| //===- Barvinok.cpp - Barvinok's Algorithm ----------------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Analysis/Presburger/Barvinok.h" |
| #include "mlir/Analysis/Presburger/Utils.h" |
| #include "llvm/ADT/Sequence.h" |
| #include <algorithm> |
| |
| using namespace mlir; |
| using namespace presburger; |
| using namespace mlir::presburger::detail; |
| |
| /// Assuming that the input cone is pointed at the origin, |
| /// converts it to its dual in V-representation. |
| /// Essentially we just remove the all-zeroes constant column. |
| ConeV mlir::presburger::detail::getDual(ConeH cone) { |
| unsigned numIneq = cone.getNumInequalities(); |
| unsigned numVar = cone.getNumCols() - 1; |
| ConeV dual(numIneq, numVar, 0, 0); |
| // Assuming that an inequality of the form |
| // a1*x1 + ... + an*xn + b ≥ 0 |
| // is represented as a row [a1, ..., an, b] |
| // and that b = 0. |
| |
| for (auto i : llvm::seq<int>(0, numIneq)) { |
| assert(cone.atIneq(i, numVar) == 0 && |
| "H-representation of cone is not centred at the origin!"); |
| for (unsigned j = 0; j < numVar; ++j) { |
| dual.at(i, j) = cone.atIneq(i, j); |
| } |
| } |
| |
| // Now dual is of the form [ [a1, ..., an] , ... ] |
| // which is the V-representation of the dual. |
| return dual; |
| } |
| |
| /// Converts a cone in V-representation to the H-representation |
| /// of its dual, pointed at the origin (not at the original vertex). |
| /// Essentially adds a column consisting only of zeroes to the end. |
| ConeH mlir::presburger::detail::getDual(ConeV cone) { |
| unsigned rows = cone.getNumRows(); |
| unsigned columns = cone.getNumColumns(); |
| ConeH dual = defineHRep(columns); |
| // Add a new column (for constants) at the end. |
| // This will be initialized to zero. |
| cone.insertColumn(columns); |
| |
| for (unsigned i = 0; i < rows; ++i) |
| dual.addInequality(cone.getRow(i)); |
| |
| // Now dual is of the form [ [a1, ..., an, 0] , ... ] |
| // which is the H-representation of the dual. |
| return dual; |
| } |
| |
| /// Find the index of a cone in V-representation. |
| DynamicAPInt mlir::presburger::detail::getIndex(const ConeV &cone) { |
| if (cone.getNumRows() > cone.getNumColumns()) |
| return DynamicAPInt(0); |
| |
| return cone.determinant(); |
| } |
| |
| /// Compute the generating function for a unimodular cone. |
| /// This consists of a single term of the form |
| /// sign * x^num / prod_j (1 - x^den_j) |
| /// |
| /// sign is either +1 or -1. |
| /// den_j is defined as the set of generators of the cone. |
| /// num is computed by expressing the vertex as a weighted |
| /// sum of the generators, and then taking the floor of the |
| /// coefficients. |
| GeneratingFunction |
| mlir::presburger::detail::computeUnimodularConeGeneratingFunction( |
| ParamPoint vertex, int sign, const ConeH &cone) { |
| // Consider a cone with H-representation [0 -1]. |
| // [-1 -2] |
| // Let the vertex be given by the matrix [ 2 2 0], with 2 params. |
| // [-1 -1/2 1] |
| |
| // `cone` must be unimodular. |
| assert(abs(getIndex(getDual(cone))) == 1 && "input cone is not unimodular!"); |
| |
| unsigned numVar = cone.getNumVars(); |
| unsigned numIneq = cone.getNumInequalities(); |
| |
| // Thus its ray matrix, U, is the inverse of the |
| // transpose of its inequality matrix, `cone`. |
| // The last column of the inequality matrix is null, |
| // so we remove it to obtain a square matrix. |
| FracMatrix transp = FracMatrix(cone.getInequalities()).transpose(); |
| transp.removeRow(numVar); |
| |
| FracMatrix generators(numVar, numIneq); |
| transp.determinant(/*inverse=*/&generators); // This is the U-matrix. |
| // Thus the generators are given by U = [2 -1]. |
| // [-1 0] |
| |
| // The powers in the denominator of the generating |
| // function are given by the generators of the cone, |
| // i.e., the rows of the matrix U. |
| std::vector<Point> denominator(numIneq); |
| ArrayRef<Fraction> row; |
| for (auto i : llvm::seq<int>(0, numVar)) { |
| row = generators.getRow(i); |
| denominator[i] = Point(row); |
| } |
| |
| // The vertex is v \in Z^{d x (n+1)} |
| // We need to find affine functions of parameters λ_i(p) |
