blob: 4546e49639fb9eedd68ab9bd9d16c283eb2309fb [file] [log] [blame]
//===- Barvinok.cpp - Barvinok's Algorithm ----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Presburger/Barvinok.h"
#include "mlir/Analysis/Presburger/Utils.h"
#include "llvm/ADT/Sequence.h"
#include <algorithm>
using namespace mlir;
using namespace presburger;
using namespace mlir::presburger::detail;
/// Assuming that the input cone is pointed at the origin,
/// converts it to its dual in V-representation.
/// Essentially we just remove the all-zeroes constant column.
ConeV mlir::presburger::detail::getDual(ConeH cone) {
unsigned numIneq = cone.getNumInequalities();
unsigned numVar = cone.getNumCols() - 1;
ConeV dual(numIneq, numVar, 0, 0);
// Assuming that an inequality of the form
// a1*x1 + ... + an*xn + b ≥ 0
// is represented as a row [a1, ..., an, b]
// and that b = 0.
for (auto i : llvm::seq<int>(0, numIneq)) {
assert(cone.atIneq(i, numVar) == 0 &&
"H-representation of cone is not centred at the origin!");
for (unsigned j = 0; j < numVar; ++j) {
dual.at(i, j) = cone.atIneq(i, j);
}
}
// Now dual is of the form [ [a1, ..., an] , ... ]
// which is the V-representation of the dual.
return dual;
}
/// Converts a cone in V-representation to the H-representation
/// of its dual, pointed at the origin (not at the original vertex).
/// Essentially adds a column consisting only of zeroes to the end.
ConeH mlir::presburger::detail::getDual(ConeV cone) {
unsigned rows = cone.getNumRows();
unsigned columns = cone.getNumColumns();
ConeH dual = defineHRep(columns);
// Add a new column (for constants) at the end.
// This will be initialized to zero.
cone.insertColumn(columns);
for (unsigned i = 0; i < rows; ++i)
dual.addInequality(cone.getRow(i));
// Now dual is of the form [ [a1, ..., an, 0] , ... ]
// which is the H-representation of the dual.
return dual;
}
/// Find the index of a cone in V-representation.
DynamicAPInt mlir::presburger::detail::getIndex(const ConeV &cone) {
if (cone.getNumRows() > cone.getNumColumns())
return DynamicAPInt(0);
return cone.determinant();
}
/// Compute the generating function for a unimodular cone.
/// This consists of a single term of the form
/// sign * x^num / prod_j (1 - x^den_j)
///
/// sign is either +1 or -1.
/// den_j is defined as the set of generators of the cone.
/// num is computed by expressing the vertex as a weighted
/// sum of the generators, and then taking the floor of the
/// coefficients.
GeneratingFunction
mlir::presburger::detail::computeUnimodularConeGeneratingFunction(
ParamPoint vertex, int sign, const ConeH &cone) {
// Consider a cone with H-representation [0 -1].
// [-1 -2]
// Let the vertex be given by the matrix [ 2 2 0], with 2 params.
// [-1 -1/2 1]
// `cone` must be unimodular.
assert(abs(getIndex(getDual(cone))) == 1 && "input cone is not unimodular!");
unsigned numVar = cone.getNumVars();
unsigned numIneq = cone.getNumInequalities();
// Thus its ray matrix, U, is the inverse of the
// transpose of its inequality matrix, `cone`.
// The last column of the inequality matrix is null,
// so we remove it to obtain a square matrix.
FracMatrix transp = FracMatrix(cone.getInequalities()).transpose();
transp.removeRow(numVar);
FracMatrix generators(numVar, numIneq);
transp.determinant(/*inverse=*/&generators); // This is the U-matrix.
// Thus the generators are given by U = [2 -1].
// [-1 0]
// The powers in the denominator of the generating
// function are given by the generators of the cone,
// i.e., the rows of the matrix U.
std::vector<Point> denominator(numIneq);
ArrayRef<Fraction> row;
for (auto i : llvm::seq<int>(0, numVar)) {
row = generators.getRow(i);
denominator[i] = Point(row);
}
// The vertex is v \in Z^{d x (n+1)}
// We need to find affine functions of parameters λ_i(p)
// such that v = Σ λ_i(p)*u_i,
// where u_i are the rows of U (generators)
// The λ_i are given by the columns of Λ = v^T U^{-1}, and
// we have transp = U^{-1}.
