandDiv64InIR) | 
|  | AU.setPreservesAll(); | 
|  | } | 
|  | bool runOnFunction(Function &F) override; | 
|  | bool doInitialization(Module &M) override; | 
|  | StringRef getPassName() const override { return "AMDGPU IR optimizations"; } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | bool AMDGPUCodeGenPrepareImpl::run(Function &F) { | 
|  | BreakPhiNodesCache.clear(); | 
|  | bool MadeChange = false; | 
|  |  | 
|  | Function::iterator NextBB; | 
|  | for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) { | 
|  | BasicBlock *BB = &*FI; | 
|  | NextBB = std::next(FI); | 
|  |  | 
|  | BasicBlock::iterator Next; | 
|  | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; | 
|  | I = Next) { | 
|  | Next = std::next(I); | 
|  |  | 
|  | MadeChange |= visit(*I); | 
|  |  | 
|  | if (Next != E) { // Control flow changed | 
|  | BasicBlock *NextInstBB = Next->getParent(); | 
|  | if (NextInstBB != BB) { | 
|  | BB = NextInstBB; | 
|  | E = BB->end(); | 
|  | FE = F.end(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | unsigned AMDGPUCodeGenPrepareImpl::getBaseElementBitWidth(const Type *T) const { | 
|  | assert(needsPromotionToI32(T) && "T does not need promotion to i32"); | 
|  |  | 
|  | if (T->isIntegerTy()) | 
|  | return T->getIntegerBitWidth(); | 
|  | return cast<VectorType>(T)->getElementType()->getIntegerBitWidth(); | 
|  | } | 
|  |  | 
|  | Type *AMDGPUCodeGenPrepareImpl::getI32Ty(IRBuilder<> &B, const Type *T) const { | 
|  | assert(needsPromotionToI32(T) && "T does not need promotion to i32"); | 
|  |  | 
|  | if (T->isIntegerTy()) | 
|  | return B.getInt32Ty(); | 
|  | return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T)); | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepareImpl::isSigned(const BinaryOperator &I) const { | 
|  | return I.getOpcode() == Instruction::AShr || | 
|  | I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepareImpl::isSigned(const SelectInst &I) const { | 
|  | return isa<ICmpInst>(I.getOperand(0)) ? | 
|  | cast<ICmpInst>(I.getOperand(0))->isSigned() : false; | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepareImpl::needsPromotionToI32(const Type *T) const { | 
|  | if (!Widen16BitOps) | 
|  | return false; | 
|  |  | 
|  | const IntegerType *IntTy = dyn_cast<IntegerType>(T); | 
|  | if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) | 
|  | return true; | 
|  |  | 
|  | if (const VectorType *VT = dyn_cast<VectorType>(T)) { | 
|  | // TODO: The set of packed operations is more limited, so may want to | 
|  | // promote some anyway. | 
|  | if (ST->hasVOP3PInsts()) | 
|  | return false; | 
|  |  | 
|  | return needsPromotionToI32(VT->getElementType()); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepareImpl::isLegalFloatingTy(const Type *Ty) const { | 
|  | return Ty->isFloatTy() || Ty->isDoubleTy() || | 
|  | (Ty->isHalfTy() && ST->has16BitInsts()); | 
|  | } | 
|  |  | 
|  | // Return true if the op promoted to i32 should have nsw set. | 
|  | static bool promotedOpIsNSW(const Instruction &I) { | 
|  | switch (I.getOpcode()) { | 
|  | case Instruction::Shl: | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | return true; | 
|  | case Instruction::Mul: | 
|  | return I.hasNoUnsignedWrap(); | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Return true if the op promoted to i32 should have nuw set. | 
|  | static bool promotedOpIsNUW(const Instruction &I) { | 
|  | switch (I.getOpcode()) { | 
|  | case Instruction::Shl: | 
|  | case Instruction::Add: | 
|  | case Instruction::Mul: | 
|  | return true; | 
|  | case Instruction::Sub: | 
|  | return I.hasNoUnsignedWrap(); | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepareImpl::canWidenScalarExtLoad(LoadInst &I) const { | 
|  | Type *Ty = I.getType(); | 
|  | const DataLayout &DL = Mod->getDataLayout(); | 
|  | int TySize = DL.getTypeSizeInBits(Ty); | 
|  | Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty); | 
|  |  | 
|  | return I.isSimple() && TySize < 32 && Alignment >= 4 && UA->isUniform(&I); | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(BinaryOperator &I) const { | 
|  | assert(needsPromotionToI32(I.getType()) && | 
|  | "I does not need promotion to i32"); | 
|  |  | 
|  | if (I.getOpcode() == Instruction::SDiv || | 
|  | I.getOpcode() == Instruction::UDiv || | 
|  | I.getOpcode() == Instruction::SRem || | 
|  | I.getOpcode() == Instruction::URem) | 
|  | return false; | 
|  |  | 
|  | IRBuilder<> Builder(&I); | 
|  | Builder.SetCurrentDebugLocation(I.getDebugLoc()); | 
|  |  | 
|  | Type *I32Ty = getI32Ty(Builder, I.getType()); | 
|  | Value *ExtOp0 = nullptr; | 
|  | Value *ExtOp1 = nullptr; | 
|  | Value *ExtRes = nullptr; | 
|  | Value *TruncRes = nullptr; | 
|  |  | 
|  | if (isSigned(I)) { | 
|  | ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); | 
|  | ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); | 
|  | } else { | 
|  | ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); | 
|  | ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); | 
|  | } | 
|  |  | 
|  | ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1); | 
|  | if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) { | 
|  | if (promotedOpIsNSW(cast<Instruction>(I))) | 
|  | Inst->setHasNoSignedWrap(); | 
|  |  | 
|  | if (promotedOpIsNUW(cast<Instruction>(I))) | 
|  | Inst->setHasNoUnsignedWrap(); | 
|  |  | 
|  | if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) | 
|  | Inst->setIsExact(ExactOp->isExact()); | 
|  | } | 
|  |  | 
|  | TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); | 
|  |  | 
|  | I.replaceAllUsesWith(TruncRes); | 
|  | I.eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(ICmpInst &I) const { | 
|  | assert(needsPromotionToI32(I.getOperand(0)->getType()) && | 
|  | "I does not need promotion to i32"); | 
|  |  | 
|  | IRBuilder<> Builder(&I); | 
|  | Builder.SetCurrentDebugLocation(I.getDebugLoc()); | 
|  |  | 
|  | Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType()); | 
|  | Value *ExtOp0 = nullptr; | 
|  | Value *ExtOp1 = nullptr; | 
|  | Value *NewICmp  = nullptr; | 
|  |  | 
|  | if (I.isSigned()) { | 
|  | ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); | 
|  | ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); | 
|  | } else { | 
|  | ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); | 
|  | ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); | 
|  | } | 
|  | NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1); | 
|  |  | 
|  | I.replaceAllUsesWith(NewICmp); | 
|  | I.eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(SelectInst &I) const { | 
|  | assert(needsPromotionToI32(I.getType()) && | 
|  | "I does not need promotion to i32"); | 
|  |  | 
|  | IRBuilder<> Builder(&I); | 
|  | Builder.SetCurrentDebugLocation(I.getDebugLoc()); | 
|  |  | 
|  | Type *I32Ty = getI32Ty(Builder, I.getType()); | 
|  | Value *ExtOp1 = nullptr; | 
|  | Value *ExtOp2 = nullptr; | 
|  | Value *ExtRes = nullptr; | 
|  | Value *TruncRes = nullptr; | 
|  |  | 
|  | if (isSigned(I)) { | 
|  | ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); | 
|  | ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty); | 
|  | } else { | 
|  | ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); | 
|  | ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty); | 
|  | } | 
|  | ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2); | 
|  | TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); | 
|  |  | 
|  | I.replaceAllUsesWith(TruncRes); | 
|  | I.eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepareImpl::promoteUniformBitreverseToI32( | 
|  | IntrinsicInst &I) const { | 
|  | assert(I.getIntrinsicID() == Intrinsic::bitreverse && | 
|  | "I must be bitreverse intrinsic"); | 
|  | assert(needsPromotionToI32(I.getType()) && | 
|  | "I does not need promotion to i32"); | 
|  |  | 
|  | IRBuilder<> Builder(&I); | 
|  | Builder.SetCurrentDebugLocation(I.getDebugLoc()); | 
|  |  | 
|  | Type *I32Ty = getI32Ty(Builder, I.getType()); | 
|  | Function *I32 = | 
|  | Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty }); | 
|  | Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty); | 
|  | Value *ExtRes = Builder.CreateCall(I32, { ExtOp }); | 
|  | Value *LShrOp = | 
|  | Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType())); | 
|  | Value *TruncRes = | 
|  | Builder.CreateTrunc(LShrOp, I.getType()); | 
|  |  | 
|  | I.replaceAllUsesWith(TruncRes); | 
|  | I.eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned AMDGPUCodeGenPrepareImpl::numBitsUnsigned(Value *Op) const { | 
|  | return computeKnownBits(Op, *DL, 0, AC).countMaxActiveBits(); | 
|  | } | 
|  |  | 
|  | unsigned AMDGPUCodeGenPrepareImpl::numBitsSigned(Value *Op) const { | 
|  | return ComputeMaxSignificantBits(Op, *DL, 0, AC); | 
|  | } | 
|  |  | 
|  | static void extractValues(IRBuilder<> &Builder, | 
|  | SmallVectorImpl<Value *> &Values, Value *V) { | 
|  | auto *VT = dyn_cast<FixedVectorType>(V->getType()); | 
