|  | //===- ConstantFold.cpp - LLVM constant folder ----------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements folding of constants for LLVM.  This implements the | 
|  | // (internal) ConstantFold.h interface, which is used by the | 
|  | // ConstantExpr::get* methods to automatically fold constants when possible. | 
|  | // | 
|  | // The current constant folding implementation is implemented in two pieces: the | 
|  | // pieces that don't need DataLayout, and the pieces that do. This is to avoid | 
|  | // a dependence in IR on Target. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/IR/ConstantFold.h" | 
|  | #include "llvm/ADT/APSInt.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/IR/GlobalAlias.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | using namespace llvm; | 
|  | using namespace llvm::PatternMatch; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                ConstantFold*Instruction Implementations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// This function determines which opcode to use to fold two constant cast | 
|  | /// expressions together. It uses CastInst::isEliminableCastPair to determine | 
|  | /// the opcode. Consequently its just a wrapper around that function. | 
|  | /// Determine if it is valid to fold a cast of a cast | 
|  | static unsigned | 
|  | foldConstantCastPair( | 
|  | unsigned opc,          ///< opcode of the second cast constant expression | 
|  | ConstantExpr *Op,      ///< the first cast constant expression | 
|  | Type *DstTy            ///< destination type of the first cast | 
|  | ) { | 
|  | assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!"); | 
|  | assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type"); | 
|  | assert(CastInst::isCast(opc) && "Invalid cast opcode"); | 
|  |  | 
|  | // The types and opcodes for the two Cast constant expressions | 
|  | Type *SrcTy = Op->getOperand(0)->getType(); | 
|  | Type *MidTy = Op->getType(); | 
|  | Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode()); | 
|  | Instruction::CastOps secondOp = Instruction::CastOps(opc); | 
|  |  | 
|  | // Assume that pointers are never more than 64 bits wide, and only use this | 
|  | // for the middle type. Otherwise we could end up folding away illegal | 
|  | // bitcasts between address spaces with different sizes. | 
|  | IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext()); | 
|  |  | 
|  | // Let CastInst::isEliminableCastPair do the heavy lifting. | 
|  | return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy, | 
|  | nullptr, FakeIntPtrTy, nullptr); | 
|  | } | 
|  |  | 
|  | static Constant *FoldBitCast(Constant *V, Type *DestTy) { | 
|  | Type *SrcTy = V->getType(); | 
|  | if (SrcTy == DestTy) | 
|  | return V; // no-op cast | 
|  |  | 
|  | // Handle casts from one vector constant to another.  We know that the src | 
|  | // and dest type have the same size (otherwise its an illegal cast). | 
|  | if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) { | 
|  | if (V->isAllOnesValue()) | 
|  | return Constant::getAllOnesValue(DestTy); | 
|  |  | 
|  | // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts | 
|  | // This allows for other simplifications (although some of them | 
|  | // can only be handled by Analysis/ConstantFolding.cpp). | 
|  | if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) | 
|  | return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Handle integral constant input. | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | // See note below regarding the PPC_FP128 restriction. | 
|  | if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty()) | 
|  | return ConstantFP::get(DestTy->getContext(), | 
|  | APFloat(DestTy->getFltSemantics(), | 
|  | CI->getValue())); | 
|  |  | 
|  | // Otherwise, can't fold this (vector?) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Handle ConstantFP input: FP -> Integral. | 
|  | if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) { | 
|  | // PPC_FP128 is really the sum of two consecutive doubles, where the first | 
|  | // double is always stored first in memory, regardless of the target | 
|  | // endianness. The memory layout of i128, however, depends on the target | 
|  | // endianness, and so we can't fold this without target endianness | 
|  | // information. This should instead be handled by | 
|  | // Analysis/ConstantFolding.cpp | 
|  | if (FP->getType()->isPPC_FP128Ty()) | 
|  | return nullptr; | 
|  |  | 
|  | // Make sure dest type is compatible with the folded integer constant. | 
|  | if (!DestTy->isIntegerTy()) | 
|  | return nullptr; | 
|  |  | 
|  | return ConstantInt::get(FP->getContext(), | 
|  | FP->getValueAPF().bitcastToAPInt()); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// V is an integer constant which only has a subset of its bytes used. | 
|  | /// The bytes used are indicated by ByteStart (which is the first byte used, | 
|  | /// counting from the least significant byte) and ByteSize, which is the number | 
|  | /// of bytes used. | 
|  | /// | 
|  | /// This function analyzes the specified constant to see if the specified byte | 
|  | /// range can be returned as a simplified constant.  If so, the constant is | 
|  | /// returned, otherwise null is returned. | 
|  | static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart, | 
|  | unsigned ByteSize) { | 
|  | assert(C->getType()->isIntegerTy() && | 
|  | (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 && | 
|  | "Non-byte sized integer input"); | 
|  | [[maybe_unused]] unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8; | 
|  | assert(ByteSize && "Must be accessing some piece"); | 
|  | assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input"); | 
|  | assert(ByteSize != CSize && "Should not extract everything"); | 
|  |  | 
|  | // Constant Integers are simple. | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { | 
|  | APInt V = CI->getValue(); | 
|  | if (ByteStart) | 
|  | V.lshrInPlace(ByteStart*8); | 
|  | V = V.trunc(ByteSize*8); | 
|  | return ConstantInt::get(CI->getContext(), V); | 
|  | } | 
|  |  | 
|  | // In the input is a constant expr, we might be able to recursively simplify. | 
|  | // If not, we definitely can't do anything. | 
|  | ConstantExpr *CE = dyn_cast<ConstantExpr>(C); | 
|  | if (!CE) return nullptr; | 
|  |  | 
|  | switch (CE->getOpcode()) { | 
|  | default: return nullptr; | 
|  | case Instruction::Shl: { | 
|  | ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1)); | 
|  | if (!Amt) | 
|  | return nullptr; | 
|  | APInt ShAmt = Amt->getValue(); | 
|  | // Cannot analyze non-byte shifts. | 
|  | if ((ShAmt & 7) != 0) | 
|  | return nullptr; | 
|  | ShAmt.lshrInPlace(3); | 
|  |  | 
|  | // If the extract is known to be all zeros, return zero. | 
|  | if (ShAmt.uge(ByteStart + ByteSize)) | 
|  | return Constant::getNullValue( | 
|  | IntegerType::get(CE->getContext(), ByteSize * 8)); | 
|  | // If the extract is known to be fully in the input, extract it. | 
|  | if (ShAmt.ule(ByteStart)) | 
|  | return ExtractConstantBytes(CE->getOperand(0), | 
|  | ByteStart - ShAmt.getZExtValue(), ByteSize); | 
|  |  | 
|  | // TODO: Handle the 'partially zero' case. | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static Constant *foldMaybeUndesirableCast(unsigned opc, Constant *V, | 
|  | Type *DestTy) { | 
|  | return ConstantExpr::isDesirableCastOp(opc) | 
|  | ? ConstantExpr::getCast(opc, V, DestTy) | 
|  | : ConstantFoldCastInstruction(opc, V, DestTy); | 
|  | } | 
|  |  | 
|  | Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V, | 
|  | Type *DestTy) { | 
|  | if (isa<PoisonValue>(V)) | 
|  | return PoisonValue::get(DestTy); | 
|  |  | 
|  | if (isa<UndefValue>(V)) { | 
|  | // zext(undef) = 0, because the top bits will be zero. | 
|  | // sext(undef) = 0, because the top bits will all be the same. | 
|  | // [us]itofp(undef) = 0, because the result value is bounded. | 
|  | if (opc == Instruction::ZExt || opc == Instruction::SExt || | 
|  | opc == Instruction::UIToFP || opc == Instruction::SIToFP) | 
|  | return Constant::getNullValue(DestTy); | 
|  | return UndefValue::get(DestTy); | 
|  | } | 
|  |  | 
|  | if (V->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy() && | 
|  | opc != Instruction::AddrSpaceCast) | 
|  | return Constant::getNullValue(DestTy); | 
|  |  | 
|  | // If the cast operand is a constant expression, there's a few things we can | 
|  | // do to try to simplify it. | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { | 
|  | if (CE->isCast()) { | 
|  | // Try hard to fold cast of cast because they are often eliminable. | 
|  | if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy)) | 
|  | return foldMaybeUndesirableCast(newOpc, CE->getOperand(0), DestTy); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the cast operand is a constant vector, perform the cast by | 
