| // RUN: mlir-opt %s -split-input-file -verify-diagnostics |
| |
| // ----- |
| func.func @test_create_nd_tdesc_vc_1(%src: memref<24xf32>) { |
| // expected-error@+1 {{Expecting the TensorDesc rank is up to 2 and not greater than the ranks of shape, strides, offsets or the memref source}} |
| %1 = xegpu.create_nd_tdesc %src[0] : memref<24xf32> -> !xegpu.tensor_desc<8x16xf32> |
| return |
| } |
| |
| // ----- |
| |
| func.func @test_create_nd_tdesc_vc_2(%src: memref<24x32xf32>) { |
| // expected-error@+1 {{TensorDesc should have the same element type with the source if it is a memref}} |
| %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf16> |
| return |
| } |
| |
| // ----- |
| func.func @test_create_nd_tdesc_vc_3(%src: memref<2x24x32xf32, 3>) { |
| // expected-error@+1 {{SLM is not supported for 2D block tensor}} |
| %1 = xegpu.create_nd_tdesc %src[0, 0, 0] : memref<2x24x32xf32, 3> -> !xegpu.tensor_desc<8x16xf32, #xegpu.block_tdesc_attr<memory_space = slm>> |
| return |
| } |
| |
| // ----- |
| func.func @test_create_nd_tdesc_vc_4(%src: memref<2x24x32xf32, 3>) { |
| // expected-error@+1 {{Memory space mismatch}} |
| %1 = xegpu.create_nd_tdesc %src[0, 0, 0] : memref<2x24x32xf32, 3> -> !xegpu.tensor_desc<16xf32> |
| return |
| } |
| |
| // ----- |
| func.func @test_create_nd_tdesc_subgroup_1(%src: memref<128x128xf32>) { |
| // expected-error@+1 {{cannot distribute [128, 128] using #xegpu.layout<sg_layout = [4, 2], sg_data = [24, 48]>}} |
| %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<128x128xf32> -> !xegpu.tensor_desc<128x128xf32, #xegpu.layout<sg_layout = [4, 2], sg_data = [24, 48]>> |
| return |
| } |
| |
| // ----- |
| func.func @test_create_nd_tdesc_subgroup_1(%src: memref<128x128xf32>) { |
| // expected-error@+1 {{cannot distribute [128, 128] using #xegpu.layout<sg_layout = [4, 2], sg_data = [32, 64], inst_data = [24, 48]>}} |
| %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<128x128xf32> -> !xegpu.tensor_desc<128x128xf32, #xegpu.layout<sg_layout = [4, 2], sg_data = [32, 64], inst_data = [24, 48]>> |
| return |
| } |
| |
| // ----- |
| func.func @test_create_nd_tdesc_subgroup_1(%src: memref<128x128xf32>) { |
| // expected-error@+1 {{cannot distribute [128, 128] using #xegpu.layout<sg_layout = [4, 2], sg_data = [32, 64], inst_data = [64, 32]>}} |
| %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<128x128xf32> -> !xegpu.tensor_desc<128x128xf32, #xegpu.layout<sg_layout = [4, 2], sg_data = [32, 64], inst_data = [64, 32]>> |
| return |
| } |
| |
| // ----- |
| func.func @test_prefetch_nd_vc_1(%src: memref<24x32xf16>) { |
| %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16> |
| // expected-error@+1 {{invalid l1_hint: #xegpu.cache_hint<write_back>}} |
| xegpu.prefetch_nd %1 <{l1_hint = #xegpu.cache_hint<write_back>}>: !xegpu.tensor_desc<8x16xf16> |
| return |
| } |
| |
| // ----- |
| func.func @test_prefetch_nd_vc_2(%src: memref<24xf16>) { |
| %0 = arith.constant dense<[0, 1, 2, 3, 4, 5, 6, 7]> : vector<8xindex> |
| %1 = xegpu.create_tdesc %src, %0 : memref<24xf16>, vector<8xindex> |
| -> !xegpu.tensor_desc<8xf16, #xegpu.scatter_tdesc_attr<>> |
| // expected-error@+1 {{Expects a non-scattered TensorDesc}} |
| xegpu.prefetch_nd %1 <{l1_hint = #xegpu.cache_hint<cached>}> |
| : !xegpu.tensor_desc<8xf16, #xegpu.scatter_tdesc_attr<>> |
| return |
| } |
| |
| // ----- |
| func.func @test_load_nd_vc_1(%src: memref<8x16xf16>) { |
| %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<8x16xf16> -> !xegpu.tensor_desc<8x16xf16> |
| // expected-error@+1 {{invalid l1_hint: #xegpu.cache_hint<write_back>}} |
| %2 = xegpu.load_nd %1 <{l1_hint = #xegpu.cache_hint<write_back>}> |
