blob: a492bcdd0f3e3830579aa261e9fbfdf63848d7c1 [file] [log] [blame]
//===- ModuleBufferization.cpp - Bufferization across Func. Boundaries ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Module Bufferization is an extension of One-Shot Bufferize that
// bufferizes function boundaries. It provides `BufferizableOpInterface`
// implementations for FuncOp, CallOp and ReturnOp.
//
// Module Bufferization is run via `runOneShotModuleBufferize(ModuleOp, ...)`.
// This function analyzes the given module and determines the order of analysis
// and bufferization: Functions that are called are processed before their
// respective callers.
//
// After analyzing a FuncOp, additional information about its bbArgs is
// gathered and stored in `FuncAnalysisState`.
//
// * `aliasingFuncOpBBArgsAnalysis` determines the equivalent/aliasing bbArgs
// for
// each tensor return value (if any).
// * `funcOpBbArgReadWriteAnalysis` determines whether or not a tensor bbArg is
// read/written.
//
// Module Bufferization implements the following calling convention.
//
// * In the absence of conflicts within a FuncOp, the FuncOp's bbArgs may always
// be written to in-place.
// * If a tensor operand of a CallOp is read after the CallOp, the operand of
// the CallOp must bufferize out-of-place.
//
// Example: The tensor.insert op bufferizes in-place because it is allowed to
// modify the buffer of `%t1` directly. The CallOp in `caller` must bufferize
// out-of-place because `%t0` is modified by the callee but read by the
// tensor.extract op. The analysis of CallOps decides whether an OpOperand must
// bufferize out-of-place based on results of `funcOpBbArgReadWriteAnalysis`.
// ```
// func @callee(%t1 : tensor<?xf32>) -> tensor<?xf32> {
// %f = ... : f32
// %0 = tensor.insert %f into %t1[...] : tensor<?xf32>
// return %0 : tensor<?xf32>
// }
//
// func @caller() -> () {
// %t0 = ... : tensor<?xf32>
// %1 = call @callee(%t0) : (tensor<?xf32>) -> (tensor<?xf32>)
// %2 = tensor.extract %1[...] : tensor<?xf32>
// }
// ```
//
// Note: If a function is external, `funcOpBbArgReadWriteAnalysis` cannot
// analyze the function body. In such a case, the CallOp analysis conservatively
// assumes that each tensor OpOperand is both read and written.
//
// TODO: Add FuncOp attributes so that bbArgs of external FuncOps can be marked
// as "not reading" and/or "not writing".
#include "mlir/Dialect/Bufferization/Transforms/OneShotModuleBufferize.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
#include "mlir/Dialect/Bufferization/Transforms/FuncBufferizableOpInterfaceImpl.h"
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
#include "mlir/Dialect/Bufferization/Transforms/Transforms.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Operation.h"
using namespace mlir;
using namespace mlir::bufferization;
using namespace mlir::bufferization::func_ext;
/// A mapping of FuncOps to their callers.
using FuncCallerMap = DenseMap<func::FuncOp, DenseSet<Operation *>>;
/// Get or create FuncAnalysisState.
static FuncAnalysisState &
getOrCreateFuncAnalysisState(OneShotAnalysisState &state) {
auto *result = state.getExtension<FuncAnalysisState>();
if (result)
return *result;
return state.addExtension<FuncAnalysisState>();
}
/// Return the unique ReturnOp that terminates `funcOp`.
/// Return nullptr if there is no such unique ReturnOp.
static func::ReturnOp getAssumedUniqueReturnOp(func::FuncOp funcOp) {
func::ReturnOp returnOp;
for (Block &b : funcOp.getBody()) {
if (auto candidateOp = dyn_cast<func::ReturnOp>(b.getTerminator())) {
if (returnOp)
return nullptr;
returnOp = candidateOp;
}
}
return returnOp;
}
namespace {
/// Annotate IR with the results of the analysis. For testing purposes only.