|  | // operating on each element. In the cast of bitcasts, the element | 
|  | // count may be mismatched; don't attempt to handle that here. | 
|  | if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) && | 
|  | DestTy->isVectorTy() && | 
|  | cast<FixedVectorType>(DestTy)->getNumElements() == | 
|  | cast<FixedVectorType>(V->getType())->getNumElements()) { | 
|  | VectorType *DestVecTy = cast<VectorType>(DestTy); | 
|  | Type *DstEltTy = DestVecTy->getElementType(); | 
|  | // Fast path for splatted constants. | 
|  | if (Constant *Splat = V->getSplatValue()) { | 
|  | Constant *Res = foldMaybeUndesirableCast(opc, Splat, DstEltTy); | 
|  | if (!Res) | 
|  | return nullptr; | 
|  | return ConstantVector::getSplat( | 
|  | cast<VectorType>(DestTy)->getElementCount(), Res); | 
|  | } | 
|  | SmallVector<Constant *, 16> res; | 
|  | Type *Ty = IntegerType::get(V->getContext(), 32); | 
|  | for (unsigned i = 0, | 
|  | e = cast<FixedVectorType>(V->getType())->getNumElements(); | 
|  | i != e; ++i) { | 
|  | Constant *C = ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i)); | 
|  | Constant *Casted = foldMaybeUndesirableCast(opc, C, DstEltTy); | 
|  | if (!Casted) | 
|  | return nullptr; | 
|  | res.push_back(Casted); | 
|  | } | 
|  | return ConstantVector::get(res); | 
|  | } | 
|  |  | 
|  | // We actually have to do a cast now. Perform the cast according to the | 
|  | // opcode specified. | 
|  | switch (opc) { | 
|  | default: | 
|  | llvm_unreachable("Failed to cast constant expression"); | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::FPExt: | 
|  | if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { | 
|  | bool ignored; | 
|  | APFloat Val = FPC->getValueAPF(); | 
|  | Val.convert(DestTy->getFltSemantics(), APFloat::rmNearestTiesToEven, | 
|  | &ignored); | 
|  | return ConstantFP::get(V->getContext(), Val); | 
|  | } | 
|  | return nullptr; // Can't fold. | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { | 
|  | const APFloat &V = FPC->getValueAPF(); | 
|  | bool ignored; | 
|  | uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); | 
|  | APSInt IntVal(DestBitWidth, opc == Instruction::FPToUI); | 
|  | if (APFloat::opInvalidOp == | 
|  | V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) { | 
|  | // Undefined behavior invoked - the destination type can't represent | 
|  | // the input constant. | 
|  | return PoisonValue::get(DestTy); | 
|  | } | 
|  | return ConstantInt::get(FPC->getContext(), IntVal); | 
|  | } | 
|  | return nullptr; // Can't fold. | 
|  | case Instruction::UIToFP: | 
|  | case Instruction::SIToFP: | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | const APInt &api = CI->getValue(); | 
|  | APFloat apf(DestTy->getFltSemantics(), | 
|  | APInt::getZero(DestTy->getPrimitiveSizeInBits())); | 
|  | apf.convertFromAPInt(api, opc==Instruction::SIToFP, | 
|  | APFloat::rmNearestTiesToEven); | 
|  | return ConstantFP::get(V->getContext(), apf); | 
|  | } | 
|  | return nullptr; | 
|  | case Instruction::ZExt: | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); | 
|  | return ConstantInt::get(V->getContext(), | 
|  | CI->getValue().zext(BitWidth)); | 
|  | } | 
|  | return nullptr; | 
|  | case Instruction::SExt: | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); | 
|  | return ConstantInt::get(V->getContext(), | 
|  | CI->getValue().sext(BitWidth)); | 
|  | } | 
|  | return nullptr; | 
|  | case Instruction::Trunc: { | 
|  | if (V->getType()->isVectorTy()) | 
|  | return nullptr; | 
|  |  | 
|  | uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | return ConstantInt::get(V->getContext(), | 
|  | CI->getValue().trunc(DestBitWidth)); | 
|  | } | 
|  |  | 
|  | // The input must be a constantexpr.  See if we can simplify this based on | 
|  | // the bytes we are demanding.  Only do this if the source and dest are an | 
|  | // even multiple of a byte. | 
|  | if ((DestBitWidth & 7) == 0 && | 
|  | (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0) | 
|  | if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8)) | 
|  | return Res; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  | case Instruction::BitCast: | 
|  | return FoldBitCast(V, DestTy); | 
|  | case Instruction::AddrSpaceCast: | 
|  | case Instruction::IntToPtr: | 
|  | case Instruction::PtrToInt: | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond, | 
|  | Constant *V1, Constant *V2) { | 
|  | // Check for i1 and vector true/false conditions. | 
|  | if (Cond->isNullValue()) return V2; | 
|  | if (Cond->isAllOnesValue()) return V1; | 
|  |  | 
|  | // If the condition is a vector constant, fold the result elementwise. | 
|  | if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) { | 
|  | auto *V1VTy = CondV->getType(); | 
|  | SmallVector<Constant*, 16> Result; | 
|  | Type *Ty = IntegerType::get(CondV->getContext(), 32); | 
|  | for (unsigned i = 0, e = V1VTy->getNumElements(); i != e; ++i) { | 
|  | Constant *V; | 
|  | Constant *V1Element = ConstantExpr::getExtractElement(V1, | 
|  | ConstantInt::get(Ty, i)); | 
|  | Constant *V2Element = ConstantExpr::getExtractElement(V2, | 
|  | ConstantInt::get(Ty, i)); | 
|  | auto *Cond = cast<Constant>(CondV->getOperand(i)); | 
|  | if (isa<PoisonValue>(Cond)) { | 
|  | V = PoisonValue::get(V1Element->getType()); | 
|  | } else if (V1Element == V2Element) { | 
|  | V = V1Element; | 
|  | } else if (isa<UndefValue>(Cond)) { | 
|  | V = isa<UndefValue>(V1Element) ? V1Element : V2Element; | 
|  | } else { | 
|  | if (!isa<ConstantInt>(Cond)) break; | 
|  | V = Cond->isNullValue() ? V2Element : V1Element; | 
|  | } | 
|  | Result.push_back(V); | 
|  | } | 
|  |  | 
|  | // If we were able to build the vector, return it. | 
|  | if (Result.size() == V1VTy->getNumElements()) | 
|  | return ConstantVector::get(Result); | 
|  | } | 
|  |  | 
|  | if (isa<PoisonValue>(Cond)) | 
|  | return PoisonValue::get(V1->getType()); | 
|  |  | 
|  | if (isa<UndefValue>(Cond)) { | 
|  | if (isa<UndefValue>(V1)) return V1; | 
|  | return V2; | 
|  | } | 
|  |  | 
|  | if (V1 == V2) return V1; | 
|  |  | 
|  | if (isa<PoisonValue>(V1)) | 
|  | return V2; | 
|  | if (isa<PoisonValue>(V2)) | 
|  | return V1; | 
|  |  | 
|  | // If the true or false value is undef, we can fold to the other value as | 
|  | // long as the other value isn't poison. | 
|  | auto NotPoison = [](Constant *C) { | 
|  | if (isa<PoisonValue>(C)) | 
|  | return false; | 
|  |  | 
|  | // TODO: We can analyze ConstExpr by opcode to determine if there is any | 
|  | //       possibility of poison. | 
|  | if (isa<ConstantExpr>(C)) | 
|  | return false; | 
|  |  | 
|  | if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(C) || | 
|  | isa<ConstantPointerNull>(C) || isa<Function>(C)) | 
|  | return true; | 
|  |  | 
|  | if (C->getType()->isVectorTy()) | 
|  | return !C->containsPoisonElement() && !C->containsConstantExpression(); | 
|  |  | 
|  | // TODO: Recursively analyze aggregates or other constants. | 
|  | return false; | 
|  | }; | 
|  | if (isa<UndefValue>(V1) && NotPoison(V2)) return V2; | 
|  | if (isa<UndefValue>(V2) && NotPoison(V1)) return V1; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val, | 
|  | Constant *Idx) { | 
|  | auto *ValVTy = cast<VectorType>(Val->getType()); | 
|  |  | 
|  | // extractelt poison, C -> poison | 
|  | // extractelt C, undef -> poison | 
|  | if (isa<PoisonValue>(Val) || isa<UndefValue>(Idx)) | 
|  | return PoisonValue::get(ValVTy->getElementType()); | 
|  |  | 
|  | // extractelt undef, C -> undef | 
|  | if (isa<UndefValue>(Val)) | 
|  | return UndefValue::get(ValVTy->getElementType()); | 
|  |  | 
|  | auto *CIdx = dyn_cast<ConstantInt>(Idx); | 
|  | if (!CIdx) | 
|  | return nullptr; | 
|  |  | 
|  | if (auto *ValFVTy = dyn_cast<FixedVectorType>(Val->getType())) { | 
|  | // ee({w,x,y,z}, wrong_value) -> poison | 
|  | if (CIdx->uge(ValFVTy->getNumElements())) | 
|  | return PoisonValue::get(ValFVTy->getElementType()); | 
|  | } | 
|  |  | 
|  | // ee (gep (ptr, idx0, ...), idx) -> gep (ee (ptr, idx), ee (idx0, idx), ...) | 
|  | if (auto *CE = dyn_cast<ConstantExpr>(Val)) { | 
|  | if (auto *GEP = dyn_cast<GEPOperator>(CE)) { | 
|  | SmallVector<Constant *, 8> Ops; | 
|  | Ops.reserve(CE->getNumOperands()); | 
|  | for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { | 
|  | Constant *Op = CE->getOperand(i); | 
|  | if (Op->getType()->isVectorTy()) { | 
|  | Constant *ScalarOp = ConstantExpr::getExtractElement(Op, Idx); | 
|  | if (!ScalarOp) | 
|  | return nullptr; | 
|  | Ops.push_back(ScalarOp); | 
|  | } else | 
|  | Ops.push_back(Op); | 
|  | } | 
|  | return CE->getWithOperands(Ops, ValVTy->getElementType(), false, | 
|  | GEP->getSourceElementType()); | 