// Then the exponent in the numerator will be
// Σ -floor(-λ_i(p))*u_i.
// Thus we store the (exponent of the) numerator as the affine function -Λ,
// since the generators u_i are already stored as the exponent of the
// denominator. Note that the outer -1 will have to be accounted for, as it is
// not stored. See end for an example.
unsigned numColumns = vertex.getNumColumns();
unsigned numRows = vertex.getNumRows();
ParamPoint numerator(numColumns, numRows);
SmallVector<Fraction> ithCol(numRows);
for (auto i : llvm::seq<int>(0, numColumns)) {
for (auto j : llvm::seq<int>(0, numRows))
ithCol[j] = vertex(j, i);
numerator.setRow(i, transp.preMultiplyWithRow(ithCol));
numerator.negateRow(i);
}
// Therefore Λ will be given by [ 1 0 ] and the negation of this will be
// [ 1/2 -1 ]
// [ -1 -2 ]
// stored as the numerator.
// Algebraically, the numerator exponent is
// [ -2 ⌊ - N - M/2 + 1 ⌋ + 1 ⌊ 0 + M + 2 ⌋ ] -> first COLUMN of U is [2, -1]
// [ 1 ⌊ - N - M/2 + 1 ⌋ + 0 ⌊ 0 + M + 2 ⌋ ] -> second COLUMN of U is [-1, 0]
return GeneratingFunction(numColumns - 1, SmallVector<int>(1, sign),
std::vector({numerator}),
std::vector({denominator}));
}
/// We use Gaussian elimination to find the solution to a set of d equations
/// of the form
/// a_1 x_1 + ... + a_d x_d + b_1 m_1 + ... + b_p m_p + c = 0
/// where x_i are variables,
/// m_i are parameters and
/// a_i, b_i, c are rational coefficients.
///
/// The solution expresses each x_i as an affine function of the m_i, and is
/// therefore represented as a matrix of size d x (p+1).
/// If there is no solution, we return null.
std::optional<ParamPoint>
mlir::presburger::detail::solveParametricEquations(FracMatrix equations) {
// equations is a d x (d + p + 1) matrix.
// Each row represents an equation.
unsigned d = equations.getNumRows();
unsigned numCols = equations.getNumColumns();
// If the determinant is zero, there is no unique solution.
// Thus we return null.
if (FracMatrix(equations.getSubMatrix(/*fromRow=*/0, /*toRow=*/d - 1,
/*fromColumn=*/0,
/*toColumn=*/d - 1))
.determinant() == 0)
return std::nullopt;
// Perform row operations to make each column all zeros except for the
// diagonal element, which is made to be one.
for (unsigned i = 0; i < d; ++i) {
// First ensure that the diagonal element is nonzero, by swapping
// it with a row that is non-zero at column i.
if (equations(i, i) != 0)
continue;
for (unsigned j = i + 1; j < d; ++j) {
if (equations(j, i) == 0)
continue;
equations.swapRows(j, i);
break;
}
Fraction diagElement = equations(i, i);
// Apply row operations to make all elements except the diagonal to zero.
for (unsigned j = 0; j < d; ++j) {
if (i == j)
continue;
if (equations(j, i) == 0)
continue;
// Apply row operations to make element (j, i) zero by subtracting the
// ith row, appropriately scaled.
Fraction currentElement = equations(j, i);
equations.addToRow(/*sourceRow=*/i, /*targetRow=*/j,
/*scale=*/-currentElement / diagElement);
}
}
// Rescale diagonal elements to 1.
for (unsigned i = 0; i < d; ++i)
equations.scaleRow(i, 1 / equations(i, i));
// Now we have reduced the equations to the form
// x_i + b_1' m_1 + ... + b_p' m_p + c' = 0
// i.e. each variable appears exactly once in the system, and has coefficient
// one.