static void annotateEquivalentReturnBbArg(OpOperand &returnVal,
BlockArgument bbArg) {
const char *kEquivalentArgsAttr = "__equivalent_func_args__";
Operation *op = returnVal.getOwner();
SmallVector<int64_t> equivBbArgs;
if (op->hasAttr(kEquivalentArgsAttr)) {
auto attr = cast<ArrayAttr>(op->getAttr(kEquivalentArgsAttr));
equivBbArgs = llvm::to_vector<4>(llvm::map_range(attr, [](Attribute a) {
return cast<IntegerAttr>(a).getValue().getSExtValue();
}));
} else {
equivBbArgs.append(op->getNumOperands(), -1);
}
equivBbArgs[returnVal.getOperandNumber()] = bbArg.getArgNumber();
OpBuilder b(op->getContext());
op->setAttr(kEquivalentArgsAttr, b.getI64ArrayAttr(equivBbArgs));
}
/// Store function BlockArguments that are equivalent to/aliasing a returned
/// value in FuncAnalysisState.
static LogicalResult
aliasingFuncOpBBArgsAnalysis(FuncOp funcOp, OneShotAnalysisState &state,
FuncAnalysisState &funcState) {
if (funcOp.getBody().empty()) {
// No function body available. Conservatively assume that every tensor
// return value may alias with any tensor bbArg.
FunctionType type = funcOp.getFunctionType();
for (const auto &inputIt : llvm::enumerate(type.getInputs())) {
if (!isa<TensorType>(inputIt.value()))
continue;
for (const auto &resultIt : llvm::enumerate(type.getResults())) {
if (!isa<TensorType>(resultIt.value()))
continue;
int64_t returnIdx = resultIt.index();
int64_t bbArgIdx = inputIt.index();
funcState.aliasingReturnVals[funcOp][bbArgIdx].push_back(returnIdx);
}
}
return success();
}
// Support only single return-terminated block in the function.
func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
assert(returnOp && "expected func with single return op");
for (OpOperand &returnVal : returnOp->getOpOperands())
if (isa<RankedTensorType>(returnVal.get().getType()))
for (BlockArgument bbArg : funcOp.getArguments())
if (isa<RankedTensorType>(bbArg.getType())) {
int64_t returnIdx = returnVal.getOperandNumber();
int64_t bbArgIdx = bbArg.getArgNumber();
if (state.areEquivalentBufferizedValues(returnVal.get(), bbArg)) {
funcState.equivalentFuncArgs[funcOp][returnIdx] = bbArgIdx;
if (state.getOptions().testAnalysisOnly)
annotateEquivalentReturnBbArg(returnVal, bbArg);
}
if (state.areAliasingBufferizedValues(returnVal.get(), bbArg))
funcState.aliasingReturnVals[funcOp][bbArgIdx].push_back(returnIdx);
}
return success();
}
static void annotateFuncArgAccess(func::FuncOp funcOp, int64_t idx, bool isRead,
bool isWritten) {
OpBuilder b(funcOp.getContext());
Attribute accessType;
if (isRead && isWritten) {
accessType = b.getStringAttr("read-write");
} else if (isRead) {
accessType = b.getStringAttr("read");
} else if (isWritten) {
accessType = b.getStringAttr("write");
} else {
accessType = b.getStringAttr("none");
}
funcOp.setArgAttr(idx, BufferizationDialect::kBufferAccessAttrName,
accessType);
}
/// Determine which FuncOp bbArgs are read and which are written. When run on a
/// function with unknown ops, we conservatively assume that such ops bufferize
/// to a read + write.
static LogicalResult
funcOpBbArgReadWriteAnalysis(FuncOp funcOp, OneShotAnalysisState &state,
FuncAnalysisState &funcState) {
for (int64_t idx = 0, e = funcOp.getFunctionType().getNumInputs(); idx < e;
++idx) {
// Skip non-tensor arguments.
if (!isa<TensorType>(funcOp.getFunctionType().getInput(idx)))
continue;
bool isRead;
bool isWritten;
if (auto accessAttr = funcOp.getArgAttrOfType<StringAttr>(
idx, BufferizationDialect::kBufferAccessAttrName)) {
// Buffer access behavior is specified on the function. Skip the analysis.
StringRef str = accessAttr.getValue();
isRead = str == "read" || str == "read-write";
isWritten = str == "write" || str == "read-write";
} else if (funcOp.getBody().empty()) {
// If the function has no body, conservatively assume that all args are
// read + written.
isRead = true;
isWritten = true;
} else {
// Analyze the body of the function.