|  | } else if (CE->getOpcode() == Instruction::InsertElement) { | 
|  | if (const auto *IEIdx = dyn_cast<ConstantInt>(CE->getOperand(2))) { | 
|  | if (APSInt::isSameValue(APSInt(IEIdx->getValue()), | 
|  | APSInt(CIdx->getValue()))) { | 
|  | return CE->getOperand(1); | 
|  | } else { | 
|  | return ConstantExpr::getExtractElement(CE->getOperand(0), CIdx); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Constant *C = Val->getAggregateElement(CIdx)) | 
|  | return C; | 
|  |  | 
|  | // Lane < Splat minimum vector width => extractelt Splat(x), Lane -> x | 
|  | if (CIdx->getValue().ult(ValVTy->getElementCount().getKnownMinValue())) { | 
|  | if (Constant *SplatVal = Val->getSplatValue()) | 
|  | return SplatVal; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val, | 
|  | Constant *Elt, | 
|  | Constant *Idx) { | 
|  | if (isa<UndefValue>(Idx)) | 
|  | return PoisonValue::get(Val->getType()); | 
|  |  | 
|  | // Inserting null into all zeros is still all zeros. | 
|  | // TODO: This is true for undef and poison splats too. | 
|  | if (isa<ConstantAggregateZero>(Val) && Elt->isNullValue()) | 
|  | return Val; | 
|  |  | 
|  | ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx); | 
|  | if (!CIdx) return nullptr; | 
|  |  | 
|  | // Do not iterate on scalable vector. The num of elements is unknown at | 
|  | // compile-time. | 
|  | if (isa<ScalableVectorType>(Val->getType())) | 
|  | return nullptr; | 
|  |  | 
|  | auto *ValTy = cast<FixedVectorType>(Val->getType()); | 
|  |  | 
|  | unsigned NumElts = ValTy->getNumElements(); | 
|  | if (CIdx->uge(NumElts)) | 
|  | return PoisonValue::get(Val->getType()); | 
|  |  | 
|  | SmallVector<Constant*, 16> Result; | 
|  | Result.reserve(NumElts); | 
|  | auto *Ty = Type::getInt32Ty(Val->getContext()); | 
|  | uint64_t IdxVal = CIdx->getZExtValue(); | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | if (i == IdxVal) { | 
|  | Result.push_back(Elt); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i)); | 
|  | Result.push_back(C); | 
|  | } | 
|  |  | 
|  | return ConstantVector::get(Result); | 
|  | } | 
|  |  | 
|  | Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2, | 
|  | ArrayRef<int> Mask) { | 
|  | auto *V1VTy = cast<VectorType>(V1->getType()); | 
|  | unsigned MaskNumElts = Mask.size(); | 
|  | auto MaskEltCount = | 
|  | ElementCount::get(MaskNumElts, isa<ScalableVectorType>(V1VTy)); | 
|  | Type *EltTy = V1VTy->getElementType(); | 
|  |  | 
|  | // Poison shuffle mask -> poison value. | 
|  | if (all_of(Mask, [](int Elt) { return Elt == PoisonMaskElem; })) { | 
|  | return PoisonValue::get(VectorType::get(EltTy, MaskEltCount)); | 
|  | } | 
|  |  | 
|  | // If the mask is all zeros this is a splat, no need to go through all | 
|  | // elements. | 
|  | if (all_of(Mask, [](int Elt) { return Elt == 0; })) { | 
|  | Type *Ty = IntegerType::get(V1->getContext(), 32); | 
|  | Constant *Elt = | 
|  | ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, 0)); | 
|  |  | 
|  | if (Elt->isNullValue()) { | 
|  | auto *VTy = VectorType::get(EltTy, MaskEltCount); | 
|  | return ConstantAggregateZero::get(VTy); | 
|  | } else if (!MaskEltCount.isScalable()) | 
|  | return ConstantVector::getSplat(MaskEltCount, Elt); | 
|  | } | 
|  | // Do not iterate on scalable vector. The num of elements is unknown at | 
|  | // compile-time. | 
|  | if (isa<ScalableVectorType>(V1VTy)) | 
|  | return nullptr; | 
|  |  | 
|  | unsigned SrcNumElts = V1VTy->getElementCount().getKnownMinValue(); | 
|  |  | 
|  | // Loop over the shuffle mask, evaluating each element. | 
|  | SmallVector<Constant*, 32> Result; | 
|  | for (unsigned i = 0; i != MaskNumElts; ++i) { | 
|  | int Elt = Mask[i]; | 
|  | if (Elt == -1) { | 
|  | Result.push_back(UndefValue::get(EltTy)); | 
|  | continue; | 
|  | } | 
|  | Constant *InElt; | 
|  | if (unsigned(Elt) >= SrcNumElts*2) | 
|  | InElt = UndefValue::get(EltTy); | 
|  | else if (unsigned(Elt) >= SrcNumElts) { | 
|  | Type *Ty = IntegerType::get(V2->getContext(), 32); | 
|  | InElt = | 
|  | ConstantExpr::getExtractElement(V2, | 
|  | ConstantInt::get(Ty, Elt - SrcNumElts)); | 
|  | } else { | 
|  | Type *Ty = IntegerType::get(V1->getContext(), 32); | 
|  | InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt)); | 
|  | } | 
|  | Result.push_back(InElt); | 
|  | } | 
|  |  | 
|  | return ConstantVector::get(Result); | 
|  | } | 
|  |  | 
|  | Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg, | 
|  | ArrayRef<unsigned> Idxs) { | 
|  | // Base case: no indices, so return the entire value. | 
|  | if (Idxs.empty()) | 
|  | return Agg; | 
|  |  | 
|  | if (Constant *C = Agg->getAggregateElement(Idxs[0])) | 
|  | return ConstantFoldExtractValueInstruction(C, Idxs.slice(1)); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg, | 
|  | Constant *Val, | 
|  | ArrayRef<unsigned> Idxs) { | 
|  | // Base case: no indices, so replace the entire value. | 
|  | if (Idxs.empty()) | 
|  | return Val; | 
|  |  | 
|  | unsigned NumElts; | 
|  | if (StructType *ST = dyn_cast<StructType>(Agg->getType())) | 
|  | NumElts = ST->getNumElements(); | 
|  | else | 
|  | NumElts = cast<ArrayType>(Agg->getType())->getNumElements(); | 
|  |  | 
|  | SmallVector<Constant*, 32> Result; | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | Constant *C = Agg->getAggregateElement(i); | 
|  | if (!C) return nullptr; | 
|  |  | 
|  | if (Idxs[0] == i) | 
|  | C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1)); | 
|  |  | 
|  | Result.push_back(C); | 
|  | } | 
|  |  | 
|  | if (StructType *ST = dyn_cast<StructType>(Agg->getType())) | 
|  | return ConstantStruct::get(ST, Result); | 
|  | return ConstantArray::get(cast<ArrayType>(Agg->getType()), Result); | 
|  | } | 
|  |  | 
|  | Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) { | 
|  | assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected"); | 
|  |  | 
|  | // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length | 
|  | // vectors are always evaluated per element. | 
|  | bool IsScalableVector = isa<ScalableVectorType>(C->getType()); | 
|  | bool HasScalarUndefOrScalableVectorUndef = | 
|  | (!C->getType()->isVectorTy() || IsScalableVector) && isa<UndefValue>(C); | 
|  |  | 
|  | if (HasScalarUndefOrScalableVectorUndef) { | 
|  | switch (static_cast<Instruction::UnaryOps>(Opcode)) { | 
|  | case Instruction::FNeg: | 
|  | return C; // -undef -> undef | 
|  | case Instruction::UnaryOpsEnd: | 
|  | llvm_unreachable("Invalid UnaryOp"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Constant should not be UndefValue, unless these are vector constants. | 
|  | assert(!HasScalarUndefOrScalableVectorUndef && "Unexpected UndefValue"); | 
|  | // We only have FP UnaryOps right now. | 
|  | assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp"); | 
|  |  | 
|  | if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { | 
|  | const APFloat &CV = CFP->getValueAPF(); | 
|  | switch (Opcode) { | 
|  | default: | 
|  | break; | 
|  | case Instruction::FNeg: | 
|  | return ConstantFP::get(C->getContext(), neg(CV)); | 
|  | } | 
|  | } else if (auto *VTy = dyn_cast<FixedVectorType>(C->getType())) { | 
|  |  | 
|  | Type *Ty = IntegerType::get(VTy->getContext(), 32); | 
|  | // Fast path for splatted constants. | 
|  | if (Constant *Splat = C->getSplatValue()) | 
|  | if (Constant *Elt = ConstantFoldUnaryInstruction(Opcode, Splat)) | 
|  | return ConstantVector::getSplat(VTy->getElementCount(), Elt); | 
|  |  | 
|  | // Fold each element and create a vector constant from those constants. | 
|  | SmallVector<Constant *, 16> Result; | 
|  | for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { | 
|  | Constant *ExtractIdx = ConstantInt::get(Ty, i); | 
|  | Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx); | 
|  | Constant *Res = ConstantFoldUnaryInstruction(Opcode, Elt); | 
|  | if (!Res) | 
|  | return nullptr; | 
|  | Result.push_back(Res); | 
|  | } | 
|  |  | 
|  | return ConstantVector::get(Result); | 
|  | } | 
|  |  | 
|  | // We don't know how to fold this. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1, | 
|  | Constant *C2) { | 
|  | assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected"); | 
|  |  | 
|  | // Simplify BinOps with their identity values first. They are no-ops and we | 
|  | // can always return the other value, including undef or poison values. | 
|  | // FIXME: remove unnecessary duplicated identity patterns below. | 
|  | // FIXME: Use AllowRHSConstant with getBinOpIdentity to handle additional ops, | 
|  | //        like X << 0 = X. | 
|  | Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, C1->getType()); | 
|  | if (Identity) { | 
|  | if (C1 == Identity) | 
|  | return C2; | 
|  | if (C2 == Identity) | 
|  | return C1; | 
|  | } | 
|  |  | 
|  | // Binary operations propagate poison. | 
