| //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | /// \file | 
 | /// This file implements the RegBankSelect class. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" | 
 | #include "llvm/ADT/PostOrderIterator.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" | 
 | #include "llvm/CodeGen/GlobalISel/Utils.h" | 
 | #include "llvm/CodeGen/MachineBasicBlock.h" | 
 | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" | 
 | #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" | 
 | #include "llvm/CodeGen/MachineFunction.h" | 
 | #include "llvm/CodeGen/MachineInstr.h" | 
 | #include "llvm/CodeGen/MachineOperand.h" | 
 | #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/CodeGen/RegisterBank.h" | 
 | #include "llvm/CodeGen/RegisterBankInfo.h" | 
 | #include "llvm/CodeGen/TargetOpcodes.h" | 
 | #include "llvm/CodeGen/TargetPassConfig.h" | 
 | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
 | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
 | #include "llvm/Config/llvm-config.h" | 
 | #include "llvm/IR/Function.h" | 
 | #include "llvm/InitializePasses.h" | 
 | #include "llvm/Pass.h" | 
 | #include "llvm/Support/BlockFrequency.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Compiler.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include <algorithm> | 
 | #include <cassert> | 
 | #include <cstdint> | 
 | #include <limits> | 
 | #include <memory> | 
 | #include <utility> | 
 |  | 
 | #define DEBUG_TYPE "regbankselect" | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | static cl::opt<RegBankSelect::Mode> RegBankSelectMode( | 
 |     cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional, | 
 |     cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast", | 
 |                           "Run the Fast mode (default mapping)"), | 
 |                clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy", | 
 |                           "Use the Greedy mode (best local mapping)"))); | 
 |  | 
 | char RegBankSelect::ID = 0; | 
 |  | 
 | INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE, | 
 |                       "Assign register bank of generic virtual registers", | 
 |                       false, false); | 
 | INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass) | 
 | INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass) | 
 | INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) | 
 | INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, | 
 |                     "Assign register bank of generic virtual registers", false, | 
 |                     false) | 
 |  | 
 | RegBankSelect::RegBankSelect(char &PassID, Mode RunningMode) | 
 |     : MachineFunctionPass(PassID), OptMode(RunningMode) { | 
 |   if (RegBankSelectMode.getNumOccurrences() != 0) { | 
 |     OptMode = RegBankSelectMode; | 
 |     if (RegBankSelectMode != RunningMode) | 
 |       LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n"); | 
 |   } | 
 | } | 
 |  | 
 | void RegBankSelect::init(MachineFunction &MF) { | 
 |   RBI = MF.getSubtarget().getRegBankInfo(); | 
 |   assert(RBI && "Cannot work without RegisterBankInfo"); | 
 |   MRI = &MF.getRegInfo(); | 
 |   TRI = MF.getSubtarget().getRegisterInfo(); | 
 |   TPC = &getAnalysis<TargetPassConfig>(); | 
 |   if (OptMode != Mode::Fast) { | 
 |     MBFI = &getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI(); | 
 |     MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(); | 
 |   } else { | 
 |     MBFI = nullptr; | 
 |     MBPI = nullptr; | 
 |   } | 
 |   MIRBuilder.setMF(MF); | 
 |   MORE = std::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI); | 
 | } | 
 |  | 
 | void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const { | 
 |   if (OptMode != Mode::Fast) { | 
 |     // We could preserve the information from these two analysis but | 
 |     // the APIs do not allow to do so yet. | 
 |     AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); | 
 |     AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); | 
 |   } | 
 |   AU.addRequired<TargetPassConfig>(); | 
 |   getSelectionDAGFallbackAnalysisUsage(AU); | 
 |   MachineFunctionPass::getAnalysisUsage(AU); | 
 | } | 
 |  | 
 | bool RegBankSelect::assignmentMatch( | 
 |     Register Reg, const RegisterBankInfo::ValueMapping &ValMapping, | 
 |     bool &OnlyAssign) const { | 
 |   // By default we assume we will have to repair something. | 
 |   OnlyAssign = false; | 
 |   // Each part of a break down needs to end up in a different register. | 
 |   // In other word, Reg assignment does not match. | 
 |   if (ValMapping.NumBreakDowns != 1) | 
 |     return false; | 
 |  | 
 |   const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI); | 
 |   const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank; | 
 |   // Reg is free of assignment, a simple assignment will make the | 
 |   // register bank to match. | 
 |   OnlyAssign = CurRegBank == nullptr; | 
 |   LLVM_DEBUG(dbgs() << "Does assignment already match: "; | 
 |              if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none"; | 
 |              dbgs() << " against "; | 
 |              assert(DesiredRegBank && "The mapping must be valid"); | 
 |              dbgs() << *DesiredRegBank << '\n';); | 
 |   return CurRegBank == DesiredRegBank; | 
 | } | 
 |  | 
 | bool RegBankSelect::repairReg( | 
 |     MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping, | 
 |     RegBankSelect::RepairingPlacement &RepairPt, | 
 |     const iterator_range<SmallVectorImpl<Register>::const_iterator> &NewVRegs) { | 
 |  | 
 |   assert(ValMapping.NumBreakDowns == (unsigned)size(NewVRegs) && | 
 |          "need new vreg for each breakdown"); | 
 |  | 
 |   // An empty range of new register means no repairing. | 
 |   assert(!NewVRegs.empty() && "We should not have to repair"); | 
 |  | 
 |   MachineInstr *MI; | 
 |   if (ValMapping.NumBreakDowns == 1) { | 
 |     // Assume we are repairing a use and thus, the original reg will be | 
 |     // the source of the repairing. | 
 |     Register Src = MO.getReg(); | 
 |     Register Dst = *NewVRegs.begin(); | 
 |  | 