BlockArgument bbArg = funcOp.getArgument(idx);
isRead = state.isValueRead(bbArg);
isWritten = state.isValueWritten(bbArg);
}
if (state.getOptions().testAnalysisOnly)
annotateFuncArgAccess(funcOp, idx, isRead, isWritten);
if (isRead)
funcState.readBbArgs[funcOp].insert(idx);
if (isWritten)
funcState.writtenBbArgs[funcOp].insert(idx);
}
return success();
}
} // namespace
/// Remove bufferization attributes on FuncOp arguments.
static void removeBufferizationAttributes(BlockArgument bbArg) {
auto funcOp = cast<func::FuncOp>(bbArg.getOwner()->getParentOp());
funcOp.removeArgAttr(bbArg.getArgNumber(),
BufferizationDialect::kBufferLayoutAttrName);
funcOp.removeArgAttr(bbArg.getArgNumber(),
BufferizationDialect::kWritableAttrName);
}
/// Return the func::FuncOp called by `callOp`.
static func::FuncOp getCalledFunction(func::CallOp callOp) {
SymbolRefAttr sym =
llvm::dyn_cast_if_present<SymbolRefAttr>(callOp.getCallableForCallee());
if (!sym)
return nullptr;
return dyn_cast_or_null<func::FuncOp>(
SymbolTable::lookupNearestSymbolFrom(callOp, sym));
}
/// Gather equivalence info of CallOps.
/// Note: This only adds new equivalence info if the called function was already
/// analyzed.
// TODO: This does not handle cyclic function call graphs etc.
static void equivalenceAnalysis(func::FuncOp funcOp,
OneShotAnalysisState &state,
FuncAnalysisState &funcState) {
funcOp->walk([&](func::CallOp callOp) {
func::FuncOp calledFunction = getCalledFunction(callOp);
assert(calledFunction && "could not retrieved called func::FuncOp");
// No equivalence info available for the called function.
if (!funcState.equivalentFuncArgs.count(calledFunction))
return WalkResult::skip();
for (auto it : funcState.equivalentFuncArgs[calledFunction]) {
int64_t returnIdx = it.first;
int64_t bbargIdx = it.second;
if (!state.isInPlace(callOp->getOpOperand(bbargIdx)))
continue;
Value returnVal = callOp.getResult(returnIdx);
Value argVal = callOp->getOperand(bbargIdx);
state.unionEquivalenceClasses(returnVal, argVal);
}
return WalkResult::advance();
});
}
/// Return "true" if the given function signature has tensor semantics.
static bool hasTensorSignature(func::FuncOp funcOp) {
return llvm::any_of(funcOp.getFunctionType().getInputs(),
llvm::IsaPred<TensorType>) ||
llvm::any_of(funcOp.getFunctionType().getResults(),
llvm::IsaPred<TensorType>);
}
/// Store all functions of the `moduleOp` in `orderedFuncOps`, sorted by
/// callee-caller order (i.e., callees without callers first). Store all
/// remaining functions (i.e., the ones that call each other recursively) in
/// `remainingFuncOps`.
///
/// Store the map of FuncOp to all its callers in `callerMap`.
///
/// Return `failure()` if we are unable to retrieve the called FuncOp from
/// any func::CallOp.
static LogicalResult getFuncOpsOrderedByCalls(
ModuleOp moduleOp, SmallVectorImpl<func::FuncOp> &orderedFuncOps,
SmallVectorImpl<func::FuncOp> &remainingFuncOps, FuncCallerMap &callerMap) {
// For each FuncOp, the set of functions called by it (i.e. the union of
// symbols of all nested func::CallOp).
DenseMap<func::FuncOp, DenseSet<func::FuncOp>> calledBy;
// For each FuncOp, the number of func::CallOp it contains.
DenseMap<func::FuncOp, unsigned> numberCallOpsContainedInFuncOp;
WalkResult res = moduleOp.walk([&](func::FuncOp funcOp) -> WalkResult {
if (!funcOp.getBody().empty()) {
func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
if (!returnOp)
return funcOp->emitError()
<< "cannot bufferize a FuncOp with tensors and "
"without a unique ReturnOp";
}
// Collect function calls and populate the caller map.
numberCallOpsContainedInFuncOp[funcOp] = 0;
return funcOp.walk([&](func::CallOp callOp) -> WalkResult {
func::FuncOp calledFunction = getCalledFunction(callOp);
assert(calledFunction && "could not retrieved called func::FuncOp");
// If the called function does not have any tensors in its signature, then
// it is not necessary to bufferize the callee before the caller.
