|  | //=- AArch64CallingConv.td - Calling Conventions for AArch64 -*- tablegen -*-=// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This describes the calling conventions for AArch64 architecture. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// CCIfBigEndian - Match only if we're in big endian mode. | 
|  | class CCIfBigEndian<CCAction A> : | 
|  | CCIf<"State.getMachineFunction().getDataLayout().isBigEndian()", A>; | 
|  |  | 
|  | class CCIfILP32<CCAction A> : | 
|  | CCIf<"State.getMachineFunction().getDataLayout().getPointerSize() == 4", A>; | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // ARM AAPCS64 Calling Convention | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | defvar AArch64_Common = [ | 
|  | CCIfType<[iPTR], CCBitConvertToType<i64>>, | 
|  | CCIfType<[v2f32], CCBitConvertToType<v2i32>>, | 
|  | CCIfType<[v2f64, v4f32], CCBitConvertToType<v2i64>>, | 
|  |  | 
|  | // Big endian vectors must be passed as if they were 1-element vectors so that | 
|  | // their lanes are in a consistent order. | 
|  | CCIfBigEndian<CCIfType<[v2i32, v2f32, v4i16, v4f16, v4bf16, v8i8], | 
|  | CCBitConvertToType<f64>>>, | 
|  | CCIfBigEndian<CCIfType<[v2i64, v2f64, v4i32, v4f32, v8i16, v8f16, v8bf16, v16i8], | 
|  | CCBitConvertToType<f128>>>, | 
|  |  | 
|  | // In AAPCS, an SRet is passed in X8, not X0 like a normal pointer parameter. | 
|  | // However, on windows, in some circumstances, the SRet is passed in X0 or X1 | 
|  | // instead.  The presence of the inreg attribute indicates that SRet is | 
|  | // passed in the alternative register (X0 or X1), not X8: | 
|  | // - X0 for non-instance methods. | 
|  | // - X1 for instance methods. | 
|  |  | 
|  | // The "sret" attribute identifies indirect returns. | 
|  | // The "inreg" attribute identifies non-aggregate types. | 
|  | // The position of the "sret" attribute identifies instance/non-instance | 
|  | // methods. | 
|  | // "sret" on argument 0 means non-instance methods. | 
|  | // "sret" on argument 1 means instance methods. | 
|  |  | 
|  | CCIfInReg<CCIfType<[i64], | 
|  | CCIfSRet<CCIfType<[i64], CCAssignToReg<[X0, X1]>>>>>, | 
|  |  | 
|  | CCIfSRet<CCIfType<[i64], CCAssignToReg<[X8]>>>, | 
|  |  | 
|  | // Put ByVal arguments directly on the stack. Minimum size and alignment of a | 
|  | // slot is 64-bit. | 
|  | CCIfByVal<CCPassByVal<8, 8>>, | 
|  |  | 
|  | // Pass SwiftSelf in a callee saved register. | 
|  | CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[X20]>>>, | 
|  |  | 
|  | // A SwiftError is passed in X21. | 
|  | CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[X21]>>>, | 
|  |  | 
|  | // Pass SwiftAsync in an otherwise callee saved register so that it will be | 
|  | // preserved for normal function calls. | 
|  | CCIfSwiftAsync<CCIfType<[i64], CCAssignToReg<[X22]>>>, | 
|  |  | 
|  | CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>, | 
|  |  | 
|  | CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16, | 
|  | nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64], | 
|  | CCAssignToReg<[Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7]>>, | 
|  | CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16, | 
|  | nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64], | 
|  | CCPassIndirect<i64>>, | 
|  |  | 
|  | CCIfType<[nxv1i1, nxv2i1, nxv4i1, nxv8i1, nxv16i1, aarch64svcount], | 