| // such that v = Σ λ_i(p)*u_i, |
| // where u_i are the rows of U (generators) |
| // The λ_i are given by the columns of Λ = v^T U^{-1}, and |
| // we have transp = U^{-1}. |
| // Then the exponent in the numerator will be |
| // Σ -floor(-λ_i(p))*u_i. |
| // Thus we store the (exponent of the) numerator as the affine function -Λ, |
| // since the generators u_i are already stored as the exponent of the |
| // denominator. Note that the outer -1 will have to be accounted for, as it is |
| // not stored. See end for an example. |
| |
| unsigned numColumns = vertex.getNumColumns(); |
| unsigned numRows = vertex.getNumRows(); |
| ParamPoint numerator(numColumns, numRows); |
| SmallVector<Fraction> ithCol(numRows); |
| for (auto i : llvm::seq<int>(0, numColumns)) { |
| for (auto j : llvm::seq<int>(0, numRows)) |
| ithCol[j] = vertex(j, i); |
| numerator.setRow(i, transp.preMultiplyWithRow(ithCol)); |
| numerator.negateRow(i); |
| } |
| // Therefore Λ will be given by [ 1 0 ] and the negation of this will be |
| // [ 1/2 -1 ] |
| // [ -1 -2 ] |
| // stored as the numerator. |
| // Algebraically, the numerator exponent is |
| // [ -2 ⌊ - N - M/2 + 1 ⌋ + 1 ⌊ 0 + M + 2 ⌋ ] -> first COLUMN of U is [2, -1] |
| // [ 1 ⌊ - N - M/2 + 1 ⌋ + 0 ⌊ 0 + M + 2 ⌋ ] -> second COLUMN of U is [-1, 0] |
| |
| return GeneratingFunction(numColumns - 1, SmallVector<int>(1, sign), |
| std::vector({numerator}), |
| std::vector({denominator})); |
| } |
| |
| /// We use Gaussian elimination to find the solution to a set of d equations |
| /// of the form |
| /// a_1 x_1 + ... + a_d x_d + b_1 m_1 + ... + b_p m_p + c = 0 |
| /// where x_i are variables, |
| /// m_i are parameters and |
| /// a_i, b_i, c are rational coefficients. |
| /// |
| /// The solution expresses each x_i as an affine function of the m_i, and is |
| /// therefore represented as a matrix of size d x (p+1). |
| /// If there is no solution, we return null. |
| std::optional<ParamPoint> |
| mlir::presburger::detail::solveParametricEquations(FracMatrix equations) { |
| // equations is a d x (d + p + 1) matrix. |
| // Each row represents an equation. |
| unsigned d = equations.getNumRows(); |
| unsigned numCols = equations.getNumColumns(); |
| |
| // If the determinant is zero, there is no unique solution. |
| // Thus we return null. |
| if (FracMatrix(equations.getSubMatrix(/*fromRow=*/0, /*toRow=*/d - 1, |
| /*fromColumn=*/0, |
| /*toColumn=*/d - 1)) |
| .determinant() == 0) |
| return std::nullopt; |
| |
| // Perform row operations to make each column all zeros except for the |
| // diagonal element, which is made to be one. |
| for (unsigned i = 0; i < d; ++i) { |
| // First ensure that the diagonal element is nonzero, by swapping |
| // it with a row that is non-zero at column i. |
| if (equations(i, i) != 0) |
| continue; |
| for (unsigned j = i + 1; j < d; ++j) { |
| if (equations(j, i) == 0) |
| continue; |
| equations.swapRows(j, i); |
| break; |
| } |
| |
| Fraction diagElement = equations(i, i); |
| |
| // Apply row operations to make all elements except the diagonal to zero. |
| for (unsigned j = 0; j < d; ++j) { |
| if (i == j) |
| continue; |
| if (equations(j, i) == 0) |
| continue; |
| // Apply row operations to make element (j, i) zero by subtracting the |
| // ith row, appropriately scaled. |
| Fraction currentElement = equations(j, i); |
| equations.addToRow(/*sourceRow=*/i, /*targetRow=*/j, |
| /*scale=*/-currentElement / diagElement); |
| } |
| } |
| |
| // Rescale diagonal elements to 1. |
| for (unsigned i = 0; i < d; ++i) |
| equations.scaleRow(i, 1 / equations(i, i)); |
| |
| // Now we have reduced the equations to the form |
| // x_i + b_1' m_1 + ... + b_p' m_p + c' = 0 |
| // i.e. each variable appears exactly once in the system, and has coefficient |
| // one. |
| // |
| // Thus we have |
| // x_i = - b_1' m_1 - ... - b_p' m_p - c |
| // and so we return the negation of the last p + 1 columns of the matrix. |
| // |
| // We copy these columns and return them. |
| ParamPoint vertex = |
| equations.getSubMatrix(/*fromRow=*/0, /*toRow=*/d - 1, |
| /*fromColumn=*/d, /*toColumn=*/numCols - 1); |