//
// Thus we have
// x_i = - b_1' m_1 - ... - b_p' m_p - c
// and so we return the negation of the last p + 1 columns of the matrix.
//
// We copy these columns and return them.
ParamPoint vertex =
equations.getSubMatrix(/*fromRow=*/0, /*toRow=*/d - 1,
/*fromColumn=*/d, /*toColumn=*/numCols - 1);
vertex.negateMatrix();
return vertex;
}
/// This is an implementation of the Clauss-Loechner algorithm for chamber
/// decomposition.
///
/// We maintain a list of pairwise disjoint chambers and the generating
/// functions corresponding to each one. We iterate over the list of regions,
/// each time adding the current region's generating function to the chambers
/// where it is active and separating the chambers where it is not.
///
/// Given the region each generating function is active in, for each subset of
/// generating functions the region that (the sum of) precisely this subset is
/// in, is the intersection of the regions that these are active in,
/// intersected with the complements of the remaining regions.
std::vector<std::pair<PresburgerSet, GeneratingFunction>>
mlir::presburger::detail::computeChamberDecomposition(
unsigned numSymbols, ArrayRef<std::pair<PresburgerSet, GeneratingFunction>>
regionsAndGeneratingFunctions) {
assert(!regionsAndGeneratingFunctions.empty() &&
"there must be at least one chamber!");
// We maintain a list of regions and their associated generating function
// initialized with the universe and the empty generating function.
std::vector<std::pair<PresburgerSet, GeneratingFunction>> chambers = {
{PresburgerSet::getUniverse(PresburgerSpace::getSetSpace(numSymbols)),
GeneratingFunction(numSymbols, {}, {}, {})}};
// We iterate over the region list.
//
// For each activity region R_j (corresponding to the generating function
// gf_j), we examine all the current chambers R_i.
//
// If R_j has a full-dimensional intersection with an existing chamber R_i,
// then that chamber is replaced by two new ones:
// 1. the intersection R_i \cap R_j, where the generating function is
// gf_i + gf_j.
// 2. the difference R_i - R_j, where the generating function is gf_i.
//
// At each step, we define a new chamber list after considering gf_j,
// replacing and appending chambers as discussed above.
//
// The loop has the invariant that the union over all the chambers gives the
// universe at every step.
for (const auto &[region, generatingFunction] :
regionsAndGeneratingFunctions) {
std::vector<std::pair<PresburgerSet, GeneratingFunction>> newChambers;
for (const auto &[currentRegion, currentGeneratingFunction] : chambers) {
PresburgerSet intersection = currentRegion.intersect(region);
// If the intersection is not full-dimensional, we do not modify
// the chamber list.
if (!intersection.isFullDim()) {
newChambers.emplace_back(currentRegion, currentGeneratingFunction);
continue;
}
// If it is, we add the intersection and the difference as chambers.
newChambers.emplace_back(intersection,
currentGeneratingFunction + generatingFunction);
newChambers.emplace_back(currentRegion.subtract(region),
currentGeneratingFunction);
}
chambers = std::move(newChambers);
}
return chambers;
}
/// For a polytope expressed as a set of n inequalities, compute the generating
/// function corresponding to the lattice points included in the polytope. This
/// algorithm has three main steps:
/// 1. Enumerate the vertices, by iterating over subsets of inequalities and
/// checking for satisfiability. For each d-subset of inequalities (where d
/// is the number of variables), we solve to obtain the vertex in terms of
/// the parameters, and then check for the region in parameter space where
/// this vertex satisfies the remaining (n - d) inequalities.
/// 2. For each vertex, identify the tangent cone and compute the generating
/// function corresponding to it. The generating function depends on the
/// parametric expression of the vertex and the (non-parametric) generators
/// of the tangent cone.
/// 3. [Clauss-Loechner decomposition] Identify the regions in parameter space
/// (chambers) where each vertex is active, and accordingly compute the
/// GF of the polytope in each chamber.