|  | CCAssignToReg<[P0, P1, P2, P3]>>, | 
|  | CCIfType<[nxv1i1, nxv2i1, nxv4i1, nxv8i1, nxv16i1, aarch64svcount], | 
|  | CCPassIndirect<i64>>, | 
|  |  | 
|  | // Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers, | 
|  | // up to eight each of GPR and FPR. | 
|  | CCIfType<[i1, i8, i16], CCPromoteToType<i32>>, | 
|  | CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>, | 
|  | // i128 is split to two i64s, we can't fit half to register X7. | 
|  | CCIfType<[i64], CCIfSplit<CCAssignToRegWithShadow<[X0, X2, X4, X6], | 
|  | [X0, X1, X3, X5]>>>, | 
|  |  | 
|  | // i128 is split to two i64s, and its stack alignment is 16 bytes. | 
|  | CCIfType<[i64], CCIfSplit<CCAssignToStackWithShadow<8, 16, [X7]>>>, | 
|  |  | 
|  | CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>, | 
|  | CCIfType<[f16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>, | 
|  | CCIfType<[bf16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>, | 
|  | CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>, | 
|  | CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>, | 
|  | CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16], | 
|  | CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>, | 
|  | CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16], | 
|  | CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>, | 
|  |  | 
|  | // If more than will fit in registers, pass them on the stack instead. | 
|  | CCIfType<[i1, i8, i16, f16, bf16], CCAssignToStack<8, 8>>, | 
|  | CCIfType<[i32, f32], CCAssignToStack<8, 8>>, | 
|  | CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8, v4f16, v4bf16], | 
|  | CCAssignToStack<8, 8>>, | 
|  | CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16], | 
|  | CCAssignToStack<16, 16>> | 
|  | ]; | 
|  |  | 
|  | let Entry = 1 in | 
|  | def CC_AArch64_AAPCS : CallingConv<!listconcat( | 
|  | // The 'nest' parameter, if any, is passed in X18. | 
|  | // Darwin and Windows use X18 as the platform register and hence 'nest' isn't | 
|  | // currently supported there. | 
|  | [CCIfNest<CCAssignToReg<[X18]>>], | 
|  | AArch64_Common | 
|  | )>; | 
|  |  | 
|  | let Entry = 1 in | 
|  | def RetCC_AArch64_AAPCS : CallingConv<[ | 
|  | CCIfType<[iPTR], CCBitConvertToType<i64>>, | 
|  | CCIfType<[v2f32], CCBitConvertToType<v2i32>>, | 
|  | CCIfType<[v2f64, v4f32], CCBitConvertToType<v2i64>>, | 
|  |  | 
|  | CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>, | 
|  | CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[X21]>>>, | 
|  |  | 
|  | // Big endian vectors must be passed as if they were 1-element vectors so that | 
|  | // their lanes are in a consistent order. | 
|  | CCIfBigEndian<CCIfType<[v2i32, v2f32, v4i16, v4f16, v4bf16, v8i8], | 
|  | CCBitConvertToType<f64>>>, | 
|  | CCIfBigEndian<CCIfType<[v2i64, v2f64, v4i32, v4f32, v8i16, v8f16, v8bf16, v16i8], | 
|  | CCBitConvertToType<f128>>>, | 
|  |  | 
|  | CCIfType<[i1, i8, i16], CCPromoteToType<i32>>, | 
|  | CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>, | 
|  | CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>, | 
|  | CCIfType<[f16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>, | 
|  | CCIfType<[bf16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>, | 
|  | CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>, | 