|  | if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2)) | 
|  | return PoisonValue::get(C1->getType()); | 
|  |  | 
|  | // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length | 
|  | // vectors are always evaluated per element. | 
|  | bool IsScalableVector = isa<ScalableVectorType>(C1->getType()); | 
|  | bool HasScalarUndefOrScalableVectorUndef = | 
|  | (!C1->getType()->isVectorTy() || IsScalableVector) && | 
|  | (isa<UndefValue>(C1) || isa<UndefValue>(C2)); | 
|  | if (HasScalarUndefOrScalableVectorUndef) { | 
|  | switch (static_cast<Instruction::BinaryOps>(Opcode)) { | 
|  | case Instruction::Xor: | 
|  | if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) | 
|  | // Handle undef ^ undef -> 0 special case. This is a common | 
|  | // idiom (misuse). | 
|  | return Constant::getNullValue(C1->getType()); | 
|  | [[fallthrough]]; | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | return UndefValue::get(C1->getType()); | 
|  | case Instruction::And: | 
|  | if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef | 
|  | return C1; | 
|  | return Constant::getNullValue(C1->getType());   // undef & X -> 0 | 
|  | case Instruction::Mul: { | 
|  | // undef * undef -> undef | 
|  | if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) | 
|  | return C1; | 
|  | const APInt *CV; | 
|  | // X * undef -> undef   if X is odd | 
|  | if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV))) | 
|  | if ((*CV)[0]) | 
|  | return UndefValue::get(C1->getType()); | 
|  |  | 
|  | // X * undef -> 0       otherwise | 
|  | return Constant::getNullValue(C1->getType()); | 
|  | } | 
|  | case Instruction::SDiv: | 
|  | case Instruction::UDiv: | 
|  | // X / undef -> poison | 
|  | // X / 0 -> poison | 
|  | if (match(C2, m_CombineOr(m_Undef(), m_Zero()))) | 
|  | return PoisonValue::get(C2->getType()); | 
|  | // undef / 1 -> undef | 
|  | if (match(C2, m_One())) | 
|  | return C1; | 
|  | // undef / X -> 0       otherwise | 
|  | return Constant::getNullValue(C1->getType()); | 
|  | case Instruction::URem: | 
|  | case Instruction::SRem: | 
|  | // X % undef -> poison | 
|  | // X % 0 -> poison | 
|  | if (match(C2, m_CombineOr(m_Undef(), m_Zero()))) | 
|  | return PoisonValue::get(C2->getType()); | 
|  | // undef % X -> 0       otherwise | 
|  | return Constant::getNullValue(C1->getType()); | 
|  | case Instruction::Or:                          // X | undef -> -1 | 
|  | if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef | 
|  | return C1; | 
|  | return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0 | 
|  | case Instruction::LShr: | 
|  | // X >>l undef -> poison | 
|  | if (isa<UndefValue>(C2)) | 
|  | return PoisonValue::get(C2->getType()); | 
|  | // undef >>l 0 -> undef | 
|  | if (match(C2, m_Zero())) | 
|  | return C1; | 
|  | // undef >>l X -> 0 | 
|  | return Constant::getNullValue(C1->getType()); | 
|  | case Instruction::AShr: | 
|  | // X >>a undef -> poison | 
|  | if (isa<UndefValue>(C2)) | 
|  | return PoisonValue::get(C2->getType()); | 
|  | // undef >>a 0 -> undef | 
|  | if (match(C2, m_Zero())) | 
|  | return C1; | 
|  | // TODO: undef >>a X -> poison if the shift is exact | 
|  | // undef >>a X -> 0 | 
|  | return Constant::getNullValue(C1->getType()); | 
|  | case Instruction::Shl: | 
|  | // X << undef -> undef | 
|  | if (isa<UndefValue>(C2)) | 
|  | return PoisonValue::get(C2->getType()); | 
|  | // undef << 0 -> undef | 
|  | if (match(C2, m_Zero())) | 
|  | return C1; | 
|  | // undef << X -> 0 | 
|  | return Constant::getNullValue(C1->getType()); | 
|  | case Instruction::FSub: | 
|  | // -0.0 - undef --> undef (consistent with "fneg undef") | 
|  | if (match(C1, m_NegZeroFP()) && isa<UndefValue>(C2)) | 
|  | return C2; | 
|  | [[fallthrough]]; | 
|  | case Instruction::FAdd: | 
|  | case Instruction::FMul: | 
|  | case Instruction::FDiv: | 
|  | case Instruction::FRem: | 
|  | // [any flop] undef, undef -> undef | 
|  | if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) | 
|  | return C1; | 
|  | // [any flop] C, undef -> NaN | 
|  | // [any flop] undef, C -> NaN | 
|  | // We could potentially specialize NaN/Inf constants vs. 'normal' | 
|  | // constants (possibly differently depending on opcode and operand). This | 
|  | // would allow returning undef sometimes. But it is always safe to fold to | 
|  | // NaN because we can choose the undef operand as NaN, and any FP opcode | 
|  | // with a NaN operand will propagate NaN. | 
|  | return ConstantFP::getNaN(C1->getType()); | 
|  | case Instruction::BinaryOpsEnd: | 
|  | llvm_unreachable("Invalid BinaryOp"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Neither constant should be UndefValue, unless these are vector constants. | 
|  | assert((!HasScalarUndefOrScalableVectorUndef) && "Unexpected UndefValue"); | 
|  |  | 
|  | // Handle simplifications when the RHS is a constant int. | 
|  | if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { | 
|  | switch (Opcode) { | 
|  | case Instruction::Add: | 
|  | if (CI2->isZero()) return C1;                             // X + 0 == X | 
|  | break; | 
|  | case Instruction::Sub: | 
|  | if (CI2->isZero()) return C1;                             // X - 0 == X | 
|  | break; | 
|  | case Instruction::Mul: | 
|  | if (CI2->isZero()) return C2;                             // X * 0 == 0 | 
|  | if (CI2->isOne()) | 
|  | return C1;                                              // X * 1 == X | 
|  | break; | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SDiv: | 
|  | if (CI2->isOne()) | 
|  | return C1;                                            // X / 1 == X | 
|  | if (CI2->isZero()) | 
|  | return PoisonValue::get(CI2->getType());              // X / 0 == poison | 
|  | break; | 
|  | case Instruction::URem: | 
|  | case Instruction::SRem: | 
|  | if (CI2->isOne()) | 
|  | return Constant::getNullValue(CI2->getType());        // X % 1 == 0 | 
|  | if (CI2->isZero()) | 
|  | return PoisonValue::get(CI2->getType());              // X % 0 == poison | 
|  | break; | 
|  | case Instruction::And: | 
|  | if (CI2->isZero()) return C2;                           // X & 0 == 0 | 
|  | if (CI2->isMinusOne()) | 
|  | return C1;                                            // X & -1 == X | 
|  |  | 
|  | if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { | 
|  | // If and'ing the address of a global with a constant, fold it. | 
|  | if (CE1->getOpcode() == Instruction::PtrToInt && | 
|  | isa<GlobalValue>(CE1->getOperand(0))) { | 
|  | GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0)); | 
|  |  | 
|  | Align GVAlign; // defaults to 1 | 
|  |  | 
|  | if (Module *TheModule = GV->getParent()) { | 
|  | const DataLayout &DL = TheModule->getDataLayout(); | 
|  | GVAlign = GV->getPointerAlignment(DL); | 
|  |  | 
|  | // If the function alignment is not specified then assume that it | 
|  | // is 4. | 
|  | // This is dangerous; on x86, the alignment of the pointer | 
|  | // corresponds to the alignment of the function, but might be less | 
|  | // than 4 if it isn't explicitly specified. | 
|  | // However, a fix for this behaviour was reverted because it | 
|  | // increased code size (see https://reviews.llvm.org/D55115) | 
|  | // FIXME: This code should be deleted once existing targets have | 
|  | // appropriate defaults | 
|  | if (isa<Function>(GV) && !DL.getFunctionPtrAlign()) | 
|  | GVAlign = Align(4); | 
|  | } else if (isa<GlobalVariable>(GV)) { | 
|  | GVAlign = cast<GlobalVariable>(GV)->getAlign().valueOrOne(); | 
|  | } | 
|  |  | 
|  | if (GVAlign > 1) { | 
|  | unsigned DstWidth = CI2->getType()->getBitWidth(); | 
|  | unsigned SrcWidth = std::min(DstWidth, Log2(GVAlign)); | 
|  | APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth)); | 
|  |  | 
|  | // If checking bits we know are clear, return zero. | 
|  | if ((CI2->getValue() & BitsNotSet) == CI2->getValue()) | 
|  | return Constant::getNullValue(CI2->getType()); | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Instruction::Or: | 
|  | if (CI2->isZero()) return C1;        // X | 0 == X | 
|  | if (CI2->isMinusOne()) | 
|  | return C2;                         // X | -1 == -1 | 
|  | break; | 
|  | case Instruction::Xor: | 
|  | if (CI2->isZero()) return C1;        // X ^ 0 == X | 
|  |  | 
|  | if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { | 
|  | switch (CE1->getOpcode()) { | 
|  | default: break; | 
|  | case Instruction::ICmp: | 
|  | case Instruction::FCmp: | 
|  | // cmp pred ^ true -> cmp !pred | 
|  | assert(CI2->isOne()); | 
|  | CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate(); | 
|  | pred = CmpInst::getInversePredicate(pred); | 
|  | return ConstantExpr::getCompare(pred, CE1->getOperand(0), | 
|  | CE1->getOperand(1)); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | } else if (isa<ConstantInt>(C1)) { | 