if (!hasTensorSignature(calledFunction))
return WalkResult::skip();
callerMap[calledFunction].insert(callOp);
if (calledBy[calledFunction].insert(funcOp).second) {
numberCallOpsContainedInFuncOp[funcOp]++;
}
return WalkResult::advance();
});
});
if (res.wasInterrupted())
return failure();
// Iteratively remove function operations that do not call any of the
// functions remaining in the callCounter map and add them to ordered list.
while (!numberCallOpsContainedInFuncOp.empty()) {
auto it = llvm::find_if(numberCallOpsContainedInFuncOp,
[](auto entry) { return entry.getSecond() == 0; });
if (it == numberCallOpsContainedInFuncOp.end())
break;
orderedFuncOps.push_back(it->getFirst());
for (auto callee : calledBy[it->getFirst()])
numberCallOpsContainedInFuncOp[callee]--;
numberCallOpsContainedInFuncOp.erase(it);
}
// Put all other functions in the list of remaining functions. These are
// functions that call each other circularly.
for (auto it : numberCallOpsContainedInFuncOp)
remainingFuncOps.push_back(it.first);
return success();
}
/// Fold return values that are memref casts and update function return types.
///
/// During FuncOp bufferization, the exact type of the returned memrefs (if any)
/// is not known yet. Therefore, the bufferization uses memref types with the
/// most generic layout map as function return types. After bufferizing the
/// entire function body, a more concise memref type can potentially be used for
/// the return type of the function.
static void foldMemRefCasts(func::FuncOp funcOp) {
if (funcOp.getBody().empty())
return;
func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
SmallVector<Type> resultTypes;
for (OpOperand &operand : returnOp->getOpOperands()) {
if (auto castOp = operand.get().getDefiningOp<memref::CastOp>()) {
operand.set(castOp.getSource());
resultTypes.push_back(castOp.getSource().getType());
} else {
resultTypes.push_back(operand.get().getType());
}
}
auto newFuncType = FunctionType::get(
funcOp.getContext(), funcOp.getFunctionType().getInputs(), resultTypes);
funcOp.setType(newFuncType);
}
LogicalResult
mlir::bufferization::analyzeModuleOp(ModuleOp moduleOp,
OneShotAnalysisState &state,
BufferizationStatistics *statistics) {
assert(state.getOptions().bufferizeFunctionBoundaries &&
"expected that function boundary bufferization is activated");
FuncAnalysisState &funcState = getOrCreateFuncAnalysisState(state);
// A list of non-circular functions in the order in which they are analyzed
// and bufferized.
SmallVector<func::FuncOp> orderedFuncOps;
// A list of all other functions. I.e., functions that call each other
// recursively. For these, we analyze the function body but not the function
// boundary.
SmallVector<func::FuncOp> remainingFuncOps;
// A mapping of FuncOps to their callers.
FuncCallerMap callerMap;
if (failed(getFuncOpsOrderedByCalls(moduleOp, orderedFuncOps,
remainingFuncOps, callerMap)))
return failure();
// Analyze functions in order. Starting with functions that are not calling
// any other functions.
for (func::FuncOp funcOp : orderedFuncOps) {
if (!state.getOptions().isOpAllowed(funcOp))
continue;
// Now analyzing function.
funcState.startFunctionAnalysis(funcOp);
// Gather equivalence info for CallOps.
equivalenceAnalysis(funcOp, state, funcState);
// Analyze funcOp.
if (failed(analyzeOp(funcOp, state, statistics)))
return failure();
// Run some extra function analyses.
if (failed(aliasingFuncOpBBArgsAnalysis(funcOp, state, funcState)) ||
failed(funcOpBbArgReadWriteAnalysis(funcOp, state, funcState)))
return failure();
// Mark op as fully analyzed.
funcState.analyzedFuncOps[funcOp] = FuncOpAnalysisState::Analyzed;
}
// Analyze all other functions. All function boundary analyses are skipped.
for (func::FuncOp funcOp : remainingFuncOps) {
if (!state.getOptions().isOpAllowed(funcOp))
continue;
// Gather equivalence info for CallOps.
equivalenceAnalysis(funcOp, state, funcState);
// Analyze funcOp.
if (failed(analyzeOp(funcOp, state, statistics)))
return failure();
// TODO: We currently skip all function argument analyses for functions
// that call each other circularly. These analyses do not support recursive
// calls yet. The `BufferizableOpInterface` implementations of `func`
// dialect ops return conservative results in the absence of analysis
// information.