|  | if (!VT) { | 
|  | Values.push_back(V); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (int I = 0, E = VT->getNumElements(); I != E; ++I) | 
|  | Values.push_back(Builder.CreateExtractElement(V, I)); | 
|  | } | 
|  |  | 
|  | static Value *insertValues(IRBuilder<> &Builder, | 
|  | Type *Ty, | 
|  | SmallVectorImpl<Value *> &Values) { | 
|  | if (!Ty->isVectorTy()) { | 
|  | assert(Values.size() == 1); | 
|  | return Values[0]; | 
|  | } | 
|  |  | 
|  | Value *NewVal = PoisonValue::get(Ty); | 
|  | for (int I = 0, E = Values.size(); I != E; ++I) | 
|  | NewVal = Builder.CreateInsertElement(NewVal, Values[I], I); | 
|  |  | 
|  | return NewVal; | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepareImpl::replaceMulWithMul24(BinaryOperator &I) const { | 
|  | if (I.getOpcode() != Instruction::Mul) | 
|  | return false; | 
|  |  | 
|  | Type *Ty = I.getType(); | 
|  | unsigned Size = Ty->getScalarSizeInBits(); | 
|  | if (Size <= 16 && ST->has16BitInsts()) | 
|  | return false; | 
|  |  | 
|  | // Prefer scalar if this could be s_mul_i32 | 
|  | if (UA->isUniform(&I)) | 
|  | return false; | 
|  |  | 
|  | Value *LHS = I.getOperand(0); | 
|  | Value *RHS = I.getOperand(1); | 
|  | IRBuilder<> Builder(&I); | 
|  | Builder.SetCurrentDebugLocation(I.getDebugLoc()); | 
|  |  | 
|  | unsigned LHSBits = 0, RHSBits = 0; | 
|  | bool IsSigned = false; | 
|  |  | 
|  | if (ST->hasMulU24() && (LHSBits = numBitsUnsigned(LHS)) <= 24 && | 
|  | (RHSBits = numBitsUnsigned(RHS)) <= 24) { | 
|  | IsSigned = false; | 
|  |  | 
|  | } else if (ST->hasMulI24() && (LHSBits = numBitsSigned(LHS)) <= 24 && | 
|  | (RHSBits = numBitsSigned(RHS)) <= 24) { | 
|  | IsSigned = true; | 
|  |  | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | SmallVector<Value *, 4> LHSVals; | 
|  | SmallVector<Value *, 4> RHSVals; | 
|  | SmallVector<Value *, 4> ResultVals; | 
|  | extractValues(Builder, LHSVals, LHS); | 
|  | extractValues(Builder, RHSVals, RHS); | 
|  |  | 
|  | IntegerType *I32Ty = Builder.getInt32Ty(); | 
|  | IntegerType *IntrinTy = Size > 32 ? Builder.getInt64Ty() : I32Ty; | 
|  | Type *DstTy = LHSVals[0]->getType(); | 
|  |  | 
|  | for (int I = 0, E = LHSVals.size(); I != E; ++I) { | 
|  | Value *LHS = IsSigned ? Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty) | 
|  | : Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty); | 
|  | Value *RHS = IsSigned ? Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty) | 
|  | : Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty); | 
|  | Intrinsic::ID ID = | 
|  | IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24; | 
|  | Value *Result = Builder.CreateIntrinsic(ID, {IntrinTy}, {LHS, RHS}); | 
|  | Result = IsSigned ? Builder.CreateSExtOrTrunc(Result, DstTy) | 
|  | : Builder.CreateZExtOrTrunc(Result, DstTy); | 
|  | ResultVals.push_back(Result); | 
|  | } | 
|  |  | 
|  | Value *NewVal = insertValues(Builder, Ty, ResultVals); | 
|  | NewVal->takeName(&I); | 
|  | I.replaceAllUsesWith(NewVal); | 
|  | I.eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Find a select instruction, which may have been casted. This is mostly to deal | 
|  | // with cases where i16 selects were promoted here to i32. | 
|  | static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) { | 
|  | Cast = nullptr; | 
|  | if (SelectInst *Sel = dyn_cast<SelectInst>(V)) | 
|  | return Sel; | 
|  |  | 
|  | if ((Cast = dyn_cast<CastInst>(V))) { | 
|  | if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0))) | 
|  | return Sel; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepareImpl::foldBinOpIntoSelect(BinaryOperator &BO) const { | 
|  | // Don't do this unless the old select is going away. We want to eliminate the | 
|  | // binary operator, not replace a binop with a select. | 
|  | int SelOpNo = 0; | 
|  |  | 
|  | CastInst *CastOp; | 
|  |  | 
|  | // TODO: Should probably try to handle some cases with multiple | 
|  | // users. Duplicating the select may be profitable for division. | 
|  | SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp); | 
|  | if (!Sel || !Sel->hasOneUse()) { | 
|  | SelOpNo = 1; | 
|  | Sel = findSelectThroughCast(BO.getOperand(1), CastOp); | 
|  | } | 
|  |  | 
|  | if (!Sel || !Sel->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | Constant *CT = dyn_cast<Constant>(Sel->getTrueValue()); | 
|  | Constant *CF = dyn_cast<Constant>(Sel->getFalseValue()); | 
|  | Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1)); | 
|  | if (!CBO || !CT || !CF) | 
|  | return false; | 
|  |  | 
|  | if (CastOp) { | 
|  | if (!CastOp->hasOneUse()) | 
|  | return false; | 
|  | CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL); | 
|  | CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL); | 
|  | } | 
|  |  | 
|  | // TODO: Handle special 0/-1 cases DAG combine does, although we only really | 
|  | // need to handle divisions here. | 
|  | Constant *FoldedT = SelOpNo ? | 
|  | ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) : | 
|  | ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL); | 
|  | if (!FoldedT || isa<ConstantExpr>(FoldedT)) | 
|  | return false; | 
|  |  | 
|  | Constant *FoldedF = SelOpNo ? | 
|  | ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) : | 
|  | ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL); | 
|  | if (!FoldedF || isa<ConstantExpr>(FoldedF)) | 
|  | return false; | 
|  |  | 
|  | IRBuilder<> Builder(&BO); | 
|  | Builder.SetCurrentDebugLocation(BO.getDebugLoc()); | 
|  | if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO)) | 
|  | Builder.setFastMathFlags(FPOp->getFastMathFlags()); | 
|  |  | 
|  | Value *NewSelect = Builder.CreateSelect(Sel->getCondition(), | 
|  | FoldedT, FoldedF); | 
|  | NewSelect->takeName(&BO); | 
|  | BO.replaceAllUsesWith(NewSelect); | 
|  | BO.eraseFromParent(); | 
|  | if (CastOp) | 
|  | CastOp->eraseFromParent(); | 
|  | Sel->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | std::pair<Value *, Value *> | 
|  | AMDGPUCodeGenPrepareImpl::getFrexpResults(IRBuilder<> &Builder, | 
|  | Value *Src) const { | 
|  | Type *Ty = Src->getType(); | 
|  | Value *Frexp = Builder.CreateIntrinsic(Intrinsic::frexp, | 
|  | {Ty, Builder.getInt32Ty()}, Src); | 
|  | Value *FrexpMant = Builder.CreateExtractValue(Frexp, {0}); | 
|  |  | 
|  | // Bypass the bug workaround for the exponent result since it doesn't matter. | 
|  | // TODO: Does the bug workaround even really need to consider the exponent | 
|  | // result? It's unspecified by the spec. | 
|  |  | 
|  | Value *FrexpExp = | 
|  | ST->hasFractBug() | 
|  | ? Builder.CreateIntrinsic(Intrinsic::amdgcn_frexp_exp, | 
|  | {Builder.getInt32Ty(), Ty}, Src) | 
|  | : Builder.CreateExtractValue(Frexp, {1}); | 
|  | return {FrexpMant, FrexpExp}; | 
|  | } | 
|  |  | 
|  | /// Emit an expansion of 1.0 / Src good for 1ulp that supports denormals. | 
|  | Value *AMDGPUCodeGenPrepareImpl::emitRcpIEEE1ULP(IRBuilder<> &Builder, | 
|  | Value *Src, | 
|  | bool IsNegative) const { | 
|  | // Same as for 1.0, but expand the sign out of the constant. | 
|  | // -1.0 / x -> rcp (fneg x) | 
|  | if (IsNegative) | 
|  | Src = Builder.CreateFNeg(Src); | 
|  |  | 
|  | // The rcp instruction doesn't support denormals, so scale the input | 
|  | // out of the denormal range and convert at the end. | 
|  | // | 
|  | // Expand as 2^-n * (1.0 / (x * 2^n)) | 
|  |  | 
|  | // TODO: Skip scaling if input is known never denormal and the input | 
|  | // range won't underflow to denormal. The hard part is knowing the | 
|  | // result. We need a range check, the result could be denormal for | 
|  | // 0x1p+126 < den <= 0x1p+127. | 
|  | auto [FrexpMant, FrexpExp] = getFrexpResults(Builder, Src); | 
|  | Value *ScaleFactor = Builder.CreateNeg(FrexpExp); | 
|  | Value *Rcp = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, FrexpMant); | 
|  | return Builder.CreateCall(getLdexpF32(), {Rcp, ScaleFactor}); | 
|  | } | 
|  |  | 
|  | /// Emit a 2ulp expansion for fdiv by using frexp for input scaling. | 
|  | Value *AMDGPUCodeGenPrepareImpl::emitFrexpDiv(IRBuilder<> &Builder, Value *LHS, | 
|  | Value *RHS, | 
|  | FastMathFlags FMF) const { | 
|  | // If we have have to work around the fract/frexp bug, we're worse off than | 
|  | // using the fdiv.fast expansion. The full safe expansion is faster if we have | 
|  | // fast FMA. | 
|  | if (HasFP32DenormalFlush && ST->hasFractBug() && !ST->hasFastFMAF32() && | 
|  | (!FMF.noNaNs() || !FMF.noInfs())) | 
|  | return nullptr; | 
|  |  | 
|  | // We're scaling the LHS to avoid a denormal input, and scale the denominator | 
|  | // to avoid large values underflowing the result. | 
|  | auto [FrexpMantRHS, FrexpExpRHS] = getFrexpResults(Builder, RHS); | 
|  |  | 
|  | Value *Rcp = | 
|  | Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, FrexpMantRHS); | 
|  |  | 
|  | auto [FrexpMantLHS, FrexpExpLHS] = getFrexpResults(Builder, LHS); | 
|  | Value *Mul = Builder.CreateFMul(FrexpMantLHS, Rcp); | 