|  | CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>, | 
|  | CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16], | 
|  | CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>, | 
|  | CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16], | 
|  | CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>, | 
|  |  | 
|  | CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16, | 
|  | nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64], | 
|  | CCAssignToReg<[Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7]>>, | 
|  |  | 
|  | CCIfType<[nxv1i1, nxv2i1, nxv4i1, nxv8i1, nxv16i1, aarch64svcount], | 
|  | CCAssignToReg<[P0, P1, P2, P3]>> | 
|  | ]>; | 
|  |  | 
|  | let Entry = 1 in | 
|  | def CC_AArch64_Win64PCS : CallingConv<AArch64_Common>; | 
|  |  | 
|  | // Vararg functions on windows pass floats in integer registers | 
|  | let Entry = 1 in | 
|  | def CC_AArch64_Win64_VarArg : CallingConv<[ | 
|  | CCIfType<[f16, bf16], CCBitConvertToType<i16>>, | 
|  | CCIfType<[f32], CCBitConvertToType<i32>>, | 
|  | CCIfType<[f64], CCBitConvertToType<i64>>, | 
|  | CCDelegateTo<CC_AArch64_Win64PCS> | 
|  | ]>; | 
|  |  | 
|  | // Vararg functions on Arm64EC ABI use a different convention, using | 
|  | // a stack layout compatible with the x64 calling convention. | 
|  | let Entry = 1 in | 
|  | def CC_AArch64_Arm64EC_VarArg : CallingConv<[ | 
|  | // Convert small floating-point values to integer. | 
|  | CCIfType<[f16, bf16], CCBitConvertToType<i16>>, | 
|  | CCIfType<[f32], CCBitConvertToType<i32>>, | 
|  | CCIfType<[f64, v1f64, v1i64, v2f32, v2i32, v4i16, v4f16, v4bf16, v8i8, iPTR], | 
|  | CCBitConvertToType<i64>>, | 
|  |  | 
|  | // Larger floating-point/vector values are passed indirectly. | 
|  | CCIfType<[f128, v2f64, v2i64, v4i32, v4f32, v8i16, v8f16, v8bf16, v16i8], | 
|  | CCPassIndirect<i64>>, | 
|  | CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16, | 
|  | nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64], | 
|  | CCPassIndirect<i64>>, | 
|  | CCIfType<[nxv2i1, nxv4i1, nxv8i1, nxv16i1], | 
|  | CCPassIndirect<i64>>, | 
|  |  | 
|  | // Handle SRet. See comment in CC_AArch64_AAPCS. | 
|  | CCIfInReg<CCIfType<[i64], | 
|  | CCIfSRet<CCIfType<[i64], CCAssignToReg<[X0, X1]>>>>>, | 
|  | CCIfSRet<CCIfType<[i64], CCAssignToReg<[X8]>>>, | 
|  |  | 
|  | // Put ByVal arguments directly on the stack. Minimum size and alignment of a | 
|  | // slot is 64-bit. (Shouldn't normally come up; the Microsoft ABI doesn't | 
|  | // use byval.) | 
|  | CCIfByVal<CCPassByVal<8, 8>>, | 
|  |  | 
|  | // Promote small integers to i32 | 
|  | CCIfType<[i1, i8, i16], CCPromoteToType<i32>>, | 
|  |  | 
|  | // Pass first four arguments in x0-x3. | 
|  | CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3]>>, | 
|  | CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3]>>, | 
|  |  | 
|  | // Put remaining arguments on stack. | 
|  | CCIfType<[i32, i64], CCAssignToStack<8, 8>>, | 
|  | ]>; | 
|  |  | 
|  | // Windows Control Flow Guard checks take a single argument (the target function | 
|  | // address) and have no return value. | 
|  | let Entry = 1 in | 
|  | def CC_AArch64_Win64_CFGuard_Check : CallingConv<[ | 
|  | CCIfType<[i64], CCAssignToReg<[X15]>> | 
|  | ]>; | 
|  |  | 
|  |  | 
|  | // Darwin uses a calling convention which differs in only two ways | 