 |     // If we repair a definition, swap the source and destination for | 
 |     // the repairing. | 
 |     if (MO.isDef()) | 
 |       std::swap(Src, Dst); | 
 |  | 
 |     assert((RepairPt.getNumInsertPoints() == 1 || Dst.isPhysical()) && | 
 |            "We are about to create several defs for Dst"); | 
 |  | 
 |     // Build the instruction used to repair, then clone it at the right | 
 |     // places. Avoiding buildCopy bypasses the check that Src and Dst have the | 
 |     // same types because the type is a placeholder when this function is called. | 
 |     MI = MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY) | 
 |       .addDef(Dst) | 
 |       .addUse(Src); | 
 |     LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << ':' | 
 |                       << printRegClassOrBank(Src, *MRI, TRI) | 
 |                       << " to: " << printReg(Dst) << ':' | 
 |                       << printRegClassOrBank(Dst, *MRI, TRI) << '\n'); | 
 |   } else { | 
 |     // TODO: Support with G_IMPLICIT_DEF + G_INSERT sequence or G_EXTRACT | 
 |     // sequence. | 
 |     assert(ValMapping.partsAllUniform() && "irregular breakdowns not supported"); | 
 |  | 
 |     LLT RegTy = MRI->getType(MO.getReg()); | 
 |     if (MO.isDef()) { | 
 |       unsigned MergeOp; | 
 |       if (RegTy.isVector()) { | 
 |         if (ValMapping.NumBreakDowns == RegTy.getNumElements()) | 
 |           MergeOp = TargetOpcode::G_BUILD_VECTOR; | 
 |         else { | 
 |           assert( | 
 |               (ValMapping.BreakDown[0].Length * ValMapping.NumBreakDowns == | 
 |                RegTy.getSizeInBits()) && | 
 |               (ValMapping.BreakDown[0].Length % RegTy.getScalarSizeInBits() == | 
 |                0) && | 
 |               "don't understand this value breakdown"); | 
 |  | 
 |           MergeOp = TargetOpcode::G_CONCAT_VECTORS; | 
 |         } | 
 |       } else | 
 |         MergeOp = TargetOpcode::G_MERGE_VALUES; | 
 |  | 
 |       auto MergeBuilder = | 
 |         MIRBuilder.buildInstrNoInsert(MergeOp) | 
 |         .addDef(MO.getReg()); | 
 |  | 
 |       for (Register SrcReg : NewVRegs) | 
 |         MergeBuilder.addUse(SrcReg); | 
 |  | 
 |       MI = MergeBuilder; | 
 |     } else { | 
 |       MachineInstrBuilder UnMergeBuilder = | 
 |         MIRBuilder.buildInstrNoInsert(TargetOpcode::G_UNMERGE_VALUES); | 
 |       for (Register DefReg : NewVRegs) | 
 |         UnMergeBuilder.addDef(DefReg); | 
 |  | 
 |       UnMergeBuilder.addUse(MO.getReg()); | 
 |       MI = UnMergeBuilder; | 
 |     } | 
 |   } | 
 |  | 
 |   if (RepairPt.getNumInsertPoints() != 1) | 
 |     report_fatal_error("need testcase to support multiple insertion points"); | 
 |  | 
 |   // TODO: | 
 |   // Check if MI is legal. if not, we need to legalize all the | 
 |   // instructions we are going to insert. | 
 |   std::unique_ptr<MachineInstr *[]> NewInstrs( | 
 |       new MachineInstr *[RepairPt.getNumInsertPoints()]); | 
 |   bool IsFirst = true; | 
 |   unsigned Idx = 0; | 
 |   for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { | 
 |     MachineInstr *CurMI; | 
 |     if (IsFirst) | 
 |       CurMI = MI; | 
 |     else | 
 |       CurMI = MIRBuilder.getMF().CloneMachineInstr(MI); | 
 |     InsertPt->insert(*CurMI); | 
 |     NewInstrs[Idx++] = CurMI; | 
 |     IsFirst = false; | 
 |   } | 
 |   // TODO: | 
 |   // Legalize NewInstrs if need be. | 
 |   return true; | 
 | } | 
 |  | 
 | uint64_t RegBankSelect::getRepairCost( | 
 |     const MachineOperand &MO, | 
 |     const RegisterBankInfo::ValueMapping &ValMapping) const { | 
 |   assert(MO.isReg() && "We should only repair register operand"); | 
 |   assert(ValMapping.NumBreakDowns && "Nothing to map??"); | 
 |  | 
 |   bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1; | 
 |   const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI); | 
 |   // If MO does not have a register bank, we should have just been | 
 |   // able to set one unless we have to break the value down. | 
 |   assert(CurRegBank || MO.isDef()); | 
 |  | 
 |   // Def: Val <- NewDefs | 
 |   //     Same number of values: copy | 
 |   //     Different number: Val = build_sequence Defs1, Defs2, ... | 
 |   // Use: NewSources <- Val. | 
 |   //     Same number of values: copy. | 
 |   //     Different number: Src1, Src2, ... = | 
 |   //           extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ... | 
 |   // We should remember that this value is available somewhere else to | 
 |   // coalesce the value. | 
 |  | 
 |   if (ValMapping.NumBreakDowns != 1) | 
 |     return RBI->getBreakDownCost(ValMapping, CurRegBank); | 
 |  | 
 |   if (IsSameNumOfValues) { | 
 |     const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank; | 
 |     // If we repair a definition, swap the source and destination for | 
 |     // the repairing. | 
 |     if (MO.isDef()) | 
 |       std::swap(CurRegBank, DesiredRegBank); | 
 |     // TODO: It may be possible to actually avoid the copy. | 
 |     // If we repair something where the source is defined by a copy | 
 |     // and the source of that copy is on the right bank, we can reuse | 
 |     // it for free. | 
 |     // E.g., | 
 |     // RegToRepair<BankA> = copy AlternativeSrc<BankB> | 
 |     // = op RegToRepair<BankA> | 
 |     // We can simply propagate AlternativeSrc instead of copying RegToRepair | 
 |     // into a new virtual register. | 
 |     // We would also need to propagate this information in the | 
 |     // repairing placement. | 
 |     unsigned Cost = RBI->copyCost(*DesiredRegBank, *CurRegBank, | 
 |                                   RBI->getSizeInBits(MO.getReg(), *MRI, *TRI)); | 
 |     // TODO: use a dedicated constant for ImpossibleCost. | 
 |     if (Cost != std::numeric_limits<unsigned>::max()) | 
 |       return Cost; | 
 |     // Return the legalization cost of that repairing. | 
 |   } | 
 |   return std::numeric_limits<unsigned>::max(); | 
 | } | 
 |  | 
 | const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping( | 
 |     MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings, | 
 |     SmallVectorImpl<RepairingPlacement> &RepairPts) { | 