| vertex.negateMatrix(); |
| return vertex; |
| } |
| |
| /// This is an implementation of the Clauss-Loechner algorithm for chamber |
| /// decomposition. |
| /// |
| /// We maintain a list of pairwise disjoint chambers and the generating |
| /// functions corresponding to each one. We iterate over the list of regions, |
| /// each time adding the current region's generating function to the chambers |
| /// where it is active and separating the chambers where it is not. |
| /// |
| /// Given the region each generating function is active in, for each subset of |
| /// generating functions the region that (the sum of) precisely this subset is |
| /// in, is the intersection of the regions that these are active in, |
| /// intersected with the complements of the remaining regions. |
| std::vector<std::pair<PresburgerSet, GeneratingFunction>> |
| mlir::presburger::detail::computeChamberDecomposition( |
| unsigned numSymbols, ArrayRef<std::pair<PresburgerSet, GeneratingFunction>> |
| regionsAndGeneratingFunctions) { |
| assert(!regionsAndGeneratingFunctions.empty() && |
| "there must be at least one chamber!"); |
| // We maintain a list of regions and their associated generating function |
| // initialized with the universe and the empty generating function. |
| std::vector<std::pair<PresburgerSet, GeneratingFunction>> chambers = { |
| {PresburgerSet::getUniverse(PresburgerSpace::getSetSpace(numSymbols)), |
| GeneratingFunction(numSymbols, {}, {}, {})}}; |
| |
| // We iterate over the region list. |
| // |
| // For each activity region R_j (corresponding to the generating function |
| // gf_j), we examine all the current chambers R_i. |
| // |
| // If R_j has a full-dimensional intersection with an existing chamber R_i, |
| // then that chamber is replaced by two new ones: |
| // 1. the intersection R_i \cap R_j, where the generating function is |
| // gf_i + gf_j. |
| // 2. the difference R_i - R_j, where the generating function is gf_i. |
| // |
| // At each step, we define a new chamber list after considering gf_j, |
| // replacing and appending chambers as discussed above. |
| // |
| // The loop has the invariant that the union over all the chambers gives the |
| // universe at every step. |
| for (const auto &[region, generatingFunction] : |
| regionsAndGeneratingFunctions) { |
| std::vector<std::pair<PresburgerSet, GeneratingFunction>> newChambers; |
| |
| for (const auto &[currentRegion, currentGeneratingFunction] : chambers) { |
| PresburgerSet intersection = currentRegion.intersect(region); |
| |
| // If the intersection is not full-dimensional, we do not modify |
| // the chamber list. |
| if (!intersection.isFullDim()) { |
| newChambers.emplace_back(currentRegion, currentGeneratingFunction); |
| continue; |
| } |
| |
| // If it is, we add the intersection and the difference as chambers. |
| newChambers.emplace_back(intersection, |
| currentGeneratingFunction + generatingFunction); |
| newChambers.emplace_back(currentRegion.subtract(region), |
| currentGeneratingFunction); |
| } |
| chambers = std::move(newChambers); |
| } |
| |
| return chambers; |
| } |
| |
| /// For a polytope expressed as a set of n inequalities, compute the generating |
| /// function corresponding to the lattice points included in the polytope. This |
| /// algorithm has three main steps: |
| /// 1. Enumerate the vertices, by iterating over subsets of inequalities and |
| /// checking for satisfiability. For each d-subset of inequalities (where d |
| /// is the number of variables), we solve to obtain the vertex in terms of |
| /// the parameters, and then check for the region in parameter space where |
| /// this vertex satisfies the remaining (n - d) inequalities. |
| /// 2. For each vertex, identify the tangent cone and compute the generating |
| /// function corresponding to it. The generating function depends on the |
| /// parametric expression of the vertex and the (non-parametric) generators |
| /// of the tangent cone. |
| /// 3. [Clauss-Loechner decomposition] Identify the regions in parameter space |
| /// (chambers) where each vertex is active, and accordingly compute the |