///
/// Verdoolaege, Sven, et al. "Counting integer points in parametric
/// polytopes using Barvinok's rational functions." Algorithmica 48 (2007):
/// 37-66.
std::vector<std::pair<PresburgerSet, GeneratingFunction>>
mlir::presburger::detail::computePolytopeGeneratingFunction(
const PolyhedronH &poly) {
unsigned numVars = poly.getNumRangeVars();
unsigned numSymbols = poly.getNumSymbolVars();
unsigned numIneqs = poly.getNumInequalities();
// We store a list of the computed vertices.
std::vector<ParamPoint> vertices;
// For each vertex, we store the corresponding active region and the
// generating functions of the tangent cone, in order.
std::vector<std::pair<PresburgerSet, GeneratingFunction>>
regionsAndGeneratingFunctions;
// We iterate over all subsets of inequalities with cardinality numVars,
// using permutations of numVars 1's and (numIneqs - numVars) 0's.
//
// For a given permutation, we consider a subset which contains
// the i'th inequality if the i'th bit in the bitset is 1.
//
// We start with the permutation that takes the last numVars inequalities.
SmallVector<int> indicator(numIneqs);
for (unsigned i = numIneqs - numVars; i < numIneqs; ++i)
indicator[i] = 1;
do {
// Collect the inequalities corresponding to the bits which are set
// and the remaining ones.
auto [subset, remainder] = poly.getInequalities().splitByBitset(indicator);
// All other inequalities are stored in a2 and b2c2.
//
// These are column-wise splits of the inequalities;
// a2 stores the coefficients of the variables, and
// b2c2 stores the coefficients of the parameters and the constant term.
FracMatrix a2(numIneqs - numVars, numVars);
FracMatrix b2c2(numIneqs - numVars, numSymbols + 1);
a2 = FracMatrix(
remainder.getSubMatrix(0, numIneqs - numVars - 1, 0, numVars - 1));
b2c2 = FracMatrix(remainder.getSubMatrix(0, numIneqs - numVars - 1, numVars,
numVars + numSymbols));
// Find the vertex, if any, corresponding to the current subset of
// inequalities.
std::optional<ParamPoint> vertex =
solveParametricEquations(FracMatrix(subset)); // d x (p+1)
if (!vertex)
continue;
if (llvm::is_contained(vertices, vertex))
continue;
// If this subset corresponds to a vertex that has not been considered,
// store it.
vertices.emplace_back(*vertex);
// If a vertex is formed by the intersection of more than d facets, we
// assume that any d-subset of these facets can be solved to obtain its
// expression. This assumption is valid because, if the vertex has two
// distinct parametric expressions, then a nontrivial equality among the
// parameters holds, which is a contradiction as we know the parameter
// space to be full-dimensional.
// Let the current vertex be [X | y], where
// X represents the coefficients of the parameters and
// y represents the constant term.
//
// The region (in parameter space) where this vertex is active is given
// by substituting the vertex into the *remaining* inequalities of the
// polytope (those which were not collected into `subset`), i.e., into the
// inequalities [A2 | B2 | c2].
//
// Thus, the coefficients of the parameters after substitution become
// (A2 • X + B2)
// and the constant terms become
// (A2 • y + c2).
//
// The region is therefore given by
// (A2 • X + B2) p + (A2 • y + c2) ≥ 0
//
// This is equivalent to A2 • [X | y] + [B2 | c2].
//
// Thus we premultiply [X | y] with each row of A2
// and add each row of [B2 | c2].
FracMatrix activeRegion(numIneqs - numVars, numSymbols + 1);
for (unsigned i = 0; i < numIneqs - numVars; i++) {
activeRegion.setRow(i, vertex->preMultiplyWithRow(a2.getRow(i)));
activeRegion.addToRow(i, b2c2.getRow(i), 1);
}
// We convert the representation of the active region to an integers-only
// form so as to store it as a PresburgerSet.
IntegerPolyhedron activeRegionRel(
PresburgerSpace::getRelationSpace(0, numSymbols, 0, 0), activeRegion);
// Now, we compute the generating function at this vertex.
// We collect the inequalities corresponding to each vertex to compute
// the tangent cone at that vertex.
//
// We only need the coefficients of the variables (NOT the parameters)
// as the generating function only depends on these.