 |   assert(!PossibleMappings.empty() && | 
 |          "Do not know how to map this instruction"); | 
 |  | 
 |   const RegisterBankInfo::InstructionMapping *BestMapping = nullptr; | 
 |   MappingCost Cost = MappingCost::ImpossibleCost(); | 
 |   SmallVector<RepairingPlacement, 4> LocalRepairPts; | 
 |   for (const RegisterBankInfo::InstructionMapping *CurMapping : | 
 |        PossibleMappings) { | 
 |     MappingCost CurCost = | 
 |         computeMapping(MI, *CurMapping, LocalRepairPts, &Cost); | 
 |     if (CurCost < Cost) { | 
 |       LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n'); | 
 |       Cost = CurCost; | 
 |       BestMapping = CurMapping; | 
 |       RepairPts.clear(); | 
 |       for (RepairingPlacement &RepairPt : LocalRepairPts) | 
 |         RepairPts.emplace_back(std::move(RepairPt)); | 
 |     } | 
 |   } | 
 |   if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) { | 
 |     // If none of the mapping worked that means they are all impossible. | 
 |     // Thus, pick the first one and set an impossible repairing point. | 
 |     // It will trigger the failed isel mode. | 
 |     BestMapping = *PossibleMappings.begin(); | 
 |     RepairPts.emplace_back( | 
 |         RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible)); | 
 |   } else | 
 |     assert(BestMapping && "No suitable mapping for instruction"); | 
 |   return *BestMapping; | 
 | } | 
 |  | 
 | void RegBankSelect::tryAvoidingSplit( | 
 |     RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO, | 
 |     const RegisterBankInfo::ValueMapping &ValMapping) const { | 
 |   const MachineInstr &MI = *MO.getParent(); | 
 |   assert(RepairPt.hasSplit() && "We should not have to adjust for split"); | 
 |   // Splitting should only occur for PHIs or between terminators, | 
 |   // because we only do local repairing. | 
 |   assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?"); | 
 |  | 
 |   assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO && | 
 |          "Repairing placement does not match operand"); | 
 |  | 
 |   // If we need splitting for phis, that means it is because we | 
 |   // could not find an insertion point before the terminators of | 
 |   // the predecessor block for this argument. In other words, | 
 |   // the input value is defined by one of the terminators. | 
 |   assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?"); | 
 |  | 
 |   // We split to repair the use of a phi or a terminator. | 
 |   if (!MO.isDef()) { | 
 |     if (MI.isTerminator()) { | 
 |       assert(&MI != &(*MI.getParent()->getFirstTerminator()) && | 
 |              "Need to split for the first terminator?!"); | 
 |     } else { | 
 |       // For the PHI case, the split may not be actually required. | 
 |       // In the copy case, a phi is already a copy on the incoming edge, | 
 |       // therefore there is no need to split. | 
 |       if (ValMapping.NumBreakDowns == 1) | 
 |         // This is a already a copy, there is nothing to do. | 
 |         RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign); | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   // At this point, we need to repair a defintion of a terminator. | 
 |  | 
 |   // Technically we need to fix the def of MI on all outgoing | 
 |   // edges of MI to keep the repairing local. In other words, we | 
 |   // will create several definitions of the same register. This | 
 |   // does not work for SSA unless that definition is a physical | 
 |   // register. | 
 |   // However, there are other cases where we can get away with | 
 |   // that while still keeping the repairing local. | 
 |   assert(MI.isTerminator() && MO.isDef() && | 
 |          "This code is for the def of a terminator"); | 
 |  | 
 |   // Since we use RPO traversal, if we need to repair a definition | 
 |   // this means this definition could be: | 
 |   // 1. Used by PHIs (i.e., this VReg has been visited as part of the | 
 |   //    uses of a phi.), or | 
 |   // 2. Part of a target specific instruction (i.e., the target applied | 
 |   //    some register class constraints when creating the instruction.) | 
 |   // If the constraints come for #2, the target said that another mapping | 
 |   // is supported so we may just drop them. Indeed, if we do not change | 
 |   // the number of registers holding that value, the uses will get fixed | 
 |   // when we get to them. | 
 |   // Uses in PHIs may have already been proceeded though. | 
 |   // If the constraints come for #1, then, those are weak constraints and | 
 |   // no actual uses may rely on them. However, the problem remains mainly | 
 |   // the same as for #2. If the value stays in one register, we could | 
 |   // just switch the register bank of the definition, but we would need to | 
 |   // account for a repairing cost for each phi we silently change. | 
 |   // | 
 |   // In any case, if the value needs to be broken down into several | 
 |   // registers, the repairing is not local anymore as we need to patch | 
 |   // every uses to rebuild the value in just one register. | 
 |   // | 
 |   // To summarize: | 
 |   // - If the value is in a physical register, we can do the split and | 
 |   //   fix locally. | 
 |   // Otherwise if the value is in a virtual register: | 
 |   // - If the value remains in one register, we do not have to split | 
 |   //   just switching the register bank would do, but we need to account | 
 |   //   in the repairing cost all the phi we changed. | 
 |   // - If the value spans several registers, then we cannot do a local | 
 |   //   repairing. | 
 |  | 
 |   // Check if this is a physical or virtual register. | 
 |   Register Reg = MO.getReg(); | 
 |   if (Reg.isPhysical()) { | 
 |     // We are going to split every outgoing edges. | 
 |     // Check that this is possible. | 
 |     // FIXME: The machine representation is currently broken | 
 |     // since it also several terminators in one basic block. | 
 |     // Because of that we would technically need a way to get | 
 |     // the targets of just one terminator to know which edges | 
 |     // we have to split. | 