|  | // from the standard one at this level: | 
|  | //     + i128s (i.e. split i64s) don't need even registers. | 
|  | //     + Stack slots are sized as needed rather than being at least 64-bit. | 
|  | let Entry = 1 in | 
|  | def CC_AArch64_DarwinPCS : CallingConv<[ | 
|  | CCIfType<[iPTR], CCBitConvertToType<i64>>, | 
|  | CCIfType<[v2f32], CCBitConvertToType<v2i32>>, | 
|  | CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>, | 
|  |  | 
|  | // An SRet is passed in X8, not X0 like a normal pointer parameter. | 
|  | CCIfSRet<CCIfType<[i64], CCAssignToReg<[X8]>>>, | 
|  |  | 
|  | // Put ByVal arguments directly on the stack. Minimum size and alignment of a | 
|  | // slot is 64-bit. | 
|  | CCIfByVal<CCPassByVal<8, 8>>, | 
|  |  | 
|  | // Pass SwiftSelf in a callee saved register. | 
|  | CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[X20]>>>, | 
|  |  | 
|  | // A SwiftError is passed in X21. | 
|  | CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[X21]>>>, | 
|  |  | 
|  | // Pass SwiftAsync in an otherwise callee saved register so that it will be | 
|  | // preserved for normal function calls. | 
|  | CCIfSwiftAsync<CCIfType<[i64], CCAssignToReg<[X22]>>>, | 
|  |  | 
|  | CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>, | 
|  |  | 
|  | // Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers, | 
|  | // up to eight each of GPR and FPR. | 
|  | CCIfType<[i1, i8, i16], CCPromoteToType<i32>>, | 
|  | CCIfType<[i32], CCAssignToReg<[W0, W1, W2, W3, W4, W5, W6, W7]>>, | 
|  | // i128 is split to two i64s, we can't fit half to register X7. | 
|  | CCIfType<[i64], | 
|  | CCIfSplit<CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6]>>>, | 
|  | // i128 is split to two i64s, and its stack alignment is 16 bytes. | 
|  | CCIfType<[i64], CCIfSplit<CCAssignToStackWithShadow<8, 16, [X7]>>>, | 
|  |  | 
|  | CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>, | 
|  | CCIfType<[f16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>, | 
|  | CCIfType<[bf16], CCAssignToReg<[H0, H1, H2, H3, H4, H5, H6, H7]>>, | 
|  | CCIfType<[f32], CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>, | 
|  | CCIfType<[f64], CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>, | 
|  | CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16], | 
|  | CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>, | 
|  | CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16], | 
|  | CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>, | 
|  |  | 
|  | // If more than will fit in registers, pass them on the stack instead. | 
|  | CCIf<"ValVT == MVT::i1 || ValVT == MVT::i8", CCAssignToStack<1, 1>>, | 
|  | CCIf<"ValVT == MVT::i16 || ValVT == MVT::f16 || ValVT == MVT::bf16", | 
|  | CCAssignToStack<2, 2>>, | 
|  | CCIfType<[i32, f32], CCAssignToStack<4, 4>>, | 
|  |  | 
|  | // Re-demote pointers to 32-bits so we don't end up storing 64-bit | 
|  | // values and clobbering neighbouring stack locations. Not very pretty. | 
|  | CCIfPtr<CCIfILP32<CCTruncToType<i32>>>, | 
|  | CCIfPtr<CCIfILP32<CCAssignToStack<4, 4>>>, | 
|  |  | 
|  | CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8, v4f16, v4bf16], | 
|  | CCAssignToStack<8, 8>>, | 
|  | CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16], | 
|  | CCAssignToStack<16, 16>> | 
|  | ]>; | 
|  |  | 
|  | let Entry = 1 in | 