|  | // If C1 is a ConstantInt and C2 is not, swap the operands. | 
|  | if (Instruction::isCommutative(Opcode)) | 
|  | return ConstantExpr::isDesirableBinOp(Opcode) | 
|  | ? ConstantExpr::get(Opcode, C2, C1) | 
|  | : ConstantFoldBinaryInstruction(Opcode, C2, C1); | 
|  | } | 
|  |  | 
|  | if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) { | 
|  | if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { | 
|  | const APInt &C1V = CI1->getValue(); | 
|  | const APInt &C2V = CI2->getValue(); | 
|  | switch (Opcode) { | 
|  | default: | 
|  | break; | 
|  | case Instruction::Add: | 
|  | return ConstantInt::get(CI1->getContext(), C1V + C2V); | 
|  | case Instruction::Sub: | 
|  | return ConstantInt::get(CI1->getContext(), C1V - C2V); | 
|  | case Instruction::Mul: | 
|  | return ConstantInt::get(CI1->getContext(), C1V * C2V); | 
|  | case Instruction::UDiv: | 
|  | assert(!CI2->isZero() && "Div by zero handled above"); | 
|  | return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V)); | 
|  | case Instruction::SDiv: | 
|  | assert(!CI2->isZero() && "Div by zero handled above"); | 
|  | if (C2V.isAllOnes() && C1V.isMinSignedValue()) | 
|  | return PoisonValue::get(CI1->getType());   // MIN_INT / -1 -> poison | 
|  | return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V)); | 
|  | case Instruction::URem: | 
|  | assert(!CI2->isZero() && "Div by zero handled above"); | 
|  | return ConstantInt::get(CI1->getContext(), C1V.urem(C2V)); | 
|  | case Instruction::SRem: | 
|  | assert(!CI2->isZero() && "Div by zero handled above"); | 
|  | if (C2V.isAllOnes() && C1V.isMinSignedValue()) | 
|  | return PoisonValue::get(CI1->getType());   // MIN_INT % -1 -> poison | 
|  | return ConstantInt::get(CI1->getContext(), C1V.srem(C2V)); | 
|  | case Instruction::And: | 
|  | return ConstantInt::get(CI1->getContext(), C1V & C2V); | 
|  | case Instruction::Or: | 
|  | return ConstantInt::get(CI1->getContext(), C1V | C2V); | 
|  | case Instruction::Xor: | 
|  | return ConstantInt::get(CI1->getContext(), C1V ^ C2V); | 
|  | case Instruction::Shl: | 
|  | if (C2V.ult(C1V.getBitWidth())) | 
|  | return ConstantInt::get(CI1->getContext(), C1V.shl(C2V)); | 
|  | return PoisonValue::get(C1->getType()); // too big shift is poison | 
|  | case Instruction::LShr: | 
|  | if (C2V.ult(C1V.getBitWidth())) | 
|  | return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V)); | 
|  | return PoisonValue::get(C1->getType()); // too big shift is poison | 
|  | case Instruction::AShr: | 
|  | if (C2V.ult(C1V.getBitWidth())) | 
|  | return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V)); | 
|  | return PoisonValue::get(C1->getType()); // too big shift is poison | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (Opcode) { | 
|  | case Instruction::SDiv: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::URem: | 
|  | case Instruction::SRem: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | case Instruction::Shl: | 
|  | if (CI1->isZero()) return C1; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) { | 
|  | if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) { | 
|  | const APFloat &C1V = CFP1->getValueAPF(); | 
|  | const APFloat &C2V = CFP2->getValueAPF(); | 
|  | APFloat C3V = C1V;  // copy for modification | 
|  | switch (Opcode) { | 
|  | default: | 
|  | break; | 
|  | case Instruction::FAdd: | 
|  | (void)C3V.add(C2V, APFloat::rmNearestTiesToEven); | 
|  | return ConstantFP::get(C1->getContext(), C3V); | 
|  | case Instruction::FSub: | 
|  | (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven); | 
|  | return ConstantFP::get(C1->getContext(), C3V); | 
|  | case Instruction::FMul: | 
|  | (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven); | 
|  | return ConstantFP::get(C1->getContext(), C3V); | 
|  | case Instruction::FDiv: | 
|  | (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven); | 
|  | return ConstantFP::get(C1->getContext(), C3V); | 
|  | case Instruction::FRem: | 
|  | (void)C3V.mod(C2V); | 
|  | return ConstantFP::get(C1->getContext(), C3V); | 
|  | } | 
|  | } | 
|  | } else if (auto *VTy = dyn_cast<VectorType>(C1->getType())) { | 
|  | // Fast path for splatted constants. | 
|  | if (Constant *C2Splat = C2->getSplatValue()) { | 
|  | if (Instruction::isIntDivRem(Opcode) && C2Splat->isNullValue()) | 
|  | return PoisonValue::get(VTy); | 
|  | if (Constant *C1Splat = C1->getSplatValue()) { | 
|  | Constant *Res = | 
|  | ConstantExpr::isDesirableBinOp(Opcode) | 
|  | ? ConstantExpr::get(Opcode, C1Splat, C2Splat) | 
|  | : ConstantFoldBinaryInstruction(Opcode, C1Splat, C2Splat); | 
|  | if (!Res) | 
|  | return nullptr; | 
|  | return ConstantVector::getSplat(VTy->getElementCount(), Res); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) { | 
|  | // Fold each element and create a vector constant from those constants. | 
|  | SmallVector<Constant*, 16> Result; | 
|  | Type *Ty = IntegerType::get(FVTy->getContext(), 32); | 
|  | for (unsigned i = 0, e = FVTy->getNumElements(); i != e; ++i) { | 
|  | Constant *ExtractIdx = ConstantInt::get(Ty, i); | 
|  | Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx); | 
|  | Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx); | 
|  |  | 
|  | // If any element of a divisor vector is zero, the whole op is poison. | 
|  | if (Instruction::isIntDivRem(Opcode) && RHS->isNullValue()) | 
|  | return PoisonValue::get(VTy); | 
|  |  | 
|  | Constant *Res = ConstantExpr::isDesirableBinOp(Opcode) | 
|  | ? ConstantExpr::get(Opcode, LHS, RHS) | 
|  | : ConstantFoldBinaryInstruction(Opcode, LHS, RHS); | 
|  | if (!Res) | 
|  | return nullptr; | 
|  | Result.push_back(Res); | 
|  | } | 
|  |  | 
|  | return ConstantVector::get(Result); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { | 
|  | // There are many possible foldings we could do here.  We should probably | 
|  | // at least fold add of a pointer with an integer into the appropriate | 
|  | // getelementptr.  This will improve alias analysis a bit. | 
|  |  | 
|  | // Given ((a + b) + c), if (b + c) folds to something interesting, return | 
|  | // (a + (b + c)). | 
|  | if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) { | 
|  | Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2); | 
|  | if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode) | 
|  | return ConstantExpr::get(Opcode, CE1->getOperand(0), T); | 
|  | } | 
|  | } else if (isa<ConstantExpr>(C2)) { | 
|  | // If C2 is a constant expr and C1 isn't, flop them around and fold the | 
|  | // other way if possible. | 
|  | if (Instruction::isCommutative(Opcode)) | 
|  | return ConstantFoldBinaryInstruction(Opcode, C2, C1); | 
|  | } | 
|  |  | 
|  | // i1 can be simplified in many cases. | 
|  | if (C1->getType()->isIntegerTy(1)) { | 
|  | switch (Opcode) { | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | return ConstantExpr::getXor(C1, C2); | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | // We can assume that C2 == 0.  If it were one the result would be | 
|  | // undefined because the shift value is as large as the bitwidth. | 
|  | return C1; | 
|  | case Instruction::SDiv: | 
|  | case Instruction::UDiv: | 
|  | // We can assume that C2 == 1.  If it were zero the result would be | 
|  | // undefined through division by zero. | 
|  | return C1; | 
|  | case Instruction::URem: | 
|  | case Instruction::SRem: | 
|  | // We can assume that C2 == 1.  If it were zero the result would be | 
|  | // undefined through division by zero. | 
|  | return ConstantInt::getFalse(C1->getContext()); | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We don't know how to fold this. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1, | 
|  | const GlobalValue *GV2) { | 
|  | auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) { | 
|  | if (GV->isInterposable() || GV->hasGlobalUnnamedAddr()) | 
|  | return true; | 
|  | if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) { | 
|  | Type *Ty = GVar->getValueType(); | 
|  | // A global with opaque type might end up being zero sized. | 
|  | if (!Ty->isSized()) | 
|  | return true; | 
|  | // A global with an empty type might lie at the address of any other | 
|  | // global. | 
|  | if (Ty->isEmptyTy()) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | }; | 
|  | // Don't try to decide equality of aliases. | 
|  | if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2)) | 
|  | if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2)) | 
|  | return ICmpInst::ICMP_NE; | 
|  | return ICmpInst::BAD_ICMP_PREDICATE; | 
|  | } | 
|  |  | 
|  | /// This function determines if there is anything we can decide about the two | 
|  | /// constants provided. This doesn't need to handle simple things like integer | 
|  | /// comparisons, but should instead handle ConstantExprs and GlobalValues. | 