| /// GF of the polytope in each chamber. |
| /// |
| /// Verdoolaege, Sven, et al. "Counting integer points in parametric |
| /// polytopes using Barvinok's rational functions." Algorithmica 48 (2007): |
| /// 37-66. |
| std::vector<std::pair<PresburgerSet, GeneratingFunction>> |
| mlir::presburger::detail::computePolytopeGeneratingFunction( |
| const PolyhedronH &poly) { |
| unsigned numVars = poly.getNumRangeVars(); |
| unsigned numSymbols = poly.getNumSymbolVars(); |
| unsigned numIneqs = poly.getNumInequalities(); |
| |
| // We store a list of the computed vertices. |
| std::vector<ParamPoint> vertices; |
| // For each vertex, we store the corresponding active region and the |
| // generating functions of the tangent cone, in order. |
| std::vector<std::pair<PresburgerSet, GeneratingFunction>> |
| regionsAndGeneratingFunctions; |
| |
| // We iterate over all subsets of inequalities with cardinality numVars, |
| // using permutations of numVars 1's and (numIneqs - numVars) 0's. |
| // |
| // For a given permutation, we consider a subset which contains |
| // the i'th inequality if the i'th bit in the bitset is 1. |
| // |
| // We start with the permutation that takes the last numVars inequalities. |
| SmallVector<int> indicator(numIneqs); |
| for (unsigned i = numIneqs - numVars; i < numIneqs; ++i) |
| indicator[i] = 1; |
| |
| do { |
| // Collect the inequalities corresponding to the bits which are set |
| // and the remaining ones. |
| auto [subset, remainder] = poly.getInequalities().splitByBitset(indicator); |
| // All other inequalities are stored in a2 and b2c2. |
| // |
| // These are column-wise splits of the inequalities; |
| // a2 stores the coefficients of the variables, and |
| // b2c2 stores the coefficients of the parameters and the constant term. |
| FracMatrix a2(numIneqs - numVars, numVars); |
| FracMatrix b2c2(numIneqs - numVars, numSymbols + 1); |
| a2 = FracMatrix( |
| remainder.getSubMatrix(0, numIneqs - numVars - 1, 0, numVars - 1)); |
| b2c2 = FracMatrix(remainder.getSubMatrix(0, numIneqs - numVars - 1, numVars, |
| numVars + numSymbols)); |
| |
| // Find the vertex, if any, corresponding to the current subset of |
| // inequalities. |
| std::optional<ParamPoint> vertex = |
| solveParametricEquations(FracMatrix(subset)); // d x (p+1) |
| |
| if (!vertex) |
| continue; |
| if (llvm::is_contained(vertices, vertex)) |
| continue; |
| // If this subset corresponds to a vertex that has not been considered, |
| // store it. |
| vertices.emplace_back(*vertex); |
| |
| // If a vertex is formed by the intersection of more than d facets, we |
| // assume that any d-subset of these facets can be solved to obtain its |
| // expression. This assumption is valid because, if the vertex has two |
| // distinct parametric expressions, then a nontrivial equality among the |
| // parameters holds, which is a contradiction as we know the parameter |
| // space to be full-dimensional. |
| |
| // Let the current vertex be [X | y], where |
| // X represents the coefficients of the parameters and |
| // y represents the constant term. |
| // |
| // The region (in parameter space) where this vertex is active is given |
| // by substituting the vertex into the *remaining* inequalities of the |
| // polytope (those which were not collected into `subset`), i.e., into the |
| // inequalities [A2 | B2 | c2]. |
| // |
| // Thus, the coefficients of the parameters after substitution become |
| // (A2 • X + B2) |
| // and the constant terms become |
| // (A2 • y + c2). |
| // |
| // The region is therefore given by |
| // (A2 • X + B2) p + (A2 • y + c2) ≥ 0 |
| // |
| // This is equivalent to A2 • [X | y] + [B2 | c2]. |
| // |
| // Thus we premultiply [X | y] with each row of A2 |
| // and add each row of [B2 | c2]. |
| FracMatrix activeRegion(numIneqs - numVars, numSymbols + 1); |
| for (unsigned i = 0; i < numIneqs - numVars; i++) { |
| activeRegion.setRow(i, vertex->preMultiplyWithRow(a2.getRow(i))); |
| activeRegion.addToRow(i, b2c2.getRow(i), 1); |
| } |
| |
| // We convert the representation of the active region to an integers-only |
| // form so as to store it as a PresburgerSet. |