|  | def CC_AArch64_DarwinPCS_VarArg : CallingConv<[ | 
|  | CCIfType<[iPTR], CCBitConvertToType<i64>>, | 
|  | CCIfType<[v2f32], CCBitConvertToType<v2i32>>, | 
|  | CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>, | 
|  |  | 
|  | CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Stack_Block">>, | 
|  |  | 
|  | // Handle all scalar types as either i64 or f64. | 
|  | CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, | 
|  | CCIfType<[f16, bf16, f32], CCPromoteToType<f64>>, | 
|  |  | 
|  | // Everything is on the stack. | 
|  | // i128 is split to two i64s, and its stack alignment is 16 bytes. | 
|  | CCIfType<[i64], CCIfSplit<CCAssignToStack<8, 16>>>, | 
|  | CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16], | 
|  | CCAssignToStack<8, 8>>, | 
|  | CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16], | 
|  | CCAssignToStack<16, 16>> | 
|  | ]>; | 
|  |  | 
|  | // In the ILP32 world, the minimum stack slot size is 4 bytes. Otherwise the | 
|  | // same as the normal Darwin VarArgs handling. | 
|  | let Entry = 1 in | 
|  | def CC_AArch64_DarwinPCS_ILP32_VarArg : CallingConv<[ | 
|  | CCIfType<[v2f32], CCBitConvertToType<v2i32>>, | 
|  | CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>, | 
|  |  | 
|  | // Handle all scalar types as either i32 or f32. | 
|  | CCIfType<[i8, i16], CCPromoteToType<i32>>, | 
|  | CCIfType<[f16, bf16], CCPromoteToType<f32>>, | 
|  |  | 
|  | // Everything is on the stack. | 
|  | // i128 is split to two i64s, and its stack alignment is 16 bytes. | 
|  | CCIfPtr<CCIfILP32<CCTruncToType<i32>>>, | 
|  | CCIfType<[i32, f32], CCAssignToStack<4, 4>>, | 
|  | CCIfType<[i64], CCIfSplit<CCAssignToStack<8, 16>>>, | 
|  | CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16], | 
|  | CCAssignToStack<8, 8>>, | 
|  | CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16], | 
|  | CCAssignToStack<16, 16>> | 
|  | ]>; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // ARM64 Calling Convention for GHC | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // This calling convention is specific to the Glasgow Haskell Compiler. | 
|  | // The only documentation is the GHC source code, specifically the C header | 
|  | // file: | 
|  | // | 
|  | //    https://github.com/ghc/ghc/blob/master/rts/include/stg/MachRegs.h | 
|  | // | 
|  | // which defines the registers for the Spineless Tagless G-Machine (STG) that | 
|  | // GHC uses to implement lazy evaluation. The generic STG machine has a set of | 
|  | // registers which are mapped to appropriate set of architecture specific | 
|  | // registers for each CPU architecture. | 
|  | // | 
|  | // The STG Machine is documented here: | 
|  | // | 
|  | //    https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/GeneratedCode | 
|  | // | 
|  | // The AArch64 register mapping is defined in the following header file: | 
|  | // | 
|  | //    https://github.com/ghc/ghc/blob/master/rts/include/stg/MachRegs/arm64.h | 
|  | // | 
|  |  | 
|  | let Entry = 1 in | 
|  | def CC_AArch64_GHC : CallingConv<[ | 
|  | CCIfType<[iPTR], CCBitConvertToType<i64>>, | 
|  |  | 
|  | // Handle all vector types as either f64 or v2f64. | 
|  | CCIfType<[v1i64, v2i32, v4i16, v8i8, v2f32], CCBitConvertToType<f64>>, | 
|  | CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, f128], CCBitConvertToType<v2f64>>, | 