| : !xegpu.tensor_desc<8x16xf16> -> vector<4x16x2xf16> |
| return |
| } |
| |
| // ----- |
| func.func @test_load_nd_vc_2(%src: memref<16xf16>) { |
| %0 = arith.constant dense<[0, 2, 4, 6, 8, 10, 12, 14]> : vector<8xindex> |
| %1 = xegpu.create_tdesc %src, %0 : memref<16xf16>, vector<8xindex> |
| -> !xegpu.tensor_desc<8x2xf16, #xegpu.scatter_tdesc_attr<chunk_size = 2>> |
| // expected-error@+1 {{Expects a non-scattered TensorDesc.}} |
| %2 = xegpu.load_nd %1 <{l1_hint = #xegpu.cache_hint<cached>}> |
| : !xegpu.tensor_desc<8x2xf16, #xegpu.scatter_tdesc_attr<chunk_size = 2>> -> vector<8x2xf16> |
| return |
| } |
| |
| // ----- |
| func.func @test_load_nd_vc_3(%src: memref<8x16xf16>) { |
| %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<8x16xf16> -> !xegpu.tensor_desc<16xf16> |
| // expected-warning@+1 {{Invalid Packed Attr.}} |
| %2 = xegpu.load_nd %1 <{packed, l1_hint = #xegpu.cache_hint<cached>, l2_hint = #xegpu.cache_hint<uncached>}> |
| : !xegpu.tensor_desc<16xf16> -> vector<16xf16> |
| return |
| } |
| |
| // ----- |
| func.func @test_load_nd_vc_4(%src: memref<24x32xf32>) { |
| %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> |
| !xegpu.tensor_desc<8x16xf32> |
| // expected-error@+1 {{Result shape [8, 1] is not consistent with tensor descriptor}} |
| %2 = xegpu.load_nd %1 <{l1_hint = #xegpu.cache_hint<cached>, |
| l2_hint = #xegpu.cache_hint<uncached>}> |
| : !xegpu.tensor_desc<8x16xf32> -> vector<8x1xf32> |
| return |
| } |
| |
| // ----- |
| func.func @test_load_nd_layout(%src: memref<24x32xf32>) { |
| %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<16xf32> |
| // expected-error@+1 {{Result shape [3] is not a valid distribution for tensor descriptor}} |
| %2 = xegpu.load_nd %1 <{l1_hint = #xegpu.cache_hint<cached>, |
| l2_hint = #xegpu.cache_hint<uncached>}> : !xegpu.tensor_desc<16xf32> -> vector<3xf32> |
| return |
| } |
| |
| // ----- |
| func.func @test_load_nd_simt(%src: memref<24x32xf32>) { |
| %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>> |
| // expected-error@+1 {{TensorDesc doesn't need LayoutAttr for SIMT code}} |
| %2 = xegpu.load_nd %1 : !xegpu.tensor_desc<8x16xf32, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>> -> vector<8xf32> |
| return |
| } |
| |
| // ----- |
| func.func @test_store_nd_vc_1(%dst: memref<24x32xf16>) { |
| %1 = arith.constant dense<1.0>: vector<24x32xf16> |
| %2 = xegpu.create_nd_tdesc %dst[0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<24x32xf16> |
| // expected-error@+1 {{invalid l1_hint: #xegpu.cache_hint<streaming>}} |
| xegpu.store_nd %1, %2 <{l1_hint = #xegpu.cache_hint<streaming>}>: vector<24x32xf16>, !xegpu.tensor_desc<24x32xf16> |
| return |
| } |
| |
| // ----- |
| func.func @test_store_nd_vc_2(%dst: memref<16xf16>) { |
| %0 = arith.constant dense<[0, 2, 4, 6, 8, 10, 12, 14]> : vector<8xindex> |
| %1 = arith.constant dense<1.0>: vector<8x2xf16> |
| %2 = xegpu.create_tdesc %dst, %0 : memref<16xf16>, vector<8xindex> |
| -> !xegpu.tensor_desc<8x2xf16, #xegpu.scatter_tdesc_attr<chunk_size = 2>> |
| // expected-error@+1 {{Expects a non-scattered TensorDesc}} |
| xegpu.store_nd %1, %2 <{l1_hint = #xegpu.cache_hint<streaming>}> |
| : vector<8x2xf16>, !xegpu.tensor_desc<8x2xf16, #xegpu.scatter_tdesc_attr<chunk_size = 2>> |
| return |
| } |
| |
| // ----- |
| func.func @test_store_nd_vc_3(%dst: memref<24x32xf16>) { |
| %1 = arith.constant dense<1.0>: vector<2x24x32xf16> |
| %2 = xegpu.create_nd_tdesc %dst[0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<24x32xf16, #xegpu.block_tdesc_attr<array_length = 2>> |
| // expected-error@+1 {{array length is not supported by store_nd}} |