}
return success();
}
void mlir::bufferization::removeBufferizationAttributesInModule(
ModuleOp moduleOp) {
moduleOp.walk([&](func::FuncOp op) {
for (BlockArgument bbArg : op.getArguments())
removeBufferizationAttributes(bbArg);
});
}
LogicalResult mlir::bufferization::bufferizeModuleOp(
ModuleOp moduleOp, const OneShotBufferizationOptions &options,
BufferizationStatistics *statistics) {
assert(options.bufferizeFunctionBoundaries &&
"expected that function boundary bufferization is activated");
IRRewriter rewriter(moduleOp.getContext());
// A list of non-circular functions in the order in which they are analyzed
// and bufferized.
SmallVector<func::FuncOp> orderedFuncOps;
// A list of all other functions. I.e., functions that call each other
// recursively. For these, we analyze the function body but not the function
// boundary.
SmallVector<func::FuncOp> remainingFuncOps;
// A mapping of FuncOps to their callers.
FuncCallerMap callerMap;
// Try to bufferize functions in calling order. I.e., first bufferize
// functions that do not call other functions. This allows us to infer
// accurate buffer types for function return values. Functions that call
// each other recursively are bufferized in an unspecified order at the end.
// We may use unnecessarily "complex" (in terms of layout map) buffer types.
if (failed(getFuncOpsOrderedByCalls(moduleOp, orderedFuncOps,
remainingFuncOps, callerMap)))
return failure();
llvm::append_range(orderedFuncOps, remainingFuncOps);
// Bufferize functions.
for (func::FuncOp funcOp : orderedFuncOps) {
// Note: It would be good to apply cleanups here but we cannot as aliasInfo
// would be invalidated.
if (llvm::is_contained(options.noAnalysisFuncFilter, funcOp.getSymName())) {
// This function was not analyzed and RaW conflicts were not resolved.
// Buffer copies must be inserted before every write.
OneShotBufferizationOptions updatedOptions = options;
updatedOptions.copyBeforeWrite = true;
if (failed(bufferizeOp(funcOp, updatedOptions, statistics)))
return failure();
} else {
if (failed(bufferizeOp(funcOp, options, statistics)))
return failure();
}
// Change buffer return types to more precise layout maps.
if (options.inferFunctionResultLayout)
foldMemRefCasts(funcOp);
}
// Bufferize all other ops.
for (Operation &op : llvm::make_early_inc_range(moduleOp.getOps())) {
// Functions were already bufferized.
if (isa<func::FuncOp>(&op))
continue;
if (failed(bufferizeOp(&op, options, statistics)))
return failure();
}
// Post-pass cleanup of function argument attributes.
removeBufferizationAttributesInModule(moduleOp);
return success();
}
LogicalResult mlir::bufferization::runOneShotModuleBufferize(
ModuleOp moduleOp, const OneShotBufferizationOptions &options,
BufferizationStatistics *statistics) {
assert(options.bufferizeFunctionBoundaries &&
"expected that function boundary bufferization is activated");
assert(!(options.copyBeforeWrite && options.testAnalysisOnly) &&
"invalid combination of bufferization flags");
if (!options.copyBeforeWrite) {
if (options.noAnalysisFuncFilter.empty()) {
if (failed(insertTensorCopies(moduleOp, options, statistics)))
return failure();
} else {
// FuncOps whose names are specified in options.noAnalysisFuncFilter will
// not be analyzed. Ops in these FuncOps will not be analyzed as well.
OpFilter::Entry::FilterFn analysisFilterFn = [=](Operation *op) {
auto func = dyn_cast<func::FuncOp>(op);
if (!func)
func = op->getParentOfType<func::FuncOp>();
if (func)
return llvm::is_contained(options.noAnalysisFuncFilter,
func.getSymName());
return false;
};
OneShotBufferizationOptions updatedOptions(options);
updatedOptions.opFilter.denyOperation(analysisFilterFn);
if (failed(insertTensorCopies(moduleOp, updatedOptions, statistics)))
return failure();
}
}
if (options.testAnalysisOnly)
return success();
if (failed(bufferizeModuleOp(moduleOp, options, statistics)))
return failure();
return success();
}