| IntegerPolyhedron activeRegionRel( |
| PresburgerSpace::getRelationSpace(0, numSymbols, 0, 0), activeRegion); |
| |
| // Now, we compute the generating function at this vertex. |
| // We collect the inequalities corresponding to each vertex to compute |
| // the tangent cone at that vertex. |
| // |
| // We only need the coefficients of the variables (NOT the parameters) |
| // as the generating function only depends on these. |
| // We translate the cones to be pointed at the origin by making the |
| // constant terms zero. |
| ConeH tangentCone = defineHRep(numVars); |
| for (unsigned j = 0, e = subset.getNumRows(); j < e; ++j) { |
| SmallVector<DynamicAPInt> ineq(numVars + 1); |
| for (unsigned k = 0; k < numVars; ++k) |
| ineq[k] = subset(j, k); |
| tangentCone.addInequality(ineq); |
| } |
| // We assume that the tangent cone is unimodular, so there is no need |
| // to decompose it. |
| // |
| // In the general case, the unimodular decomposition may have several |
| // cones. |
| GeneratingFunction vertexGf(numSymbols, {}, {}, {}); |
| SmallVector<std::pair<int, ConeH>, 4> unimodCones = {{1, tangentCone}}; |
| for (const std::pair<int, ConeH> &signedCone : unimodCones) { |
| auto [sign, cone] = signedCone; |
| vertexGf = vertexGf + |
| computeUnimodularConeGeneratingFunction(*vertex, sign, cone); |
| } |
| // We store the vertex we computed with the generating function of its |
| // tangent cone. |
| regionsAndGeneratingFunctions.emplace_back(PresburgerSet(activeRegionRel), |
| vertexGf); |
| } while (std::next_permutation(indicator.begin(), indicator.end())); |
| |
| // Now, we use Clauss-Loechner decomposition to identify regions in parameter |
| // space where each vertex is active. These regions (chambers) have the |
| // property that no two of them have a full-dimensional intersection, i.e., |
| // they may share "facets" or "edges", but their intersection can only have |
| // up to numVars - 1 dimensions. |
| // |
| // In each chamber, we sum up the generating functions of the active vertices |
| // to find the generating function of the polytope. |
| return computeChamberDecomposition(numSymbols, regionsAndGeneratingFunctions); |
| } |
| |
| /// We use an iterative procedure to find a vector not orthogonal |
| /// to a given set, ignoring the null vectors. |
| /// Let the inputs be {x_1, ..., x_k}, all vectors of length n. |
| /// |
| /// In the following, |
| /// vs[:i] means the elements of vs up to and including the i'th one, |
| /// <vs, us> means the dot product of vs and us, |
| /// vs ++ [v] means the vector vs with the new element v appended to it. |
| /// |
| /// We proceed iteratively; for steps d = 0, ... n-1, we construct a vector |
| /// which is not orthogonal to any of {x_1[:d], ..., x_n[:d]}, ignoring |
| /// the null vectors. |
| /// At step d = 0, we let vs = [1]. Clearly this is not orthogonal to |
| /// any vector in the set {x_1[0], ..., x_n[0]}, except the null ones, |
| /// which we ignore. |
| /// At step d > 0 , we need a number v |
| /// s.t. <x_i[:d], vs++[v]> != 0 for all i. |
| /// => <x_i[:d-1], vs> + x_i[d]*v != 0 |
| /// => v != - <x_i[:d-1], vs> / x_i[d] |
| /// We compute this value for all x_i, and then |
| /// set v to be the maximum element of this set plus one. Thus |
| /// v is outside the set as desired, and we append it to vs |
| /// to obtain the result of the d'th step. |
| Point mlir::presburger::detail::getNonOrthogonalVector( |
| ArrayRef<Point> vectors) { |
| unsigned dim = vectors[0].size(); |
| assert(llvm::all_of( |
| vectors, |
| [&dim](const Point &vector) { return vector.size() == dim; }) && |
| "all vectors need to be the same size!"); |
| |
| SmallVector<Fraction> newPoint = {Fraction(1, 1)}; |
| Fraction maxDisallowedValue = -Fraction(1, 0), |
| disallowedValue = Fraction(0, 1); |
| |
| for (unsigned d = 1; d < dim; ++d) { |
| // Compute the disallowed values - <x_i[:d-1], vs> / x_i[d] for each i. |
| maxDisallowedValue = -Fraction(1, 0); |
| for (const Point &vector : vectors) { |
| if (vector[d] == 0) |
| continue; |
| disallowedValue = |
| -dotProduct(ArrayRef(vector).slice(0, d), newPoint) / vector[d]; |