|  |  | 
|  | // We multiplied by 2^N/2^M, so we need to multiply by 2^(N-M) to scale the | 
|  | // result. | 
|  | Value *ExpDiff = Builder.CreateSub(FrexpExpLHS, FrexpExpRHS); | 
|  | return Builder.CreateCall(getLdexpF32(), {Mul, ExpDiff}); | 
|  | } | 
|  |  | 
|  | /// Emit a sqrt that handles denormals and is accurate to 2ulp. | 
|  | Value *AMDGPUCodeGenPrepareImpl::emitSqrtIEEE2ULP(IRBuilder<> &Builder, | 
|  | Value *Src, | 
|  | FastMathFlags FMF) const { | 
|  | Type *Ty = Src->getType(); | 
|  | APFloat SmallestNormal = | 
|  | APFloat::getSmallestNormalized(Ty->getFltSemantics()); | 
|  | Value *NeedScale = | 
|  | Builder.CreateFCmpOLT(Src, ConstantFP::get(Ty, SmallestNormal)); | 
|  |  | 
|  | ConstantInt *Zero = Builder.getInt32(0); | 
|  | Value *InputScaleFactor = | 
|  | Builder.CreateSelect(NeedScale, Builder.getInt32(32), Zero); | 
|  |  | 
|  | Value *Scaled = Builder.CreateCall(getLdexpF32(), {Src, InputScaleFactor}); | 
|  |  | 
|  | Value *Sqrt = Builder.CreateCall(getSqrtF32(), Scaled); | 
|  |  | 
|  | Value *OutputScaleFactor = | 
|  | Builder.CreateSelect(NeedScale, Builder.getInt32(-16), Zero); | 
|  | return Builder.CreateCall(getLdexpF32(), {Sqrt, OutputScaleFactor}); | 
|  | } | 
|  |  | 
|  | /// Emit an expansion of 1.0 / sqrt(Src) good for 1ulp that supports denormals. | 
|  | static Value *emitRsqIEEE1ULP(IRBuilder<> &Builder, Value *Src, | 
|  | bool IsNegative) { | 
|  | // bool need_scale = x < 0x1p-126f; | 
|  | // float input_scale = need_scale ? 0x1.0p+24f : 1.0f; | 
|  | // float output_scale = need_scale ? 0x1.0p+12f : 1.0f; | 
|  | // rsq(x * input_scale) * output_scale; | 
|  |  | 
|  | Type *Ty = Src->getType(); | 
|  | APFloat SmallestNormal = | 
|  | APFloat::getSmallestNormalized(Ty->getFltSemantics()); | 
|  | Value *NeedScale = | 
|  | Builder.CreateFCmpOLT(Src, ConstantFP::get(Ty, SmallestNormal)); | 
|  | Constant *One = ConstantFP::get(Ty, 1.0); | 
|  | Constant *InputScale = ConstantFP::get(Ty, 0x1.0p+24); | 
|  | Constant *OutputScale = | 
|  | ConstantFP::get(Ty, IsNegative ? -0x1.0p+12 : 0x1.0p+12); | 
|  |  | 
|  | Value *InputScaleFactor = Builder.CreateSelect(NeedScale, InputScale, One); | 
|  |  | 
|  | Value *ScaledInput = Builder.CreateFMul(Src, InputScaleFactor); | 
|  | Value *Rsq = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rsq, ScaledInput); | 
|  | Value *OutputScaleFactor = Builder.CreateSelect( | 
|  | NeedScale, OutputScale, IsNegative ? ConstantFP::get(Ty, -1.0) : One); | 
|  |  | 
|  | return Builder.CreateFMul(Rsq, OutputScaleFactor); | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepareImpl::canOptimizeWithRsq(const FPMathOperator *SqrtOp, | 
|  | FastMathFlags DivFMF, | 
|  | FastMathFlags SqrtFMF) const { | 
|  | // The rsqrt contraction increases accuracy from ~2ulp to ~1ulp. | 
|  | if (!DivFMF.allowContract() || !SqrtFMF.allowContract()) | 
|  | return false; | 
|  |  | 
|  | // v_rsq_f32 gives 1ulp | 
|  | return SqrtFMF.approxFunc() || HasUnsafeFPMath || | 
|  | SqrtOp->getFPAccuracy() >= 1.0f; | 
|  | } | 
|  |  | 
|  | Value *AMDGPUCodeGenPrepareImpl::optimizeWithRsq( | 
|  | IRBuilder<> &Builder, Value *Num, Value *Den, const FastMathFlags DivFMF, | 
|  | const FastMathFlags SqrtFMF, const Instruction *CtxI) const { | 
|  | // The rsqrt contraction increases accuracy from ~2ulp to ~1ulp. | 
|  | assert(DivFMF.allowContract() && SqrtFMF.allowContract()); | 
|  |  | 
|  | // rsq_f16 is accurate to 0.51 ulp. | 
|  | // rsq_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. | 
|  | // rsq_f64 is never accurate. | 
|  | const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num); | 
|  | if (!CLHS) | 
|  | return nullptr; | 
|  |  | 
|  | assert(Den->getType()->isFloatTy()); | 
|  |  | 
|  | bool IsNegative = false; | 
|  |  | 
|  | // TODO: Handle other numerator values with arcp. | 
|  | if (CLHS->isExactlyValue(1.0) || (IsNegative = CLHS->isExactlyValue(-1.0))) { | 
|  | // Add in the sqrt flags. | 
|  | IRBuilder<>::FastMathFlagGuard Guard(Builder); | 
|  | Builder.setFastMathFlags(DivFMF | SqrtFMF); | 
|  |  | 
|  | if ((DivFMF.approxFunc() && SqrtFMF.approxFunc()) || HasUnsafeFPMath || | 
|  | canIgnoreDenormalInput(Den, CtxI)) { | 
|  | Value *Result = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rsq, Den); | 
|  | // -1.0 / sqrt(x) -> fneg(rsq(x)) | 
|  | return IsNegative ? Builder.CreateFNeg(Result) : Result; | 
|  | } | 
|  |  | 
|  | return emitRsqIEEE1ULP(Builder, Den, IsNegative); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Optimize fdiv with rcp: | 
|  | // | 
|  | // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is | 
|  | //               allowed with unsafe-fp-math or afn. | 
|  | // | 
|  | // a/b -> a*rcp(b) when arcp is allowed, and we only need provide ULP 1.0 | 
|  | Value * | 
|  | AMDGPUCodeGenPrepareImpl::optimizeWithRcp(IRBuilder<> &Builder, Value *Num, | 
|  | Value *Den, FastMathFlags FMF, | 
|  | const Instruction *CtxI) const { | 
|  | // rcp_f16 is accurate to 0.51 ulp. | 
|  | // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. | 
|  | // rcp_f64 is never accurate. | 
|  | assert(Den->getType()->isFloatTy()); | 
|  |  | 
|  | if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) { | 
|  | bool IsNegative = false; | 
|  | if (CLHS->isExactlyValue(1.0) || | 
|  | (IsNegative = CLHS->isExactlyValue(-1.0))) { | 
|  | Value *Src = Den; | 
|  |  | 
|  | if (HasFP32DenormalFlush || FMF.approxFunc()) { | 
|  | // -1.0 / x -> 1.0 / fneg(x) | 
|  | if (IsNegative) | 
|  | Src = Builder.CreateFNeg(Src); | 
|  |  | 
|  | // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to | 
|  | // the CI documentation has a worst case error of 1 ulp. | 
|  | // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK | 
|  | // to use it as long as we aren't trying to use denormals. | 
|  | // | 
|  | // v_rcp_f16 and v_rsq_f16 DO support denormals. | 
|  |  | 
|  | // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't | 
|  | //       insert rsq intrinsic here. | 
|  |  | 
|  | // 1.0 / x -> rcp(x) | 
|  | return Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, Src); | 
|  | } | 
|  |  | 
|  | // TODO: If the input isn't denormal, and we know the input exponent isn't | 
|  | // big enough to introduce a denormal we can avoid the scaling. | 
|  | return emitRcpIEEE1ULP(Builder, Src, IsNegative); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (FMF.allowReciprocal()) { | 
|  | // x / y -> x * (1.0 / y) | 
|  |  | 
|  | // TODO: Could avoid denormal scaling and use raw rcp if we knew the output | 
|  | // will never underflow. | 
|  | if (HasFP32DenormalFlush || FMF.approxFunc()) { | 
|  | Value *Recip = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, Den); | 
|  | return Builder.CreateFMul(Num, Recip); | 
|  | } | 
|  |  | 
|  | Value *Recip = emitRcpIEEE1ULP(Builder, Den, false); | 
|  | return Builder.CreateFMul(Num, Recip); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // optimize with fdiv.fast: | 
|  | // | 
|  | // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. | 
|  | // | 
|  | // 1/x -> fdiv.fast(1,x)  when !fpmath >= 2.5ulp. | 
|  | // | 
|  | // NOTE: optimizeWithRcp should be tried first because rcp is the preference. | 
|  | Value *AMDGPUCodeGenPrepareImpl::optimizeWithFDivFast( | 
|  | IRBuilder<> &Builder, Value *Num, Value *Den, float ReqdAccuracy) const { | 
|  | // fdiv.fast can achieve 2.5 ULP accuracy. | 
|  | if (ReqdAccuracy < 2.5f) | 
|  | return nullptr; | 
|  |  | 
|  | // Only have fdiv.fast for f32. | 
|  | assert(Den->getType()->isFloatTy()); | 
|  |  | 
|  | bool NumIsOne = false; | 
|  | if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) { | 
|  | if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0)) | 
|  | NumIsOne = true; | 
|  | } | 
|  |  | 
|  | // fdiv does not support denormals. But 1.0/x is always fine to use it. | 
|  | // | 
|  | // TODO: This works for any value with a specific known exponent range, don't | 
|  | // just limit to constant 1. | 
|  | if (!HasFP32DenormalFlush && !NumIsOne) | 
|  | return nullptr; | 
|  |  | 
|  | return Builder.CreateIntrinsic(Intrinsic::amdgcn_fdiv_fast, {}, {Num, Den}); | 
|  | } | 
|  |  | 
|  | Value *AMDGPUCodeGenPrepareImpl::visitFDivElement( | 
|  | IRBuilder<> &Builder, Value *Num, Value *Den, FastMathFlags DivFMF, | 
|  | FastMathFlags SqrtFMF, Value *RsqOp, const Instruction *FDivInst, | 
|  | float ReqdDivAccuracy) const { | 
|  | if (RsqOp) { | 
|  | Value *Rsq = | 
|  | optimizeWithRsq(Builder, Num, RsqOp, DivFMF, SqrtFMF, FDivInst); | 
|  | if (Rsq) | 
|  | return Rsq; | 
|  | } | 
|  |  | 
|  | Value *Rcp = optimizeWithRcp(Builder, Num, Den, DivFMF, FDivInst); | 
|  | if (Rcp) | 
|  | return Rcp; | 
|  |  | 
|  | // In the basic case fdiv_fast has the same instruction count as the frexp div | 
|  | // expansion. Slightly prefer fdiv_fast since it ends in an fmul that can | 
|  | // potentially be fused into a user. Also, materialization of the constants | 