| xegpu.store_nd %1, %2: vector<2x24x32xf16>, !xegpu.tensor_desc<24x32xf16, #xegpu.block_tdesc_attr<array_length = 2>> |
| return |
| } |
| |
| // ----- |
| func.func @test_store_nd_simt(%dst: memref<24x32xf32>, %data: vector<3xf32>) { |
| %1 = xegpu.create_nd_tdesc %dst[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<16xf32> |
| // expected-error@+1 {{Value shape [3] is not a valid distribution for tensor descriptor}} |
| xegpu.store_nd %data, %1 : vector<3xf32>, !xegpu.tensor_desc<16xf32> |
| return |
| } |
| |
| // ----- |
| func.func @test_store_nd_simt(%src: memref<24x32xf32>, %data: vector<8xf32>) { |
| %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>> |
| // expected-error@+1 {{TensorDesc doesn't need LayoutAttr for SIMT code}} |
| xegpu.store_nd %data, %1 : vector<8xf32>, !xegpu.tensor_desc<8x16xf32, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>> |
| return |
| } |
| |
| // ----- |
| func.func @test_store_nd_vc_5(%dst: memref<24x32xf32>, %data: vector<8x1xf32>) { |
| %1 = xegpu.create_nd_tdesc %dst[0, 0] : memref<24x32xf32> -> |
| !xegpu.tensor_desc<8x16xf32> |
| // expected-error@+1 {{Value shape [8, 1] is not consistent with tensor descriptor}} |
| xegpu.store_nd %data, %1 : vector<8x1xf32>, !xegpu.tensor_desc<8x16xf32> |
| return |
| } |
| |
| // ----- |
| func.func @test_update_nd_offset_1(%dst: memref<16xf16>) { |
| %0 = arith.constant dense<[0, 2, 4, 6, 8, 10, 12, 14]> : vector<8xindex> |
| %1 = xegpu.create_tdesc %dst, %0 : memref<16xf16>, vector<8xindex> |
| -> !xegpu.tensor_desc<8x2xf16, #xegpu.scatter_tdesc_attr<chunk_size = 2>> |
| // expected-error@+1 {{Expects a non-scattered TensorDesc}} |
| xegpu.update_nd_offset %1, [0, 2] : !xegpu.tensor_desc<8x2xf16, #xegpu.scatter_tdesc_attr<chunk_size = 2>> |
| return |
| } |
| |
| // ----- |
| func.func @test_create_tdesc_vc_1(%src: ui64) { |
| %0 = arith.constant dense<[0, 2, 4, 6, 8, 10, 12, 14]> : vector<8xindex> |
| // expected-error@+1 {{Expects a scattered TensorDesc}} |
| %1 = xegpu.create_tdesc %src, %0 : ui64, vector<8xindex> -> !xegpu.tensor_desc<8xf16> |
| return |
| } |
| |
| // ----- |
| func.func @test_create_tdesc_vc_2(%src: ui64) { |
| %0 = arith.constant dense<[0, 2, 4, 6, 8, 10, 12, 14]> : vector<8xindex> |
| %1 = xegpu.create_tdesc %src, %0 : ui64, vector<8xindex> |
| // expected-error@+1 {{expected chunk blocks for 2D tensor}} |
| -> !xegpu.tensor_desc<8x4xf16, #xegpu.scatter_tdesc_attr<>> |
| return |
| } |
| |
| // ----- |
| func.func @test_create_tdesc_vc_3(%src: memref<?xf32>) { |
| %0 = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex> |
| // expected-error@+1 {{Memory space mismatch}} |
| %1 = xegpu.create_tdesc %src, %0 : memref<?xf32>, vector<4xindex> |
| -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<memory_space = slm, chunk_size = 2>> |
| return |
| } |
| |
| // ----- |
| func.func @test_create_tdesc_vc_4(%src: memref<?xf32>) { |
| %0 = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex> |
| %1 = xegpu.create_tdesc %src, %0 : memref<?xf32>, vector<4xindex> |
| // expected-error@+1 {{invalid chunk size}} |
| -> !xegpu.tensor_desc<4x5xf32, #xegpu.scatter_tdesc_attr<chunk_size = 5>> |
| return |
| } |
| |
| // ----- |
| func.func @test_create_tdesc_vc_5(%src: memref<?xf32>) { |
| %0 = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex> |
| %1 = xegpu.create_tdesc %src, %0 : memref<?xf32>, vector<4xindex> |
| // expected-error@+1 {{expected tensor shape[1] to match chunk size}} |
| -> !xegpu.tensor_desc<4x5xf32, #xegpu.scatter_tdesc_attr<chunk_size = 4>> |
| return |
| } |
| |
| // ----- |
| func.func @test_create_tdesc_vc_6(%src: memref<?xf16>) { |