|  | /// If we can determine that the two constants have a particular relation to | 
|  | /// each other, we should return the corresponding ICmp predicate, otherwise | 
|  | /// return ICmpInst::BAD_ICMP_PREDICATE. | 
|  | static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2) { | 
|  | assert(V1->getType() == V2->getType() && | 
|  | "Cannot compare different types of values!"); | 
|  | if (V1 == V2) return ICmpInst::ICMP_EQ; | 
|  |  | 
|  | // The following folds only apply to pointers. | 
|  | if (!V1->getType()->isPointerTy()) | 
|  | return ICmpInst::BAD_ICMP_PREDICATE; | 
|  |  | 
|  | // To simplify this code we canonicalize the relation so that the first | 
|  | // operand is always the most "complex" of the two.  We consider simple | 
|  | // constants (like ConstantPointerNull) to be the simplest, followed by | 
|  | // BlockAddress, GlobalValues, and ConstantExpr's (the most complex). | 
|  | auto GetComplexity = [](Constant *V) { | 
|  | if (isa<ConstantExpr>(V)) | 
|  | return 3; | 
|  | if (isa<GlobalValue>(V)) | 
|  | return 2; | 
|  | if (isa<BlockAddress>(V)) | 
|  | return 1; | 
|  | return 0; | 
|  | }; | 
|  | if (GetComplexity(V1) < GetComplexity(V2)) { | 
|  | ICmpInst::Predicate SwappedRelation = evaluateICmpRelation(V2, V1); | 
|  | if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) | 
|  | return ICmpInst::getSwappedPredicate(SwappedRelation); | 
|  | return ICmpInst::BAD_ICMP_PREDICATE; | 
|  | } | 
|  |  | 
|  | if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) { | 
|  | // Now we know that the RHS is a BlockAddress or simple constant. | 
|  | if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) { | 
|  | // Block address in another function can't equal this one, but block | 
|  | // addresses in the current function might be the same if blocks are | 
|  | // empty. | 
|  | if (BA2->getFunction() != BA->getFunction()) | 
|  | return ICmpInst::ICMP_NE; | 
|  | } else if (isa<ConstantPointerNull>(V2)) { | 
|  | return ICmpInst::ICMP_NE; | 
|  | } | 
|  | } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) { | 
|  | // Now we know that the RHS is a GlobalValue, BlockAddress or simple | 
|  | // constant. | 
|  | if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { | 
|  | return areGlobalsPotentiallyEqual(GV, GV2); | 
|  | } else if (isa<BlockAddress>(V2)) { | 
|  | return ICmpInst::ICMP_NE; // Globals never equal labels. | 
|  | } else if (isa<ConstantPointerNull>(V2)) { | 
|  | // GlobalVals can never be null unless they have external weak linkage. | 
|  | // We don't try to evaluate aliases here. | 
|  | // NOTE: We should not be doing this constant folding if null pointer | 
|  | // is considered valid for the function. But currently there is no way to | 
|  | // query it from the Constant type. | 
|  | if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) && | 
|  | !NullPointerIsDefined(nullptr /* F */, | 
|  | GV->getType()->getAddressSpace())) | 
|  | return ICmpInst::ICMP_UGT; | 
|  | } | 
|  | } else { | 
|  | // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a | 
|  | // constantexpr, a global, block address, or a simple constant. | 
|  | ConstantExpr *CE1 = cast<ConstantExpr>(V1); | 
|  | Constant *CE1Op0 = CE1->getOperand(0); | 
|  |  | 
|  | switch (CE1->getOpcode()) { | 
|  | case Instruction::GetElementPtr: { | 
|  | GEPOperator *CE1GEP = cast<GEPOperator>(CE1); | 
|  | // Ok, since this is a getelementptr, we know that the constant has a | 
|  | // pointer type.  Check the various cases. | 
|  | if (isa<ConstantPointerNull>(V2)) { | 
|  | // If we are comparing a GEP to a null pointer, check to see if the base | 
|  | // of the GEP equals the null pointer. | 
|  | if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { | 
|  | // If its not weak linkage, the GVal must have a non-zero address | 
|  | // so the result is greater-than | 
|  | if (!GV->hasExternalWeakLinkage() && CE1GEP->isInBounds()) | 
|  | return ICmpInst::ICMP_UGT; | 
|  | } | 
|  | } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { | 
|  | if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { | 
|  | if (GV != GV2) { | 
|  | if (CE1GEP->hasAllZeroIndices()) | 
|  | return areGlobalsPotentiallyEqual(GV, GV2); | 
|  | return ICmpInst::BAD_ICMP_PREDICATE; | 
|  | } | 
|  | } | 
|  | } else if (const auto *CE2GEP = dyn_cast<GEPOperator>(V2)) { | 
|  | // By far the most common case to handle is when the base pointers are | 
|  | // obviously to the same global. | 
|  | const Constant *CE2Op0 = cast<Constant>(CE2GEP->getPointerOperand()); | 
|  | if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) { | 
|  | // Don't know relative ordering, but check for inequality. | 
|  | if (CE1Op0 != CE2Op0) { | 
|  | if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices()) | 
|  | return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0), | 
|  | cast<GlobalValue>(CE2Op0)); | 
|  | return ICmpInst::BAD_ICMP_PREDICATE; | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ICmpInst::BAD_ICMP_PREDICATE; | 
|  | } | 
|  |  | 
|  | Constant *llvm::ConstantFoldCompareInstruction(CmpInst::Predicate Predicate, | 
|  | Constant *C1, Constant *C2) { | 
|  | Type *ResultTy; | 
|  | if (VectorType *VT = dyn_cast<VectorType>(C1->getType())) | 
|  | ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()), | 
|  | VT->getElementCount()); | 
|  | else | 
|  | ResultTy = Type::getInt1Ty(C1->getContext()); | 
|  |  | 
|  | // Fold FCMP_FALSE/FCMP_TRUE unconditionally. | 
|  | if (Predicate == FCmpInst::FCMP_FALSE) | 
|  | return Constant::getNullValue(ResultTy); | 
|  |  | 
|  | if (Predicate == FCmpInst::FCMP_TRUE) | 
|  | return Constant::getAllOnesValue(ResultTy); | 
|  |  | 
|  | // Handle some degenerate cases first | 
|  | if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2)) | 
|  | return PoisonValue::get(ResultTy); | 
|  |  | 
|  | if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) { | 
|  | bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate); | 
|  | // For EQ and NE, we can always pick a value for the undef to make the | 
|  | // predicate pass or fail, so we can return undef. | 
|  | // Also, if both operands are undef, we can return undef for int comparison. | 
|  | if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2)) | 
|  | return UndefValue::get(ResultTy); | 
|  |  | 
|  | // Otherwise, for integer compare, pick the same value as the non-undef | 
|  | // operand, and fold it to true or false. | 
|  | if (isIntegerPredicate) | 
|  | return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate)); | 
|  |  | 
|  | // Choosing NaN for the undef will always make unordered comparison succeed | 
|  | // and ordered comparison fails. | 
|  | return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate)); | 
|  | } | 
|  |  | 
|  | if (C2->isNullValue()) { | 
|  | // The caller is expected to commute the operands if the constant expression | 
|  | // is C2. | 
|  | // C1 >= 0 --> true | 
|  | if (Predicate == ICmpInst::ICMP_UGE) | 
|  | return Constant::getAllOnesValue(ResultTy); | 
|  | // C1 < 0 --> false | 
|  | if (Predicate == ICmpInst::ICMP_ULT) | 
|  | return Constant::getNullValue(ResultTy); | 
|  | } | 
|  |  | 
|  | // If the comparison is a comparison between two i1's, simplify it. | 
|  | if (C1->getType()->isIntegerTy(1)) { | 
|  | switch (Predicate) { | 
|  | case ICmpInst::ICMP_EQ: | 
|  | if (isa<ConstantInt>(C2)) | 
|  | return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2)); | 
|  | return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2); | 
|  | case ICmpInst::ICMP_NE: | 
|  | return ConstantExpr::getXor(C1, C2); | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) { | 
|  | const APInt &V1 = cast<ConstantInt>(C1)->getValue(); | 
|  | const APInt &V2 = cast<ConstantInt>(C2)->getValue(); | 
|  | return ConstantInt::get(ResultTy, ICmpInst::compare(V1, V2, Predicate)); | 
|  | } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) { | 
|  | const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF(); | 
|  | const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF(); | 
|  | return ConstantInt::get(ResultTy, FCmpInst::compare(C1V, C2V, Predicate)); | 
|  | } else if (auto *C1VTy = dyn_cast<VectorType>(C1->getType())) { | 
|  |  | 
|  | // Fast path for splatted constants. | 
|  | if (Constant *C1Splat = C1->getSplatValue()) | 
|  | if (Constant *C2Splat = C2->getSplatValue()) | 
|  | return ConstantVector::getSplat( | 
|  | C1VTy->getElementCount(), | 
|  | ConstantExpr::getCompare(Predicate, C1Splat, C2Splat)); | 
|  |  | 
|  | // Do not iterate on scalable vector. The number of elements is unknown at | 
|  | // compile-time. | 
|  | if (isa<ScalableVectorType>(C1VTy)) | 
|  | return nullptr; | 
|  |  | 
|  | // If we can constant fold the comparison of each element, constant fold | 