|  |  | 
|  | CCIfType<[v2f64], CCAssignToReg<[Q4, Q5]>>, | 
|  | CCIfType<[f32], CCAssignToReg<[S8, S9, S10, S11]>>, | 
|  | CCIfType<[f64], CCAssignToReg<[D12, D13, D14, D15]>>, | 
|  |  | 
|  | // Promote i8/i16/i32 arguments to i64. | 
|  | CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, | 
|  |  | 
|  | // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim | 
|  | CCIfType<[i64], CCAssignToReg<[X19, X20, X21, X22, X23, X24, X25, X26, X27, X28]>> | 
|  | ]>; | 
|  |  | 
|  | // The order of the callee-saves in this file is important, because the | 
|  | // FrameLowering code will use this order to determine the layout the | 
|  | // callee-save area in the stack frame. As can be observed below, Darwin | 
|  | // requires the frame-record (LR, FP) to be at the top the callee-save area, | 
|  | // whereas for other platforms they are at the bottom. | 
|  |  | 
|  | // FIXME: LR is only callee-saved in the sense that *we* preserve it and are | 
|  | // presumably a callee to someone. External functions may not do so, but this | 
|  | // is currently safe since BL has LR as an implicit-def and what happens after a | 
|  | // tail call doesn't matter. | 
|  | // | 
|  | // It would be better to model its preservation semantics properly (create a | 
|  | // vreg on entry, use it in RET & tail call generation; make that vreg def if we | 
|  | // end up saving LR as part of a call frame). Watch this space... | 
|  | def CSR_AArch64_AAPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24, | 
|  | X25, X26, X27, X28, LR, FP, | 
|  | D8,  D9,  D10, D11, | 
|  | D12, D13, D14, D15)>; | 
|  |  | 
|  | // A variant for treating X18 as callee saved, when interfacing with | 
|  | // code that needs X18 to be preserved. | 
|  | def CSR_AArch64_AAPCS_X18 : CalleeSavedRegs<(add X18, CSR_AArch64_AAPCS)>; | 
|  |  | 
|  | // Win64 has unwinding codes for an (FP,LR) pair, save_fplr and save_fplr_x. | 
|  | // We put FP before LR, so that frame lowering logic generates (FP,LR) pairs, | 
|  | // and not (LR,FP) pairs. | 
|  | def CSR_Win_AArch64_AAPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24, | 
|  | X25, X26, X27, X28, FP, LR, | 
|  | D8, D9, D10, D11, | 
|  | D12, D13, D14, D15)>; | 
|  |  | 
|  | def CSR_Win_AArch64_AAPCS_SwiftError | 
|  | : CalleeSavedRegs<(sub CSR_Win_AArch64_AAPCS, X21)>; | 
|  |  | 
|  | def CSR_Win_AArch64_AAPCS_SwiftTail | 
|  | : CalleeSavedRegs<(sub CSR_Win_AArch64_AAPCS, X20, X22)>; | 
|  |  | 
|  | // The Control Flow Guard check call uses a custom calling convention that also | 
|  | // preserves X0-X8 and Q0-Q7. | 
|  | def CSR_Win_AArch64_CFGuard_Check : CalleeSavedRegs<(add CSR_Win_AArch64_AAPCS, | 
|  | (sequence "X%u", 0, 8), | 
|  | (sequence "Q%u", 0, 7))>; | 
|  |  | 
|  | // AArch64 PCS for vector functions (VPCS) | 
|  | // must (additionally) preserve full Q8-Q23 registers | 
|  | def CSR_AArch64_AAVPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24, | 
|  | X25, X26, X27, X28, LR, FP, | 
|  | (sequence "Q%u", 8, 23))>; | 
|  |  | 
|  | // Functions taking SVE arguments or returning an SVE type | 
|  | // must (additionally) preserve full Z8-Z23 and predicate registers P4-P15 | 
|  | def CSR_AArch64_SVE_AAPCS : CalleeSavedRegs<(add (sequence "Z%u", 8, 23), | 
|  | (sequence "P%u", 4, 15), | 
|  | X19, X20, X21, X22, X23, X24, | 