|  | // can be reused for multiple instances. | 
|  | Value *FDivFast = optimizeWithFDivFast(Builder, Num, Den, ReqdDivAccuracy); | 
|  | if (FDivFast) | 
|  | return FDivFast; | 
|  |  | 
|  | return emitFrexpDiv(Builder, Num, Den, DivFMF); | 
|  | } | 
|  |  | 
|  | // Optimizations is performed based on fpmath, fast math flags as well as | 
|  | // denormals to optimize fdiv with either rcp or fdiv.fast. | 
|  | // | 
|  | // With rcp: | 
|  | //   1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is | 
|  | //                 allowed with unsafe-fp-math or afn. | 
|  | // | 
|  | //   a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. | 
|  | // | 
|  | // With fdiv.fast: | 
|  | //   a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. | 
|  | // | 
|  | //   1/x -> fdiv.fast(1,x)  when !fpmath >= 2.5ulp. | 
|  | // | 
|  | // NOTE: rcp is the preference in cases that both are legal. | 
|  | bool AMDGPUCodeGenPrepareImpl::visitFDiv(BinaryOperator &FDiv) { | 
|  | if (DisableFDivExpand) | 
|  | return false; | 
|  |  | 
|  | Type *Ty = FDiv.getType()->getScalarType(); | 
|  | if (!Ty->isFloatTy()) | 
|  | return false; | 
|  |  | 
|  | // The f64 rcp/rsq approximations are pretty inaccurate. We can do an | 
|  | // expansion around them in codegen. f16 is good enough to always use. | 
|  |  | 
|  | const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv); | 
|  | const FastMathFlags DivFMF = FPOp->getFastMathFlags(); | 
|  | const float ReqdAccuracy = FPOp->getFPAccuracy(); | 
|  |  | 
|  | FastMathFlags SqrtFMF; | 
|  |  | 
|  | Value *Num = FDiv.getOperand(0); | 
|  | Value *Den = FDiv.getOperand(1); | 
|  |  | 
|  | Value *RsqOp = nullptr; | 
|  | auto *DenII = dyn_cast<IntrinsicInst>(Den); | 
|  | if (DenII && DenII->getIntrinsicID() == Intrinsic::sqrt && | 
|  | DenII->hasOneUse()) { | 
|  | const auto *SqrtOp = cast<FPMathOperator>(DenII); | 
|  | SqrtFMF = SqrtOp->getFastMathFlags(); | 
|  | if (canOptimizeWithRsq(SqrtOp, DivFMF, SqrtFMF)) | 
|  | RsqOp = SqrtOp->getOperand(0); | 
|  | } | 
|  |  | 
|  | // Inaccurate rcp is allowed with unsafe-fp-math or afn. | 
|  | // | 
|  | // Defer to codegen to handle this. | 
|  | // | 
|  | // TODO: Decide on an interpretation for interactions between afn + arcp + | 
|  | // !fpmath, and make it consistent between here and codegen. For now, defer | 
|  | // expansion of afn to codegen. The current interpretation is so aggressive we | 
|  | // don't need any pre-consideration here when we have better information. A | 
|  | // more conservative interpretation could use handling here. | 
|  | const bool AllowInaccurateRcp = HasUnsafeFPMath || DivFMF.approxFunc(); | 
|  | if (!RsqOp && AllowInaccurateRcp) | 
|  | return false; | 
|  |  | 
|  | // Defer the correct implementations to codegen. | 
|  | if (ReqdAccuracy < 1.0f) | 
|  | return false; | 
|  |  | 
|  | IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator())); | 
|  | Builder.setFastMathFlags(DivFMF); | 
|  | Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); | 
|  |  | 
|  | SmallVector<Value *, 4> NumVals; | 
|  | SmallVector<Value *, 4> DenVals; | 
|  | SmallVector<Value *, 4> RsqDenVals; | 
|  | extractValues(Builder, NumVals, Num); | 
|  | extractValues(Builder, DenVals, Den); | 
|  |  | 
|  | if (RsqOp) | 
|  | extractValues(Builder, RsqDenVals, RsqOp); | 
|  |  | 
|  | SmallVector<Value *, 4> ResultVals(NumVals.size()); | 
|  | for (int I = 0, E = NumVals.size(); I != E; ++I) { | 
|  | Value *NumElt = NumVals[I]; | 
|  | Value *DenElt = DenVals[I]; | 
|  | Value *RsqDenElt = RsqOp ? RsqDenVals[I] : nullptr; | 
|  |  | 
|  | Value *NewElt = | 
|  | visitFDivElement(Builder, NumElt, DenElt, DivFMF, SqrtFMF, RsqDenElt, | 
|  | cast<Instruction>(FPOp), ReqdAccuracy); | 
|  | if (!NewElt) { | 
|  | // Keep the original, but scalarized. | 
|  |  | 
|  | // This has the unfortunate side effect of sometimes scalarizing when | 
|  | // we're not going to do anything. | 
|  | NewElt = Builder.CreateFDiv(NumElt, DenElt); | 
|  | if (auto *NewEltInst = dyn_cast<Instruction>(NewElt)) | 
|  | NewEltInst->copyMetadata(FDiv); | 
|  | } | 
|  |  | 
|  | ResultVals[I] = NewElt; | 
|  | } | 
|  |  | 
|  | Value *NewVal = insertValues(Builder, FDiv.getType(), ResultVals); | 
|  |  | 
|  | if (NewVal) { | 
|  | FDiv.replaceAllUsesWith(NewVal); | 
|  | NewVal->takeName(&FDiv); | 
|  | RecursivelyDeleteTriviallyDeadInstructions(&FDiv, TLInfo); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool hasUnsafeFPMath(const Function &F) { | 
|  | Attribute Attr = F.getFnAttribute("unsafe-fp-math"); | 
|  | return Attr.getValueAsBool(); | 
|  | } | 
|  |  | 
|  | static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder, | 
|  | Value *LHS, Value *RHS) { | 
|  | Type *I32Ty = Builder.getInt32Ty(); | 
|  | Type *I64Ty = Builder.getInt64Ty(); | 
|  |  | 
|  | Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty); | 
|  | Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty); | 
|  | Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64); | 
|  | Value *Lo = Builder.CreateTrunc(MUL64, I32Ty); | 
|  | Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32)); | 
|  | Hi = Builder.CreateTrunc(Hi, I32Ty); | 
|  | return std::pair(Lo, Hi); | 
|  | } | 
|  |  | 
|  | static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { | 
|  | return getMul64(Builder, LHS, RHS).second; | 
|  | } | 
|  |  | 
|  | /// Figure out how many bits are really needed for this division. \p AtLeast is | 
|  | /// an optimization hint to bypass the second ComputeNumSignBits call if we the | 
|  | /// first one is insufficient. Returns -1 on failure. | 
|  | int AMDGPUCodeGenPrepareImpl::getDivNumBits(BinaryOperator &I, Value *Num, | 
|  | Value *Den, unsigned AtLeast, | 
|  | bool IsSigned) const { | 
|  | const DataLayout &DL = Mod->getDataLayout(); | 
|  | unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I); | 
|  | if (LHSSignBits < AtLeast) | 
|  | return -1; | 
|  |  | 
|  | unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I); | 
|  | if (RHSSignBits < AtLeast) | 
|  | return -1; | 
|  |  | 
|  | unsigned SignBits = std::min(LHSSignBits, RHSSignBits); | 
|  | unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits; | 
|  | if (IsSigned) | 
|  | ++DivBits; | 
|  | return DivBits; | 
|  | } | 
|  |  | 
|  | // The fractional part of a float is enough to accurately represent up to | 
|  | // a 24-bit signed integer. | 
|  | Value *AMDGPUCodeGenPrepareImpl::expandDivRem24(IRBuilder<> &Builder, | 
|  | BinaryOperator &I, Value *Num, | 
|  | Value *Den, bool IsDiv, | 
|  | bool IsSigned) const { | 
|  | int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned); | 
|  | if (DivBits == -1) | 
|  | return nullptr; | 
|  | return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned); | 
|  | } | 
|  |  | 
|  | Value *AMDGPUCodeGenPrepareImpl::expandDivRem24Impl( | 
|  | IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den, | 
|  | unsigned DivBits, bool IsDiv, bool IsSigned) const { | 
|  | Type *I32Ty = Builder.getInt32Ty(); | 
|  | Num = Builder.CreateTrunc(Num, I32Ty); | 
|  | Den = Builder.CreateTrunc(Den, I32Ty); | 
|  |  | 
|  | Type *F32Ty = Builder.getFloatTy(); | 
|  | ConstantInt *One = Builder.getInt32(1); | 
|  | Value *JQ = One; | 
|  |  | 
|  | if (IsSigned) { | 
|  | // char|short jq = ia ^ ib; | 
|  | JQ = Builder.CreateXor(Num, Den); | 
|  |  | 
|  | // jq = jq >> (bitsize - 2) | 
|  | JQ = Builder.CreateAShr(JQ, Builder.getInt32(30)); | 
|  |  | 
|  | // jq = jq | 0x1 | 
|  | JQ = Builder.CreateOr(JQ, One); | 
|  | } | 
|  |  | 
|  | // int ia = (int)LHS; | 
|  | Value *IA = Num; | 
|  |  | 
|  | // int ib, (int)RHS; | 
|  | Value *IB = Den; | 
|  |  | 
|  | // float fa = (float)ia; | 
|  | Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty) | 
|  | : Builder.CreateUIToFP(IA, F32Ty); | 
|  |  | 
|  | // float fb = (float)ib; | 
|  | Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty) | 
|  | : Builder.CreateUIToFP(IB,F32Ty); | 
|  |  | 
|  | Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, | 
|  | Builder.getFloatTy()); | 
|  | Value *RCP = Builder.CreateCall(RcpDecl, { FB }); | 
|  | Value *FQM = Builder.CreateFMul(FA, RCP); | 
|  |  | 
|  | // fq = trunc(fqm); | 
|  | CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM); | 
|  | FQ->copyFastMathFlags(Builder.getFastMathFlags()); | 
|  |  | 
|  | // float fqneg = -fq; | 
|  | Value *FQNeg = Builder.CreateFNeg(FQ); | 
|  |  | 
|  | // float fr = mad(fqneg, fb, fa); | 
|  | auto FMAD = !ST->hasMadMacF32Insts() | 
|  | ? Intrinsic::fma | 
|  | : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz; | 
|  | Value *FR = Builder.CreateIntrinsic(FMAD, | 
|  | {FQNeg->getType()}, {FQNeg, FB, FA}, FQ); | 
|  |  | 
|  | // int iq = (int)fq; | 
|  | Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty) | 
|  | : Builder.CreateFPToUI(FQ, I32Ty); | 
|  |  | 
|  | // fr = fabs(fr); | 