 |     // Assert that we do not hit the ill-formed representation. | 
 |  | 
 |     // If there are other terminators before that one, some of | 
 |     // the outgoing edges may not be dominated by this definition. | 
 |     assert(&MI == &(*MI.getParent()->getFirstTerminator()) && | 
 |            "Do not know which outgoing edges are relevant"); | 
 |     const MachineInstr *Next = MI.getNextNode(); | 
 |     assert((!Next || Next->isUnconditionalBranch()) && | 
 |            "Do not know where each terminator ends up"); | 
 |     if (Next) | 
 |       // If the next terminator uses Reg, this means we have | 
 |       // to split right after MI and thus we need a way to ask | 
 |       // which outgoing edges are affected. | 
 |       assert(!Next->readsRegister(Reg, /*TRI=*/nullptr) && | 
 |              "Need to split between terminators"); | 
 |     // We will split all the edges and repair there. | 
 |   } else { | 
 |     // This is a virtual register defined by a terminator. | 
 |     if (ValMapping.NumBreakDowns == 1) { | 
 |       // There is nothing to repair, but we may actually lie on | 
 |       // the repairing cost because of the PHIs already proceeded | 
 |       // as already stated. | 
 |       // Though the code will be correct. | 
 |       assert(false && "Repairing cost may not be accurate"); | 
 |     } else { | 
 |       // We need to do non-local repairing. Basically, patch all | 
 |       // the uses (i.e., phis) that we already proceeded. | 
 |       // For now, just say this mapping is not possible. | 
 |       RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | RegBankSelect::MappingCost RegBankSelect::computeMapping( | 
 |     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, | 
 |     SmallVectorImpl<RepairingPlacement> &RepairPts, | 
 |     const RegBankSelect::MappingCost *BestCost) { | 
 |   assert((MBFI || !BestCost) && "Costs comparison require MBFI"); | 
 |  | 
 |   if (!InstrMapping.isValid()) | 
 |     return MappingCost::ImpossibleCost(); | 
 |  | 
 |   // If mapped with InstrMapping, MI will have the recorded cost. | 
 |   MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) | 
 |                         : BlockFrequency(1)); | 
 |   bool Saturated = Cost.addLocalCost(InstrMapping.getCost()); | 
 |   assert(!Saturated && "Possible mapping saturated the cost"); | 
 |   LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI); | 
 |   LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n'); | 
 |   RepairPts.clear(); | 
 |   if (BestCost && Cost > *BestCost) { | 
 |     LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n"); | 
 |     return Cost; | 
 |   } | 
 |   const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); | 
 |  | 
 |   // Moreover, to realize this mapping, the register bank of each operand must | 
 |   // match this mapping. In other words, we may need to locally reassign the | 
 |   // register banks. Account for that repairing cost as well. | 
 |   // In this context, local means in the surrounding of MI. | 
 |   for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands(); | 
 |        OpIdx != EndOpIdx; ++OpIdx) { | 
 |     const MachineOperand &MO = MI.getOperand(OpIdx); | 
 |     if (!MO.isReg()) | 
 |       continue; | 
 |     Register Reg = MO.getReg(); | 
 |     if (!Reg) | 
 |       continue; | 
 |     LLT Ty = MRI.getType(Reg); | 
 |     if (!Ty.isValid()) | 
 |       continue; | 
 |  | 
 |     LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n'); | 
 |     const RegisterBankInfo::ValueMapping &ValMapping = | 
 |         InstrMapping.getOperandMapping(OpIdx); | 
 |     // If Reg is already properly mapped, this is free. | 
 |     bool Assign; | 
 |     if (assignmentMatch(Reg, ValMapping, Assign)) { | 
 |       LLVM_DEBUG(dbgs() << "=> is free (match).\n"); | 
 |       continue; | 
 |     } | 
 |     if (Assign) { | 
 |       LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n"); | 
 |       RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this, | 
 |                                                 RepairingPlacement::Reassign)); | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Find the insertion point for the repairing code. | 
 |     RepairPts.emplace_back( | 
 |         RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert)); | 
 |     RepairingPlacement &RepairPt = RepairPts.back(); | 
 |  | 
 |     // If we need to split a basic block to materialize this insertion point, | 
 |     // we may give a higher cost to this mapping. | 
 |     // Nevertheless, we may get away with the split, so try that first. | 
 |     if (RepairPt.hasSplit()) | 
 |       tryAvoidingSplit(RepairPt, MO, ValMapping); | 
 |  | 
 |     // Check that the materialization of the repairing is possible. | 
 |     if (!RepairPt.canMaterialize()) { | 
 |       LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n"); | 
 |       return MappingCost::ImpossibleCost(); | 
 |     } | 
 |  | 
 |     // Account for the split cost and repair cost. | 
 |     // Unless the cost is already saturated or we do not care about the cost. | 
 |     if (!BestCost || Saturated) | 
 |       continue; | 
 |  | 
 |     // To get accurate information we need MBFI and MBPI. | 
 |     // Thus, if we end up here this information should be here. | 
 |     assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI"); | 
 |  | 
 |     // FIXME: We will have to rework the repairing cost model. | 
 |     // The repairing cost depends on the register bank that MO has. | 
 |     // However, when we break down the value into different values, | 
 |     // MO may not have a register bank while still needing repairing. | 
 |     // For the fast mode, we don't compute the cost so that is fine, | 
 |     // but still for the repairing code, we will have to make a choice. | 
 |     // For the greedy mode, we should choose greedily what is the best | 
 |     // choice based on the next use of MO. | 
 |  | 
 |     // Sums up the repairing cost of MO at each insertion point. | 
 |     uint64_t RepairCost = getRepairCost(MO, ValMapping); | 
 |  | 
 |     // This is an impossible to repair cost. | 