// We translate the cones to be pointed at the origin by making the
// constant terms zero.
ConeH tangentCone = defineHRep(numVars);
for (unsigned j = 0, e = subset.getNumRows(); j < e; ++j) {
SmallVector<DynamicAPInt> ineq(numVars + 1);
for (unsigned k = 0; k < numVars; ++k)
ineq[k] = subset(j, k);
tangentCone.addInequality(ineq);
}
// We assume that the tangent cone is unimodular, so there is no need
// to decompose it.
//
// In the general case, the unimodular decomposition may have several
// cones.
GeneratingFunction vertexGf(numSymbols, {}, {}, {});
SmallVector<std::pair<int, ConeH>, 4> unimodCones = {{1, tangentCone}};
for (const std::pair<int, ConeH> &signedCone : unimodCones) {
auto [sign, cone] = signedCone;
vertexGf = vertexGf +
computeUnimodularConeGeneratingFunction(*vertex, sign, cone);
}
// We store the vertex we computed with the generating function of its
// tangent cone.
regionsAndGeneratingFunctions.emplace_back(PresburgerSet(activeRegionRel),
vertexGf);
} while (std::next_permutation(indicator.begin(), indicator.end()));
// Now, we use Clauss-Loechner decomposition to identify regions in parameter
// space where each vertex is active. These regions (chambers) have the
// property that no two of them have a full-dimensional intersection, i.e.,
// they may share "facets" or "edges", but their intersection can only have
// up to numVars - 1 dimensions.
//
// In each chamber, we sum up the generating functions of the active vertices
// to find the generating function of the polytope.
return computeChamberDecomposition(numSymbols, regionsAndGeneratingFunctions);
}
/// We use an iterative procedure to find a vector not orthogonal
/// to a given set, ignoring the null vectors.
/// Let the inputs be {x_1, ..., x_k}, all vectors of length n.
///
/// In the following,
/// vs[:i] means the elements of vs up to and including the i'th one,
/// <vs, us> means the dot product of vs and us,
/// vs ++ [v] means the vector vs with the new element v appended to it.
///
/// We proceed iteratively; for steps d = 0, ... n-1, we construct a vector
/// which is not orthogonal to any of {x_1[:d], ..., x_n[:d]}, ignoring
/// the null vectors.
/// At step d = 0, we let vs = [1]. Clearly this is not orthogonal to
/// any vector in the set {x_1[0], ..., x_n[0]}, except the null ones,
/// which we ignore.
/// At step d > 0 , we need a number v
/// s.t. <x_i[:d], vs++[v]> != 0 for all i.
/// => <x_i[:d-1], vs> + x_i[d]*v != 0
/// => v != - <x_i[:d-1], vs> / x_i[d]
/// We compute this value for all x_i, and then
/// set v to be the maximum element of this set plus one. Thus
/// v is outside the set as desired, and we append it to vs
/// to obtain the result of the d'th step.
Point mlir::presburger::detail::getNonOrthogonalVector(
ArrayRef<Point> vectors) {
unsigned dim = vectors[0].size();
assert(llvm::all_of(
vectors,
[&dim](const Point &vector) { return vector.size() == dim; }) &&
"all vectors need to be the same size!");
SmallVector<Fraction> newPoint = {Fraction(1, 1)};
Fraction maxDisallowedValue = -Fraction(1, 0),
disallowedValue = Fraction(0, 1);
for (unsigned d = 1; d < dim; ++d) {
// Compute the disallowed values - <x_i[:d-1], vs> / x_i[d] for each i.
maxDisallowedValue = -Fraction(1, 0);
for (const Point &vector : vectors) {
if (vector[d] == 0)
continue;
disallowedValue =
-dotProduct(ArrayRef(vector).slice(0, d), newPoint) / vector[d];
// Find the biggest such value
maxDisallowedValue = std::max(maxDisallowedValue, disallowedValue);
}
newPoint.emplace_back(maxDisallowedValue + 1);
}
return newPoint;
}
/// We use the following recursive formula to find the coefficient of
/// s^power in the rational function given by P(s)/Q(s).