|  | FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ); | 
|  |  | 
|  | // fb = fabs(fb); | 
|  | FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ); | 
|  |  | 
|  | // int cv = fr >= fb; | 
|  | Value *CV = Builder.CreateFCmpOGE(FR, FB); | 
|  |  | 
|  | // jq = (cv ? jq : 0); | 
|  | JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0)); | 
|  |  | 
|  | // dst = iq + jq; | 
|  | Value *Div = Builder.CreateAdd(IQ, JQ); | 
|  |  | 
|  | Value *Res = Div; | 
|  | if (!IsDiv) { | 
|  | // Rem needs compensation, it's easier to recompute it | 
|  | Value *Rem = Builder.CreateMul(Div, Den); | 
|  | Res = Builder.CreateSub(Num, Rem); | 
|  | } | 
|  |  | 
|  | if (DivBits != 0 && DivBits < 32) { | 
|  | // Extend in register from the number of bits this divide really is. | 
|  | if (IsSigned) { | 
|  | int InRegBits = 32 - DivBits; | 
|  |  | 
|  | Res = Builder.CreateShl(Res, InRegBits); | 
|  | Res = Builder.CreateAShr(Res, InRegBits); | 
|  | } else { | 
|  | ConstantInt *TruncMask | 
|  | = Builder.getInt32((UINT64_C(1) << DivBits) - 1); | 
|  | Res = Builder.CreateAnd(Res, TruncMask); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // Try to recognize special cases the DAG will emit special, better expansions | 
|  | // than the general expansion we do here. | 
|  |  | 
|  | // TODO: It would be better to just directly handle those optimizations here. | 
|  | bool AMDGPUCodeGenPrepareImpl::divHasSpecialOptimization(BinaryOperator &I, | 
|  | Value *Num, | 
|  | Value *Den) const { | 
|  | if (Constant *C = dyn_cast<Constant>(Den)) { | 
|  | // Arbitrary constants get a better expansion as long as a wider mulhi is | 
|  | // legal. | 
|  | if (C->getType()->getScalarSizeInBits() <= 32) | 
|  | return true; | 
|  |  | 
|  | // TODO: Sdiv check for not exact for some reason. | 
|  |  | 
|  | // If there's no wider mulhi, there's only a better expansion for powers of | 
|  | // two. | 
|  | // TODO: Should really know for each vector element. | 
|  | if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) { | 
|  | // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 | 
|  | if (BinOpDen->getOpcode() == Instruction::Shl && | 
|  | isa<Constant>(BinOpDen->getOperand(0)) && | 
|  | isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true, | 
|  | 0, AC, &I, DT)) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) { | 
|  | // Check whether the sign can be determined statically. | 
|  | KnownBits Known = computeKnownBits(V, *DL); | 
|  | if (Known.isNegative()) | 
|  | return Constant::getAllOnesValue(V->getType()); | 
|  | if (Known.isNonNegative()) | 
|  | return Constant::getNullValue(V->getType()); | 
|  | return Builder.CreateAShr(V, Builder.getInt32(31)); | 
|  | } | 
|  |  | 
|  | Value *AMDGPUCodeGenPrepareImpl::expandDivRem32(IRBuilder<> &Builder, | 
|  | BinaryOperator &I, Value *X, | 
|  | Value *Y) const { | 
|  | Instruction::BinaryOps Opc = I.getOpcode(); | 
|  | assert(Opc == Instruction::URem || Opc == Instruction::UDiv || | 
|  | Opc == Instruction::SRem || Opc == Instruction::SDiv); | 
|  |  | 
|  | FastMathFlags FMF; | 
|  | FMF.setFast(); | 
|  | Builder.setFastMathFlags(FMF); | 
|  |  | 
|  | if (divHasSpecialOptimization(I, X, Y)) | 
|  | return nullptr;  // Keep it for later optimization. | 
|  |  | 
|  | bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; | 
|  | bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; | 
|  |  | 
|  | Type *Ty = X->getType(); | 
|  | Type *I32Ty = Builder.getInt32Ty(); | 
|  | Type *F32Ty = Builder.getFloatTy(); | 
|  |  | 
|  | if (Ty->getScalarSizeInBits() < 32) { | 
|  | if (IsSigned) { | 
|  | X = Builder.CreateSExt(X, I32Ty); | 
|  | Y = Builder.CreateSExt(Y, I32Ty); | 
|  | } else { | 
|  | X = Builder.CreateZExt(X, I32Ty); | 
|  | Y = Builder.CreateZExt(Y, I32Ty); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) { | 
|  | return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) : | 
|  | Builder.CreateZExtOrTrunc(Res, Ty); | 
|  | } | 
|  |  | 
|  | ConstantInt *Zero = Builder.getInt32(0); | 
|  | ConstantInt *One = Builder.getInt32(1); | 
|  |  | 
|  | Value *Sign = nullptr; | 
|  | if (IsSigned) { | 
|  | Value *SignX = getSign32(X, Builder, DL); | 
|  | Value *SignY = getSign32(Y, Builder, DL); | 
|  | // Remainder sign is the same as LHS | 
|  | Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX; | 
|  |  | 
|  | X = Builder.CreateAdd(X, SignX); | 
|  | Y = Builder.CreateAdd(Y, SignY); | 
|  |  | 
|  | X = Builder.CreateXor(X, SignX); | 
|  | Y = Builder.CreateXor(Y, SignY); | 
|  | } | 
|  |  | 
|  | // The algorithm here is based on ideas from "Software Integer Division", Tom | 
|  | // Rodeheffer, August 2008. | 
|  | // | 
|  | // unsigned udiv(unsigned x, unsigned y) { | 
|  | //   // Initial estimate of inv(y). The constant is less than 2^32 to ensure | 
|  | //   // that this is a lower bound on inv(y), even if some of the calculations | 
|  | //   // round up. | 
|  | //   unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y)); | 
|  | // | 
|  | //   // One round of UNR (Unsigned integer Newton-Raphson) to improve z. | 
|  | //   // Empirically this is guaranteed to give a "two-y" lower bound on | 
|  | //   // inv(y). | 
|  | //   z += umulh(z, -y * z); | 
|  | // | 
|  | //   // Quotient/remainder estimate. | 
|  | //   unsigned q = umulh(x, z); | 
|  | //   unsigned r = x - q * y; | 
|  | // | 
|  | //   // Two rounds of quotient/remainder refinement. | 
|  | //   if (r >= y) { | 
|  | //     ++q; | 
|  | //     r -= y; | 
|  | //   } | 
|  | //   if (r >= y) { | 
|  | //     ++q; | 
|  | //     r -= y; | 
|  | //   } | 
|  | // | 
|  | //   return q; | 
|  | // } | 
|  |  | 
|  | // Initial estimate of inv(y). | 
|  | Value *FloatY = Builder.CreateUIToFP(Y, F32Ty); | 
|  | Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty); | 
|  | Value *RcpY = Builder.CreateCall(Rcp, {FloatY}); | 
|  | Constant *Scale = ConstantFP::get(F32Ty, llvm::bit_cast<float>(0x4F7FFFFE)); | 
|  | Value *ScaledY = Builder.CreateFMul(RcpY, Scale); | 
|  | Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty); | 
|  |  | 
|  | // One round of UNR. | 
|  | Value *NegY = Builder.CreateSub(Zero, Y); | 
|  | Value *NegYZ = Builder.CreateMul(NegY, Z); | 
|  | Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ)); | 
|  |  | 
|  | // Quotient/remainder estimate. | 
|  | Value *Q = getMulHu(Builder, X, Z); | 
|  | Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y)); | 
|  |  | 
|  | // First quotient/remainder refinement. | 
|  | Value *Cond = Builder.CreateICmpUGE(R, Y); | 
|  | if (IsDiv) | 
|  | Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); | 
|  | R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); | 
|  |  | 
|  | // Second quotient/remainder refinement. | 
|  | Cond = Builder.CreateICmpUGE(R, Y); | 
|  | Value *Res; | 
|  | if (IsDiv) | 
|  | Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); | 
|  | else | 
|  | Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); | 
|  |  | 
|  | if (IsSigned) { | 
|  | Res = Builder.CreateXor(Res, Sign); | 
|  | Res = Builder.CreateSub(Res, Sign); | 
|  | } | 
|  |  | 
|  | Res = Builder.CreateTrunc(Res, Ty); | 
|  |  | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | Value *AMDGPUCodeGenPrepareImpl::shrinkDivRem64(IRBuilder<> &Builder, | 
|  | BinaryOperator &I, Value *Num, | 
|  | Value *Den) const { | 
|  | if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den)) | 
|  | return nullptr;  // Keep it for later optimization. | 
|  |  | 
|  | Instruction::BinaryOps Opc = I.getOpcode(); | 
|  |  | 
|  | bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv; | 
|  | bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem; | 
|  |  | 
|  | int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned); | 
|  | if (NumDivBits == -1) | 
|  | return nullptr; | 
|  |  | 
|  | Value *Narrowed = nullptr; | 
|  | if (NumDivBits <= 24) { | 
|  | Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits, | 
|  | IsDiv, IsSigned); | 
|  | } else if (NumDivBits <= 32) { | 
|  | Narrowed = expandDivRem32(Builder, I, Num, Den); | 
|  | } | 
|  |  | 
|  | if (Narrowed) { | 
|  | return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) : | 
|  | Builder.CreateZExt(Narrowed, Num->getType()); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void AMDGPUCodeGenPrepareImpl::expandDivRem64(BinaryOperator &I) const { | 
|  | Instruction::BinaryOps Opc = I.getOpcode(); | 
|  | // Do the general expansion. | 
|  | if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) { | 
|  | expandDivisionUpTo64Bits(&I); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Opc == Instruction::URem || Opc == Instruction::SRem) { | 
|  | expandRemainderUpTo64Bits(&I); | 
|  | return; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("not a division"); | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepareImpl::visitBinaryOperator(BinaryOperator &I) { | 
|  | if (foldBinOpIntoSelect(I)) | 