| |
| // Find the biggest such value |
| maxDisallowedValue = std::max(maxDisallowedValue, disallowedValue); |
| } |
| newPoint.emplace_back(maxDisallowedValue + 1); |
| } |
| return newPoint; |
| } |
| |
| /// We use the following recursive formula to find the coefficient of |
| /// s^power in the rational function given by P(s)/Q(s). |
| /// |
| /// Let P[i] denote the coefficient of s^i in the polynomial P(s). |
| /// (P/Q)[r] = |
| /// if (r == 0) then |
| /// P[0]/Q[0] |
| /// else |
| /// (P[r] - {Σ_{i=1}^r (P/Q)[r-i] * Q[i])}/(Q[0]) |
| /// We therefore recursively call `getCoefficientInRationalFunction` on |
| /// all i \in [0, power). |
| /// |
| /// https://math.ucdavis.edu/~deloera/researchsummary/ |
| /// barvinokalgorithm-latte1.pdf, p. 1285 |
| QuasiPolynomial mlir::presburger::detail::getCoefficientInRationalFunction( |
| unsigned power, ArrayRef<QuasiPolynomial> num, ArrayRef<Fraction> den) { |
| assert(!den.empty() && "division by empty denominator in rational function!"); |
| |
| unsigned numParam = num[0].getNumInputs(); |
| // We use the `isEqual` method of PresburgerSpace, which QuasiPolynomial |
| // inherits from. |
| assert(llvm::all_of(num, |
| [&num](const QuasiPolynomial &qp) { |
| return num[0].isEqual(qp); |
| }) && |
| "the quasipolynomials should all belong to the same space!"); |
| |
| std::vector<QuasiPolynomial> coefficients; |
| coefficients.reserve(power + 1); |
| |
| coefficients.emplace_back(num[0] / den[0]); |
| for (unsigned i = 1; i <= power; ++i) { |
| // If the power is not there in the numerator, the coefficient is zero. |
| coefficients.emplace_back(i < num.size() ? num[i] |
| : QuasiPolynomial(numParam, 0)); |
| |
| // After den.size(), the coefficients are zero, so we stop |
| // subtracting at that point (if it is less than i). |
| unsigned limit = std::min<unsigned long>(i, den.size() - 1); |
| for (unsigned j = 1; j <= limit; ++j) |
| coefficients[i] = coefficients[i] - |
| coefficients[i - j] * QuasiPolynomial(numParam, den[j]); |
| |
| coefficients[i] = coefficients[i] / den[0]; |
| } |
| return coefficients[power].simplify(); |
| } |
| |
| /// Substitute x_i = t^μ_i in one term of a generating function, returning |
| /// a quasipolynomial which represents the exponent of the numerator |
| /// of the result, and a vector which represents the exponents of the |
| /// denominator of the result. |
| /// If the returned value is {num, dens}, it represents the function |
| /// t^num / \prod_j (1 - t^dens[j]). |
| /// v represents the affine functions whose floors are multiplied by the |
| /// generators, and ds represents the list of generators. |
| std::pair<QuasiPolynomial, std::vector<Fraction>> |
| substituteMuInTerm(unsigned numParams, const ParamPoint &v, |
| const std::vector<Point> &ds, const Point &mu) { |
| unsigned numDims = mu.size(); |
| #ifndef NDEBUG |
| for (const Point &d : ds) |
| assert(d.size() == numDims && |
| "μ has to have the same number of dimensions as the generators!"); |
| #endif |
| |
| // First, the exponent in the numerator becomes |
| // - (μ • u_1) * (floor(first col of v)) |
| // - (μ • u_2) * (floor(second col of v)) - ... |
| // - (μ • u_d) * (floor(d'th col of v)) |
| // So we store the negation of the dot products. |
| |
| // We have d terms, each of whose coefficient is the negative dot product. |
| SmallVector<Fraction> coefficients; |
| coefficients.reserve(numDims); |
| for (const Point &d : ds) |
| coefficients.emplace_back(-dotProduct(mu, d)); |
| |
| // Then, the affine function is a single floor expression, given by the |
| // corresponding column of v. |
| ParamPoint vTranspose = v.transpose(); |
| std::vector<std::vector<SmallVector<Fraction>>> affine; |
| affine.reserve(numDims); |
| for (unsigned j = 0; j < numDims; ++j) |
| affine.push_back({SmallVector<Fraction>{vTranspose.getRow(j)}}); |
| |
| QuasiPolynomial num(numParams, coefficients, affine); |
| num = num.simplify(); |
| |
| std::vector<Fraction> dens; |
| dens.reserve(ds.size()); |
| // Similarly, each term in the denominator has exponent |
| // given by the dot product of μ with u_i. |
