| # RUN: %PYTHON %s | FileCheck %s |
| |
| from mlir.ir import * |
| from mlir.dialects import sparse_tensor as st |
| import textwrap |
| |
| |
| def run(f): |
| print("\nTEST:", f.__name__) |
| f() |
| return f |
| |
| |
| # CHECK-LABEL: TEST: testEncodingAttr1D |
| @run |
| def testEncodingAttr1D(): |
| with Context() as ctx: |
| parsed = Attribute.parse( |
| textwrap.dedent( |
| """\ |
| #sparse_tensor.encoding<{ |
| map = (d0) -> (d0 : compressed), |
| posWidth = 16, |
| crdWidth = 32, |
| explicitVal = 1.0 : f64 |
| }>\ |
| """ |
| ) |
| ) |
| # CHECK: #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed), posWidth = 16, crdWidth = 32, explicitVal = 1.000000e+00 : f64 }> |
| print(parsed) |
| |
| casted = st.EncodingAttr(parsed) |
| # CHECK: equal: True |
| print(f"equal: {casted == parsed}") |
| |
| # CHECK: lvl_types: [262144] |
| print(f"lvl_types: {casted.lvl_types}") |
| # CHECK: dim_to_lvl: (d0) -> (d0) |
| print(f"dim_to_lvl: {casted.dim_to_lvl}") |
| # CHECK: lvl_to_dim: (d0) -> (d0) |
| print(f"lvl_to_dim: {casted.lvl_to_dim}") |
| # CHECK: pos_width: 16 |
| print(f"pos_width: {casted.pos_width}") |
| # CHECK: crd_width: 32 |
| print(f"crd_width: {casted.crd_width}") |
| # CHECK: explicit_val: 1.000000e+00 |
| print(f"explicit_val: {casted.explicit_val}") |
| # CHECK: implicit_val: None |
| print(f"implicit_val: {casted.implicit_val}") |
| |
| new_explicit_val = FloatAttr.get_f64(1.0) |
| created = st.EncodingAttr.get( |
| casted.lvl_types, None, None, 0, 0, new_explicit_val |
| ) |
| # CHECK: #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed), explicitVal = 1.000000e+00 : f64 }> |
| print(created) |
| # CHECK: created_equal: False |
| print(f"created_equal: {created == casted}") |
| |
| # Verify that the factory creates an instance of the proper type. |
| # CHECK: is_proper_instance: True |
| print(f"is_proper_instance: {isinstance(created, st.EncodingAttr)}") |
| # CHECK: created_pos_width: 0 |
| print(f"created_pos_width: {created.pos_width}") |
| |
| |
| # CHECK-LABEL: TEST: testEncodingAttrStructure |
| @run |
| def testEncodingAttrStructure(): |
| with Context() as ctx: |
| parsed = Attribute.parse( |
| textwrap.dedent( |
| """\ |
| #sparse_tensor.encoding<{ |
| map = (d0, d1) -> (d0 : dense, d1 floordiv 4 : dense, |
| d1 mod 4 : structured[2, 4]), |
| posWidth = 16, |
| crdWidth = 32, |
| }>\ |
| """ |
| ) |
| ) |
| # CHECK: #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 floordiv 4 : dense, d1 mod 4 : structured[2, 4]), posWidth = 16, crdWidth = 32 }> |
| print(parsed) |
| |
| casted = st.EncodingAttr(parsed) |
| # CHECK: equal: True |
| print(f"equal: {casted == parsed}") |
| |
| # CHECK: lvl_types: [65536, 65536, 4406638542848] |
| print(f"lvl_types: {casted.lvl_types}") |
| # CHECK: lvl_formats_enum: [<LevelFormat.dense: 65536>, <LevelFormat.dense: 65536>, <LevelFormat.n_out_of_m: 2097152>] |
| print(f"lvl_formats_enum: {casted.lvl_formats_enum}") |
| # CHECK: structured_n: 2 |
| print(f"structured_n: {casted.structured_n}") |
| # CHECK: structured_m: 4 |
| print(f"structured_m: {casted.structured_m}") |
| # CHECK: dim_to_lvl: (d0, d1) -> (d0, d1 floordiv 4, d1 mod 4) |
| print(f"dim_to_lvl: {casted.dim_to_lvl}") |
| # CHECK: lvl_to_dim: (d0, d1, d2) -> (d0, d1 * 4 + d2) |
| print(f"lvl_to_dim: {casted.lvl_to_dim}") |
| # CHECK: pos_width: 16 |
| print(f"pos_width: {casted.pos_width}") |
| # CHECK: crd_width: 32 |
| print(f"crd_width: {casted.crd_width}") |
| |
| created = st.EncodingAttr.get( |
