|  | /* | 
|  | * Copyright (c) 2014 Advanced Micro Devices, Inc. | 
|  | * | 
|  | * Permission is hereby granted, free of charge, to any person obtaining a copy | 
|  | * of this software and associated documentation files (the "Software"), to deal | 
|  | * in the Software without restriction, including without limitation the rights | 
|  | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | 
|  | * copies of the Software, and to permit persons to whom the Software is | 
|  | * furnished to do so, subject to the following conditions: | 
|  | * | 
|  | * The above copyright notice and this permission notice shall be included in | 
|  | * all copies or substantial portions of the Software. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|  | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|  | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | 
|  | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
|  | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
|  | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | 
|  | * THE SOFTWARE. | 
|  | */ | 
|  |  | 
|  | #include <clc/clc.h> | 
|  |  | 
|  | #include "math.h" | 
|  | #include "../clcmacro.h" | 
|  |  | 
|  | _CLC_OVERLOAD _CLC_DEF float tanh(float x) | 
|  | { | 
|  | // The definition of tanh(x) is sinh(x)/cosh(x), which is also equivalent | 
|  | // to the following three formulae: | 
|  | // 1.  (exp(x) - exp(-x))/(exp(x) + exp(-x)) | 
|  | // 2.  (1 - (2/(exp(2*x) + 1 ))) | 
|  | // 3.  (exp(2*x) - 1)/(exp(2*x) + 1) | 
|  | // but computationally, some formulae are better on some ranges. | 
|  |  | 
|  | const float large_threshold = 0x1.0a2b24p+3f; | 
|  |  | 
|  | uint ux = as_uint(x); | 
|  | uint aux = ux & EXSIGNBIT_SP32; | 
|  | uint xs = ux ^ aux; | 
|  |  | 
|  | float y = as_float(aux); | 
|  | float y2 = y*y; | 
|  |  | 
|  | float a1 = mad(y2, | 
|  | mad(y2, 0.4891631088530669873e-4F, -0.14628356048797849e-2F), | 
|  | -0.28192806108402678e0F); | 
|  | float b1 = mad(y2, 0.3427017942262751343e0F, 0.845784192581041099e0F); | 
|  |  | 
|  | float a2 = mad(y2, | 
|  | mad(y2, 0.3827534993599483396e-4F, -0.12325644183611929e-2F), | 
|  | -0.24069858695196524e0F); | 
|  | float b2 = mad(y2, 0.292529068698052819e0F, 0.72209738473684982e0F); | 
|  |  | 
|  | int c = y < 0.9f; | 
|  | float a = c ? a1 : a2; | 
|  | float b = c ? b1 : b2; | 
|  | float zlo = mad(MATH_DIVIDE(a, b), y*y2, y); | 
|  |  | 
|  | float p = exp(2.0f * y) + 1.0f; | 
|  | float zhi = 1.0F - MATH_DIVIDE(2.0F, p); | 
|  |  | 
|  | float z = y <= 1.0f ? zlo : zhi; | 
|  | z = as_float(xs | as_uint(z)); | 
|  |  | 
|  | // Edge cases | 
|  | float sone = as_float(0x3f800000U | xs); | 
|  | z = y > large_threshold ? sone : z; | 
|  | z = aux < 0x39000000 | aux > 0x7f800000 ? x : z; | 
|  |  | 
|  | return z; | 
|  | } | 
|  |  | 
|  | _CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, tanh, float); | 
|  |  | 
|  | #ifdef cl_khr_fp64 | 
|  |  | 
|  | #pragma OPENCL EXTENSION cl_khr_fp64 : enable | 
|  |  | 
|  | _CLC_OVERLOAD _CLC_DEF double tanh(double x) | 
|  | { | 
|  | // The definition of tanh(x) is sinh(x)/cosh(x), which is also equivalent | 
|  | // to the following three formulae: | 
|  | // 1.  (exp(x) - exp(-x))/(exp(x) + exp(-x)) | 
|  | // 2.  (1 - (2/(exp(2*x) + 1 ))) | 
|  | // 3.  (exp(2*x) - 1)/(exp(2*x) + 1) | 
|  | // but computationally, some formulae are better on some ranges. | 
|  |  | 
|  | // The point at which e^-x is insignificant compared to e^x = ln(2^27) | 
|  | const double large_threshold = 0x1.2b708872320e2p+4; | 
|  |  | 
|  | ulong ux = as_ulong(x); | 
|  | ulong ax = ux & ~SIGNBIT_DP64; | 
|  | ulong sx = ux ^ ax; | 
|  | double y = as_double(ax); | 
|  | double y2 = y * y; | 
|  |  | 
|  | // y < 0.9 | 
|  | double znl = fma(y2, | 
|  | fma(y2, | 
|  | fma(y2, -0.142077926378834722618091e-7, -0.200047621071909498730453e-3), | 
|  | -0.176016349003044679402273e-1), | 
|  | -0.274030424656179760118928e0); | 
|  |  | 
|  | double zdl = fma(y2, | 
|  | fma(y2, | 
|  | fma(y2, 0.2091140262529164482568557e-3, 0.201562166026937652780575e-1), | 
|  | 0.381641414288328849317962e0), | 
|  | 0.822091273968539282568011e0); | 
|  |  | 
|  | // 0.9 <= y <= 1 | 
|  | double znm = fma(y2, | 
|  | fma(y2, | 
|  | fma(y2, -0.115475878996143396378318e-7, -0.165597043903549960486816e-3), | 
|  | -0.146173047288731678404066e-1), | 
|  | -0.227793870659088295252442e0); | 
|  |  | 
|  | double zdm = fma(y2, | 
|  | fma(y2, | 
|  | fma(y2, 0.173076050126225961768710e-3, 0.167358775461896562588695e-1), | 
|  | 0.317204558977294374244770e0), | 
|  | 0.683381611977295894959554e0); | 
|  |  | 
|  | int c = y < 0.9; | 
|  | double zn = c ? znl : znm; | 
|  | double zd = c ? zdl : zdm; | 
|  | double z = y + y*y2 * MATH_DIVIDE(zn, zd); | 
|  |  | 
|  | // y > 1 | 
|  | double p = exp(2.0 * y) + 1.0; | 
|  | double zg = 1.0 - 2.0 / p; | 
|  |  | 
|  | z = y > 1.0 ? zg : z; | 
|  |  | 
|  | // Other cases | 
|  | z = y < 0x1.0p-28 | ax > PINFBITPATT_DP64 ? x : z; | 
|  |  | 
|  | z = y > large_threshold ? 1.0 : z; | 
|  |  | 
|  | return as_double(sx | as_ulong(z)); | 
|  | } | 
|  |  | 
|  | _CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, tanh, double); | 
|  |  | 
|  | #endif // cl_khr_fp64 |