| %0 = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex> |
| %1 = xegpu.create_tdesc %src, %0 : memref<?xf16>, vector<4xindex> |
| // expected-error@+1 {{tensor shape[1] to be a multiple of packing factor 2}} |
| -> !xegpu.tensor_desc<4x3xf16, #xegpu.scatter_tdesc_attr<chunk_size = 3>> |
| return |
| } |
| |
| |
| // ----- |
| func.func @test_prefetch_vc_1(%src: memref<24x32xf16>) { |
| %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<24x32xf16> |
| // expected-error@+1 {{Expects a scattered TensorDesc}} |
| xegpu.prefetch %1 <{l1_hint = #xegpu.cache_hint<write_back>}>: !xegpu.tensor_desc<24x32xf16> |
| return |
| } |
| |
| // ----- |
| func.func @test_prefetch_vc_2(%src: ui64) { |
| %0 = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex> |
| %1 = xegpu.create_tdesc %src, %0 : ui64, vector<4xindex> |
| -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>> |
| // expected-error@+1 {{invalid l1_hint: #xegpu.cache_hint<write_back>}} |
| xegpu.prefetch %1 <{l1_hint = #xegpu.cache_hint<write_back>}>: !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>> |
| return |
| } |
| |
| // ----- |
| func.func @test_create_tdesc_layout_1(%src: ui64) { |
| %cst = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex> |
| // expected-error@+1 {{expected layout rank to match tensor rank}} |
| %1 = xegpu.create_tdesc %src, %cst : ui64, vector<4xindex> -> !xegpu.tensor_desc<4xf32, #xegpu.scatter_tdesc_attr<>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 1]>> |
| return |
| } |
| |
| // ----- |
| func.func @test_create_tdesc_layout_2(%src: ui64) { |
| %cst = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex> |
| // expected-error@+1 {{cannot map over non-contiguous scattered row elements}} |
| %1 = xegpu.create_tdesc %src, %cst : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>, #xegpu.layout<lane_layout = [1, 4], lane_data = [2, 1]>> |
| return |
| } |
| |
| // ----- |
| func.func @test_create_tdesc_layout_3(%src: ui64) { |
| %cst = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex> |
| // expected-error@+1 {{work item data mapping must match the number of contiguous elements}} |
| %1 = xegpu.create_tdesc %src, %cst : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x3xf32, #xegpu.scatter_tdesc_attr<chunk_size = 3>, #xegpu.layout<lane_layout = [4, 1], lane_data = [1, 2]>> |
| return |
| } |
| |
| // ----- |
| func.func @test_load_gather_simt_1(%src: ui64) { |
| %0 = arith.constant dense<1>: vector<4xi1> |
| %cst = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex> |
| %1 = xegpu.create_tdesc %src, %cst : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>> |
| // expected-error@+1 {{Value shape [6] is neither a valid distribution for SIMT nor consistent with the tensor descriptor for SIMD}} |
| %2 = xegpu.load %1, %0 <{l1_hint = #xegpu.cache_hint<cached>}> : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>, vector<4xi1> -> vector<6xf32> |
| return |
| } |
| |
| // ----- |
| func.func @test_store_scatter_simt_1(%src: ui64) { |
| %0 = arith.constant dense<1>: vector<4xi1> |
| %cst = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex> |
| %val = arith.constant dense<2.9>: vector<6xf32> |
| %1 = xegpu.create_tdesc %src, %cst : ui64, vector<4xindex> -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>> |
| // expected-error@+1 {{Value shape [6] is neither a valid distribution for SIMT nor consistent with the tensor descriptor for SIMD}} |
| xegpu.store %val, %1, %0 <{l1_hint = #xegpu.cache_hint<cached>}> : vector<6xf32>, !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>, vector<4xi1> |
| return |
| } |
| |
| // ----- |