| for (const Point &d : ds) { |
| // This term in the denominator is |
| // (1 - t^dens.back()) |
| dens.emplace_back(dotProduct(d, mu)); |
| } |
| |
| return {num, dens}; |
| } |
| |
| /// Normalize all denominator exponents `dens` to their absolute values |
| /// by multiplying and dividing by the inverses, in a function of the form |
| /// sign * t^num / prod_j (1 - t^dens[j]). |
| /// Here, sign = ± 1, |
| /// num is a QuasiPolynomial, and |
| /// each dens[j] is a Fraction. |
| void normalizeDenominatorExponents(int &sign, QuasiPolynomial &num, |
| std::vector<Fraction> &dens) { |
| // We track the number of exponents that are negative in the |
| // denominator, and convert them to their absolute values. |
| unsigned numNegExps = 0; |
| Fraction sumNegExps(0, 1); |
| for (const auto &den : dens) { |
| if (den < 0) { |
| numNegExps += 1; |
| sumNegExps += den; |
| } |
| } |
| |
| // If we have (1 - t^-c) in the denominator, for positive c, |
| // multiply and divide by t^c. |
| // We convert all negative-exponent terms at once; therefore |
| // we multiply and divide by t^sumNegExps. |
| // Then we get |
| // -(1 - t^c) in the denominator, |
| // increase the numerator by c, and |
| // flip the sign of the function. |
| if (numNegExps % 2 == 1) |
| sign = -sign; |
| num = num - QuasiPolynomial(num.getNumInputs(), sumNegExps); |
| } |
| |
| /// Compute the binomial coefficients nCi for 0 ≤ i ≤ r, |
| /// where n is a QuasiPolynomial. |
| std::vector<QuasiPolynomial> getBinomialCoefficients(const QuasiPolynomial &n, |
| unsigned r) { |
| unsigned numParams = n.getNumInputs(); |
| std::vector<QuasiPolynomial> coefficients; |
| coefficients.reserve(r + 1); |
| coefficients.emplace_back(numParams, 1); |
| for (unsigned j = 1; j <= r; ++j) |
| // We use the recursive formula for binomial coefficients here and below. |
| coefficients.emplace_back( |
| (coefficients[j - 1] * (n - QuasiPolynomial(numParams, j - 1)) / |
| Fraction(j, 1)) |
| .simplify()); |
| return coefficients; |
| } |
| |
| /// Compute the binomial coefficients nCi for 0 ≤ i ≤ r, |
| /// where n is a QuasiPolynomial. |
| std::vector<Fraction> getBinomialCoefficients(const Fraction &n, |
| const Fraction &r) { |
| std::vector<Fraction> coefficients; |
| coefficients.reserve((int64_t)floor(r)); |
| coefficients.emplace_back(1); |
| for (unsigned j = 1; j <= r; ++j) |
| coefficients.emplace_back(coefficients[j - 1] * (n - (j - 1)) / (j)); |
| return coefficients; |
| } |
| |
| /// We have a generating function of the form |
| /// f_p(x) = \sum_i sign_i * (x^n_i(p)) / (\prod_j (1 - x^d_{ij}) |
| /// |
| /// where sign_i is ±1, |
| /// n_i \in Q^p -> Q^d is the sum of the vectors d_{ij}, weighted by the |
| /// floors of d affine functions on p parameters. |
| /// d_{ij} \in Q^d are vectors. |
| /// |
| /// We need to find the number of terms of the form x^t in the expansion of |
| /// this function. |
| /// However, direct substitution (x = (1, ..., 1)) causes the denominator |
| /// to become zero. |
| /// |
| /// We therefore use the following procedure instead: |
| /// 1. Substitute x_i = (s+1)^μ_i for some vector μ. This makes the generating |
| /// function a function of a scalar s. |
| /// 2. Write each term in this function as P(s)/Q(s), where P and Q are |
| /// polynomials. P has coefficients as quasipolynomials in d parameters, while |
| /// Q has coefficients as scalars. |
| /// 3. Find the constant term in the expansion of each term P(s)/Q(s). This is |
| /// equivalent to substituting s = 0. |
| /// |
| /// Verdoolaege, Sven, et al. "Counting integer points in parametric |
| /// polytopes using Barvinok's rational functions." Algorithmica 48 (2007): |
| /// 37-66. |
| QuasiPolynomial |
| mlir::presburger::detail::computeNumTerms(const GeneratingFunction &gf) { |
| // Step (1) We need to find a μ such that we can substitute x_i = |
| // (s+1)^μ_i. After this substitution, the exponent of (s+1) in the |
| // denominator is (μ_i • d_{ij}) in each term. Clearly, this cannot become |
| // zero. Hence we find a vector μ that is not orthogonal to any of the |
| // d_{ij} and substitute x accordingly. |