 |     if (RepairCost == std::numeric_limits<unsigned>::max()) | 
 |       return MappingCost::ImpossibleCost(); | 
 |  | 
 |     // Bias used for splitting: 5%. | 
 |     const uint64_t PercentageForBias = 5; | 
 |     uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100; | 
 |     // We should not need more than a couple of instructions to repair | 
 |     // an assignment. In other words, the computation should not | 
 |     // overflow because the repairing cost is free of basic block | 
 |     // frequency. | 
 |     assert(((RepairCost < RepairCost * PercentageForBias) && | 
 |             (RepairCost * PercentageForBias < | 
 |              RepairCost * PercentageForBias + 99)) && | 
 |            "Repairing involves more than a billion of instructions?!"); | 
 |     for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { | 
 |       assert(InsertPt->canMaterialize() && "We should not have made it here"); | 
 |       // We will applied some basic block frequency and those uses uint64_t. | 
 |       if (!InsertPt->isSplit()) | 
 |         Saturated = Cost.addLocalCost(RepairCost); | 
 |       else { | 
 |         uint64_t CostForInsertPt = RepairCost; | 
 |         // Again we shouldn't overflow here givent that | 
 |         // CostForInsertPt is frequency free at this point. | 
 |         assert(CostForInsertPt + Bias > CostForInsertPt && | 
 |                "Repairing + split bias overflows"); | 
 |         CostForInsertPt += Bias; | 
 |         uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt; | 
 |         // Check if we just overflowed. | 
 |         if ((Saturated = PtCost < CostForInsertPt)) | 
 |           Cost.saturate(); | 
 |         else | 
 |           Saturated = Cost.addNonLocalCost(PtCost); | 
 |       } | 
 |  | 
 |       // Stop looking into what it takes to repair, this is already | 
 |       // too expensive. | 
 |       if (BestCost && Cost > *BestCost) { | 
 |         LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n"); | 
 |         return Cost; | 
 |       } | 
 |  | 
 |       // No need to accumulate more cost information. | 
 |       // We need to still gather the repairing information though. | 
 |       if (Saturated) | 
 |         break; | 
 |     } | 
 |   } | 
 |   LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n"); | 
 |   return Cost; | 
 | } | 
 |  | 
 | bool RegBankSelect::applyMapping( | 
 |     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, | 
 |     SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) { | 
 |   // OpdMapper will hold all the information needed for the rewriting. | 
 |   RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI); | 
 |  | 
 |   // First, place the repairing code. | 
 |   for (RepairingPlacement &RepairPt : RepairPts) { | 
 |     if (!RepairPt.canMaterialize() || | 
 |         RepairPt.getKind() == RepairingPlacement::Impossible) | 
 |       return false; | 
 |     assert(RepairPt.getKind() != RepairingPlacement::None && | 
 |            "This should not make its way in the list"); | 
 |     unsigned OpIdx = RepairPt.getOpIdx(); | 
 |     MachineOperand &MO = MI.getOperand(OpIdx); | 
 |     const RegisterBankInfo::ValueMapping &ValMapping = | 
 |         InstrMapping.getOperandMapping(OpIdx); | 
 |     Register Reg = MO.getReg(); | 
 |  | 
 |     switch (RepairPt.getKind()) { | 
 |     case RepairingPlacement::Reassign: | 
 |       assert(ValMapping.NumBreakDowns == 1 && | 
 |              "Reassignment should only be for simple mapping"); | 
 |       MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank); | 
 |       break; | 
 |     case RepairingPlacement::Insert: | 
 |       // Don't insert additional instruction for debug instruction. | 
 |       if (MI.isDebugInstr()) | 
 |         break; | 
 |       OpdMapper.createVRegs(OpIdx); | 
 |       if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx))) | 
 |         return false; | 
 |       break; | 
 |     default: | 
 |       llvm_unreachable("Other kind should not happen"); | 
 |     } | 
 |   } | 
 |  | 
 |   // Second, rewrite the instruction. | 
 |   LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n'); | 
 |   RBI->applyMapping(MIRBuilder, OpdMapper); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool RegBankSelect::assignInstr(MachineInstr &MI) { | 
 |   LLVM_DEBUG(dbgs() << "Assign: " << MI); | 
 |  | 
 |   unsigned Opc = MI.getOpcode(); | 
 |   if (isPreISelGenericOptimizationHint(Opc)) { | 
 |     assert((Opc == TargetOpcode::G_ASSERT_ZEXT || | 
 |             Opc == TargetOpcode::G_ASSERT_SEXT || | 
 |             Opc == TargetOpcode::G_ASSERT_ALIGN) && | 
 |            "Unexpected hint opcode!"); | 
 |     // The only correct mapping for these is to always use the source register | 
 |     // bank. | 
 |     const RegisterBank *RB = | 
 |         RBI->getRegBank(MI.getOperand(1).getReg(), *MRI, *TRI); | 
 |     // We can assume every instruction above this one has a selected register | 
 |     // bank. | 
 |     assert(RB && "Expected source register to have a register bank?"); | 
 |     LLVM_DEBUG(dbgs() << "... Hint always uses source's register bank.\n"); | 
 |     MRI->setRegBank(MI.getOperand(0).getReg(), *RB); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Remember the repairing placement for all the operands. | 
 |   SmallVector<RepairingPlacement, 4> RepairPts; | 
 |  | 
 |   const RegisterBankInfo::InstructionMapping *BestMapping; | 
 |   if (OptMode == RegBankSelect::Mode::Fast) { | 
 |     BestMapping = &RBI->getInstrMapping(MI); | 
 |     MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts); | 
 |     (void)DefaultCost; | 
 |     if (DefaultCost == MappingCost::ImpossibleCost()) | 
 |       return false; | 
 |   } else { | 
 |     RegisterBankInfo::InstructionMappings PossibleMappings = | 
 |         RBI->getInstrPossibleMappings(MI); | 
 |     if (PossibleMappings.empty()) | 
 |       return false; | 
 |     BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts); | 
 |   } | 
 |   // Make sure the mapping is valid for MI. | 
 |   assert(BestMapping->verify(MI) && "Invalid instruction mapping"); | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n'); | 