|  | X25, X26, X27, X28, LR, FP)>; | 
|  |  | 
|  | // SME ABI support routines such as __arm_tpidr2_save/restore preserve most registers. | 
|  | def CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0 | 
|  | : CalleeSavedRegs<(add (sequence "Z%u", 0, 31), | 
|  | (sequence "P%u", 0, 15), | 
|  | (sequence "X%u", 0, 13), | 
|  | (sequence "X%u",19, 28), | 
|  | LR, FP)>; | 
|  |  | 
|  | // SME ABI support routines __arm_sme_state preserves most registers. | 
|  | def CSR_AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2 | 
|  | : CalleeSavedRegs<(add (sequence "Z%u", 0, 31), | 
|  | (sequence "P%u", 0, 15), | 
|  | (sequence "X%u", 2, 15), | 
|  | (sequence "X%u",19, 28), | 
|  | LR, FP)>; | 
|  |  | 
|  | // The SMSTART/SMSTOP instructions preserve only GPR registers. | 
|  | def CSR_AArch64_SMStartStop : CalleeSavedRegs<(add (sequence "X%u", 0, 28), | 
|  | LR, FP)>; | 
|  |  | 
|  | def CSR_AArch64_AAPCS_SwiftTail | 
|  | : CalleeSavedRegs<(sub CSR_AArch64_AAPCS, X20, X22)>; | 
|  |  | 
|  | // Constructors and destructors return 'this' in the iOS 64-bit C++ ABI; since | 
|  | // 'this' and the pointer return value are both passed in X0 in these cases, | 
|  | // this can be partially modelled by treating X0 as a callee-saved register; | 
|  | // only the resulting RegMask is used; the SaveList is ignored | 
|  | // | 
|  | // (For generic ARM 64-bit ABI code, clang will not generate constructors or | 
|  | // destructors with 'this' returns, so this RegMask will not be used in that | 
|  | // case) | 
|  | def CSR_AArch64_AAPCS_ThisReturn : CalleeSavedRegs<(add CSR_AArch64_AAPCS, X0)>; | 
|  |  | 
|  | def CSR_AArch64_AAPCS_SwiftError | 
|  | : CalleeSavedRegs<(sub CSR_AArch64_AAPCS, X21)>; | 
|  |  | 
|  | // The ELF stub used for TLS-descriptor access saves every feasible | 
|  | // register. Only X0 and LR are clobbered. | 
|  | def CSR_AArch64_TLS_ELF | 
|  | : CalleeSavedRegs<(add (sequence "X%u", 1, 28), FP, | 
|  | (sequence "Q%u", 0, 31))>; | 
|  |  | 
|  | def CSR_AArch64_AllRegs | 
|  | : CalleeSavedRegs<(add (sequence "W%u", 0, 30), WSP, | 
|  | (sequence "X%u", 0, 28), FP, LR, SP, | 
|  | (sequence "B%u", 0, 31), (sequence "H%u", 0, 31), | 
|  | (sequence "S%u", 0, 31), (sequence "D%u", 0, 31), | 
|  | (sequence "Q%u", 0, 31))>; | 
|  |  | 
|  | def CSR_AArch64_NoRegs : CalleeSavedRegs<(add)>; | 
|  |  | 
|  | def CSR_AArch64_RT_MostRegs :  CalleeSavedRegs<(add CSR_AArch64_AAPCS, | 
|  | (sequence "X%u", 9, 15))>; | 
|  |  | 
|  | def CSR_AArch64_RT_AllRegs :  CalleeSavedRegs<(add CSR_AArch64_RT_MostRegs, | 
|  | (sequence "Q%u", 8, 31))>; | 
|  |  | 
|  | def CSR_AArch64_StackProbe_Windows | 
|  | : CalleeSavedRegs<(add (sequence "X%u", 0, 15), | 
|  | (sequence "X%u", 18, 28), FP, SP, | 
|  | (sequence "Q%u", 0, 31))>; | 
|  |  | 
|  | // Darwin variants of AAPCS. | 
|  | // Darwin puts the frame-record at the top of the callee-save area. | 
|  | def CSR_Darwin_AArch64_AAPCS : CalleeSavedRegs<(add LR, FP, X19, X20, X21, X22, | 
|  | X23, X24, X25, X26, X27, X28, | 
|  | D8,  D9,  D10, D11, | 
|  | D12, D13, D14, D15)>; | 
|  |  | 
|  | def CSR_Darwin_AArch64_AAVPCS : CalleeSavedRegs<(add LR, FP, X19, X20, X21, | 
|  | X22, X23, X24, X25, X26, X27, | 
|  | X28, (sequence "Q%u", 8, 23))>; | 
|  |  | 
|  | // For Windows calling convention on a non-windows OS, where X18 is treated | 