| func.func @test_load_gather_vc_1(%src: memref<24x32xf16>) { |
| %0 = arith.constant dense<1>: vector<4xi1> |
| %1 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf16> -> !xegpu.tensor_desc<4x2xf16> |
| // expected-error@+1 {{Expects a scattered TensorDesc}} |
| %2 = xegpu.load %1, %0 <{l1_hint = #xegpu.cache_hint<cached>}> |
| : !xegpu.tensor_desc<4x2xf16>, vector<4xi1> -> vector<4x2xf16> |
| return |
| } |
| |
| // ----- |
| func.func @test_load_gather_vc_2(%src: ui64) { |
| %cst = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex> |
| %0 = arith.constant dense<1>: vector<4xi1> |
| %1 = xegpu.create_tdesc %src, %cst : ui64, vector<4xindex> |
| -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>> |
| // expected-error@+1 {{invalid l1_hint: #xegpu.cache_hint<write_back>}} |
| %2 = xegpu.load %1, %0 <{l1_hint = #xegpu.cache_hint<write_back>}> |
| : !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>, vector<4xi1> |
| -> vector<4x2xf32> |
| return |
| } |
| |
| // ----- |
| func.func @test_store_scatter_vc_1(%src: memref<24x32xf32>) { |
| %0 = arith.constant dense<1>: vector<4xi1> |
| %1 = arith.constant dense<2.9>: vector<4x2xf32> |
| %2 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> !xegpu.tensor_desc<4x2xf32> |
| // expected-error@+1 {{Expects a scattered TensorDesc}} |
| xegpu.store %1, %2, %0 <{l1_hint = #xegpu.cache_hint<cached>}> |
| : vector<4x2xf32>, !xegpu.tensor_desc<4x2xf32>, vector<4xi1> |
| return |
| } |
| |
| // ----- |
| func.func @test_store_scatter_vc_2(%src: ui64) { |
| %cst = arith.constant dense<[0, 8, 16, 24]>: vector<4xindex> |
| %0 = arith.constant dense<1>: vector<4xi1> |
| %1 = arith.constant dense<2.9>: vector<4x2xf32> |
| %2 = xegpu.create_tdesc %src, %cst : ui64, vector<4xindex> |
| -> !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>> |
| // expected-error@+1 {{invalid l1_hint: #xegpu.cache_hint<streaming>}} |
| xegpu.store %1, %2, %0 <{l1_hint = #xegpu.cache_hint<streaming>}> : vector<4x2xf32>, |
| !xegpu.tensor_desc<4x2xf32, #xegpu.scatter_tdesc_attr<chunk_size = 2>>, vector<4xi1> |
| return |
| } |
| |
| // ----- |
| func.func @test_dpas_vc_1(%a : vector<8x8xf16>, %b: vector<8x16x2xf16>) { |
| // expected-error@+1 {{K-dimension mismatch}} |
| %1 = xegpu.dpas %a, %b : vector<8x8xf16>, vector<8x16x2xf16> -> vector<8x16xf32> |
| return |
| } |
| |
| // ----- |
| func.func @test_dpas_vc_2(%a : vector<8x8x2xf16>, %b: vector<8x16x2xf16>) { |
| // expected-error@+1 {{expecting lhs and result to be a 2D vector, and rhs to be either 2D or 3D (packed) vector}} |
| %1 = xegpu.dpas %a, %b : vector<8x8x2xf16>, vector<8x16x2xf16> -> vector<8x16xf32> |
| return |
| } |
| |
| // ----- |
| func.func @test_dpas_3(%a : vector<8x8xf16>, %b: vector<8x16x2xf16>) { |
| // expected-error@+1 {{K-dimension mismatch}} |
| %1 = xegpu.dpas %a, %b : vector<8x8xf16>, vector<8x16x2xf16> -> vector<8x16xf32> |
| return |
| } |
| |
| // ----- |
| func.func @test_dpas_4(%a : vector<16x16xf16>, %b: vector<8x16x2xf16>) { |
| // expected-error@+1 {{M-dimension mismatch}} |
| %1 = xegpu.dpas %a, %b : vector<16x16xf16>, vector<8x16x2xf16> -> vector<8x16xf32> |
| return |
| } |
| |
| // ----- |
| func.func @test_dpas_5(%a : vector<8x16xf16>, %b: vector<8x8x2xf16>) { |
| // expected-error@+1 {{N-dimension mismatch}} |
| %1 = xegpu.dpas %a, %b : vector<8x16xf16>, vector<8x8x2xf16> -> vector<8x16xf32> |
| return |
| } |
| |
| // ----- |
| func.func @test_dpas_simt_1(%a : vector<8xf16>, %b: vector<15xf16>) { |
| // expected-error@+1 {{Expecting B operand to be a multiple of 32 bits}} |
| %1 = xegpu.dpas %a, %b : vector<8xf16>, vector<15xf16> -> vector<8xf32> |
| return |