| casted.lvl_types, casted.dim_to_lvl, casted.lvl_to_dim, 0, 0 |
| ) |
| # CHECK: #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 floordiv 4 : dense, d1 mod 4 : structured[2, 4]) }> |
| print(created) |
| # CHECK: created_equal: False |
| print(f"created_equal: {created == casted}") |
| |
| built_2_4 = st.EncodingAttr.build_level_type( |
| st.LevelFormat.n_out_of_m, [], 2, 4 |
| ) |
| built_dense = st.EncodingAttr.build_level_type(st.LevelFormat.dense) |
| dim_to_lvl = AffineMap.get( |
| 2, |
| 0, |
| [ |
| AffineExpr.get_dim(0), |
| AffineExpr.get_floor_div(AffineExpr.get_dim(1), 4), |
| AffineExpr.get_mod(AffineExpr.get_dim(1), 4), |
| ], |
| ) |
| lvl_to_dim = AffineMap.get( |
| 3, |
| 0, |
| [ |
| AffineExpr.get_dim(0), |
| AffineExpr.get_add( |
| AffineExpr.get_mul(AffineExpr.get_dim(1), 4), |
| AffineExpr.get_dim(2), |
| ), |
| ], |
| ) |
| built = st.EncodingAttr.get( |
| [built_dense, built_dense, built_2_4], |
| dim_to_lvl, |
| lvl_to_dim, |
| 0, |
| 0, |
| ) |
| # CHECK: #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 floordiv 4 : dense, d1 mod 4 : structured[2, 4]) }> |
| print(built) |
| # CHECK: built_equal: True |
| print(f"built_equal: {built == created}") |
| |
| # Verify that the factory creates an instance of the proper type. |
| # CHECK: is_proper_instance: True |
| print(f"is_proper_instance: {isinstance(created, st.EncodingAttr)}") |
| # CHECK: created_pos_width: 0 |
| print(f"created_pos_width: {created.pos_width}") |
| |
| |
| # CHECK-LABEL: TEST: testEncodingAttr2D |
| @run |
| def testEncodingAttr2D(): |
| with Context() as ctx: |
| parsed = Attribute.parse( |
| textwrap.dedent( |
| """\ |
| #sparse_tensor.encoding<{ |
| map = (d0, d1) -> (d1 : dense, d0 : compressed), |
| posWidth = 8, |
| crdWidth = 32, |
| }>\ |
| """ |
| ) |
| ) |
| # CHECK: #sparse_tensor.encoding<{ map = (d0, d1) -> (d1 : dense, d0 : compressed), posWidth = 8, crdWidth = 32 }> |
| print(parsed) |
| |
| casted = st.EncodingAttr(parsed) |
| # CHECK: equal: True |
| print(f"equal: {casted == parsed}") |
| |
| # CHECK: lvl_types: [65536, 262144] |
| print(f"lvl_types: {casted.lvl_types}") |
| # CHECK: dim_to_lvl: (d0, d1) -> (d1, d0) |
| print(f"dim_to_lvl: {casted.dim_to_lvl}") |
| # CHECK: lvl_to_dim: (d0, d1) -> (d1, d0) |
| print(f"lvl_to_dim: {casted.lvl_to_dim}") |
| # CHECK: pos_width: 8 |
| print(f"pos_width: {casted.pos_width}") |
| # CHECK: crd_width: 32 |
| print(f"crd_width: {casted.crd_width}") |
| |
| created = st.EncodingAttr.get( |
| casted.lvl_types, |
| casted.dim_to_lvl, |
| casted.lvl_to_dim, |
| 8, |
| 32, |
| ) |
| # CHECK: #sparse_tensor.encoding<{ map = (d0, d1) -> (d1 : dense, d0 : compressed), posWidth = 8, crdWidth = 32 }> |
| print(created) |
| # CHECK: created_equal: True |
| print(f"created_equal: {created == casted}") |
| |
| |
| # CHECK-LABEL: TEST: testEncodingAttrOnTensorType |
| @run |
| def testEncodingAttrOnTensorType(): |
| with Context() as ctx, Location.unknown(): |
| encoding = st.EncodingAttr( |
| Attribute.parse( |
| textwrap.dedent( |
| """\ |
| #sparse_tensor.encoding<{ |
| map = (d0) -> (d0 : compressed), |
| posWidth = 64, |
| crdWidth = 32, |
| }>\ |
| """ |
| ) |
| ) |
| ) |
| tt = RankedTensorType.get((1024,), F32Type.get(), encoding=encoding) |
| # CHECK: tensor<1024xf32, #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed), posWidth = 64, crdWidth = 32 }>> |
| print(tt) |
| # CHECK: #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed), posWidth = 64, crdWidth = 32 }> |
| print(tt.encoding) |
| assert tt.encoding == encoding |