|  | // as reserved, back up X18 when entering non-windows code (marked with the | 
|  | // Windows calling convention) and restore when returning regardless of | 
|  | // whether the individual function uses it - it might call other functions | 
|  | // that clobber it. | 
|  | def CSR_Darwin_AArch64_AAPCS_Win64 | 
|  | : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS, X18)>; | 
|  |  | 
|  | def CSR_Darwin_AArch64_AAPCS_ThisReturn | 
|  | : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS, X0)>; | 
|  |  | 
|  | def CSR_Darwin_AArch64_AAPCS_SwiftError | 
|  | : CalleeSavedRegs<(sub CSR_Darwin_AArch64_AAPCS, X21)>; | 
|  |  | 
|  | def CSR_Darwin_AArch64_AAPCS_SwiftTail | 
|  | : CalleeSavedRegs<(sub CSR_Darwin_AArch64_AAPCS, X20, X22)>; | 
|  |  | 
|  | // The function used by Darwin to obtain the address of a thread-local variable | 
|  | // guarantees more than a normal AAPCS function. x16 and x17 are used on the | 
|  | // fast path for calculation, but other registers except X0 (argument/return) | 
|  | // and LR (it is a call, after all) are preserved. | 
|  | def CSR_Darwin_AArch64_TLS | 
|  | : CalleeSavedRegs<(add (sub (sequence "X%u", 1, 28), X16, X17), | 
|  | FP, | 
|  | (sequence "Q%u", 0, 31))>; | 
|  |  | 
|  | // We can only handle a register pair with adjacent registers, the register pair | 
|  | // should belong to the same class as well. Since the access function on the | 
|  | // fast path calls a function that follows CSR_Darwin_AArch64_TLS, | 
|  | // CSR_Darwin_AArch64_CXX_TLS should be a subset of CSR_Darwin_AArch64_TLS. | 
|  | def CSR_Darwin_AArch64_CXX_TLS | 
|  | : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS, | 
|  | (sub (sequence "X%u", 1, 28), X9, X15, X16, X17, X18, X19), | 
|  | (sequence "D%u", 0, 31))>; | 
|  |  | 
|  | // CSRs that are handled by prologue, epilogue. | 
|  | def CSR_Darwin_AArch64_CXX_TLS_PE | 
|  | : CalleeSavedRegs<(add LR, FP)>; | 
|  |  | 
|  | // CSRs that are handled explicitly via copies. | 
|  | def CSR_Darwin_AArch64_CXX_TLS_ViaCopy | 
|  | : CalleeSavedRegs<(sub CSR_Darwin_AArch64_CXX_TLS, LR, FP)>; | 
|  |  | 
|  | def CSR_Darwin_AArch64_RT_MostRegs | 
|  | : CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS, (sequence "X%u", 9, 15))>; | 
|  |  | 
|  | def CSR_Darwin_AArch64_RT_AllRegs | 
|  | : CalleeSavedRegs<(add CSR_Darwin_AArch64_RT_MostRegs, (sequence "Q%u", 8, 31))>; | 
|  |  | 
|  | // Variants of the standard calling conventions for shadow call stack. | 
|  | // These all preserve x18 in addition to any other registers. | 
|  | def CSR_AArch64_NoRegs_SCS | 
|  | : CalleeSavedRegs<(add CSR_AArch64_NoRegs, X18)>; | 
|  | def CSR_AArch64_AllRegs_SCS | 
|  | : CalleeSavedRegs<(add CSR_AArch64_AllRegs, X18)>; | 
|  | def CSR_AArch64_AAPCS_SwiftError_SCS | 
|  | : CalleeSavedRegs<(add CSR_AArch64_AAPCS_SwiftError, X18)>; | 
|  | def CSR_AArch64_RT_MostRegs_SCS | 
|  | : CalleeSavedRegs<(add CSR_AArch64_RT_MostRegs, X18)>; | 
|  | def CSR_AArch64_RT_AllRegs_SCS | 
|  | : CalleeSavedRegs<(add CSR_AArch64_RT_AllRegs, X18)>; | 
|  | def CSR_AArch64_AAVPCS_SCS | 
|  | : CalleeSavedRegs<(add CSR_AArch64_AAVPCS, X18)>; | 
|  | def CSR_AArch64_SVE_AAPCS_SCS | 
|  | : CalleeSavedRegs<(add CSR_AArch64_SVE_AAPCS, X18)>; | 
|  | def CSR_AArch64_AAPCS_SCS | 
|  | : CalleeSavedRegs<(add CSR_AArch64_AAPCS, X18)>; |