| } |
| |
| // ----- |
| func.func @test_atomic_rmw(%src: ui64, %value : vector<16x4xf32>, %mask : vector<16xi1>) { |
| %0 = arith.constant dense<[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]> : vector<16xindex> |
| %1 = xegpu.create_tdesc %src, %0 : ui64, vector<16xindex> -> !xegpu.tensor_desc<16x8xf32, #xegpu.scatter_tdesc_attr<chunk_size = 8>> |
| // expected-error@+1 {{failed to verify that all of {tensorDesc, value, result} have same shape}} |
| xegpu.atomic_rmw addf %1, %mask, %value: !xegpu.tensor_desc<16x8xf32, #xegpu.scatter_tdesc_attr<chunk_size = 8>>, vector<16xi1>, vector<16x4xf32> -> vector<16x8xf32> |
| return |
| } |
| |
| // ----- |
| func.func @tensor_desc_invalid_rank(%src: memref<24x32xf32>) { |
| %0 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> |
| // expected-error@+1 {{expected 1D or 2D tensor}} |
| !xegpu.tensor_desc<16x2x2xf32> |
| return |
| } |
| |
| // ----- |
| func.func @tensor_desc_invalid_rank_1(%src: memref<24x32xf32>) { |
| %0 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> |
| // expected-error@+1 {{expected 1D or 2D tensor}} |
| !xegpu.tensor_desc<f32> |
| return |
| } |
| |
| // ----- |
| func.func @tensor_desc_1D_invalid_map_layout(%src: memref<24x32xf32>) { |
| %0 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> |
| // expected-error@+1 {{expected layout rank to match tensor rank}} |
| !xegpu.tensor_desc<16xf32, #xegpu.layout<lane_layout = [2, 16], lane_data = [1, 1]>> |
| return |
| } |
| |
| // ----- |
| func.func @tensor_desc_1D_invalid_map_data(%src: memref<24x32xf32>) { |
| %0 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> |
| // expected-error@+1 {{expected layout rank to match tensor rank}} |
| !xegpu.tensor_desc<16xf32, #xegpu.layout<lane_layout = [1, 16], lane_data = [2, 1]>> |
| return |
| } |
| |
| // ----- |
| func.func @tensor_desc_invalid_map_layout(%src: memref<24x32xf32>) { |
| %0 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> |
| // expected-error@+1 {{cannot distribute [4, 8] using #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>}} |
| !xegpu.tensor_desc<4x8xf32, #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>> |
| return |
| } |
| |
| // ----- |
| func.func @tensor_desc_invalid_map_layout_1(%src: memref<24x32xf32>) { |
| %0 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> |
| // expected-error@+1 {{cannot distribute [4, 8] using #xegpu.layout<lane_layout = [8, 2], lane_data = [1, 1]>}} |
| !xegpu.tensor_desc<4x8xf32, #xegpu.layout<lane_layout = [8, 2], lane_data = [1, 1]>> |
| return |
| } |
| |
| // ----- |
| func.func @tensor_desc_invalid_map_data(%src: memref<24x32xf32>) { |
| %0 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> |
| // expected-error@+1 {{cannot distribute [4, 8] using #xegpu.layout<lane_layout = [2, 8], lane_data = [4, 1]>}} |
| !xegpu.tensor_desc<4x8xf32, #xegpu.layout<lane_layout = [2, 8], lane_data = [4, 1]>> |
| return |
| } |
| |
| // ----- |
| func.func @tensor_desc_invalid_map_data_1(%src: memref<24x32xf32>) { |
| %0 = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32> -> |
| // expected-error@+1 {{cannot distribute [4, 8] using #xegpu.layout<lane_layout = [8, 2], lane_data = [1, 2]>}} |
| !xegpu.tensor_desc<4x8xf32, #xegpu.layout<lane_layout = [8, 2], lane_data = [1, 2]>> |
| return |
| } |
| |
| // ----- |
| func.func @tensor_desc_scatter_invalid_map_data(%src: ui64) { |
| %0 = arith.constant dense<[0, 8, 16, 24]> : vector<4xindex> |
| %1 = xegpu.create_tdesc %src, %0 : ui64, vector<4xindex> -> |
| // expected-error@+1 {{cannot map over non-contiguous scattered row elements}} |
| !xegpu.tensor_desc<4x2xf32, |