///
/// Let P[i] denote the coefficient of s^i in the polynomial P(s).
/// (P/Q)[r] =
/// if (r == 0) then
/// P[0]/Q[0]
/// else
/// (P[r] - {Σ_{i=1}^r (P/Q)[r-i] * Q[i])}/(Q[0])
/// We therefore recursively call `getCoefficientInRationalFunction` on
/// all i \in [0, power).
///
/// https://math.ucdavis.edu/~deloera/researchsummary/
/// barvinokalgorithm-latte1.pdf, p. 1285
QuasiPolynomial mlir::presburger::detail::getCoefficientInRationalFunction(
unsigned power, ArrayRef<QuasiPolynomial> num, ArrayRef<Fraction> den) {
assert(!den.empty() && "division by empty denominator in rational function!");
unsigned numParam = num[0].getNumInputs();
// We use the `isEqual` method of PresburgerSpace, which QuasiPolynomial
// inherits from.
assert(llvm::all_of(num,
[&num](const QuasiPolynomial &qp) {
return num[0].isEqual(qp);
}) &&
"the quasipolynomials should all belong to the same space!");
std::vector<QuasiPolynomial> coefficients;
coefficients.reserve(power + 1);
coefficients.emplace_back(num[0] / den[0]);
for (unsigned i = 1; i <= power; ++i) {
// If the power is not there in the numerator, the coefficient is zero.
coefficients.emplace_back(i < num.size() ? num[i]
: QuasiPolynomial(numParam, 0));
// After den.size(), the coefficients are zero, so we stop
// subtracting at that point (if it is less than i).
unsigned limit = std::min<unsigned long>(i, den.size() - 1);
for (unsigned j = 1; j <= limit; ++j)
coefficients[i] = coefficients[i] -
coefficients[i - j] * QuasiPolynomial(numParam, den[j]);
coefficients[i] = coefficients[i] / den[0];
}
return coefficients[power].simplify();
}
/// Substitute x_i = t^μ_i in one term of a generating function, returning
/// a quasipolynomial which represents the exponent of the numerator
/// of the result, and a vector which represents the exponents of the
/// denominator of the result.
/// If the returned value is {num, dens}, it represents the function
/// t^num / \prod_j (1 - t^dens[j]).
/// v represents the affine functions whose floors are multiplied by the
/// generators, and ds represents the list of generators.
std::pair<QuasiPolynomial, std::vector<Fraction>>
substituteMuInTerm(unsigned numParams, const ParamPoint &v,
const std::vector<Point> &ds, const Point &mu) {
unsigned numDims = mu.size();
#ifndef NDEBUG
for (const Point &d : ds)
assert(d.size() == numDims &&
"μ has to have the same number of dimensions as the generators!");
#endif
// First, the exponent in the numerator becomes
// - (μ • u_1) * (floor(first col of v))
// - (μ • u_2) * (floor(second col of v)) - ...
// - (μ • u_d) * (floor(d'th col of v))
// So we store the negation of the dot products.
// We have d terms, each of whose coefficient is the negative dot product.
SmallVector<Fraction> coefficients;
coefficients.reserve(numDims);
for (const Point &d : ds)
coefficients.emplace_back(-dotProduct(mu, d));
// Then, the affine function is a single floor expression, given by the
// corresponding column of v.
ParamPoint vTranspose = v.transpose();
std::vector<std::vector<SmallVector<Fraction>>> affine;
affine.reserve(numDims);
for (unsigned j = 0; j < numDims; ++j)
affine.push_back({SmallVector<Fraction>{vTranspose.getRow(j)}});
QuasiPolynomial num(numParams, coefficients, affine);
num = num.simplify();
std::vector<Fraction> dens;
dens.reserve(ds.size());
// Similarly, each term in the denominator has exponent
// given by the dot product of μ with u_i.
for (const Point &d : ds) {
// This term in the denominator is
// (1 - t^dens.back())
dens.emplace_back(dotProduct(d, mu));
}
return {num, dens};
}
/// Normalize all denominator exponents `dens` to their absolute values
/// by multiplying and dividing by the inverses, in a function of the form
/// sign * t^num / prod_j (1 - t^dens[j]).