|  | return true; | 
|  |  | 
|  | if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && | 
|  | UA->isUniform(&I) && promoteUniformOpToI32(I)) | 
|  | return true; | 
|  |  | 
|  | if (UseMul24Intrin && replaceMulWithMul24(I)) | 
|  | return true; | 
|  |  | 
|  | bool Changed = false; | 
|  | Instruction::BinaryOps Opc = I.getOpcode(); | 
|  | Type *Ty = I.getType(); | 
|  | Value *NewDiv = nullptr; | 
|  | unsigned ScalarSize = Ty->getScalarSizeInBits(); | 
|  |  | 
|  | SmallVector<BinaryOperator *, 8> Div64ToExpand; | 
|  |  | 
|  | if ((Opc == Instruction::URem || Opc == Instruction::UDiv || | 
|  | Opc == Instruction::SRem || Opc == Instruction::SDiv) && | 
|  | ScalarSize <= 64 && | 
|  | !DisableIDivExpand) { | 
|  | Value *Num = I.getOperand(0); | 
|  | Value *Den = I.getOperand(1); | 
|  | IRBuilder<> Builder(&I); | 
|  | Builder.SetCurrentDebugLocation(I.getDebugLoc()); | 
|  |  | 
|  | if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { | 
|  | NewDiv = PoisonValue::get(VT); | 
|  |  | 
|  | for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { | 
|  | Value *NumEltN = Builder.CreateExtractElement(Num, N); | 
|  | Value *DenEltN = Builder.CreateExtractElement(Den, N); | 
|  |  | 
|  | Value *NewElt; | 
|  | if (ScalarSize <= 32) { | 
|  | NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN); | 
|  | if (!NewElt) | 
|  | NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); | 
|  | } else { | 
|  | // See if this 64-bit division can be shrunk to 32/24-bits before | 
|  | // producing the general expansion. | 
|  | NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN); | 
|  | if (!NewElt) { | 
|  | // The general 64-bit expansion introduces control flow and doesn't | 
|  | // return the new value. Just insert a scalar copy and defer | 
|  | // expanding it. | 
|  | NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); | 
|  | Div64ToExpand.push_back(cast<BinaryOperator>(NewElt)); | 
|  | } | 
|  | } | 
|  |  | 
|  | NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N); | 
|  | } | 
|  | } else { | 
|  | if (ScalarSize <= 32) | 
|  | NewDiv = expandDivRem32(Builder, I, Num, Den); | 
|  | else { | 
|  | NewDiv = shrinkDivRem64(Builder, I, Num, Den); | 
|  | if (!NewDiv) | 
|  | Div64ToExpand.push_back(&I); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (NewDiv) { | 
|  | I.replaceAllUsesWith(NewDiv); | 
|  | I.eraseFromParent(); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ExpandDiv64InIR) { | 
|  | // TODO: We get much worse code in specially handled constant cases. | 
|  | for (BinaryOperator *Div : Div64ToExpand) { | 
|  | expandDivRem64(*Div); | 
|  | FlowChanged = true; | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepareImpl::visitLoadInst(LoadInst &I) { | 
|  | if (!WidenLoads) | 
|  | return false; | 
|  |  | 
|  | if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || | 
|  | I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && | 
|  | canWidenScalarExtLoad(I)) { | 
|  | IRBuilder<> Builder(&I); | 
|  | Builder.SetCurrentDebugLocation(I.getDebugLoc()); | 
|  |  | 
|  | Type *I32Ty = Builder.getInt32Ty(); | 
|  | LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, I.getPointerOperand()); | 
|  | WidenLoad->copyMetadata(I); | 
|  |  | 
|  | // If we have range metadata, we need to convert the type, and not make | 
|  | // assumptions about the high bits. | 
|  | if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) { | 
|  | ConstantInt *Lower = | 
|  | mdconst::extract<ConstantInt>(Range->getOperand(0)); | 
|  |  | 
|  | if (Lower->isNullValue()) { | 
|  | WidenLoad->setMetadata(LLVMContext::MD_range, nullptr); | 
|  | } else { | 
|  | Metadata *LowAndHigh[] = { | 
|  | ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))), | 
|  | // Don't make assumptions about the high bits. | 
|  | ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0)) | 
|  | }; | 
|  |  | 
|  | WidenLoad->setMetadata(LLVMContext::MD_range, | 
|  | MDNode::get(Mod->getContext(), LowAndHigh)); | 
|  | } | 
|  | } | 
|  |  | 
|  | int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType()); | 
|  | Type *IntNTy = Builder.getIntNTy(TySize); | 
|  | Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy); | 
|  | Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType()); | 
|  | I.replaceAllUsesWith(ValOrig); | 
|  | I.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepareImpl::visitICmpInst(ICmpInst &I) { | 
|  | bool Changed = false; | 
|  |  | 
|  | if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) && | 
|  | UA->isUniform(&I)) | 
|  | Changed |= promoteUniformOpToI32(I); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepareImpl::visitSelectInst(SelectInst &I) { | 
|  | Value *Cond = I.getCondition(); | 
|  | Value *TrueVal = I.getTrueValue(); | 
|  | Value *FalseVal = I.getFalseValue(); | 
|  | Value *CmpVal; | 
|  | FCmpInst::Predicate Pred; | 
|  |  | 
|  | if (ST->has16BitInsts() && needsPromotionToI32(I.getType())) { | 
|  | if (UA->isUniform(&I)) | 
|  | return promoteUniformOpToI32(I); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Match fract pattern with nan check. | 
|  | if (!match(Cond, m_FCmp(Pred, m_Value(CmpVal), m_NonNaN()))) | 
|  | return false; | 
|  |  | 
|  | FPMathOperator *FPOp = dyn_cast<FPMathOperator>(&I); | 
|  | if (!FPOp) | 
|  | return false; | 
|  |  | 
|  | IRBuilder<> Builder(&I); | 
|  | Builder.setFastMathFlags(FPOp->getFastMathFlags()); | 
|  |  | 
|  | auto *IITrue = dyn_cast<IntrinsicInst>(TrueVal); | 
|  | auto *IIFalse = dyn_cast<IntrinsicInst>(FalseVal); | 
|  |  | 
|  | Value *Fract = nullptr; | 
|  | if (Pred == FCmpInst::FCMP_UNO && TrueVal == CmpVal && IIFalse && | 
|  | CmpVal == matchFractPat(*IIFalse)) { | 
|  | // isnan(x) ? x : fract(x) | 
|  | Fract = applyFractPat(Builder, CmpVal); | 
|  | } else if (Pred == FCmpInst::FCMP_ORD && FalseVal == CmpVal && IITrue && | 
|  | CmpVal == matchFractPat(*IITrue)) { | 
|  | // !isnan(x) ? fract(x) : x | 
|  | Fract = applyFractPat(Builder, CmpVal); | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | Fract->takeName(&I); | 
|  | I.replaceAllUsesWith(Fract); | 
|  | RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool areInSameBB(const Value *A, const Value *B) { | 
|  | const auto *IA = dyn_cast<Instruction>(A); | 
|  | const auto *IB = dyn_cast<Instruction>(B); | 
|  | return IA && IB && IA->getParent() == IB->getParent(); | 
|  | } | 
|  |  | 
|  | // Helper for breaking large PHIs that returns true when an extractelement on V | 
|  | // is likely to be folded away by the DAG combiner. | 
|  | static bool isInterestingPHIIncomingValue(const Value *V) { | 
|  | const auto *FVT = dyn_cast<FixedVectorType>(V->getType()); | 
|  | if (!FVT) | 
|  | return false; | 
|  |  | 
|  | const Value *CurVal = V; | 
|  |  | 
|  | // Check for insertelements, keeping track of the elements covered. | 
|  | BitVector EltsCovered(FVT->getNumElements()); | 
|  | while (const auto *IE = dyn_cast<InsertElementInst>(CurVal)) { | 
|  | const auto *Idx = dyn_cast<ConstantInt>(IE->getOperand(2)); | 
|  |  | 
|  | // Non constant index/out of bounds index -> folding is unlikely. | 
|  | // The latter is more of a sanity check because canonical IR should just | 
|  | // have replaced those with poison. | 
|  | if (!Idx || Idx->getSExtValue() >= FVT->getNumElements()) | 
|  | return false; | 
|  |  | 
|  | const auto *VecSrc = IE->getOperand(0); | 
|  |  | 
|  | // If the vector source is another instruction, it must be in the same basic | 
|  | // block. Otherwise, the DAGCombiner won't see the whole thing and is | 
|  | // unlikely to be able to do anything interesting here. | 
|  | if (isa<Instruction>(VecSrc) && !areInSameBB(VecSrc, IE)) | 
|  | return false; | 
|  |  | 
|  | CurVal = VecSrc; | 
|  | EltsCovered.set(Idx->getSExtValue()); | 
|  |  | 
|  | // All elements covered. | 
|  | if (EltsCovered.all()) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // We either didn't find a single insertelement, or the insertelement chain | 
|  | // ended before all elements were covered. Check for other interesting values. | 
|  |  | 
|  | // Constants are always interesting because we can just constant fold the | 
|  | // extractelements. | 
|  | if (isa<Constant>(CurVal)) | 
|  | return true; | 
|  |  | 
|  | // shufflevector is likely to be profitable if either operand is a constant, | 
|  | // or if either source is in the same block. | 
|  | // This is because shufflevector is most often lowered as a series of | 
|  | // insert/extract elements anyway. | 
|  | if (const auto *SV = dyn_cast<ShuffleVectorInst>(CurVal)) { | 
|  | return isa<Constant>(SV->getOperand(1)) || | 
|  | areInSameBB(SV, SV->getOperand(0)) || | 
|  | areInSameBB(SV, SV->getOperand(1)); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void collectPHINodes(const PHINode &I, | 
|  | SmallPtrSet<const PHINode *, 8> &SeenPHIs) { | 
|  | const auto [It, Inserted] = SeenPHIs.insert(&I); | 