| #xegpu.scatter_tdesc_attr<chunk_size = 2>, |
| #xegpu.layout<lane_layout = [1, 1], lane_data = [2, 1]>> |
| return |
| } |
| |
| // ----- |
| func.func @tensor_desc_scatter_invalid_map_data_1(%src: ui64, %offsets: vector<16xindex>) { |
| %1 = xegpu.create_tdesc %src, %offsets : ui64, vector<16xindex> -> |
| // expected-error@+1 {{work item data mapping must match the number of contiguous elements}} |
| !xegpu.tensor_desc<16xf32, |
| #xegpu.scatter_tdesc_attr<chunk_size = 1>, |
| #xegpu.layout<lane_layout = [8], lane_data = [2]>> |
| return |
| } |
| |
| // ----- |
| func.func @tensor_desc_scatter_invalid_chunk_size_1D(%src: ui64, %offsets: vector<16xindex>) { |
| %1 = xegpu.create_tdesc %src, %offsets : ui64, vector<16xindex> -> |
| // expected-error@+1 {{expected non-contiguous elements for 1D tensor}} |
| !xegpu.tensor_desc<16xf32, |
| #xegpu.scatter_tdesc_attr<chunk_size = 2>, |
| #xegpu.layout<lane_layout = [1, 8], lane_data = [1, 2]>> |
| return |
| } |
| |
| // ----- |
| func.func @tensor_desc_scatter_invalid_chunk_size_2D(%src: ui64, %offsets: vector<16xindex>) { |
| %1 = xegpu.create_tdesc %src, %offsets : ui64, vector<16xindex> -> |
| // expected-error@+1 {{expected chunk blocks for 2D tensor}} |
| !xegpu.tensor_desc<16x2xf32, |
| #xegpu.scatter_tdesc_attr<chunk_size = 1>, |
| #xegpu.layout<lane_layout = [8, 1], lane_data = [1, 2]>> |
| return |
| } |
| |
| // ----- |
| func.func @test_convert_layout_same_map(%a: vector<32x64xf16>) { |
| // expected-error@+1 {{expected different srcMap and resMap}} |
| %2 = xegpu.convert_layout %a {srcMap = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>, |
| resMap = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>} : vector<32x64xf16> |
| gpu.return |
| } |
| |
| // ----- |
| func.func @test_convert_layout_unmatch(%a: vector<32x64xf16>) { |
| // expected-error@+1 {{expected srcMap and resMap be WgLayout or SgLayout at the same time}} |
| %2 = xegpu.convert_layout %a {srcMap = #xegpu.layout<sg_layout = [2, 4], sg_data = [16, 16], lane_layout = [1, 16], lane_data = [1, 1]>, |
| resMap = #xegpu.layout<lane_layout = [1, 16], lane_data = [1, 1]>} : vector<32x64xf16> |
| gpu.return |
| } |
| |
| // ----- |
| func.func @tensor_desc_invalid_layout_attr(%src: ui64, %offsets: vector<16xindex>) { |
| %1 = xegpu.create_tdesc %src, %offsets : ui64, vector<16xindex> -> |
| !xegpu.tensor_desc<16x2xf32, |
| #xegpu.scatter_tdesc_attr<chunk_size = 2>, |
| // expected-error@+1 {{expected at least one of sg_layout, inst_data or lane_layout}} |
| #xegpu.layout<sg_data = [16, 2], lane_data = [1, 2]>> |
| return |
| } |
| |
| // ----- |
| func.func @tensor_desc_rank_mismatch(%src: ui64, %offsets: vector<16xindex>) { |
| %1 = xegpu.create_tdesc %src, %offsets : ui64, vector<16xindex> -> |
| !xegpu.tensor_desc<16x2xf32, |
| #xegpu.scatter_tdesc_attr<chunk_size = 2>, |
| // expected-error@+1 {{expected sg_layout and lane_layout to have the same rank}} |
| #xegpu.layout<sg_layout = [1, 1, 1], sg_data = [16, 2, 1], lane_layout = [8, 1], lane_data = [1, 2]>> |
| return |
| } |
| |
| // ----- |
| func.func @tensor_desc_rank_mismatch(%src: ui64, %offsets: vector<16xindex>) { |
| %1 = xegpu.create_tdesc %src, %offsets : ui64, vector<16xindex> -> |
| !xegpu.tensor_desc<16x2xf32, |
| #xegpu.scatter_tdesc_attr<chunk_size = 2>, |
| // expected-error@+1 {{expected sg_layout and inst_data to have the same rank}} |
| #xegpu.layout<sg_layout = [1, 1, 1], sg_data = [16, 2, 1], inst_data = [16, 2]>> |
| return |
| } |
| |
| // ----- |
| func.func @tensor_desc_rank_mismatch(%src: ui64, %offsets: vector<16xindex>) { |
| %1 = xegpu.create_tdesc %src, %offsets : ui64, vector<16xindex> -> |