/// Here, sign = ± 1,
/// num is a QuasiPolynomial, and
/// each dens[j] is a Fraction.
void normalizeDenominatorExponents(int &sign, QuasiPolynomial &num,
std::vector<Fraction> &dens) {
// We track the number of exponents that are negative in the
// denominator, and convert them to their absolute values.
unsigned numNegExps = 0;
Fraction sumNegExps(0, 1);
for (const auto &den : dens) {
if (den < 0) {
numNegExps += 1;
sumNegExps += den;
}
}
// If we have (1 - t^-c) in the denominator, for positive c,
// multiply and divide by t^c.
// We convert all negative-exponent terms at once; therefore
// we multiply and divide by t^sumNegExps.
// Then we get
// -(1 - t^c) in the denominator,
// increase the numerator by c, and
// flip the sign of the function.
if (numNegExps % 2 == 1)
sign = -sign;
num = num - QuasiPolynomial(num.getNumInputs(), sumNegExps);
}
/// Compute the binomial coefficients nCi for 0 ≤ i ≤ r,
/// where n is a QuasiPolynomial.
std::vector<QuasiPolynomial> getBinomialCoefficients(const QuasiPolynomial &n,
unsigned r) {
unsigned numParams = n.getNumInputs();
std::vector<QuasiPolynomial> coefficients;
coefficients.reserve(r + 1);
coefficients.emplace_back(numParams, 1);
for (unsigned j = 1; j <= r; ++j)
// We use the recursive formula for binomial coefficients here and below.
coefficients.emplace_back(
(coefficients[j - 1] * (n - QuasiPolynomial(numParams, j - 1)) /
Fraction(j, 1))
.simplify());
return coefficients;
}
/// Compute the binomial coefficients nCi for 0 ≤ i ≤ r,
/// where n is a QuasiPolynomial.
std::vector<Fraction> getBinomialCoefficients(const Fraction &n,
const Fraction &r) {
std::vector<Fraction> coefficients;
coefficients.reserve((int64_t)floor(r));
coefficients.emplace_back(1);
for (unsigned j = 1; j <= r; ++j)
coefficients.emplace_back(coefficients[j - 1] * (n - (j - 1)) / (j));
return coefficients;
}
/// We have a generating function of the form
/// f_p(x) = \sum_i sign_i * (x^n_i(p)) / (\prod_j (1 - x^d_{ij})
///
/// where sign_i is ±1,
/// n_i \in Q^p -> Q^d is the sum of the vectors d_{ij}, weighted by the
/// floors of d affine functions on p parameters.
/// d_{ij} \in Q^d are vectors.
///
/// We need to find the number of terms of the form x^t in the expansion of
/// this function.
/// However, direct substitution (x = (1, ..., 1)) causes the denominator
/// to become zero.
///
/// We therefore use the following procedure instead:
/// 1. Substitute x_i = (s+1)^μ_i for some vector μ. This makes the generating
/// function a function of a scalar s.
/// 2. Write each term in this function as P(s)/Q(s), where P and Q are
/// polynomials. P has coefficients as quasipolynomials in d parameters, while
/// Q has coefficients as scalars.
/// 3. Find the constant term in the expansion of each term P(s)/Q(s). This is
/// equivalent to substituting s = 0.
///
/// Verdoolaege, Sven, et al. "Counting integer points in parametric
/// polytopes using Barvinok's rational functions." Algorithmica 48 (2007):
/// 37-66.