 |  | 
 |   // After this call, MI may not be valid anymore. | 
 |   // Do not use it. | 
 |   return applyMapping(MI, *BestMapping, RepairPts); | 
 | } | 
 |  | 
 | bool RegBankSelect::assignRegisterBanks(MachineFunction &MF) { | 
 |   // Walk the function and assign register banks to all operands. | 
 |   // Use a RPOT to make sure all registers are assigned before we choose | 
 |   // the best mapping of the current instruction. | 
 |   ReversePostOrderTraversal<MachineFunction*> RPOT(&MF); | 
 |   for (MachineBasicBlock *MBB : RPOT) { | 
 |     // Set a sensible insertion point so that subsequent calls to | 
 |     // MIRBuilder. | 
 |     MIRBuilder.setMBB(*MBB); | 
 |     SmallVector<MachineInstr *> WorkList( | 
 |         make_pointer_range(reverse(MBB->instrs()))); | 
 |  | 
 |     while (!WorkList.empty()) { | 
 |       MachineInstr &MI = *WorkList.pop_back_val(); | 
 |  | 
 |       // Ignore target-specific post-isel instructions: they should use proper | 
 |       // regclasses. | 
 |       if (isTargetSpecificOpcode(MI.getOpcode()) && !MI.isPreISelOpcode()) | 
 |         continue; | 
 |  | 
 |       // Ignore inline asm instructions: they should use physical | 
 |       // registers/regclasses | 
 |       if (MI.isInlineAsm()) | 
 |         continue; | 
 |  | 
 |       // Ignore IMPLICIT_DEF which must have a regclass. | 
 |       if (MI.isImplicitDef()) | 
 |         continue; | 
 |  | 
 |       if (!assignInstr(MI)) { | 
 |         reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect", | 
 |                            "unable to map instruction", MI); | 
 |         return false; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool RegBankSelect::checkFunctionIsLegal(MachineFunction &MF) const { | 
 | #ifndef NDEBUG | 
 |   if (!DisableGISelLegalityCheck) { | 
 |     if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) { | 
 |       reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect", | 
 |                          "instruction is not legal", *MI); | 
 |       return false; | 
 |     } | 
 |   } | 
 | #endif | 
 |   return true; | 
 | } | 
 |  | 
 | bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) { | 
 |   // If the ISel pipeline failed, do not bother running that pass. | 
 |   if (MF.getProperties().hasProperty( | 
 |           MachineFunctionProperties::Property::FailedISel)) | 
 |     return false; | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n'); | 
 |   const Function &F = MF.getFunction(); | 
 |   Mode SaveOptMode = OptMode; | 
 |   if (F.hasOptNone()) | 
 |     OptMode = Mode::Fast; | 
 |   init(MF); | 
 |  | 
 | #ifndef NDEBUG | 
 |   if (!checkFunctionIsLegal(MF)) | 
 |     return false; | 
 | #endif | 
 |  | 
 |   assignRegisterBanks(MF); | 
 |  | 
 |   OptMode = SaveOptMode; | 
 |   return false; | 
 | } | 
 |  | 
 | //------------------------------------------------------------------------------ | 
 | //                  Helper Classes Implementation | 
 | //------------------------------------------------------------------------------ | 
 | RegBankSelect::RepairingPlacement::RepairingPlacement( | 
 |     MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P, | 
 |     RepairingPlacement::RepairingKind Kind) | 
 |     // Default is, we are going to insert code to repair OpIdx. | 
 |     : Kind(Kind), OpIdx(OpIdx), | 
 |       CanMaterialize(Kind != RepairingKind::Impossible), P(P) { | 
 |   const MachineOperand &MO = MI.getOperand(OpIdx); | 
 |   assert(MO.isReg() && "Trying to repair a non-reg operand"); | 
 |  | 
 |   if (Kind != RepairingKind::Insert) | 
 |     return; | 
 |  | 
 |   // Repairings for definitions happen after MI, uses happen before. | 
 |   bool Before = !MO.isDef(); | 
 |  | 
 |   // Check if we are done with MI. | 
 |   if (!MI.isPHI() && !MI.isTerminator()) { | 
 |     addInsertPoint(MI, Before); | 
 |     // We are done with the initialization. | 
 |     return; | 
 |   } | 
 |  | 
 |   // Now, look for the special cases. | 
 |   if (MI.isPHI()) { | 
 |     // - PHI must be the first instructions: | 
 |     //   * Before, we have to split the related incoming edge. | 
 |     //   * After, move the insertion point past the last phi. | 
 |     if (!Before) { | 
 |       MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI(); | 
 |       if (It != MI.getParent()->end()) | 
 |         addInsertPoint(*It, /*Before*/ true); | 
 |       else | 
 |         addInsertPoint(*(--It), /*Before*/ false); | 
 |       return; | 
 |     } | 
 |     // We repair a use of a phi, we may need to split the related edge. | 
 |     MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB(); | 
 |     // Check if we can move the insertion point prior to the | 
 |     // terminators of the predecessor. | 
 |     Register Reg = MO.getReg(); | 
 |     MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr(); | 
 |     for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It) | 
 |       if (It->modifiesRegister(Reg, &TRI)) { | 
 |         // We cannot hoist the repairing code in the predecessor. | 
 |         // Split the edge. | 
 |         addInsertPoint(Pred, *MI.getParent()); | 
 |         return; | 
 |       } | 
 |     // At this point, we can insert in Pred. | 
 |  | 
 |     // - If It is invalid, Pred is empty and we can insert in Pred | 
 |     //   wherever we want. | 
 |     // - If It is valid, It is the first non-terminator, insert after It. | 
 |     if (It == Pred.end()) | 
 |       addInsertPoint(Pred, /*Beginning*/ false); | 
 |     else | 
 |       addInsertPoint(*It, /*Before*/ false); | 
 |   } else { | 
 |     // - Terminators must be the last instructions: | 
 |     //   * Before, move the insert point before the first terminator. | 
 |     //   * After, we have to split the outcoming edges. | 
 |     if (Before) { | 
 |       // Check whether Reg is defined by any terminator. | 
 |       MachineBasicBlock::reverse_iterator It = MI; | 
 |       auto REnd = MI.getParent()->rend(); | 
 |  | 
 |       for (; It != REnd && It->isTerminator(); ++It) { | 
 |         assert(!It->modifiesRegister(MO.getReg(), &TRI) && | 