| std::vector<Point> allDenominators; |
| for (ArrayRef<Point> den : gf.getDenominators()) |
| llvm::append_range(allDenominators, den); |
| Point mu = getNonOrthogonalVector(allDenominators); |
| |
| unsigned numParams = gf.getNumParams(); |
| const std::vector<std::vector<Point>> &ds = gf.getDenominators(); |
| QuasiPolynomial totalTerm(numParams, 0); |
| for (unsigned i = 0, e = ds.size(); i < e; ++i) { |
| int sign = gf.getSigns()[i]; |
| |
| // Compute the new exponents of (s+1) for the numerator and the |
| // denominator after substituting μ. |
| auto [numExp, dens] = |
| substituteMuInTerm(numParams, gf.getNumerators()[i], ds[i], mu); |
| // Now the numerator is (s+1)^numExp |
| // and the denominator is \prod_j (1 - (s+1)^dens[j]). |
| |
| // Step (2) We need to express the terms in the function as quotients of |
| // polynomials. Each term is now of the form |
| // sign_i * (s+1)^numExp / (\prod_j (1 - (s+1)^dens[j])) |
| // For the i'th term, we first normalize the denominator to have only |
| // positive exponents. We convert all the dens[j] to their |
| // absolute values and change the sign and exponent in the numerator. |
| normalizeDenominatorExponents(sign, numExp, dens); |
| |
| // Then, using the formula for geometric series, we replace each (1 - |
| // (s+1)^(dens[j])) with |
| // (-s)(\sum_{0 ≤ k < dens[j]} (s+1)^k). |
| for (auto &j : dens) |
| j = abs(j) - 1; |
| // Note that at this point, the semantics of `dens[j]` changes to mean |
| // a term (\sum_{0 ≤ k ≤ dens[j]} (s+1)^k). The denominator is, as before, |
| // a product of these terms. |
| |
| // Since the -s are taken out, the sign changes if there is an odd number |
| // of such terms. |
| unsigned r = dens.size(); |
| if (dens.size() % 2 == 1) |
| sign = -sign; |
| |
| // Thus the term overall now has the form |
| // sign'_i * (s+1)^numExp / |
| // (s^r * \prod_j (\sum_{0 ≤ k < dens[j]} (s+1)^k)). |
| // This means that |
| // the numerator is a polynomial in s, with coefficients as |
| // quasipolynomials (given by binomial coefficients), and the denominator |
| // is a polynomial in s, with integral coefficients (given by taking the |
| // convolution over all j). |
| |
| // Step (3) We need to find the constant term in the expansion of each |
| // term. Since each term has s^r as a factor in the denominator, we avoid |
| // substituting s = 0 directly; instead, we find the coefficient of s^r in |
| // sign'_i * (s+1)^numExp / (\prod_j (\sum_k (s+1)^k)), |
| // Letting P(s) = (s+1)^numExp and Q(s) = \prod_j (...), |
| // we need to find the coefficient of s^r in P(s)/Q(s), |
| // for which we use the `getCoefficientInRationalFunction()` function. |
| |
| // First, we compute the coefficients of P(s), which are binomial |
| // coefficients. |
| // We only need the first r+1 of these, as higher-order terms do not |
| // contribute to the coefficient of s^r. |
| std::vector<QuasiPolynomial> numeratorCoefficients = |
| getBinomialCoefficients(numExp, r); |
| |
| // Then we compute the coefficients of each individual term in Q(s), |
| // which are (dens[i]+1) C (k+1) for 0 ≤ k ≤ dens[i]. |
| std::vector<std::vector<Fraction>> eachTermDenCoefficients; |
| std::vector<Fraction> singleTermDenCoefficients; |
| eachTermDenCoefficients.reserve(r); |
| for (const Fraction &den : dens) { |
| singleTermDenCoefficients = getBinomialCoefficients(den + 1, den + 1); |
| eachTermDenCoefficients.emplace_back( |
| ArrayRef<Fraction>(singleTermDenCoefficients).drop_front()); |
| } |
| |
| // Now we find the coefficients in Q(s) itself |
| // by taking the convolution of the coefficients |
| // of all the terms. |
| std::vector<Fraction> denominatorCoefficients; |
| denominatorCoefficients = eachTermDenCoefficients[0]; |
| for (unsigned j = 1, e = eachTermDenCoefficients.size(); j < e; ++j) |
| denominatorCoefficients = multiplyPolynomials(denominatorCoefficients, |
| eachTermDenCoefficients[j]); |
| |
| totalTerm = |
| totalTerm + getCoefficientInRationalFunction(r, numeratorCoefficients, |
| denominatorCoefficients) * |
| QuasiPolynomial(numParams, sign); |
| } |
| |
| return totalTerm.simplify(); |
| } |