QuasiPolynomial
mlir::presburger::detail::computeNumTerms(const GeneratingFunction &gf) {
// Step (1) We need to find a μ such that we can substitute x_i =
// (s+1)^μ_i. After this substitution, the exponent of (s+1) in the
// denominator is (μ_i • d_{ij}) in each term. Clearly, this cannot become
// zero. Hence we find a vector μ that is not orthogonal to any of the
// d_{ij} and substitute x accordingly.
std::vector<Point> allDenominators;
for (ArrayRef<Point> den : gf.getDenominators())
llvm::append_range(allDenominators, den);
Point mu = getNonOrthogonalVector(allDenominators);
unsigned numParams = gf.getNumParams();
const std::vector<std::vector<Point>> &ds = gf.getDenominators();
QuasiPolynomial totalTerm(numParams, 0);
for (unsigned i = 0, e = ds.size(); i < e; ++i) {
int sign = gf.getSigns()[i];
// Compute the new exponents of (s+1) for the numerator and the
// denominator after substituting μ.
auto [numExp, dens] =
substituteMuInTerm(numParams, gf.getNumerators()[i], ds[i], mu);
// Now the numerator is (s+1)^numExp
// and the denominator is \prod_j (1 - (s+1)^dens[j]).
// Step (2) We need to express the terms in the function as quotients of
// polynomials. Each term is now of the form
// sign_i * (s+1)^numExp / (\prod_j (1 - (s+1)^dens[j]))
// For the i'th term, we first normalize the denominator to have only
// positive exponents. We convert all the dens[j] to their
// absolute values and change the sign and exponent in the numerator.
normalizeDenominatorExponents(sign, numExp, dens);
// Then, using the formula for geometric series, we replace each (1 -
// (s+1)^(dens[j])) with
// (-s)(\sum_{0 ≤ k < dens[j]} (s+1)^k).
for (auto &j : dens)
j = abs(j) - 1;
// Note that at this point, the semantics of `dens[j]` changes to mean
// a term (\sum_{0 ≤ k ≤ dens[j]} (s+1)^k). The denominator is, as before,
// a product of these terms.
// Since the -s are taken out, the sign changes if there is an odd number
// of such terms.
unsigned r = dens.size();
if (dens.size() % 2 == 1)
sign = -sign;
// Thus the term overall now has the form
// sign'_i * (s+1)^numExp /
// (s^r * \prod_j (\sum_{0 ≤ k < dens[j]} (s+1)^k)).
// This means that
// the numerator is a polynomial in s, with coefficients as
// quasipolynomials (given by binomial coefficients), and the denominator
// is a polynomial in s, with integral coefficients (given by taking the
// convolution over all j).
// Step (3) We need to find the constant term in the expansion of each
// term. Since each term has s^r as a factor in the denominator, we avoid
// substituting s = 0 directly; instead, we find the coefficient of s^r in
// sign'_i * (s+1)^numExp / (\prod_j (\sum_k (s+1)^k)),
// Letting P(s) = (s+1)^numExp and Q(s) = \prod_j (...),
// we need to find the coefficient of s^r in P(s)/Q(s),
// for which we use the `getCoefficientInRationalFunction()` function.
// First, we compute the coefficients of P(s), which are binomial
// coefficients.
// We only need the first r+1 of these, as higher-order terms do not
// contribute to the coefficient of s^r.
std::vector<QuasiPolynomial> numeratorCoefficients =
getBinomialCoefficients(numExp, r);
// Then we compute the coefficients of each individual term in Q(s),
// which are (dens[i]+1) C (k+1) for 0 ≤ k ≤ dens[i].
std::vector<std::vector<Fraction>> eachTermDenCoefficients;
std::vector<Fraction> singleTermDenCoefficients;
eachTermDenCoefficients.reserve(r);
for (const Fraction &den : dens) {
singleTermDenCoefficients = getBinomialCoefficients(den + 1, den + 1);
eachTermDenCoefficients.emplace_back(
ArrayRef<Fraction>(singleTermDenCoefficients).drop_front());
}
// Now we find the coefficients in Q(s) itself
// by taking the convolution of the coefficients
// of all the terms.
std::vector<Fraction> denominatorCoefficients;
denominatorCoefficients = eachTermDenCoefficients[0];
for (unsigned j = 1, e = eachTermDenCoefficients.size(); j < e; ++j)
denominatorCoefficients = multiplyPolynomials(denominatorCoefficients,
eachTermDenCoefficients[j]);
totalTerm =
totalTerm + getCoefficientInRationalFunction(r, numeratorCoefficients,
denominatorCoefficients) *
QuasiPolynomial(numParams, sign);
}
return totalTerm.simplify();
}