|  | // the whole vector comparison. | 
|  | SmallVector<Constant*, 4> ResElts; | 
|  | Type *Ty = IntegerType::get(C1->getContext(), 32); | 
|  | // Compare the elements, producing an i1 result or constant expr. | 
|  | for (unsigned I = 0, E = C1VTy->getElementCount().getKnownMinValue(); | 
|  | I != E; ++I) { | 
|  | Constant *C1E = | 
|  | ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, I)); | 
|  | Constant *C2E = | 
|  | ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, I)); | 
|  |  | 
|  | ResElts.push_back(ConstantExpr::getCompare(Predicate, C1E, C2E)); | 
|  | } | 
|  |  | 
|  | return ConstantVector::get(ResElts); | 
|  | } | 
|  |  | 
|  | if (C1->getType()->isFPOrFPVectorTy()) { | 
|  | if (C1 == C2) { | 
|  | // We know that C1 == C2 || isUnordered(C1, C2). | 
|  | if (Predicate == FCmpInst::FCMP_ONE) | 
|  | return ConstantInt::getFalse(ResultTy); | 
|  | else if (Predicate == FCmpInst::FCMP_UEQ) | 
|  | return ConstantInt::getTrue(ResultTy); | 
|  | } | 
|  | } else { | 
|  | // Evaluate the relation between the two constants, per the predicate. | 
|  | int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true. | 
|  | switch (evaluateICmpRelation(C1, C2)) { | 
|  | default: llvm_unreachable("Unknown relational!"); | 
|  | case ICmpInst::BAD_ICMP_PREDICATE: | 
|  | break;  // Couldn't determine anything about these constants. | 
|  | case ICmpInst::ICMP_EQ:   // We know the constants are equal! | 
|  | // If we know the constants are equal, we can decide the result of this | 
|  | // computation precisely. | 
|  | Result = ICmpInst::isTrueWhenEqual(Predicate); | 
|  | break; | 
|  | case ICmpInst::ICMP_ULT: | 
|  | switch (Predicate) { | 
|  | case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE: | 
|  | Result = 1; break; | 
|  | case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE: | 
|  | Result = 0; break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_SLT: | 
|  | switch (Predicate) { | 
|  | case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE: | 
|  | Result = 1; break; | 
|  | case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE: | 
|  | Result = 0; break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_UGT: | 
|  | switch (Predicate) { | 
|  | case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE: | 
|  | Result = 1; break; | 
|  | case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE: | 
|  | Result = 0; break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_SGT: | 
|  | switch (Predicate) { | 
|  | case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE: | 
|  | Result = 1; break; | 
|  | case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE: | 
|  | Result = 0; break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_ULE: | 
|  | if (Predicate == ICmpInst::ICMP_UGT) | 
|  | Result = 0; | 
|  | if (Predicate == ICmpInst::ICMP_ULT || Predicate == ICmpInst::ICMP_ULE) | 
|  | Result = 1; | 
|  | break; | 
|  | case ICmpInst::ICMP_SLE: | 
|  | if (Predicate == ICmpInst::ICMP_SGT) | 
|  | Result = 0; | 
|  | if (Predicate == ICmpInst::ICMP_SLT || Predicate == ICmpInst::ICMP_SLE) | 
|  | Result = 1; | 
|  | break; | 
|  | case ICmpInst::ICMP_UGE: | 
|  | if (Predicate == ICmpInst::ICMP_ULT) | 
|  | Result = 0; | 
|  | if (Predicate == ICmpInst::ICMP_UGT || Predicate == ICmpInst::ICMP_UGE) | 
|  | Result = 1; | 
|  | break; | 
|  | case ICmpInst::ICMP_SGE: | 
|  | if (Predicate == ICmpInst::ICMP_SLT) | 
|  | Result = 0; | 
|  | if (Predicate == ICmpInst::ICMP_SGT || Predicate == ICmpInst::ICMP_SGE) | 
|  | Result = 1; | 
|  | break; | 
|  | case ICmpInst::ICMP_NE: | 
|  | if (Predicate == ICmpInst::ICMP_EQ) | 
|  | Result = 0; | 
|  | if (Predicate == ICmpInst::ICMP_NE) | 
|  | Result = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If we evaluated the result, return it now. | 
|  | if (Result != -1) | 
|  | return ConstantInt::get(ResultTy, Result); | 
|  |  | 
|  | if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) || | 
|  | (C1->isNullValue() && !C2->isNullValue())) { | 
|  | // If C2 is a constant expr and C1 isn't, flip them around and fold the | 
|  | // other way if possible. | 
|  | // Also, if C1 is null and C2 isn't, flip them around. | 
|  | Predicate = ICmpInst::getSwappedPredicate(Predicate); | 
|  | return ConstantExpr::getICmp(Predicate, C2, C1); | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Test whether the given sequence of *normalized* indices is "inbounds". | 
|  | template<typename IndexTy> | 
|  | static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) { | 
|  | // No indices means nothing that could be out of bounds. | 
|  | if (Idxs.empty()) return true; | 
|  |  | 
|  | // If the first index is zero, it's in bounds. | 
|  | if (cast<Constant>(Idxs[0])->isNullValue()) return true; | 
|  |  | 
|  | // If the first index is one and all the rest are zero, it's in bounds, | 
|  | // by the one-past-the-end rule. | 
|  | if (auto *CI = dyn_cast<ConstantInt>(Idxs[0])) { | 
|  | if (!CI->isOne()) | 
|  | return false; | 
|  | } else { | 
|  | auto *CV = cast<ConstantDataVector>(Idxs[0]); | 
|  | CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue()); | 
|  | if (!CI || !CI->isOne()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (unsigned i = 1, e = Idxs.size(); i != e; ++i) | 
|  | if (!cast<Constant>(Idxs[i])->isNullValue()) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Test whether a given ConstantInt is in-range for a SequentialType. | 
|  | static bool isIndexInRangeOfArrayType(uint64_t NumElements, | 
|  | const ConstantInt *CI) { | 
|  | // We cannot bounds check the index if it doesn't fit in an int64_t. | 
|  | if (CI->getValue().getSignificantBits() > 64) | 
|  | return false; | 
|  |  | 
|  | // A negative index or an index past the end of our sequential type is | 
|  | // considered out-of-range. | 
|  | int64_t IndexVal = CI->getSExtValue(); | 
|  | if (IndexVal < 0 || (IndexVal != 0 && (uint64_t)IndexVal >= NumElements)) | 
|  | return false; | 
|  |  | 
|  | // Otherwise, it is in-range. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Combine Indices - If the source pointer to this getelementptr instruction | 
|  | // is a getelementptr instruction, combine the indices of the two | 
|  | // getelementptr instructions into a single instruction. | 
|  | static Constant *foldGEPOfGEP(GEPOperator *GEP, Type *PointeeTy, bool InBounds, | 
|  | ArrayRef<Value *> Idxs) { | 
|  | if (PointeeTy != GEP->getResultElementType()) | 
|  | return nullptr; | 
|  |  | 
|  | Constant *Idx0 = cast<Constant>(Idxs[0]); | 
|  | if (Idx0->isNullValue()) { | 
|  | // Handle the simple case of a zero index. | 
|  | SmallVector<Value*, 16> NewIndices; | 
|  | NewIndices.reserve(Idxs.size() + GEP->getNumIndices()); | 
|  | NewIndices.append(GEP->idx_begin(), GEP->idx_end()); | 
|  | NewIndices.append(Idxs.begin() + 1, Idxs.end()); | 
|  | return ConstantExpr::getGetElementPtr( | 
|  | GEP->getSourceElementType(), cast<Constant>(GEP->getPointerOperand()), | 
|  | NewIndices, InBounds && GEP->isInBounds(), GEP->getInRangeIndex()); | 
|  | } | 
|  |  | 
|  | gep_type_iterator LastI = gep_type_end(GEP); | 
|  | for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP); | 
|  | I != E; ++I) | 
|  | LastI = I; | 
|  |  | 
|  | // We can't combine GEPs if the last index is a struct type. | 
|  | if (!LastI.isSequential()) | 
|  | return nullptr; | 
|  | // We could perform the transform with non-constant index, but prefer leaving | 
|  | // it as GEP of GEP rather than GEP of add for now. | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(Idx0); | 
|  | if (!CI) | 
|  | return nullptr; | 
|  |  | 
|  | // TODO: This code may be extended to handle vectors as well. | 
|  | auto *LastIdx = cast<Constant>(GEP->getOperand(GEP->getNumOperands()-1)); | 
|  | Type *LastIdxTy = LastIdx->getType(); | 
|  | if (LastIdxTy->isVectorTy()) | 
|  | return nullptr; | 
|  |  | 
|  | SmallVector<Value*, 16> NewIndices; | 
|  | NewIndices.reserve(Idxs.size() + GEP->getNumIndices()); | 
|  | NewIndices.append(GEP->idx_begin(), GEP->idx_end() - 1); | 
|  |  | 
|  | // Add the last index of the source with the first index of the new GEP. | 
|  | // Make sure to handle the case when they are actually different types. | 
|  | if (LastIdxTy != Idx0->getType()) { | 
|  | unsigned CommonExtendedWidth = | 
|  | std::max(LastIdxTy->getIntegerBitWidth(), | 
|  | Idx0->getType()->getIntegerBitWidth()); | 
|  | CommonExtendedWidth = std::max(CommonExtendedWidth, 64U); | 
|  |  | 
|  | Type *CommonTy = | 
|  | Type::getIntNTy(LastIdxTy->getContext(), CommonExtendedWidth); | 
|  | if (Idx0->getType() != CommonTy) | 
|  | Idx0 = ConstantFoldCastInstruction(Instruction::SExt, Idx0, CommonTy); | 
|  | if (LastIdx->getType() != CommonTy) | 
|  | LastIdx = | 