 |                "copy insertion in middle of terminators not handled"); | 
 |       } | 
 |  | 
 |       if (It == REnd) { | 
 |         addInsertPoint(*MI.getParent()->begin(), true); | 
 |         return; | 
 |       } | 
 |  | 
 |       // We are sure to be right before the first terminator. | 
 |       addInsertPoint(*It, /*Before*/ false); | 
 |       return; | 
 |     } | 
 |     // Make sure Reg is not redefined by other terminators, otherwise | 
 |     // we do not know how to split. | 
 |     for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end(); | 
 |          ++It != End;) | 
 |       // The machine verifier should reject this kind of code. | 
 |       assert(It->modifiesRegister(MO.getReg(), &TRI) && | 
 |              "Do not know where to split"); | 
 |     // Split each outcoming edges. | 
 |     MachineBasicBlock &Src = *MI.getParent(); | 
 |     for (auto &Succ : Src.successors()) | 
 |       addInsertPoint(Src, Succ); | 
 |   } | 
 | } | 
 |  | 
 | void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI, | 
 |                                                        bool Before) { | 
 |   addInsertPoint(*new InstrInsertPoint(MI, Before)); | 
 | } | 
 |  | 
 | void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB, | 
 |                                                        bool Beginning) { | 
 |   addInsertPoint(*new MBBInsertPoint(MBB, Beginning)); | 
 | } | 
 |  | 
 | void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src, | 
 |                                                        MachineBasicBlock &Dst) { | 
 |   addInsertPoint(*new EdgeInsertPoint(Src, Dst, P)); | 
 | } | 
 |  | 
 | void RegBankSelect::RepairingPlacement::addInsertPoint( | 
 |     RegBankSelect::InsertPoint &Point) { | 
 |   CanMaterialize &= Point.canMaterialize(); | 
 |   HasSplit |= Point.isSplit(); | 
 |   InsertPoints.emplace_back(&Point); | 
 | } | 
 |  | 
 | RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr, | 
 |                                                   bool Before) | 
 |     : Instr(Instr), Before(Before) { | 
 |   // Since we do not support splitting, we do not need to update | 
 |   // liveness and such, so do not do anything with P. | 
 |   assert((!Before || !Instr.isPHI()) && | 
 |          "Splitting before phis requires more points"); | 
 |   assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) && | 
 |          "Splitting between phis does not make sense"); | 
 | } | 
 |  | 
 | void RegBankSelect::InstrInsertPoint::materialize() { | 
 |   if (isSplit()) { | 
 |     // Slice and return the beginning of the new block. | 
 |     // If we need to split between the terminators, we theoritically | 
 |     // need to know where the first and second set of terminators end | 
 |     // to update the successors properly. | 
 |     // Now, in pratice, we should have a maximum of 2 branch | 
 |     // instructions; one conditional and one unconditional. Therefore | 
 |     // we know how to update the successor by looking at the target of | 
 |     // the unconditional branch. | 
 |     // If we end up splitting at some point, then, we should update | 
 |     // the liveness information and such. I.e., we would need to | 
 |     // access P here. | 
 |     // The machine verifier should actually make sure such cases | 
 |     // cannot happen. | 
 |     llvm_unreachable("Not yet implemented"); | 
 |   } | 
 |   // Otherwise the insertion point is just the current or next | 
 |   // instruction depending on Before. I.e., there is nothing to do | 
 |   // here. | 
 | } | 
 |  | 
 | bool RegBankSelect::InstrInsertPoint::isSplit() const { | 
 |   // If the insertion point is after a terminator, we need to split. | 
 |   if (!Before) | 
 |     return Instr.isTerminator(); | 
 |   // If we insert before an instruction that is after a terminator, | 
 |   // we are still after a terminator. | 
 |   return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator(); | 
 | } | 
 |  | 
 | uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const { | 
 |   // Even if we need to split, because we insert between terminators, | 
 |   // this split has actually the same frequency as the instruction. | 
 |   const auto *MBFIWrapper = | 
 |       P.getAnalysisIfAvailable<MachineBlockFrequencyInfoWrapperPass>(); | 
 |   if (!MBFIWrapper) | 
 |     return 1; | 
 |   return MBFIWrapper->getMBFI().getBlockFreq(Instr.getParent()).getFrequency(); | 
 | } | 
 |  | 
 | uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const { | 
 |   const auto *MBFIWrapper = | 
 |       P.getAnalysisIfAvailable<MachineBlockFrequencyInfoWrapperPass>(); | 
 |   if (!MBFIWrapper) | 
 |     return 1; | 
 |   return MBFIWrapper->getMBFI().getBlockFreq(&MBB).getFrequency(); | 
 | } | 
 |  | 
 | void RegBankSelect::EdgeInsertPoint::materialize() { | 
 |   // If we end up repairing twice at the same place before materializing the | 
 |   // insertion point, we may think we have to split an edge twice. | 
 |   // We should have a factory for the insert point such that identical points | 
 |   // are the same instance. | 
 |   assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) && | 
 |          "This point has already been split"); | 
 |   MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P); | 
 |   assert(NewBB && "Invalid call to materialize"); | 
 |   // We reuse the destination block to hold the information of the new block. | 
 |   DstOrSplit = NewBB; | 
 | } | 
 |  | 
 | uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const { | 
 |   const auto *MBFIWrapper = | 
 |       P.getAnalysisIfAvailable<MachineBlockFrequencyInfoWrapperPass>(); | 
 |   if (!MBFIWrapper) | 
 |     return 1; | 
 |   const auto *MBFI = &MBFIWrapper->getMBFI(); | 
 |   if (WasMaterialized) | 
 |     return MBFI->getBlockFreq(DstOrSplit).getFrequency(); | 
 |  | 
 |   auto *MBPIWrapper = | 
 |       P.getAnalysisIfAvailable<MachineBranchProbabilityInfoWrapperPass>(); | 
 |   const MachineBranchProbabilityInfo *MBPI = | 
 |       MBPIWrapper ? &MBPIWrapper->getMBPI() : nullptr; | 
 |   if (!MBPI) | 
 |     return 1; | 