|  | if (!Inserted) | 
|  | return; | 
|  |  | 
|  | for (const Value *Inc : I.incoming_values()) { | 
|  | if (const auto *PhiInc = dyn_cast<PHINode>(Inc)) | 
|  | collectPHINodes(*PhiInc, SeenPHIs); | 
|  | } | 
|  |  | 
|  | for (const User *U : I.users()) { | 
|  | if (const auto *PhiU = dyn_cast<PHINode>(U)) | 
|  | collectPHINodes(*PhiU, SeenPHIs); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepareImpl::canBreakPHINode(const PHINode &I) { | 
|  | // Check in the cache first. | 
|  | if (const auto It = BreakPhiNodesCache.find(&I); | 
|  | It != BreakPhiNodesCache.end()) | 
|  | return It->second; | 
|  |  | 
|  | // We consider PHI nodes as part of "chains", so given a PHI node I, we | 
|  | // recursively consider all its users and incoming values that are also PHI | 
|  | // nodes. We then make a decision about all of those PHIs at once. Either they | 
|  | // all get broken up, or none of them do. That way, we avoid cases where a | 
|  | // single PHI is/is not broken and we end up reforming/exploding a vector | 
|  | // multiple times, or even worse, doing it in a loop. | 
|  | SmallPtrSet<const PHINode *, 8> WorkList; | 
|  | collectPHINodes(I, WorkList); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Check that none of the PHI nodes in the worklist are in the map. If some of | 
|  | // them are, it means we're not good enough at collecting related PHIs. | 
|  | for (const PHINode *WLP : WorkList) { | 
|  | assert(BreakPhiNodesCache.count(WLP) == 0); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // To consider a PHI profitable to break, we need to see some interesting | 
|  | // incoming values. At least 2/3rd (rounded up) of all PHIs in the worklist | 
|  | // must have one to consider all PHIs breakable. | 
|  | // | 
|  | // This threshold has been determined through performance testing. | 
|  | // | 
|  | // Note that the computation below is equivalent to | 
|  | // | 
|  | //    (unsigned)ceil((K / 3.0) * 2) | 
|  | // | 
|  | // It's simply written this way to avoid mixing integral/FP arithmetic. | 
|  | const auto Threshold = (alignTo(WorkList.size() * 2, 3) / 3); | 
|  | unsigned NumBreakablePHIs = 0; | 
|  | bool CanBreak = false; | 
|  | for (const PHINode *Cur : WorkList) { | 
|  | // Don't break PHIs that have no interesting incoming values. That is, where | 
|  | // there is no clear opportunity to fold the "extractelement" instructions | 
|  | // we would add. | 
|  | // | 
|  | // Note: IC does not run after this pass, so we're only interested in the | 
|  | // foldings that the DAG combiner can do. | 
|  | if (any_of(Cur->incoming_values(), isInterestingPHIIncomingValue)) { | 
|  | if (++NumBreakablePHIs >= Threshold) { | 
|  | CanBreak = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (const PHINode *Cur : WorkList) | 
|  | BreakPhiNodesCache[Cur] = CanBreak; | 
|  |  | 
|  | return CanBreak; | 
|  | } | 
|  |  | 
|  | /// Helper class for "break large PHIs" (visitPHINode). | 
|  | /// | 
|  | /// This represents a slice of a PHI's incoming value, which is made up of: | 
|  | ///   - The type of the slice (Ty) | 
|  | ///   - The index in the incoming value's vector where the slice starts (Idx) | 
|  | ///   - The number of elements in the slice (NumElts). | 
|  | /// It also keeps track of the NewPHI node inserted for this particular slice. | 
|  | /// | 
|  | /// Slice examples: | 
|  | ///   <4 x i64> -> Split into four i64 slices. | 
|  | ///     -> [i64, 0, 1], [i64, 1, 1], [i64, 2, 1], [i64, 3, 1] | 
|  | ///   <5 x i16> -> Split into 2 <2 x i16> slices + a i16 tail. | 
|  | ///     -> [<2 x i16>, 0, 2], [<2 x i16>, 2, 2], [i16, 4, 1] | 
|  | class VectorSlice { | 
|  | public: | 
|  | VectorSlice(Type *Ty, unsigned Idx, unsigned NumElts) | 
|  | : Ty(Ty), Idx(Idx), NumElts(NumElts) {} | 
|  |  | 
|  | Type *Ty = nullptr; | 
|  | unsigned Idx = 0; | 
|  | unsigned NumElts = 0; | 
|  | PHINode *NewPHI = nullptr; | 
|  |  | 
|  | /// Slice \p Inc according to the information contained within this slice. | 
|  | /// This is cached, so if called multiple times for the same \p BB & \p Inc | 
|  | /// pair, it returns the same Sliced value as well. | 
|  | /// | 
|  | /// Note this *intentionally* does not return the same value for, say, | 
|  | /// [%bb.0, %0] & [%bb.1, %0] as: | 
|  | ///   - It could cause issues with dominance (e.g. if bb.1 is seen first, then | 
|  | ///   the value in bb.1 may not be reachable from bb.0 if it's its | 
|  | ///   predecessor.) | 
|  | ///   - We also want to make our extract instructions as local as possible so | 
|  | ///   the DAG has better chances of folding them out. Duplicating them like | 
|  | ///   that is beneficial in that regard. | 
|  | /// | 
|  | /// This is both a minor optimization to avoid creating duplicate | 
|  | /// instructions, but also a requirement for correctness. It is not forbidden | 
|  | /// for a PHI node to have the same [BB, Val] pair multiple times. If we | 
|  | /// returned a new value each time, those previously identical pairs would all | 
|  | /// have different incoming values (from the same block) and it'd cause a "PHI | 
|  | /// node has multiple entries for the same basic block with different incoming | 
|  | /// values!" verifier error. | 
|  | Value *getSlicedVal(BasicBlock *BB, Value *Inc, StringRef NewValName) { | 
|  | Value *&Res = SlicedVals[{BB, Inc}]; | 
|  | if (Res) | 
|  | return Res; | 
|  |  | 
|  | IRBuilder<> B(BB->getTerminator()); | 
|  | if (Instruction *IncInst = dyn_cast<Instruction>(Inc)) | 
|  | B.SetCurrentDebugLocation(IncInst->getDebugLoc()); | 
|  |  | 
|  | if (NumElts > 1) { | 
|  | SmallVector<int, 4> Mask; | 
|  | for (unsigned K = Idx; K < (Idx + NumElts); ++K) | 
|  | Mask.push_back(K); | 
|  | Res = B.CreateShuffleVector(Inc, Mask, NewValName); | 
|  | } else | 
|  | Res = B.CreateExtractElement(Inc, Idx, NewValName); | 
|  |  | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | private: | 
|  | SmallDenseMap<std::pair<BasicBlock *, Value *>, Value *> SlicedVals; | 
|  | }; | 
|  |  | 
|  | bool AMDGPUCodeGenPrepareImpl::visitPHINode(PHINode &I) { | 
|  | // Break-up fixed-vector PHIs into smaller pieces. | 
|  | // Default threshold is 32, so it breaks up any vector that's >32 bits into | 
|  | // its elements, or into 32-bit pieces (for 8/16 bit elts). | 
|  | // | 
|  | // This is only helpful for DAGISel because it doesn't handle large PHIs as | 
|  | // well as GlobalISel. DAGISel lowers PHIs by using CopyToReg/CopyFromReg. | 
|  | // With large, odd-sized PHIs we may end up needing many `build_vector` | 
|  | // operations with most elements being "undef". This inhibits a lot of | 
|  | // optimization opportunities and can result in unreasonably high register | 
|  | // pressure and the inevitable stack spilling. | 
|  | if (!BreakLargePHIs || getCGPassBuilderOption().EnableGlobalISelOption) | 
|  | return false; | 
|  |  | 
|  | FixedVectorType *FVT = dyn_cast<FixedVectorType>(I.getType()); | 
|  | if (!FVT || FVT->getNumElements() == 1 || | 
|  | DL->getTypeSizeInBits(FVT) <= BreakLargePHIsThreshold) | 
|  | return false; | 
|  |  | 
|  | if (!ForceBreakLargePHIs && !canBreakPHINode(I)) | 
|  | return false; | 
|  |  | 
|  | std::vector<VectorSlice> Slices; | 
|  |  | 
|  | Type *EltTy = FVT->getElementType(); | 
|  | { | 
|  | unsigned Idx = 0; | 
|  | // For 8/16 bits type, don't scalarize fully but break it up into as many | 
|  | // 32-bit slices as we can, and scalarize the tail. | 
|  | const unsigned EltSize = DL->getTypeSizeInBits(EltTy); | 
|  | const unsigned NumElts = FVT->getNumElements(); | 
|  | if (EltSize == 8 || EltSize == 16) { | 
|  | const unsigned SubVecSize = (32 / EltSize); | 
|  | Type *SubVecTy = FixedVectorType::get(EltTy, SubVecSize); | 
|  | for (unsigned End = alignDown(NumElts, SubVecSize); Idx < End; | 
|  | Idx += SubVecSize) | 
|  | Slices.emplace_back(SubVecTy, Idx, SubVecSize); | 
|  | } | 
|  |  | 
|  | // Scalarize all remaining elements. | 
|  | for (; Idx < NumElts; ++Idx) | 
|  | Slices.emplace_back(EltTy, Idx, 1); | 
|  | } | 
|  |  | 
|  | assert(Slices.size() > 1); | 
|  |  | 
|  | // Create one PHI per vector piece. The "VectorSlice" class takes care of | 
|  | // creating the necessary instruction to extract the relevant slices of each | 
|  | // incoming value. | 
|  | IRBuilder<> B(I.getParent()); | 
|  | B.SetCurrentDebugLocation(I.getDebugLoc()); | 
|  |  | 
|  | unsigned IncNameSuffix = 0; | 
|  | for (VectorSlice &S : Slices) { | 
|  | // We need to reset the build on each iteration, because getSlicedVal may | 
|  | // have inserted something into I's BB. | 
|  | B.SetInsertPoint(I.getParent()->getFirstNonPHI()); | 
|  | S.NewPHI = B.CreatePHI(S.Ty, I.getNumIncomingValues()); | 
|  |  | 
|  | for (const auto &[Idx, BB] : enumerate(I.blocks())) { | 
|  | S.NewPHI->addIncoming(S.getSlicedVal(BB, I.getIncomingValue(Idx), | 
|  | "largephi.extractslice" + | 
|  | std::to_string(IncNameSuffix++)), | 