| !xegpu.tensor_desc<16x2xf32, |
| #xegpu.scatter_tdesc_attr<chunk_size = 2>, |
| // expected-error@+1 {{expected inst_data and lane_layout to have the same rank}} |
| #xegpu.layout<inst_data = [16, 2, 1], lane_layout = [8, 1], lane_data = [1, 2]>> |
| return |
| } |
| |
| // ----- |
| func.func @tensor_desc_rank_mismatch(%src: ui64, %offsets: vector<16xindex>) { |
| %1 = xegpu.create_tdesc %src, %offsets : ui64, vector<16xindex> -> |
| !xegpu.tensor_desc<16x2xf32, |
| #xegpu.scatter_tdesc_attr<chunk_size = 2>, |
| // expected-error@+1 {{expected lane_data and lane_layout to have the same rank}} |
| #xegpu.layout<inst_data = [16, 2], lane_layout = [8, 1], lane_data = [1, 2, 1]>> |
| return |
| } |
| |
| // ----- |
| func.func @tensor_desc_rank_mismatch(%src: ui64, %offsets: vector<16xindex>) { |
| %1 = xegpu.create_tdesc %src, %offsets : ui64, vector<16xindex> -> |
| !xegpu.tensor_desc<16x2xf32, |
| #xegpu.scatter_tdesc_attr<chunk_size = 2>, |
| // expected-error@+1 {{expected sg_data and sg_layout to have the same rank}} |
| #xegpu.layout<sg_layout = [1, 1], sg_data = [16, 2, 1], inst_data = [16, 2]>> |
| return |
| } |
| |
| // ----- |
| func.func @tensor_desc_rank_mismatch(%src: ui64, %offsets: vector<16xindex>) { |
| %1 = xegpu.create_tdesc %src, %offsets : ui64, vector<16xindex> -> |
| // expected-error@+1 {{expected layout rank to match tensor rank}} |
| !xegpu.tensor_desc<16x2xf32, |
| #xegpu.scatter_tdesc_attr<chunk_size = 2>, |
| #xegpu.layout<sg_layout = [1], sg_data = [32], inst_data = [16]>> |
| return |
| } |
| |
| // ----- |
| func.func @tensor_desc_invalid_sg_data(%src: ui64, %offsets: vector<16xindex>) { |
| %1 = xegpu.create_tdesc %src, %offsets : ui64, vector<16xindex> -> |
| !xegpu.tensor_desc<16x2xf32, |
| #xegpu.scatter_tdesc_attr<chunk_size = 2>, |
| // expected-error@+1 {{expected sg_layout being used with sg_data}} |
| #xegpu.layout<sg_data = [16, 2], lane_layout = [8, 1], lane_data = [1, 2]>> |
| return |
| } |
| |
| // ----- |
| func.func @tensor_desc_rank_mismatch(%src: ui64, %offsets: vector<16xindex>) { |
| %1 = xegpu.create_tdesc %src, %offsets : ui64, vector<16xindex> -> |
| !xegpu.tensor_desc<16x2xf32, |
| #xegpu.scatter_tdesc_attr<chunk_size = 2>, |
| // expected-error@+1 {{expected lane_layout being used with lane_data}} |
| #xegpu.layout<inst_data = [16, 2], lane_data = [1, 2]>> |
| return |
| } |
| |
| // ----- |
| func.func @tensor_desc_rank_mismatch(%src: ui64, %offsets: vector<16xindex>) { |
| %1 = xegpu.create_tdesc %src, %offsets : ui64, vector<16xindex> -> |
| !xegpu.tensor_desc<16x2xf32, |
| #xegpu.scatter_tdesc_attr<chunk_size = 2>, |
| // expected-error@+1 {{expected sg_layout/lane_layout being used with order}} |
| #xegpu.layout<inst_data = [16, 2], order = [0, 1]>> |
| return |
| } |
| |
| // ----- |
| func.func @tensor_desc_rank_mismatch(%src: ui64, %offsets: vector<16xindex>) { |
| %1 = xegpu.create_tdesc %src, %offsets : ui64, vector<16xindex> -> |
| !xegpu.tensor_desc<16x2xf32, |
| #xegpu.scatter_tdesc_attr<chunk_size = 2>, |
| // expected-error@+1 {{expected order and sg_layout to have the same rank}} |
| #xegpu.layout<sg_layout = [1, 1], sg_data = [16, 2], order = [0, 1, 2]>> |
| return |
| } |
| |
| // ----- |
| func.func @tensor_desc_invalid_sg_data(%src: ui64, %offsets: vector<16xindex>) { |
| %1 = xegpu.create_tdesc %src, %offsets : ui64, vector<16xindex> -> |
| !xegpu.tensor_desc<16x2xf32, |
| #xegpu.scatter_tdesc_attr<chunk_size = 2>, |
| // expected-error@+1 {{expected order and lane_layout to have the same rank}} |
| #xegpu.layout<lane_layout = [8, 1], lane_data = [1, 2], order = [0, 1, 2]>> |
| return |
| } |