 |   // The basic block will be on the edge. | 
 |   return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit)) | 
 |       .getFrequency(); | 
 | } | 
 |  | 
 | bool RegBankSelect::EdgeInsertPoint::canMaterialize() const { | 
 |   // If this is not a critical edge, we should not have used this insert | 
 |   // point. Indeed, either the successor or the predecessor should | 
 |   // have do. | 
 |   assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 && | 
 |          "Edge is not critical"); | 
 |   return Src.canSplitCriticalEdge(DstOrSplit); | 
 | } | 
 |  | 
 | RegBankSelect::MappingCost::MappingCost(BlockFrequency LocalFreq) | 
 |     : LocalFreq(LocalFreq.getFrequency()) {} | 
 |  | 
 | bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) { | 
 |   // Check if this overflows. | 
 |   if (LocalCost + Cost < LocalCost) { | 
 |     saturate(); | 
 |     return true; | 
 |   } | 
 |   LocalCost += Cost; | 
 |   return isSaturated(); | 
 | } | 
 |  | 
 | bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) { | 
 |   // Check if this overflows. | 
 |   if (NonLocalCost + Cost < NonLocalCost) { | 
 |     saturate(); | 
 |     return true; | 
 |   } | 
 |   NonLocalCost += Cost; | 
 |   return isSaturated(); | 
 | } | 
 |  | 
 | bool RegBankSelect::MappingCost::isSaturated() const { | 
 |   return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX && | 
 |          LocalFreq == UINT64_MAX; | 
 | } | 
 |  | 
 | void RegBankSelect::MappingCost::saturate() { | 
 |   *this = ImpossibleCost(); | 
 |   --LocalCost; | 
 | } | 
 |  | 
 | RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() { | 
 |   return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX); | 
 | } | 
 |  | 
 | bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const { | 
 |   // Sort out the easy cases. | 
 |   if (*this == Cost) | 
 |     return false; | 
 |   // If one is impossible to realize the other is cheaper unless it is | 
 |   // impossible as well. | 
 |   if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost())) | 
 |     return (*this == ImpossibleCost()) < (Cost == ImpossibleCost()); | 
 |   // If one is saturated the other is cheaper, unless it is saturated | 
 |   // as well. | 
 |   if (isSaturated() || Cost.isSaturated()) | 
 |     return isSaturated() < Cost.isSaturated(); | 
 |   // At this point we know both costs hold sensible values. | 
 |  | 
 |   // If both values have a different base frequency, there is no much | 
 |   // we can do but to scale everything. | 
 |   // However, if they have the same base frequency we can avoid making | 
 |   // complicated computation. | 
 |   uint64_t ThisLocalAdjust; | 
 |   uint64_t OtherLocalAdjust; | 
 |   if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) { | 
 |  | 
 |     // At this point, we know the local costs are comparable. | 
 |     // Do the case that do not involve potential overflow first. | 
 |     if (NonLocalCost == Cost.NonLocalCost) | 
 |       // Since the non-local costs do not discriminate on the result, | 
 |       // just compare the local costs. | 
 |       return LocalCost < Cost.LocalCost; | 
 |  | 
 |     // The base costs are comparable so we may only keep the relative | 
 |     // value to increase our chances of avoiding overflows. | 
 |     ThisLocalAdjust = 0; | 
 |     OtherLocalAdjust = 0; | 
 |     if (LocalCost < Cost.LocalCost) | 
 |       OtherLocalAdjust = Cost.LocalCost - LocalCost; | 
 |     else | 
 |       ThisLocalAdjust = LocalCost - Cost.LocalCost; | 
 |   } else { | 
 |     ThisLocalAdjust = LocalCost; | 
 |     OtherLocalAdjust = Cost.LocalCost; | 
 |   } | 
 |  | 
 |   // The non-local costs are comparable, just keep the relative value. | 
 |   uint64_t ThisNonLocalAdjust = 0; | 
 |   uint64_t OtherNonLocalAdjust = 0; | 
 |   if (NonLocalCost < Cost.NonLocalCost) | 
 |     OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost; | 
 |   else | 
 |     ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost; | 
 |   // Scale everything to make them comparable. | 
 |   uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq; | 
 |   // Check for overflow on that operation. | 
 |   bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust || | 
 |                                            ThisScaledCost < LocalFreq); | 
 |   uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq; | 
 |   // Check for overflow on the last operation. | 
 |   bool OtherOverflows = | 
 |       OtherLocalAdjust && | 
 |       (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq); | 
 |   // Add the non-local costs. | 
 |   ThisOverflows |= ThisNonLocalAdjust && | 
 |                    ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust; | 
 |   ThisScaledCost += ThisNonLocalAdjust; | 
 |   OtherOverflows |= OtherNonLocalAdjust && | 
 |                     OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust; | 
 |   OtherScaledCost += OtherNonLocalAdjust; | 
 |   // If both overflows, we cannot compare without additional | 
 |   // precision, e.g., APInt. Just give up on that case. | 
 |   if (ThisOverflows && OtherOverflows) | 
 |     return false; | 
 |   // If one overflows but not the other, we can still compare. | 
 |   if (ThisOverflows || OtherOverflows) | 
 |     return ThisOverflows < OtherOverflows; | 
 |   // Otherwise, just compare the values. | 
 |   return ThisScaledCost < OtherScaledCost; | 
 | } | 
 |  | 
 | bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const { | 
 |   return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost && | 
 |          LocalFreq == Cost.LocalFreq; | 
 | } | 
 |  | 
 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
 | LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const { | 
 |   print(dbgs()); | 
 |   dbgs() << '\n'; | 
 | } | 
 | #endif | 
 |  | 
 | void RegBankSelect::MappingCost::print(raw_ostream &OS) const { | 
 |   if (*this == ImpossibleCost()) { | 
 |     OS << "impossible"; | 
 |     return; | 
 |   } | 
 |   if (isSaturated()) { | 
 |     OS << "saturated"; | 
 |     return; | 
 |   } | 
 |   OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost; | 
 | } |