|  | BB); | 
|  | } | 
|  | } | 
|  |  | 
|  | // And replace this PHI with a vector of all the previous PHI values. | 
|  | Value *Vec = PoisonValue::get(FVT); | 
|  | unsigned NameSuffix = 0; | 
|  | for (VectorSlice &S : Slices) { | 
|  | const auto ValName = "largephi.insertslice" + std::to_string(NameSuffix++); | 
|  | if (S.NumElts > 1) | 
|  | Vec = | 
|  | B.CreateInsertVector(FVT, Vec, S.NewPHI, B.getInt64(S.Idx), ValName); | 
|  | else | 
|  | Vec = B.CreateInsertElement(Vec, S.NewPHI, S.Idx, ValName); | 
|  | } | 
|  |  | 
|  | I.replaceAllUsesWith(Vec); | 
|  | I.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepareImpl::visitIntrinsicInst(IntrinsicInst &I) { | 
|  | switch (I.getIntrinsicID()) { | 
|  | case Intrinsic::bitreverse: | 
|  | return visitBitreverseIntrinsicInst(I); | 
|  | case Intrinsic::minnum: | 
|  | return visitMinNum(I); | 
|  | case Intrinsic::sqrt: | 
|  | return visitSqrt(I); | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepareImpl::visitBitreverseIntrinsicInst(IntrinsicInst &I) { | 
|  | bool Changed = false; | 
|  |  | 
|  | if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && | 
|  | UA->isUniform(&I)) | 
|  | Changed |= promoteUniformBitreverseToI32(I); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// Match non-nan fract pattern. | 
|  | ///   minnum(fsub(x, floor(x)), nextafter(1.0, -1.0) | 
|  | /// | 
|  | /// If fract is a useful instruction for the subtarget. Does not account for the | 
|  | /// nan handling; the instruction has a nan check on the input value. | 
|  | Value *AMDGPUCodeGenPrepareImpl::matchFractPat(IntrinsicInst &I) { | 
|  | if (ST->hasFractBug()) | 
|  | return nullptr; | 
|  |  | 
|  | if (I.getIntrinsicID() != Intrinsic::minnum) | 
|  | return nullptr; | 
|  |  | 
|  | Type *Ty = I.getType(); | 
|  | if (!isLegalFloatingTy(Ty->getScalarType())) | 
|  | return nullptr; | 
|  |  | 
|  | Value *Arg0 = I.getArgOperand(0); | 
|  | Value *Arg1 = I.getArgOperand(1); | 
|  |  | 
|  | const APFloat *C; | 
|  | if (!match(Arg1, m_APFloat(C))) | 
|  | return nullptr; | 
|  |  | 
|  | APFloat One(1.0); | 
|  | bool LosesInfo; | 
|  | One.convert(C->getSemantics(), APFloat::rmNearestTiesToEven, &LosesInfo); | 
|  |  | 
|  | // Match nextafter(1.0, -1) | 
|  | One.next(true); | 
|  | if (One != *C) | 
|  | return nullptr; | 
|  |  | 
|  | Value *FloorSrc; | 
|  | if (match(Arg0, m_FSub(m_Value(FloorSrc), | 
|  | m_Intrinsic<Intrinsic::floor>(m_Deferred(FloorSrc))))) | 
|  | return FloorSrc; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *AMDGPUCodeGenPrepareImpl::applyFractPat(IRBuilder<> &Builder, | 
|  | Value *FractArg) { | 
|  | SmallVector<Value *, 4> FractVals; | 
|  | extractValues(Builder, FractVals, FractArg); | 
|  |  | 
|  | SmallVector<Value *, 4> ResultVals(FractVals.size()); | 
|  |  | 
|  | Type *Ty = FractArg->getType()->getScalarType(); | 
|  | for (unsigned I = 0, E = FractVals.size(); I != E; ++I) { | 
|  | ResultVals[I] = | 
|  | Builder.CreateIntrinsic(Intrinsic::amdgcn_fract, {Ty}, {FractVals[I]}); | 
|  | } | 
|  |  | 
|  | return insertValues(Builder, FractArg->getType(), ResultVals); | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepareImpl::visitMinNum(IntrinsicInst &I) { | 
|  | Value *FractArg = matchFractPat(I); | 
|  | if (!FractArg) | 
|  | return false; | 
|  |  | 
|  | // Match pattern for fract intrinsic in contexts where the nan check has been | 
|  | // optimized out (and hope the knowledge the source can't be nan wasn't lost). | 
|  | if (!I.hasNoNaNs() && !isKnownNeverNaN(FractArg, *DL, TLInfo)) | 
|  | return false; | 
|  |  | 
|  | IRBuilder<> Builder(&I); | 
|  | FastMathFlags FMF = I.getFastMathFlags(); | 
|  | FMF.setNoNaNs(); | 
|  | Builder.setFastMathFlags(FMF); | 
|  |  | 
|  | Value *Fract = applyFractPat(Builder, FractArg); | 
|  | Fract->takeName(&I); | 
|  | I.replaceAllUsesWith(Fract); | 
|  |  | 
|  | RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isOneOrNegOne(const Value *Val) { | 
|  | const APFloat *C; | 
|  | return match(Val, m_APFloat(C)) && C->getExactLog2Abs() == 0; | 
|  | } | 
|  |  | 
|  | // Expand llvm.sqrt.f32 calls with !fpmath metadata in a semi-fast way. | 
|  | bool AMDGPUCodeGenPrepareImpl::visitSqrt(IntrinsicInst &Sqrt) { | 
|  | Type *Ty = Sqrt.getType()->getScalarType(); | 
|  | if (!Ty->isFloatTy() && (!Ty->isHalfTy() || ST->has16BitInsts())) | 
|  | return false; | 
|  |  | 
|  | const FPMathOperator *FPOp = cast<const FPMathOperator>(&Sqrt); | 
|  | FastMathFlags SqrtFMF = FPOp->getFastMathFlags(); | 
|  |  | 
|  | // We're trying to handle the fast-but-not-that-fast case only. The lowering | 
|  | // of fast llvm.sqrt will give the raw instruction anyway. | 
|  | if (SqrtFMF.approxFunc() || HasUnsafeFPMath) | 
|  | return false; | 
|  |  | 
|  | const float ReqdAccuracy = FPOp->getFPAccuracy(); | 
|  |  | 
|  | // Defer correctly rounded expansion to codegen. | 
|  | if (ReqdAccuracy < 1.0f) | 
|  | return false; | 
|  |  | 
|  | // FIXME: This is an ugly hack for this pass using forward iteration instead | 
|  | // of reverse. If it worked like a normal combiner, the rsq would form before | 
|  | // we saw a sqrt call. | 
|  | auto *FDiv = | 
|  | dyn_cast_or_null<FPMathOperator>(Sqrt.getUniqueUndroppableUser()); | 
|  | if (FDiv && FDiv->getOpcode() == Instruction::FDiv && | 
|  | FDiv->getFPAccuracy() >= 1.0f && | 
|  | canOptimizeWithRsq(FPOp, FDiv->getFastMathFlags(), SqrtFMF) && | 
|  | // TODO: We should also handle the arcp case for the fdiv with non-1 value | 
|  | isOneOrNegOne(FDiv->getOperand(0))) | 
|  | return false; | 
|  |  | 
|  | Value *SrcVal = Sqrt.getOperand(0); | 
|  | bool CanTreatAsDAZ = canIgnoreDenormalInput(SrcVal, &Sqrt); | 
|  |  | 
|  | // The raw instruction is 1 ulp, but the correction for denormal handling | 
|  | // brings it to 2. | 
|  | if (!CanTreatAsDAZ && ReqdAccuracy < 2.0f) | 
|  | return false; | 
|  |  | 
|  | IRBuilder<> Builder(&Sqrt); | 
|  | SmallVector<Value *, 4> SrcVals; | 
|  | extractValues(Builder, SrcVals, SrcVal); | 
|  |  | 
|  | SmallVector<Value *, 4> ResultVals(SrcVals.size()); | 
|  | for (int I = 0, E = SrcVals.size(); I != E; ++I) { | 
|  | if (CanTreatAsDAZ) | 
|  | ResultVals[I] = Builder.CreateCall(getSqrtF32(), SrcVals[I]); | 
|  | else | 
|  | ResultVals[I] = emitSqrtIEEE2ULP(Builder, SrcVals[I], SqrtFMF); | 
|  | } | 
|  |  | 
|  | Value *NewSqrt = insertValues(Builder, Sqrt.getType(), ResultVals); | 
|  | NewSqrt->takeName(&Sqrt); | 
|  | Sqrt.replaceAllUsesWith(NewSqrt); | 
|  | Sqrt.eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepare::doInitialization(Module &M) { | 
|  | Impl.Mod = &M; | 
|  | Impl.DL = &Impl.Mod->getDataLayout(); | 
|  | Impl.SqrtF32 = nullptr; | 
|  | Impl.LdexpF32 = nullptr; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { | 
|  | if (skipFunction(F)) | 
|  | return false; | 
|  |  | 
|  | auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); | 
|  | if (!TPC) | 
|  | return false; | 
|  |  | 
|  | const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>(); | 
|  | Impl.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); | 
|  | Impl.ST = &TM.getSubtarget<GCNSubtarget>(F); | 
|  | Impl.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); | 
|  | Impl.UA = &getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo(); | 
|  | auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); | 
|  | Impl.DT = DTWP ? &DTWP->getDomTree() : nullptr; | 
|  | Impl.HasUnsafeFPMath = hasUnsafeFPMath(F); | 
|  | SIModeRegisterDefaults Mode(F); | 
|  | Impl.HasFP32DenormalFlush = | 
|  | Mode.FP32Denormals == DenormalMode::getPreserveSign(); | 
|  | return Impl.run(F); | 
|  | } | 
|  |  | 
|  | PreservedAnalyses AMDGPUCodeGenPreparePass::run(Function &F, | 
|  | FunctionAnalysisManager &FAM) { | 
|  | AMDGPUCodeGenPrepareImpl Impl; | 
|  | Impl.Mod = F.getParent(); | 
|  | Impl.DL = &Impl.Mod->getDataLayout(); | 
|  | Impl.TLInfo = &FAM.getResult<TargetLibraryAnalysis>(F); | 
|  | Impl.ST = &TM.getSubtarget<GCNSubtarget>(F); | 
|  | Impl.AC = &FAM.getResult<AssumptionAnalysis>(F); | 
|  | Impl.UA = &FAM.getResult<UniformityInfoAnalysis>(F); | 
|  | Impl.DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); | 
|  | Impl.HasUnsafeFPMath = hasUnsafeFPMath(F); | 
|  | SIModeRegisterDefaults Mode(F); | 
|  | Impl.HasFP32DenormalFlush = | 
|  | Mode.FP32Denormals == DenormalMode::getPreserveSign(); | 
|  | PreservedAnalyses PA = PreservedAnalyses::none(); | 
|  | if (!Impl.FlowChanged) | 
|  | PA.preserveSet<CFGAnalyses>(); | 
|  | return Impl.run(F) ? PA : PreservedAnalyses::all(); | 
|  | } | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, | 
|  | "AMDGPU IR optimizations", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", | 
|  | false, false) | 
|  |  | 
|  | char AMDGPUCodeGenPrepare::ID = 0; | 
|  |  | 
|  | FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { | 
|  | return new AMDGPUCodeGenPrepare(); | 
|  | } |