|  | ConstantFoldCastInstruction(Instruction::SExt, LastIdx, CommonTy); | 
|  | if (!Idx0 || !LastIdx) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | NewIndices.push_back(ConstantExpr::get(Instruction::Add, Idx0, LastIdx)); | 
|  | NewIndices.append(Idxs.begin() + 1, Idxs.end()); | 
|  |  | 
|  | // The combined GEP normally inherits its index inrange attribute from | 
|  | // the inner GEP, but if the inner GEP's last index was adjusted by the | 
|  | // outer GEP, any inbounds attribute on that index is invalidated. | 
|  | std::optional<unsigned> IRIndex = GEP->getInRangeIndex(); | 
|  | if (IRIndex && *IRIndex == GEP->getNumIndices() - 1) | 
|  | IRIndex = std::nullopt; | 
|  |  | 
|  | return ConstantExpr::getGetElementPtr( | 
|  | GEP->getSourceElementType(), cast<Constant>(GEP->getPointerOperand()), | 
|  | NewIndices, InBounds && GEP->isInBounds(), IRIndex); | 
|  | } | 
|  |  | 
|  | Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C, | 
|  | bool InBounds, | 
|  | std::optional<unsigned> InRangeIndex, | 
|  | ArrayRef<Value *> Idxs) { | 
|  | if (Idxs.empty()) return C; | 
|  |  | 
|  | Type *GEPTy = GetElementPtrInst::getGEPReturnType( | 
|  | C, ArrayRef((Value *const *)Idxs.data(), Idxs.size())); | 
|  |  | 
|  | if (isa<PoisonValue>(C)) | 
|  | return PoisonValue::get(GEPTy); | 
|  |  | 
|  | if (isa<UndefValue>(C)) | 
|  | // If inbounds, we can choose an out-of-bounds pointer as a base pointer. | 
|  | return InBounds ? PoisonValue::get(GEPTy) : UndefValue::get(GEPTy); | 
|  |  | 
|  | auto IsNoOp = [&]() { | 
|  | // Avoid losing inrange information. | 
|  | if (InRangeIndex) | 
|  | return false; | 
|  |  | 
|  | return all_of(Idxs, [](Value *Idx) { | 
|  | Constant *IdxC = cast<Constant>(Idx); | 
|  | return IdxC->isNullValue() || isa<UndefValue>(IdxC); | 
|  | }); | 
|  | }; | 
|  | if (IsNoOp()) | 
|  | return GEPTy->isVectorTy() && !C->getType()->isVectorTy() | 
|  | ? ConstantVector::getSplat( | 
|  | cast<VectorType>(GEPTy)->getElementCount(), C) | 
|  | : C; | 
|  |  | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) | 
|  | if (auto *GEP = dyn_cast<GEPOperator>(CE)) | 
|  | if (Constant *C = foldGEPOfGEP(GEP, PointeeTy, InBounds, Idxs)) | 
|  | return C; | 
|  |  | 
|  | // Check to see if any array indices are not within the corresponding | 
|  | // notional array or vector bounds. If so, try to determine if they can be | 
|  | // factored out into preceding dimensions. | 
|  | SmallVector<Constant *, 8> NewIdxs; | 
|  | Type *Ty = PointeeTy; | 
|  | Type *Prev = C->getType(); | 
|  | auto GEPIter = gep_type_begin(PointeeTy, Idxs); | 
|  | bool Unknown = | 
|  | !isa<ConstantInt>(Idxs[0]) && !isa<ConstantDataVector>(Idxs[0]); | 
|  | for (unsigned i = 1, e = Idxs.size(); i != e; | 
|  | Prev = Ty, Ty = (++GEPIter).getIndexedType(), ++i) { | 
|  | if (!isa<ConstantInt>(Idxs[i]) && !isa<ConstantDataVector>(Idxs[i])) { | 
|  | // We don't know if it's in range or not. | 
|  | Unknown = true; | 
|  | continue; | 
|  | } | 
|  | if (!isa<ConstantInt>(Idxs[i - 1]) && !isa<ConstantDataVector>(Idxs[i - 1])) | 
|  | // Skip if the type of the previous index is not supported. | 
|  | continue; | 
|  | if (InRangeIndex && i == *InRangeIndex + 1) { | 
|  | // If an index is marked inrange, we cannot apply this canonicalization to | 
|  | // the following index, as that will cause the inrange index to point to | 
|  | // the wrong element. | 
|  | continue; | 
|  | } | 
|  | if (isa<StructType>(Ty)) { | 
|  | // The verify makes sure that GEPs into a struct are in range. | 
|  | continue; | 
|  | } | 
|  | if (isa<VectorType>(Ty)) { | 
|  | // There can be awkward padding in after a non-power of two vector. | 
|  | Unknown = true; | 
|  | continue; | 
|  | } | 
|  | auto *STy = cast<ArrayType>(Ty); | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) { | 
|  | if (isIndexInRangeOfArrayType(STy->getNumElements(), CI)) | 
|  | // It's in range, skip to the next index. | 
|  | continue; | 
|  | if (CI->isNegative()) { | 
|  | // It's out of range and negative, don't try to factor it. | 
|  | Unknown = true; | 
|  | continue; | 
|  | } | 
|  | } else { | 
|  | auto *CV = cast<ConstantDataVector>(Idxs[i]); | 
|  | bool InRange = true; | 
|  | for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) { | 
|  | auto *CI = cast<ConstantInt>(CV->getElementAsConstant(I)); | 
|  | InRange &= isIndexInRangeOfArrayType(STy->getNumElements(), CI); | 
|  | if (CI->isNegative()) { | 
|  | Unknown = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (InRange || Unknown) | 
|  | // It's in range, skip to the next index. | 
|  | // It's out of range and negative, don't try to factor it. | 
|  | continue; | 
|  | } | 
|  | if (isa<StructType>(Prev)) { | 
|  | // It's out of range, but the prior dimension is a struct | 
|  | // so we can't do anything about it. | 
|  | Unknown = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Determine the number of elements in our sequential type. | 
|  | uint64_t NumElements = STy->getArrayNumElements(); | 
|  | if (!NumElements) { | 
|  | Unknown = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // It's out of range, but we can factor it into the prior | 
|  | // dimension. | 
|  | NewIdxs.resize(Idxs.size()); | 
|  |  | 
|  | // Expand the current index or the previous index to a vector from a scalar | 
|  | // if necessary. | 
|  | Constant *CurrIdx = cast<Constant>(Idxs[i]); | 
|  | auto *PrevIdx = | 
|  | NewIdxs[i - 1] ? NewIdxs[i - 1] : cast<Constant>(Idxs[i - 1]); | 
|  | bool IsCurrIdxVector = CurrIdx->getType()->isVectorTy(); | 
|  | bool IsPrevIdxVector = PrevIdx->getType()->isVectorTy(); | 
|  | bool UseVector = IsCurrIdxVector || IsPrevIdxVector; | 
|  |  | 
|  | if (!IsCurrIdxVector && IsPrevIdxVector) | 
|  | CurrIdx = ConstantDataVector::getSplat( | 
|  | cast<FixedVectorType>(PrevIdx->getType())->getNumElements(), CurrIdx); | 
|  |  | 
|  | if (!IsPrevIdxVector && IsCurrIdxVector) | 
|  | PrevIdx = ConstantDataVector::getSplat( | 
|  | cast<FixedVectorType>(CurrIdx->getType())->getNumElements(), PrevIdx); | 
|  |  | 
|  | Constant *Factor = | 
|  | ConstantInt::get(CurrIdx->getType()->getScalarType(), NumElements); | 
|  | if (UseVector) | 
|  | Factor = ConstantDataVector::getSplat( | 
|  | IsPrevIdxVector | 
|  | ? cast<FixedVectorType>(PrevIdx->getType())->getNumElements() | 
|  | : cast<FixedVectorType>(CurrIdx->getType())->getNumElements(), | 
|  | Factor); | 
|  |  | 
|  | NewIdxs[i] = | 
|  | ConstantFoldBinaryInstruction(Instruction::SRem, CurrIdx, Factor); | 
|  |  | 
|  | Constant *Div = | 
|  | ConstantFoldBinaryInstruction(Instruction::SDiv, CurrIdx, Factor); | 
|  |  | 
|  | // We're working on either ConstantInt or vectors of ConstantInt, | 
|  | // so these should always fold. | 
|  | assert(NewIdxs[i] != nullptr && Div != nullptr && "Should have folded"); | 
|  |  | 
|  | unsigned CommonExtendedWidth = | 
|  | std::max(PrevIdx->getType()->getScalarSizeInBits(), | 
|  | Div->getType()->getScalarSizeInBits()); | 
|  | CommonExtendedWidth = std::max(CommonExtendedWidth, 64U); | 
|  |  | 
|  | // Before adding, extend both operands to i64 to avoid | 
|  | // overflow trouble. | 
|  | Type *ExtendedTy = Type::getIntNTy(Div->getContext(), CommonExtendedWidth); | 
|  | if (UseVector) | 
|  | ExtendedTy = FixedVectorType::get( | 
|  | ExtendedTy, | 
|  | IsPrevIdxVector | 
|  | ? cast<FixedVectorType>(PrevIdx->getType())->getNumElements() | 
|  | : cast<FixedVectorType>(CurrIdx->getType())->getNumElements()); | 
|  |  | 
|  | if (!PrevIdx->getType()->isIntOrIntVectorTy(CommonExtendedWidth)) | 
|  | PrevIdx = | 
|  | ConstantFoldCastInstruction(Instruction::SExt, PrevIdx, ExtendedTy); | 
|  |  | 
|  | if (!Div->getType()->isIntOrIntVectorTy(CommonExtendedWidth)) | 
|  | Div = ConstantFoldCastInstruction(Instruction::SExt, Div, ExtendedTy); | 
|  |  | 
|  | assert(PrevIdx && Div && "Should have folded"); | 
|  | NewIdxs[i - 1] = ConstantExpr::getAdd(PrevIdx, Div); | 
|  | } | 
|  |  | 
|  | // If we did any factoring, start over with the adjusted indices. | 
|  | if (!NewIdxs.empty()) { | 
|  | for (unsigned i = 0, e = Idxs.size(); i != e; ++i) | 
|  | if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]); | 
|  | return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, InBounds, | 
|  | InRangeIndex); | 
|  | } | 
|  |  | 
|  | // If all indices are known integers and normalized, we can do a simple | 
|  | // check for the "inbounds" property. | 
|  | if (!Unknown && !InBounds) | 
|  | if (auto *GV = dyn_cast<GlobalVariable>(C)) | 
|  | if (!GV->hasExternalWeakLinkage() && GV->getValueType() == PointeeTy && | 
|  | isInBoundsIndices(Idxs)) | 
|  | return ConstantExpr::getGetElementPtr(PointeeTy, C, Idxs, | 
|  | /*InBounds=*/true, InRangeIndex); | 
|  |  | 
|  | return nullptr; | 
|  | } |